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ABSTRACT

Non-negative matrix factorization (NMF) provides a lower
rank approximation of a matrix. Due to nonnegativity im-
posed on the factors, it gives a latent structure that is often
more physically meaningful than other lower rank approxi-
mations such as singular value decomposition (SVD). Most
of the algorithms proposed in literature for NMF have been
based on minimizing the Frobenius norm. This is partly
due to the fact that the minimization problem based on
the Frobenius norm provides much more flexibility in alge-
braic manipulation than other divergences. In this paper we
propose a fast NMF algorithm that is applicable to general
Bregman divergences. Through Taylor series expansion of
the Bregman divergences, we reveal a relationship between
Bregman divergences and Euclidean distance. This key rela-
tionship provides a new direction for NMF algorithms with
general Bregman divergences when combined with the scalar
block coordinate descent method. The proposed algorithm
generalizes several recently proposed methods for computa-
tion of NMF with Bregman divergences and is computation-
ally faster than existing alternatives. We demonstrate the
effectiveness of our approach with experiments conducted on
artificial as well as real world data.
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H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing-abstracts methods
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1. INTRODUCTION
Non-negative matrix factorization (NMF) is a dimension-

ality reduction method that has attracted great attention
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over a decade. It approximates a matrix A by a product of
two lower rank matrices W and H with non-negative entries
minimizing the divergence between A and WHT . Using
Bregman divergences, our problem is to find

arg min
W≥0,H≥0

Dφ(A‖WH
T ),

where Dφ(A‖WHT ) denotes a Bregman divergence between
A and WHT . The decomposition discovers a latent struc-
ture in the data and is useful in signal processing, collabora-
tive filtering, clustering, and other data-mining tasks. Due
to the non-negativity constraint on W and H, NMF discov-
ers a latent structure that is often more interpretable than
SVD based factorizations.

Various Bregman divergences, such as Frobenius norm
and KL divergence, have been used in a wide range of appli-
cations, including text clustering, signal processing, image
processing, and music analysis. A general NMF algorithm
for various Bregman divergences not only offers a general so-
lution for different applications, but also enables the knowl-
edge share across different domains. Recent years have seen
a surge of interest in NMF [25, 7, 22, 20]. The earliest NMF
algorithms aimed at directly optimizing the divergence, re-
sulting in higher scale computational costs. Moreover, most
algorithms have been developed for Frobenius norm(which
becomes the Euclidean distance for scalars) minimization, a
popular special case of the Bregman divergence.

Lee and Seung’s simple multiplicative update rule [25] has
been one of the most utilized method for NMF over a decade,
for both Frobenius norm and KL(Kullback-Leibler) diver-
gence. Dhillon et al. [8] extended it to solve NMF with
general Bregman divergences. By using an auxiliary func-
tion, Fevotte et al. [11] discussed the updating rule under
the IS divergence, and applied it to music analysis. An alter-
native updating rule is also provided based on the statistical
interpretation of the properties of the IS divergence. Nev-
ertheless, the above algorithms generally suffer from high
computational cost and slow convergence [23].

Cichocki et al. [5] introduced an alternative algorithm
with improved local updating rules, achieving high efficiency
in solving NMF problems. The resulting algorithm applies
to the Frobenius norm. Similar algorithms have been pro-
posed for a few other divergences, but these algorithms show
a relatively slow convergence.

Other NMF algorithms are proposed by Lin et al. [27] us-
ing projected gradient with Armijo rule to build the updat-
ing rule. Kim and Park [19, 20] proposed an NMF algorithm
based on alternating non-negative least squares (ANLS) and
an active set based algorithm. This algorithm was further



Table 1: Notations used in the paper
R real number

R+ nonegative real number

R
M×N vector space of matrice of size M × N

R
K vector space of vectors of size K

� element-wise product or Hadamard product
� element-wise division
aj j-th column vector of matrix A

aij element in the i-th row and j-th column of A

‖ · ‖2 Euclidean distance(Frobenius norm)
Dφ Bregman divergences

∇tφ(x) a element-wise t-order derivative operator of φ at x

sgn(x) sign function or signum function

improved by block principal pivoting in ANLS. An exten-
sive comparison of these algorithms appears in [22, 23]. For
a survey of NMF algorithms, see [21].

In this paper, we propose a fast NMF algorithm for a gen-
eral class of Bregman divergences. Using Taylor series we
relate Bregman divergences to the Euclidean distance and
show that the Bregman divergence optimization problem can
be expressed in terms of the Euclidean distance. The discov-
ered relationship between Bregman divergence and the Eu-
clidean distance leads to local updating rules, and provides
one efficient algorithmic framework which is applicable to
NMF formulated in Bregman divergences, and solutions for
a wide range of applications.

