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ABSTRACT 

The Eckart-Young-Mirsky theorem solves the problem of approximating a matrix 
by one of lower rank. However, the approximation generally differs from the original 
in all its elements. In this paper it is shown how to obtain a best approximation of 
lower rank in which a specified set of columns of the matrix remains fixed. The paper 
concludes with some applications of the generalization. 
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1. INTRODUCTION 

Let X be an n X p matrix with n 2 p. An important problem with 
diverse applications in multivariate analysis is to find approximations to X 
that are of rank not greater than a fixed integer r. Specifically, let I(. ]I be a 
unitarily invariant matrix norm, that is, a matrix norm that satisfies 

IlurXVlI = VII (1.1) 

for all unitary matrices U and V. Then we seek an approximation X to X that 
satisfies 

rank(X) < r, (1.2a) 

]]X - XI] = ,,,,$) Q r]IX - Xl]. (1.2b) 

In 1936 Eckart and Young [l] gave an elegant constructive solution to this 
problem for the Frobenius norm defined by ]]X]] E. = trace( XrX ). This con- 
struction was later shown by Mirsky [5] to solve the problem for an arbitrary 
unitariIy invariant norm. The construction is cast in terms of what is now 
called the singular value decomposition of X. Write 

x = u\kv’, (1.3) 

where U*U = V*V = 1 and 

with 

Set 

Then 

\k=diag(J/l,#,,...,#,) 

ljJr>-$Ja>, ‘.. >+)+l. 

~=diag(~,,~,,...,~,,O,...,O). 

X = U$VT 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

is a matrix satisfying (1.2). For the Frobenius norm, if rank(X) > r, then X is 
unique if and only if +!J, > $,+i. 
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The Eckart-Young construction has the drawback that X generally differs 
from X in all its elements, which makes it unsuitable for applications in 
which some of the columns of X are fixed. Assuming that the fixed columns 
are at the beginning of the matrix X, we are led to consider the following 

problem. Let 

x=(x1 x2), U-8) 

where X, has k columns. Find a matrix X2 such that 

rank[ (Xi X2)] < r, (1.9a) 

IPl %)-(x1 &)(I= ranlrI(~~2)lir~~(Xl Jq-(Xl &)(I. 

(1.9b) 

In other words, find a best rank r approximation to X that leaves X, fixed. 
This problem will be solved in the next section. In Section 3 we shall make a 
number of observations about the solution. 

2. THE GENERALIZATION 

Our main result is contained in th,e following theorem. In it we denote by 
H, the operator that maps X onto X defined by (1.7), with the convention 
that if r is greater than the number of columns of X then H, is the identity. 

THEOREM. Let X be partitioned as in (1.8) where X, has k columns, 
and let I= rank(X,). Let P denote the orthogonal projection onto the column 
space of X and P ’ the orthogonal projection onto its orthogonal complement. 

If 

then the mu&ix 

2, = PX, + H,_,( P IXz) (2.2) 

satisfies (1.9). 
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Proof. Without loss of generality we may assume that k = 1; for other- 
wise we can replace X, with a matrix having 1 independent columns selected 
from X,, apply the theorem, and then restore the missing columns without 
changing either the rank of the result or the norm of the difference. 

The proof is based on the QR decomposition of X. Specifically, there is 
an orthogonal matrix Q = (Q, Qs Q,), with Qr, Qa, and Q3 having respec- 
tively k, p - k, and n - p columns, such that 

where R,, and R,, are upper triangular (for more details see [4]). Since we 
are dealing with unitarily invariant norms and since premultiplying a matrix 
by another matrix does not mix up its columns, we may solve the approxima- 
tion problem for the right hand side of (2.3) and transform back to the 
original problem. 

An elementary compactness argument shows that approximations with 
the required properties exist. Let 

be one such approximation. 
First observe that R,, is nonsingular, since X, is of rank k. This implies 

that the choice of fir, cannot affect the rank, since we can use R,, to 
eliminate it without changing is, and ii,,. The following argument shows 
that we may take I? r2 = R 12. 

Let 

be the error matrix associated with the approximation. The squares of the 
singular values of (ET, E& ET2) are the eigenvalues of EF2E,, + E&,E,, + 
E&E,,. Since E&E,, is positive semidefinite, these eigenvalues are not less 
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than the corresponding eigenvalues of E&E, + E&E,. It then follows from 

results in [5] that 

(2.6) 

that is, independently of the choices of l?, and fi,,, the choice A,, = R 12 
minimizes the error. ,. * . 

