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Abstract

We propose a nonparametric Bayesian, linear Pois-
son gamma model for count data and use it for dictio-
nary learning. A key property of this model is that it
captures the parts-based representation similar to non-
negative matrix factorization. We present an auxiliary
variable Gibbs sampler, which turns the intractable in-
ference into a tractable one. Combining this inference
procedure with the slice sampler of Indian buffet pro-
cess, we show that our model can learn the number of
factors automatically. Using synthetic and real-world
datasets, we show that the proposed model outperforms
other state-of-the-art nonparametric factor models.

1 Introduction
Factor analysis has been widely used in different ap-

plications - dimensionality reduction, dictionary learn-
ing, collaborative filtering and so on. One popular in-
stance of factor analysis is nonnegative matrix factor-
ization (NMF) [4], which is developed for nonnegative
data. The ability of NMF to capture parts-based repre-
sentations has enabled modeling of such diverse non-
negative data - images, text, video. However, NMF
needs a priori information of the number of parts (or
factors), mostly unavailable information. Although
model selection can provide an estimate of the number
of such parts, it is often inefficient and sensitive to the
data selection process. One solution to this problem is
offered by Bayesian nonparametrics.

Most of the previous nonparametric matrix factor-
izations have focused on linear Gaussian models using
a combination of Indian buffet process (IBP) and Gaus-
sian distributions. Fewer attempts have been made to-
wards nonnegative factor modeling. Santhanam et al
[8] propose a nonnegative factor analysis using Pois-
son distribution, however, it is a non-Bayesian approach
and subject to overfitting. In a recent work, Zhou et al
[12] propose a Poisson factor analysis, where a Dirich-
let distribution is used to model the factors. But the

simplex support of Dirichlet prior restricts modeling of
real-world data by imposing a fixed correlation. Paisley
and Blei [6] propose a Poisson factor analysis, which
uses gamma distributions for both the factors and the
loadings and a Poisson model for the data. However,
their model does not have a provision to separate noise,
crucial for learning subspace dimensionality. Moreover,
they use a variational scheme for inference, which in-
stead of sampling from the true posterior, samples them
from an approximate posterior. Thus the problem of
nonnegative factor analysis for count data using a non-
parametric Bayesian framework remains open.

Addressing this gap, we propose a nonparametric
Bayesian, linear Poisson gamma model - a specialized
model for count data. It provides nonnegative factors
like NMF and automatically learns the number of fac-
tors from the data. For the proposed model, inference is
intractable due to the non-conjugacy between the data
likelihood and the parameters prior. To circumvent the
problem, we present an auxiliary variable sampler that
makes the problem tractable without approximations.
Using synthetic and real-world datasets, we show that
the proposed model outperforms other state-of-the-art
nonparametric factor analysis models.

2 Background

2.1 Indian Buffet Process

Indian buffet process (IBP) is a Bayesian nonpara-
metric prior [1] used to model infinite dimensional bi-
nary matrices. Let us assume a binary matrix ZK×N
where K can be infinitely large. In modeling applica-
tions, N usually denotes the number of data points and
K denotes the number of factors or dictionary elements
which may be present/absent to represent a data point.
IBP has been used in a range of applications e.g. non-
parametric independent component analysis [3], collab-
orative filtering [5] and structure modeling [11].

The generative model behind IBP is a beta-Bernoulli
process [1]. An extension was developed by [10], which
can model integer valued matrices replacing the beta-
Bernoulli process with a gamma-Poisson process.
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2.2 Factor Modeling using IBP
The IBP had been widely used in nonparametric

matrix factorizations and factor analysis applications
where the main focus had been towards modeling the
dyadic data using a linear Gaussian model. Consider a
typical matrix factorization problem

XD×N = WD×KHK×N + E (1)

where XD×N is a matrix containing N data points ly-
ing inD-dim Euclidean space. The matrix WD×K con-
tains the factors or basis vectors of the transformed sub-
space (i.e, the subspace spanned by the columns of the
matrix W and denoted asW). The matrix HK×N con-
tains co-ordinates of the data inW (usually K < N ) .
The matrix E denotes the factorization error.