We investigate the performance of the new algorithm on
both artificial and real world data sets, including Xspectra
[6], AT&T Laboratory Face Image data set [1], Movielens,
and Netflix. We conduct a series of experiments comparing
our proposed methods to previously proposed algorithms.
Our experiments show that for a wide range of Bregman
divergences our new algorithm is substantially faster.

Our main contributions in this paper include

1. a new relationship connecting Bregman divergences
and the Euclidean distance via Taylor series expan-
sion, and

2. an NMF algorithm applicable for all Bregman diver-
gences that is substantially faster.

Note that by relating all Bregman divergences to the Eu-
clidean distance, we propose one united highly efficient al-
gorithm applicable for all NMF formulated in any Bregman
divergences. In contrast, most other existing algorithms are
designed for one or only a subset of Bregman divergences.

Table 1 summarizes the notations used in this paper.

2. NMF WITH BREGMAN DIVERGENCES
In NMF, given a matrix A = [aij ] ∈ R

M×N
+ , and an inte-

ger K ≤ min(M, N), we are to find W = [w1,w2, . . . ,wK ] ∈
R

M×K
+ whose columns represent basis vectors in a K-dimensional

space, and H = [h1,h2, . . . ,hK ] ∈ R
N×K
+ whose columns

represent mixing proportions, such that

A ≈ A
′ = WH

T . (1)

The quality of this approximation can be measured using
Bregman divergences,

Dφ(A‖A
′

) =
∑

i,j

Dφ(aij‖a
′

ij)

=
∑

i,j

(φ(aij) − φ(a
′

ij) − ∇φ(a
′

ij)(aij − a
′

ij))

where φ is a univariate convex smooth function.

Bregman divergences are not symmetric in general, and
the solution for minDφ(WHT ‖A) will be different from that
of minDφ(A‖WHT ). In this paper, we focus on Dφ(A‖WHT )

which is more widely used in applications. For instance,
Probabilistic Latent Semantic Analysis (PLSI) [16], a statis-
tical technique for data analysis, optimizes the same objec-
tive function as NMF with Kullback-Leibler divergence [9].
Other examples are signal analysis using DKL(A||WHT ) and
music analysis using Itakura-Saito divergence DIS(A||WHT ).
From a theoretical perspective, maximum likelihood estima-
tion and information theory indicate that DKL(A||WHT )
is better motivated than DKL(WHT ||A), at least when the
two arguments are probability vectors.

The choice of φ(x) = x2/2 reduces Dφ to the squared
Frobenius norm of E = A − WHT , which is the sum of
squared entries of the residual matrix E (Notice that the
Frobenius norm of a matrix can be viewed as the Euclidean
distance of the corresponding vectorized matrix). Other
choices for φ result in the non-negative Kullback-Leibler
(KL) divergence or Itakura-Saito (IS) divergence. The spe-
cific choice of φ depends on the application. For example,
the Frobenius norm has been used successfully in text clus-
tering [3]. KL divergence is well suited for many problems
in signal processing [5] while IS divergence has been shown
to perform well in music recommendation [11]. For other
choices of φ and areas where these divergences are ultilized,
see [7].

In [2], Bregman divergences have been used to derive an
exact characterization of the difference between the two sides
of Jensen’s inequality. Banerjee et al. [3] discussed a cluster-
ing algorithm for general Bregman divergences. They also
showed that there exists a bijection between regular expo-
nential families and large classes of Bregman divergences.
Singh and Gordon [31] showed that methods such as NMF,
Weighted SVD, pLSI et al. can be viewed in a general frame-
work of matrix factorization with Bregman divergences. Pietra
et al. [30] derived and proved convergence of iterative algo-
rithms to minimize Bregman divergence subject to linear
constraints based on auxiliary functions. Wang and Schu-
urmans [32] proposed a novel algorithm that extracts hid-
den latent structure by minimizing Bregman divergences.
Lebanon [24] used Taylor series approximation to show a re-
lationship between KL divergences and the Fisher geometry
which enjoys certain axiomatic properties.

Some examples of Bregman divergences and the corre-
sponding φ functions are listed in Table 2.

3. FAST ALGORITHM FOR NMF
Many existing NMF algorithms can be explained using

the block coordinate descent framework [21]. Different par-
titions of variables W and H lead to different NMF algo-
rithms. One natural way of partition [8, 19, 22] is the two
blocks representing W and H, with which the subproblems
result in a nonnegativity constrained least square (NLS)
problem. Another way of partition [5, 14] is K(M + N)
blocks where each represents a single element in W or H.