Wrth thus chorce of R,,, we now seek the approximations fi, and i? s2. 
Since R,, is nonsingular, QrX will have rank less than or equal to r if and 
only if (figs fi$)r has rank r - 2. But a best rank r - I approximation 
to (RT, R$-Jr is given by 

(2.7) 

Transforming back to the original problem, we get the approximation 

% = &RI, + Q&LdR,d = QlRu +%,(Q,Rd (2.8) 

It now remains only to observe that Q,R,, = PX, and Q2R, = P ‘X2. n 

3. COMMENTS 

In this section we shall survey some consequences of the result established 
in Section 2. Except for the uniqueness condition below, we shall assume that 
X, has full column rank. 

Uniqueness 
The matrix J?s is unique if and only if H,_,( P ‘X2) is unique. For the 

Frobenius norm, this means that 2s is unique if and only if the (r - Z)th 
singular value of P ‘X2 is strictly greater than the (T - 1 + 1)th. 

Usefd Formulas 
The relation 

Hr-,(Q,R,) = W-L&d~ (3.1) 

which was used in (24, has the computational consequence that to de- 
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termine 2, we need only compute the singular value decomposition of R,,, a 
matrix which is smaller that P IX,. Since R,, is the only part of the QR 
factorization of X that is altered in the passage of X, it follows that 

II2 - XII;= I1H,-,(R,,) - R&t (3.2) 

which is the sum of squares of the last p - r singular values of R,,. 
Equation (3.2) can be cast in a more familiar form by introducing the 

cross-product matrix A = XTX and partitioning it conformally with (2.3): 

A= (3.3) 

It can be shown that R?&,R,, is the Schur complement [6] of A,, in A: 

RT R 227.2, =A 22 -A A-IA* 21 11 21’ (3.4 

Since the eigenvalues of Ri2R2, are the squares of the singular values of R,,, 
Equation (3.2) may be summarized by saying the square of the distance in 
the Frobenius norm jkwn X to X is the sum of the last p - r eigenvalues of the 
Schur complement of A,, in A. 

A Variational Characterization 
The sum of squares of the last p - r singular values of X may be written 

in the variational form 

min \lUrXll~, 
“E Unx(P-r) (3.5) 

WW = R(X) 

where Unx(p-r) denotes the space of all n X(p - r) matrices with orthonor- 
ma1 columns and R(X) is the column space of X. The square of the 
minimizing norm in (1.9) can similarly be written 

min (IUrX(I$, 
“E U”X’P_” (3.6) 

R(U) = R(X) 
x:u=o 

since if U is constrained to satisfy XTU = 0 then 

urX=( UTX, u’x,)=(o UTPLX2), (3.7) 
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and by (3.5) the minimum of llUTP ‘Xsl(i is the sum of the squares of the 
last p - r singular values of P IXa. 

It is instructive to examine what happens when the condition XTU = 0 is 
replaced by CrU = 0, where C satisfies R(C) c R(X). In this case, we can 
find an orthogonal matrix V = (Vi V,) such that if we set 

Y=(Y, Yz)=X(V, va) (3.8) 

then R(Y,) = R(C). Since the condition CrU= 0 is equivalent YirU= 0, we 
see that 

min IlVrX(l~ (3.9) “E Unx(P-r) 
R(U) = R(X) 

c%=o 

is the square of the norm of the difference to the minimizing rank r 
approximation to Y with the columns of Y, held constant. In other words, C 
selects a subspace on which X is to remain constant. 

Centering and Collinearity Diagnostics 
The Eckart-Young theorem is the basis for examining the smallest singular 

value qP of a regression matrix X to diagnose collinearity: if ‘c/, is small, then 
X is very near a collinear matrix. However, this procedure is inappropriate 
for problems with a constant term, in which the regression matrix has the 
form X = (1 X,), where 1 is the vector of ones. According to our theorem, 
the proper approach is to project X, onto the space orthogonal to I and 
examine the smallest singular value of the result. Since this projection is X, 
with its column means subtracted out, the theorem provides another rationale 
for the common practice of centering regression problems with a constant 
term. 

