
CTR Prediction

In order to predict the CTR for a given user i and ad j we use following

where click(s) and impression(s) are the indices corresponding to the click/impression feature pair 
of ad s, respectively, by user i. The smoothing constants a and b are the total clicks and 
impressions for ad j such that a/b gives the CTR of a user with no history.

Maximum a posteriori with EM

Introducing prior distributions over the factors in the model we can compute the MAP estimate of 
the factors.

We assume that  the elements of ui,k is independently gamma distributed with shape parameters 
αk and scale parameters βk

Using Bayes rule, the posterior is proportional to

This model is called the GaP (Gamma-Poisson) model and was introduced by [2]. Following EM 
GaP algorithm based on [1] was derived to compute a MAP estimate of the model parameters

Evaluation and Results

We evaluate the predictive performance of the model for count data on advertising data. 

• Each ad is represented by 3 features, impression, click and conversion.

• Data was collected over a period of 1 month and consists of N=960 users and 110 ads (M=330).

• The data matrix contains 2548 elements representing a total of 6052 ad events.

• The data is split into 80% training set and 20% test set. 

• We compare inference with Gibbs GaP with algorithms for ML using NMF [1], MAP using the EM 
GaP algorithm [4] and a Gibbs sampler for Bayesian NMF [5].

• We compare the algorithms for a number of latent dimensions, K=1, K=3, K=5, K=10, K=20, 
K=50. The performance is reported in RMSE computed over the test set.

Factor Model for Count Data

The observed dyadic data can be represented as an N × M matrix X, whose elements xi,j is the 
observed count of event j by user i. The matrix can be represented as an approximation X ≈ Y = 
UVT

where U is a N × K matrix and V is a K × M matrix. The row vector ui
T of U is a representation of 

user i in a latent space of lower dimensionality K and the elements ui,k can be see as a 
measurement of interest of user i to factor k as the total number of occurrences of all events 
contributing to factor k, while the elements in row vector vk

T of V provides the latent factor for a 
particular event (e.g. ad click). We further constrain the factors of U and V to consists of non-
negative elements.

Since the data is count data a natural assumption is that X, element-wise follow Poisson 
distributions with corresponding mean parameters in Y such that

Each element xi,j can be seen as the sum of events (e.g. number of clicks by user i on ad j) where 
each event is a Bernoulli random variable with small probability of “success” and thus the sum is 
approximately Poisson distributed.
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Maximum likelihood with EM

Assuming each element xi,j to be i.i.d., the Poisson likelihood of observing X is given by

Given our data X we wish to find the model parameters (U, V) by maximizing the log likelihood 
w.r.t. X

is equivalent to minimizing the KL-divergence

for which [1] gave following EM algorithm with multiplicative update rules
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Markov Chain Monte Carlo with Gibbs sampling

In a Bayesian treatment we seek the posterior distribution over parameters instead of a point 
estimate such as given by ML and MAP. Unfortunately Bayesian inference is often not feasible 
instead we turn to an approximation method for Bayesian inference based on Markov Chain 
Monte Carlo (MCMC) sampling.

Discrete Component Analysis (DCA) for which GaP is a special case of was introduced by [3] and 
presented a Gibbs sampling algorithm. Introducing a new latent matrix H the Bayesian model is 
specified as follows

where ci is a discrete latent K-dimensional vector, where ci,k gives the number of ad events by user 
i in the k-th factor. The latent vector ci is derived from a new latent J × K matrix H(i) for each user i
with elements hj,k,(i). The sum of the row of H(i) is the count xi,j in the observed data and the sum 
of the column is ci,k. The column vector vk of V is normalised across the features such that                   
The joint posterior is easily derived after introducing the new latent matrix and is given by

With Gibbs sampling we need the posterior conditional distributions, which in our case can all be 
represented by well known distributions and are given as follows

where U\ui,k
denotes all elements of U except ui,k. By iteratively sampling the posterior conditional 

distributions we obtain an approximation to the joint posterior distribution.
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Conclusion

• Presented a Bayesian model for count data and applied it to real world advertising data.

• Implemented Gibbs sampler in Matlab and compared it to other algorithms for count data.

• Results show good results on the advertising data for the Gibbs GaP sampler.

TABLE 1: RMSE on the test set for the different algorithms. 
Using the mean over the entire training set results in a 
baseline model with RMSE 3.206.

Introduction

• We explore latent factor Bayesian models for dyadic data in the domain of online interest-based 
advertising which uses ad clicks and ad impressions from user history.

• The models we explore exploits the fact that the dyadic data are based on event observations 
and thus can be treated as count data. 

• We compare different methods for estimating the factors in the models, by computing the 
maximum likelihood (ML), maximum posteriori (MAP) estimate as well a perform inference using 
Gibbs sampling to obtain the posterior distribution of the factors.

• We show how to use the model for predicting ad performance on user basis  in form of click-
through rate (CTR) which can be viewed as p(click|ad,user).

FIGURE 1: Toy sample set for illustrative purpose (k=4). (a) Data matrix, (b) NMF, (c) EM GaP, (d) Gibbs GaP.

(a)                                                        (b)                                                         (c)   (d)

FIGURE 2: RMSE on the test set as a function of K.
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K
α=1.1, 

β=0.01

α=1.1, 

β=0.1 

5 2.979 3.062 2.936 3.014

10 3.151 3.183 3.072 3.080 

20 3.119 3.187 3.151 3.240