Coordinate descent is also employed to solve many other
problems. Wu et al. [33] came up with coordinate descent
algorithm for l1 regularized regression, Lasso. A greedy co-
ordinate descent method was proposed in [26] to solve the
Basis Pursuit problem, and can be applied to tasks such as
compressed sensing and image denoising. Yun and Toh [34]
proposed a block coordinate gradient descent method for



general l1-regularized convex minimization problems. Re-
cently, a fast coordinate descent algorithm was developed
in [13] to estimate generalized linear models with convex
penalties. Coordinate descent was also used for solving non-
convex penalty functions, such as smoothly clipped absolute
deviation (SCAD) penalty and the minimax concave penalty
(MCP) in [4].

We denote the residual term in the NMF approximation
(1) as A−WHT = A(k)−wkh

T
k , where the k-residual A(k)

is define as

A
(k) = A −

∑

p 6=k

wph
T
p = A − WH

T + wkh
T
k ,

for k = 1, . . . , K. In the case of φ(x) = 1
2
x2, Dφ leads to the

squared Frobenius norm

Dφ(A‖A′) = Dφ(A‖WH
T ) =

1

2
‖A − WH

T ‖2
F

=
1

2
‖A(k) − wkh

T
k ‖2

F = Dφ(A(k)‖wkh
T
k ). (2)

Let us define

Et(A‖A′) =
∑

ij

|aij − a′
ij |

t, t ∈ {1, 2, . . .}

which is the t-th power of t-norm distance between vector-
ized matrices A and A′. Then we have

Et(A‖A′) = Et(A
(k)‖wkh

T
k ) or (3)

Et(aij‖a
′
ij) = Et(a

(k)
ij ‖wikhjk).

Cichocki et al. [5] proposed an algorithm called Hier-
archical Alternating Least Squares (HALS) for NMF with
Frobenius norm. They designed local updating rules based
on the relationship in Eqn (2), leading to a fast algorithm.
Each updating step solves a sub-optimization problem with
a closed form solution, and the algorithm converges much
faster than the multiplicative updating rule in [25, 8]. Al-
though similar algorithms for Alpha divergence and Beta
divergence have been proposed, they aimed at minimizing
Dφ(A(k)‖wkh

T
k ) instead of Dφ(A‖WHT ), which are two

different functions for most Bregman divergences other than
the Frobenius norm.

In this paper, using the relationship in Eqn (3), the opti-
mization goal changes from the approximation between the
given matrix and the multiplication of two low-rank matri-
ces to the approximation between the k-residual matrix and
the multiplication of two vectors. Since elements in wk(or
hk) can be computed independently, we actually focus on

the approximation between a
(k)
ij (single element in k-residual

matrix) and the multiplication of wik and hjk. Based on
this observation, a novel scalar coordinate descent algorithm
with k(m + n) scalar blocks can be designed. In the rest of
this section, we will

• Derive a new relationship between general Bregman
divergences and the Euclidean distance;

• Use the above relationship to replace the minimiza-
tion goal from the Bregman divergences Dφ(A‖WHT )

with an expression of Et(a
(k)
ij ‖wikhjk);

• Design coordinate descent algorithm to optimize

Et(a
(k)
ij ‖wikhjk).

3.1 A Taylor Series Expansion of Bregman Di-
vergences

The following proposition shows a new relationship be-
tween Bregman divergences and the Euclidean distance, which
plays a key role in our fast algorithm development.

Proposition 3.1.

Dφ(A‖A′) =
∑

i,j

∞
∑

t=2

∇tφ(a′
ij)

t!
(−sgn(a′

ij − aij))
tEt(aij‖a′

ij).

Proof. The Taylor expansion of Dφ(aij‖a
′
ij) leads to

Dφ(aij‖a
′
ij) = φ(aij) − φ(a′

ij) −∇φ(a′
ij)(aij − a′

ij)

= ∇φ(a′
ij)(aij − a′

ij) +
∞

∑

t=2

∇tφ(a′
ij)

t!
(aij − a′

ij)
t

−∇φ(a′
ij)(aij − a′

ij)

=
∞

∑

t=2

∇tφ(a′
ij)

t!
(aij − a′

ij)
t

=
∞

∑

t=2

∇tφ(a′
ij)

t!
(−sgn(a′

ij − aij))
tEt(aij‖a

′
ij)

(4)

where ∇tφ(a′
ij) is the t-order derivative of φ at a′

ij .