Multiple Correlations and Variance lnjlation Factors 
When in (1.8) the number of columns k of Xi is equal to the rank r of the 

target matrix 2, then the construction in Section 2 simply sets R, to zero. In 
this case the square of the distance between X and X becomes 

llRs,J~ = trace( A, - A,,A;ilA$,). (3.10) 

When X has been centered and scaled so that its column norms are one, the 
diagonal elements of (3.4) are the multiple correlation coefficients of the 
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columns of X, with respect to the columns of Xi. Thus (3.10) provides a new 
interpretation of these numbers: the sum of the multiple correlation coeffi- 
cients of X, with respect to X, is the square of the norm of the smullest 
perturbation in X, that will make it a linear combination of the columns 

of X,. 
When k = r = p - 1, so that the concern is with a perturbation in the last 

column alone, the matrix R,, reduces to the (p, p ) element rPP of R. From 
the fact that A = RTR and the triangularity of R it is easy to verify that 
when X is not collinear, 

y2 = a(-l) 
PP PP ’ 

(3.11) 

where aCP1) denotes the (p, p) element of the inverse cross-product matrix 
A -I. Thrnumber has been called a variance inflation factor because, in the 
usual regression model, it measures the amount by which the variance in the 
response vector is magnified in the pth regression coefficient. Equations (3.4) 
and (3.11) show that its reciprocal is the square of the smallest perturbation 
in the pth column of X that will make X collinear. Since variance inflation 
factors are not changed by reordering the columns of X, we see that the 
reciprocal of the j th variance inflation factor is the square of the norm of the 
smallest perturbation in the j th column of X that will make X collinear. 

Total Least Squares 
The Gaussian regression model starts with the exact relation 

y=Xb, (3.12) 

from which b can be computed in the form 

b = X ‘y, (3.13) 

where X ’ = ( XTX)- ‘XT is the pseudoinverse of X. It is further assumed that 
y cannot be observed; instead we observe 

fj=y+e. (3.14) 

Gauss [2] showed that if the elements of e are uncorrelated random variables 
with mean zero and common variance a ‘, then the natural generalization of 
(3.13), i.e. 

ii = x ‘Q, (3.15) 
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gives an optimal estimate of 6 in the sense that among all linear estimators 
satisfying 

e=O * b=b, (3.16) 

X ‘tj has the smallest variance. 
Now let us suppose that X is also unobserved; instead we are given 

2=X++. (3.17) 

The problem is to find a plausible way to estimate b. 
Golub and Van Loan [3] have observed that 

L=x+(ij-q, (3.18) 

where e^ is the unique vector satisfying 

minimize ]]e^l], 

subjectto rank[(X a-&)] =p. (3.19) 

As a generalization of this, they propose to estimate b by 

6 .,=(I?-ti)‘(@-e^), (3.20) 

where I? and e^ satisfy 

subjectto rank[(X-i a-&)] =p. (3.21) 

In other words i and e^ are just the residuals from the Eckart-Young 
projection of (X y) onto the space of matrices of rank p. This method, which 
has also been introduced from another point of view by Webster, Gunst, and 
Mason [9], is known as latent root regression or principle component regres- 
sion to statisticians and as total least squares to numerical analysts. 

The procedure does not make much sense unless the elements of E and 
components of e are independently derived and equilibrated. In statistical 
terms, they must be uncorrelated with mean zero and all have the same 
variance [7]. Sometimes this can be accomplished by scaling rows and 
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columns of X and y. For example, suppose that the elements of E and e are 
uncorrelated, but the components of the j th column of E have variance ai 
while those of e have variance a’. If we set 

Z=diag(a, ,..., eP,u), (3.22) 

then (x” @)Z - ’ has an error structure suitable for total least squares estima- 
tion. 

This scaling procedure breaks down when some of the columns of E are 
zero, since in this case Z is singular. In this case it isAnatural to require that 
the corresponding columns of X be unperturbed by E, since they are known 
exactly. If we set Zt=diag(a,f,...,uJ,ut),Awhere CJ+=U-~ if v#O and is 
otherwise zero, then we may characterize E as satisfying 

minimize I/( J? e^)Z+JJ, 

subjectto rank[(X-J? G-Z)] =p. (3.23) 

This is seen to be the generalized Eckart-Young projection of (2 d), with its 
errors equilibrated onto the set of matrices of rank p subject to the constraint 
that the columns of X that are without error remain unperturbed. Thus our 
theorem provides a generalization of the total least squares estimate. 

It is worth nothing that when all the columns of E are zero, the estimate 
reduces to the ordinary least squares estimate. Thus our theorem embraces 
total least squares at one extreme (none of the columns of E zero) and least 
squares at the other (all of the column of E zero). 

The estimate (3.23) can be derived independently by considering the 
limiting case as some of the ui approach zero. In fact, asymptotic expansions 
in [B] can be used to show that as some of the uj approach zero the total least 
squares estimate (3.21) approaches the estimate (3.23). 
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