Usually the dimensionality (K) ofW is not known a
priori and model-selection needs to be performed. The
goal of using IBP is to automatically infer K using the
data. The factorization of (1) can be re-written as

XD×N = WD×K (ZK×N � FK×N ) + E (2)

where H , Z�F and� denotes element-wise product
of two matrices. The matrix F contains the co-ordinates
while Z is drawn from IBP and Zkn indicates the pres-
ence or absence of k-th basis vector in W.

3 Model Description and Inference
We consider the factorization problem of (2) and pro-

pose a linear Poisson gamma model (LPGM) for the
factorization ensuring that W and F are nonnegative.
Given these parameters, both the data and the model-
ing error follow Poisson distribution (for details, refer
Figure 1). Formally,

LPGM :



Z ∼ StickIBP (α)

Wik ∼ gamma (a, b)

Fkj ∼ gamma (c, d)

X:,j |W,Z:,j ,F:,j

∼ Poisson
(
W
(
Z:,j � F:,j

)
+ λ

)
(3)

where StickIBP (α) denotes the stick-breaking con-
struction proposed in Teh et al [9]. The symbols a, b,
c and d denote the shape and scale parameters of the re-
spective gamma distributions and λ is a parameter for
the modeling error E such that Eij ∼ Poisson (λ).

For inference of the parameters W and F, we use
Gibbs sampling. The full condition posteriors for these
parameters are intractable. Introduction of auxiliary
variables, however, makes the inference tractable.

p
(
Wi,: | Z,F,X, λ, si

)
∝ Πk

(
Wik

)a+∑
j s
jk
i −1

× exp

{
−

(
b+

N∑
l=1

Hkl

)
Wik

}
(4)
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Figure 1: Directed graphical representation of LPGM.

where defining λX , λ +
∑
kW

ikHkj , the auxiliary

variables si =
{
sjki ,∀j

}K+1

k=1
can be sampled as below

p
(
sj1i , . . . s

jK
i , s

j(K+1)
i | rest

)
=

Multinomial
(
Wi1H1j

λX
, . . . ,

WiKHKj

λX
,
λ

λX

)
(5)

Gibbs sampling update for F:,j conditioned on the
other variables can be derived similarly and given as

p
(
F:,j | Z,W,X, λ, tj

)
∝ ΠK

k=1

(
Fkj

)c+∑
i t
ik
j −1

× exp

{
−

(
d+

∑
i

(WDj)
ik

)
Fkj

}
(6)

where Dj denotes a diagonal matrix constructed from
Z:,j , and the associated auxiliary variables tj ={
tikj ,∀i

}K+1

k=1
can be sampled similar to si as in (5).

The posterior updates of λ given W and F can be
written as

p (λ |W,Z,F,X, r)

∝ λaλ+
∑D
i=1

∑N
l=1 r

ij−1exp {− (bλ +DN)} (7)

and ∀i, j, the auxiliary variables rij can be sampled as

p
(
rij | rest

)
= Binomial

(
Xij ,

λ

Wi,:H:,j + λ

)
(8)

The matrix Z is inferred using the slice sampler of [9].

4 Demonstration

4.1 Synthetic Dataset
We first demonstrate the proposed model on a syn-

thetic dataset used in [1]. This dataset has four non-
overlapping binary factors with different shapes. These
factors are linearly combined using random coefficients
(uniformly distributed on (0, 1)) to generate 600 syn-
thetic images. We further add a uniformly distributed
random noise with support (0, 0.1). Our goal is to learn
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Figure 2: Synthetic dataset results (a) the true and inferred factors (b) the true and inferred coefficients; in both (a) and
(b), the first row depicts the true values while the second and the third rows depict the inferred values for LGGM and
LPGM respectively (c) Posterior over number of factors for LGGM (top) and LPGM (bottom).

the generative factors and their coefficients along with
the number of factors automatically.

Since the factors can be thought of as different parts
that are added via a linearly weighted combination, we
expect that a model, which enforces nonnegativity con-
straints on the factors and the coefficients would per-
form better than a model without constraints. For this,
we run two nonparametric models - Linear Gaussian-
Gaussian model (LGGM) [9] and the proposed LPGM.
Gibbs sampler of both models were run for 5000 iter-
ations. While both models converged to four factors,
it can be seen from Figure 2 that factors inferred by
LPGM are correct (up to a permutation) while those
learnt by LGGM are mixed-up due to the Gaussian-
based modeling.