The above relationship is then employed to replace our
objective function Dφ(A‖WHT ) with an expression that

involves Et(a
(k)
ij ‖wikhjk). In the following subsection, we

show how this relationship allows us to recast the problem in
a form that is easier to solve and leads to a novel and efficient
algorithm. Notice that this relationship is an equality rather
than an approximation.

Taylor expansion has been utilized in numerical prob-
lems including a quadratic approximation of the objective
or loss function. For instance, to solve a regularized log-
determinant program, Hsieh et al. [18] proposed a novel al-
gorithm which is based on Newton’s method and employs a
quadratic approximation. For the l1-regularized linear least
squares problem, a gradient projection method was proposed
in [12] to solve the bound constrained quadratic program-
ming reformulation. Yun. et al [34] went a step further
by using quadratic approximation to solve the general l1-
regularized convex minimization problem. In each iteration,
the objective is replaced by a strictly convex quadratic ap-
proximation, then block coordinate descent is used to obtain
a feasible descent direction. Taylor explansion was also em-
ployed to approximate non-convex penalties, such as SCAD
[10] and MCP [29].

3.2 A New Algorithm for NMF with Bregman
Divergences

Based on Eqns (3) and (4) , the Bregman divergences

Dφ(A‖WHT ) can be expressed in terms Et(a
(k)
ij ‖wikhjk)

as

Dφ(A‖WH
T ) =

∑

i,j

∞
∑

t=2

∇tφ(a′
ij)

t!
(−sgn(a′

ij − aij))
tEt(a

(k)
ij ‖wikhjk).

Thus, instead of calculating the partial derivatives of Dφ(A‖WH
T )

with respect to W and H, we turn to the partial derivative of

Et(a
(k)
ij ‖wikhjk) with respect to smaller blocks, wik and hjk.

Using this and the scalar block coordinate descent frame-
work in constrained optimization where each block consists



of a single unknown element in W or H (assuming other
elements are fixed), a novel fast algorithm can be derived.

From

∂

∂hjk

(
∇tφ(a′

ij)

t!
(−sgn(wikhjk − a

(k)
ij ))

t
Et(a

(k)
ij ‖wikhjk))

= − wik

∇tφ(a′

ij)

(t − 1)!
(a

(k)
ij − wikhjk)

t−1
+ wik

∇t+1φ(a′

ij)

t!
(a

(k)
ij − wikhjk)

t

and Eqn (4), we obtain

∂Dφ(aij‖a
′
ij)

∂hjk

= wik∇
2φ(a′

ij)(wikhjk − a
(k)
ij )

+
∞

∑

t=2

(

− wik

∇t+1φ(a′
ij)

t!
(a

(k)
ij − wikhjk)t

+ wik

∇t+1φ(a′
ij)

t!
(a

(k)
ij − wikhjk)t

)

= wik∇
2φ(a′

ij)(wikhjk − a
(k)
ij ).

Summing over the matrix rows and columns, we have1

∂Dφ(A‖WHT )

∂hjk

=
M
∑

i=1

wik∇2φ(a′
ij)(wikhjk − a

(k)
ij )

= [WT (∇2φ(WH
T ) � (wkh

T
k − A

(k)))]kj . (5)

The solution for the scalar block hjk can be obtained by
solving:

0 =
∂Dφ(A‖WH

T )

∂hjk

=

M
∑

i=1

wik∇
2
φ(a

′

ij)wikhjk −

M
∑

i=1

wik∇
2
φ(a

′

ij)a
(k)
ij

which leads to the element-wise updating rule:

hjk =

∑M

i=1 ∇
2φ(a′

ij)a
(k)
ij wik

∑M

i=1 ∇
2φ(a′

ij)wikwik

. (6)

Similarly, we can derive an updating rule for wik.
The summary of the algorithm, which we refer to as sBCD

(Scalar Block Coordinate Descent) is shown in Algorithm 12.
Note that the algorithm follows the block coordinate descent
framework where each element in W and H is considered as
a scalar block that we update in each step.

The algorithm above is expressed in a general form for all
Bregman divergences. Replacing φ(x) with the correspond-
ing expression provides the specific algorithm for each spe-
cific Bregman divergence. Interestingly, for squared Frobe-
nius norm, the updating rule is precisely the same as HALS

algorithm proposed in [5]. Some specific updating rules are
listed in Table 2.

The following rearrangements of expressions show an in-
teresting relationship between sBCD and two other NMF al-
gorithms, Multiplcative Updating and Gradient Descent
methods. According to Eqns (5) and (6), we have

hjk = [

∑M
i=1 ∇2φ(a′

ij)(aij − a′
ij + wikhjk)wik

∑M
i=1 ∇2φ(a′

ij)wikwik

]+

= [hjk +
[WT (∇2φ(WHT ) � (A − WHT ))]kj

[(W � W)T∇2φ(WHT )]kj

]+

= [hjk +
1

[(W � W)T∇2φ(WHT )]kj

(−∂Dφ(A‖WHT )

∂hkj

)]+

1definition of � can be found in Table 1.
2[x]+ = max{x, 0}.

Algorithm 1 sBCD Algorithm

1: Given A ∈ R
M×N , a reduced dimension K, and function

φ for a Bregman divergence, initialize values for W and
H.

2: A′ = WHT

3: E = A − A′

4: repeat

5: B = ∇2φ(A′)
6: for k = 1, 2, . . . , K do

7: A(k) = E + wkh
T
k

8: for j = 1, 2, . . . , N do

9: hjk = [
∑M

i=1 bija
(k)
ij wik

∑M
i=1 bijwikwik

]+

10: end for

11: for i = 1, 2, . . . , M do

12: wik = [
∑N

j=1 bija
(k)
ij hjk

∑N
j=1 bijhjkhjk

]+

13: end for

14: E = A(k) − wkh
T
k

15: end for

16: A′ = WHT

17: until stopping criterion is reached

where we can view −
∂Dφ(A‖WH

T )

∂hjk
as the gradient direction,

1
[(W�W)T ∇2φ(WHT )]kj

as the step size. Notice that a hard

constraint is enforced to ensure hjk to be nonnegative.
On the other hand, multiplicative updating rule proposed

in [25] can be written as:

hjk = hjk

[WT (∇2(WHT ) � A)]kj

[WT (∇2(WHT ) � WHT )]kj

= hjk +
hjk

[WT (∇2φ(WHT ) � WHT )]kj

(−
∂Dφ(A‖WHT )

∂hjk

).

A gradient descent algorithm for NMF is also proposed in
[25], which uses a fixed step size. With the above rearrange-
ments of expressions, we can see that the difference between
sBCD, Multiplicative Updating and Gradient Descent is
the step sizes only. The advantage of sBCD and Multiplica-
tive Updating over Gradient Descent is that they choose
step sizes according to the result of previous iteration. Fur-
ther comparsion of step sizes of sBCD and Multiplicative
Updating shows that

1

[(W � W)T∇2φ(WHT )]kj

≥ hjk

[WT (∇2φ(WHT ) � WHT )]kj

.

The above equation illustrates that Multiplicative Up-

dating uses a conservative step size in order to keep the
update result nonnegative, while a longer step is used by
sBCD to make each updating more efficient.

3.3 Fast NMF algorithm with Sparsity Con-
straints

An important variation of NMF is the NMF subject to
sparsity constraints [19] on one or both factors. For imposing
sparsity on H, the objective function is replaced with the
following penalized version:3

L(A‖WH
T ) = Dφ(A‖WH

T ) + α
K

∑

k=1

‖hk‖1,

3Notice in implementation, regularization term ‖W‖F is
added to prevent it from growing too large.



Table 2: Updating rules for specific Bregman Divergences
Description Function φ(x) ∇2φ(x) Dφ(a‖a′) updating rule

Frobenius norm x2

2 1 (a − a′)2/2 hjk =

∑M
i=1 a

(k)
ij

wik
∑M

i=1
wikwik

KL-divergence x log x 1/x a log a
a′

− a + a′ hjk =

∑M
i=1 a

(k)
ij

wik/a′

ij
∑M

i=1
wikwik/a′

ij

Itakura-Saito divergence − log x 1/x2 a
a′

− log a
a′

hjk =

∑M
i=1 a

(k)
ij

wik/a′

ij
2

∑M
i=1

wikwik/a′

ij
2

Beta divergence 1
β(β+1)

(xβ+1 − (β + 1)x + β) xβ−1 1
β(β+1)

(aβ+1 − a′β+1 − (β + 1)a′β(a − a′)) hjk =

∑M
i=1 a

′β−1
ij

a
(k)
ij

wik
∑M

i=1
a
′β−1
ij

wikwik

where α is regularization paramter. Although ‖ · ‖1 is not
differentiable in general, in NMF it is differentiable in the
specific domain due to the condition that H is non-negative.

The corresponding sBCD updating rule is

hjk =
α +

∑M

i=1 ∇
2φ(a′

ij)a
(k)
ij wik

∑M

i=1 ∇
2φ(a′

ij)wikwik

,

wik =

∑N

j=1 ∇
2φ(a′

ij)a
(k)
ij hjk

∑N

i=1 ∇
2φ(a′

ij)hjkhjk

.

Sparsity on W can be imposed in an analogous way.