4.2 CBCL Face Image dataset

Our second dataset is a publicly available1 MIT
CBCL face image dataset. We use this dataset to show
the utility of our model for dictionary learning. This
dataset consists of 2429 grayscale face images (19×19
pixels) for training and 472 face images for testing. We
map the pixel intensities on the scale between 0 and 255.

4.2.1 Dictionary Learning
We run our proposed model with a single Gibbs chain
for 2500 iterations, which converges with 72 nonnega-
tive factors (see the mode value in Figure 3d). Figure
3a shows the first 35 factors, which can be seen to be
parts-based and sparse.

To compare the performance of our method, we use
two recently developed nonparametric Bayesian tech-
niques [9, 7] that use Gaussian distributions for W, H

1A normalized version is available at
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

and E. For inferring the number of factors, [9] uses
IBP whereas [7] uses a truncated beta process. We refer
to these models as LGGM and T-LGGM respectively.
We run a single Gibbs chain of LGGM for 2500 itera-
tions, which converges with 60 mixed-sign factors (see
the mode value in Figure 3f). The experiments with T-
LGGM2 were conducted with identical settings, leading
to 63 mixed-sign factors and these factors qualitatively
look similar to the factors learnt using LGGM.

It can be seen from Figure 3b (showing first 35 fac-
tors) that the factors learnt using LGGM are of holistic
nature and do not capture parts of the face. Addition-
ally, as noted from Figure 3c and 3e, the inference for
LGGM takes longer to converge than that of LPGM.

4.2.2 Generalization and Perplexity
We use the dictionary learnt above for generalization
over new faces. For evaluation, we use perplexity per
image - a measure that expresses the degree of surprise
for a new image. Given the training set XD×N and a
test set X̃D×Ñ , perplexity per image (PPI) is defined as

PPI
(
X̃
)

= exp
(
− 1

Ñ
log p

(
X̃ | X

))
(9)

A low value of perplexity implies a better generaliza-
tion over the test data. It can seen from Table 1 that the
proposed LPGM achieves much lower perplexity than
LGGM and T-LGGM. This clearly indicates that LPGM
has better modeling power for count data compared to
the baselines.

We also analyze the sparsity of the factors obtained
using the three models. For this, we use a sparsity index
defined in [2]. This index maps the sparsity on the scale
of 0 to 1 and a higher value implies more sparse fac-
tors. It can be seen from the Table 1 that sparsity index

2Due to space limitation, we do not show the factors for T-iLGGM,
however, we list the perplexity and sparsity results in Table 1.
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Some of the factors learnt using LPGM
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Figure 3: Dictionary learning using LPGM and LGGM (a) the factors learnt using LPGM (b) the factors learnt using
LGGM (c) Joint log-likelihood plot for LPGM (d) the posterior over the number of factors for LPGM (e) Joint log-
likelihood plot for LGGM (f) the posterior over the number of factors for LGGM.

for LPGM is higher compared to LGGM and T-LGGM.
Although, due to using beta process, T-LGGM factors
are slightly more sparse than those of LGGM.

5 Conclusion
We have proposed a nonparametric Bayesian, lin-

ear Poisson gamma model for count data and applied
it for dictionary learning. Crucially, this model cap-
tures parts-based representations in a similar vein to
nonnegative matrix factorization. To make the infer-
ence tractable, we present an auxiliary variable Gibbs
sampler. Our algorithm combines this inference proce-
dure with a slice sampler [9] to learn the number of fac-
tors automatically. We demonstrate the model on both
synthetic and real-world datasets for dictionary learn-
ing applications. Although, we have demonstrated our
model on image data, it is generic and widely applicable
to modeling of other count data e.g. text, video etc.

Table 1: A comparison by perplexity and sparsity .
Method Average Log Perplexity Sparsity

T-LGGM [7] 2.413e5± 759.8 0.631
LGGM [9] 2.267e5± 1034.2 0.546

LPGM 1.512e5± 987.5 0.897
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