4. EXPERIMENTAL RESULTS

4.1 Data Set and Performance Evaluation
The experiments are conducted on artificial and real world

data sets. The randomly generated data sets have prob-
lem sizes (M, N, K) = (2000, 1000, 30), (2000, 1000, 60), and
(3000, 2000, 30). The initial matrices for W and H were gen-
erated with uniform random values in [0.5, 1.5]. To remove
sampling noise we average results using 5 different initial
values. Our first real world data set follows the Xspectra
setup in [6]. A matrix of size 1000 × 10 is formed by using
ten noisy mixtures of five smooth sources. Mixed signals are
corrupted by additive Guassian noise. For this data set, the
ground-truth factors are provided, enabling the testing of al-
gorithms’ accuracy in recovering factors. A larger real world
data set is the AT&T face image data set [1]. This data set
contains 400 facial images (10 images of each of 40 different
people) with a single facial image containing 92 × 112 pix-
els in 8-bit grey level. The resulting data matrix is of size
10304 × 400. Movielens data set with rating matrix of size
71567 × 65133 is also used, The largest data set is Netflix
with a sparse rating matrix of size 480189 × 17770.

We employ two types of metrics, Bregman divergences
Dφ(A‖WHT ) and Signal to Interference Ratio(SIR) [5].

SIR is a commonly used metric in signal processing. We
employ it here to judge how well the computed factors W
and H match the ground-truth. Denoting the ground-truth

as Ŵ and Ĥ, the values of SIR for W is calculated as:

SIR(W,Ŵ) =
10

K

K
∑

k=1

log(
‖ŵk‖2

2

‖wk − ŵk‖2
2

)

where wk and ŵk are normalized to have unit L2 norm.
SIR for H is computed analogously.

4.2 Performance with Various Bregman Diver-
gences

In our experiments we use four Bregman divergences: Frobe-
nius, KL, IS and Beta (β = 2) divergences. Our algorithm

is compared to the following three methods for NMF using
specific subset of Bregman divergences:

Conjugate gradient(CG): This approach is based on the
alternating nonnegative least squares (ANLS) frame-
work, and solves the nonnegative least square subprob-
lems efficiently by conjugate gradient method [15] for
the numerical solution of particular systems of linear
equations.

BlockPivot: This algorithm [22] is also based on the alter-
nating nonnegative least squares (ANLS) framework
and solves the nonnegative least square subproblems
efficiently by using an active set like method called
block principal pivoting.

GCD/CCD: A coordinate descent algorithm called Greedy Co-
ordinate Descent (GCD) described in [17] to solve the
NMF with Frobenius norm. It takes a greedy step
of maximum decrease in objective function, and select
important variables to update more often.

A Cyclic Coordinate Descent (CCD) algorithm is also
proposed for the NMF with KL divergence. It dif-
fers from GCD by that the number of update for each
variable is exactly the same, thus may conduct some
unnecessary updates on unimportant variables. New-
ton’s method is employed to solve each one-variable
sub-problem.

and the following methods which are designed for NMF for-
mulating using general Bregman divergences:

Multiplicative updating: This approach uses the multi-
plicative updating rule in [25, 8].

Gradient descent: This algorithm [25] calculates the first
derivative of divergence based objective function, and
uses a fixed step size in each iteration.

sBCD: Our proposed approach. The code is available at
http://www.cc.gatech.edu/grads/l/lli86/sbcd.zip.

Table 3 shows above approaches’ applicability to differ-
ent divergences. For each specific divergence, not all listed
approaches are compared since some of them may be not
applicable. Therefore, for each case we conduct a separate
series of experiments.

Figure 1 and 3 compare the performance of our approach
with other algorithms measured by Dφ(A‖WHT ). In gen-
eral, Multiplicative updating converges relatively slow com-
pared to others, but often find a good solution. For real
world data, Gradient descent performs poorly. Multi-

plicative updating performs better than Gradient descent.
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Figure 1: Performance of NMF with various Bregman Divergences

CG: dash triangle line, BlockPivot: dash cross line, Multiplicative updating: dash dot line, Gradient descent: dash line,

sBCD: solid line. y axis: relative residual value log10
Dφ(A‖WH

T )

Dφ(A‖W0H
T
0 )

, where W0 and H0 are initial values for W and H.

(M, N, K) values are RD1: (2000, 1000, 30), RD2: (2000, 1000, 60), RD2: (3000, 2000, 30).



Table 3: Applicability of Compared Methods
Frobenius KL IS Beta

CG
√ × × ×

BlockPivot
√ × × ×

GCD
√ × × ×

CCD × √ × ×
Multiupdate

√ √ √ √

Gradupdate
√ √ √ √

sBCD
√ √ √ √
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Figure 2: Performance of NMF with various Breg-

man Divergences

This experiment is conducted on 5 smooth data set where
the problem size is (M, N, K) = (1000, 10, 5). In the figures

of the first row, the y axis measures SIR(W,Ŵ); in the

figures of the second row, the y axis measures SIR(H, Ĥ).

For Frobenius norm, CG can reach better solutions than
the above two, but requires huge computational cost. Block-
Pivot performs better than CG, significantly reducing the
computational cost by using block pvioting scheme to speed
up the process of finding optimal solution. Our approach
performs better than all others expect GCD. For KL diver-
gence, CCD is only slightly better than sBCD. The difference
is much smaller than the difference between GCD and sBCD

under Frobenius norm. Although our approach does not
outperform GCD and CCD, we must notice that GCD targets at
solving NMF with Frobenius norm only, while CCD targets at
KL divergence only. On the other hand, our approach pro-
vides a general solution to NMF with Bregman divergences.

For IS and Beta divergences, our approach performs better
than all other compared approaches, in both artificial and
real world data. Its convergence behavior and the solution
to the factorization is the best among all the approaches.

When handling large real world data sets, we notice that
the performance curve of the above algorithms was not nec-
essarily so smooth. However, the advantage of sBCD and
CCD over Multiplicative updating and Gradient descent

is still very significant, especially at the first several itera-
tions. The more sparse A is, the greater improvement sBCD
can obtain over the others.

Table 4: Performance for various reduced ranks

The table shows the time and iteration numbers needed for
convergences under both IS and Beta divergence. The

input matrix is of size 2000 × 1500 and the convergence

criterion
∆Dφ(A‖WH

T )

Dφ(A‖W0H
T
0 )

= 10−0.04 is set to measure the

relative decrease in residual values, where ∆Dφ(A‖WHT )
is the absolute dif-

ference of Dφ(A‖WHT ) between two consecutive iterations.
IS Beta

K Grad Multi sBCD Grad Multi sBCD

time 5 466.97 353.43 150.61 1109.56 803.84 346.51
(s) 10 632.48 525.91 200.17 1498.8 1198.62 461.98

20 1082.11 905.42 236.77 2392.99 2009.69 550.89
30 1318.35 1089.61 310.01 3241.07 2550.13 711.39
40 2032.49 1634.5 325.22 4337.59 3838.38 829.43
60 2474.16 2196.3 393.08 5103.28 4715.99 973.78
80 3293.67 2769.9 446.3 7157.01 5591.19 1042.86

iter 5 171.1 85.74 30.4 174.3 91.2 26.1
10 268.4 147.4 41.1 277 180.4 42.4
20 320 221.6 45 378 213.1 46.6
30 435.4 338.2 50.1 536 381.9 56.3
40 588.3 416.8 53.3 620 466.5 63
60 718.1 595.7 62.8 840.9 686.4 72.4
80 891.5 784.6 71.7 1057.7 865.3 81.3

Figure 2 compares the performance of our approach with
the other algorithms and the performance is measured by
SIR. It illustrates that sBCD and CCD can recover the ground-
truth factors Ŵ and Ĥ much better than Multiplicative

updating and Gradient descent. Note that Ĥ can be re-

covered much better than Ŵ. This may due to the fact that
Ĥ is given signal matrix while Ŵ is generated randomly.

The following experiments evaluate how the variation of
K influences the performance. From Table 4 we can see
that our algorithm has a significant advantage in conver-
gence behavior over the other two approaches. The advan-
tage becomes greater with the increase of K. For sBCD, the
number of iterations needed for convergence increases very
slowly, while there is a sharp increase in the case of Multi-
plicative updating and Gradient descent.

4.3 Other Variations
In sBCD, the computation of the term ∇2φ(a′

ij) may be
costly, since a′

ij varies in each iteration. To address this is-
sue, we also consider the following two alternative updating
rules which can, in some cases, provide additional computa-
tional savings. Performance comparison of sBCD and those
two variations is shown in Figure 4.

sBCD-AL-A sBCD-AL-B

hjk =
∑M

i=1 ∇2φ(aij)a
(k)
ij wik

∑M
i=1 ∇2φ(aij)wikwik

hjk =
∑M

i=1 a
(k)
ij wik

∑M
i=1 wikwik

As shown in Figure 4, in most cases, sBCD-AL-A gives the
slowest convergence and the worst solution. sBCD converges
faster and obtains a better solution than sBCD-AL-B. sBCD
also performs better consistently. The nature of A and the φ
may decide how well the alternative updating rules approx-
imate sBCD. For example, in IS divergence, sBCD gains an
impressive advantage over the other two algorithms. How-
ever, in a few cases(especially the signal data), the difference
among the three algorithms is not significant. This indicates
that the two alternative algorithms may be more suitable for
certain real world applications due to their simplicity in im-
plementation and relatively lower storage cost.
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Figure 3: Performance of NMF with various Breg-

man Divergences on Large Scale Data

The y axis measures the logarithm of the relative residual
value. (M, N, K) values are Face Image: (10304, 400, 20),
Movielens: (71567, 65133, 20), Netflix: (480189, 17770, 20).

Matrices in Movielens and Netflix are very sparse.

For NMF with additional constraints, due to lack of space
we only report here the result for the KL-divergence case
when imposing sparsity constraint on H only. Figure 5
shows that with even with constraints added, the relative
trends of our three proposed algorithms remain the same.

Here we choose text summarization as the application
task, and conduct experiments to explore how different di-
vergences can affect the topic generation. In this applica-
tion, a document-text matrix is first built to describe the
corpus. The matrix is then factorized by our proposed NMF
algorithms to analyze the topic distribution over the corpus.
Finally, the obtained document-topic matrix is used as fea-
tures in model training for text summarization. We expect
stronger features obtained from this NMF process.

The DUC2001 data set is used for evaluation in this series
of experiments. It contains around 147 summary-document
pairs. The respective ground-truth summaries are generated
by manually extracting a certain number of sentences from
each single document. A 10-fold cross validation process is
employed in the experiments. Structural SVM algorithm is
used for model training and prediction. For evaluation, we
employ the ROUGE metric4 [28].

4For details, see http://berouge.com/default.aspx.

0 10 20 30 40 50 60 70
−0.095

−0.09

−0.085

−0.08

−0.075

−0.07

−0.065

−0.06

−0.055

−0.05

Time cost (s)

 

 

sBCD−AL−A

sBCD−AL−B

sBCD

(a) KL, 1500*1000, K=30

0 100 200 300 400 500 600 700 800 900

−0.55

−0.5

−0.45

−0.4

−0.35

Time cost (s)

 

 

sBCD−AL−A

sBCD−AL−B

sBCD

(b) KL, Face image

0 10 20 30 40 50 60 70

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Time cost (s)

 

 

sBCD−AL−A

sBCD−AL−B

sBCD

(c) IS, 1500*1000, K=30

0 100 200 300 400 500 600 700 800

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Time cost (s)

 

 

sBCD−AL−A

sBCD−AL−B

sBCD

(d) IS, Face image

Figure 4: Comparison of Our Three Proposed Algo-

rithms
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Figure 5: NMF with Additional Constraints

Table 5 shows that when divergence is KL, a best summa-
rization model can be trained. Using Frobenius norm also
leads to a comparable result. When divergence is IS or Beta,
the summary prediction is relatively inaccurate. Thus, we
can conclude that, in text topic analysis, using the NMF
with Frobenius norm and KL divergence is more suitable
than IS divergence and Beta divergence. The above results
also illustrate that stronger features extracted from NMF
contribute to a better summarization model.

5. CONCLUSIONS AND FUTURE WORK
In this paper, a novel fast algorithm named sBCD is pro-

posed to solve the NMF with Bregman divergences. The
algorithm is designed by deriving an equivalent optimiza-
tion problem involving the Euclidean distance. A local up-
dating rule is obtained by setting the gradient of the new
objective function to zero with respect to each element of
the two matrix factors. Experimental results demonstrate
the effectiveness of our approach.

The relationship that we derive between Bregman diver-
gences and the Euclidean distance is new. In addition to
leading to our updating rule, this connection may be used
in other data mining algorithms based on Bregman diver-
gences, such as K-means, SVM.



Table 5: Performance of Text Summarization Using

NMF with Different Divergences
Divergence Frobenius KL IS Beta

ROUGE-1-R 0.58215 0.58342 0.57931 0.57826
ROUGE-1-P 0.45734 0.46137 0.45432 0.45391
ROUGE-1-F 0.51001 0.52043 0.50043 0.49422
ROUGE-2-R 0.44123 0.45231 0.43921 0.43491
ROUGE-2-P 0.35342 0.36031 0.34232 0.34412
ROUGE-2-F 0.38634 0.39872 0.38123 0.38092
ROUGE-W-R 0.24107 0.24532 0.23726 0.23581
ROUGE-W-P 0.32313 0.33342 0.30523 0.30343
ROUGE-W-F 0.27132 0.28023 0.26932 0.26808
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