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ABSTRACT
Personalize PageRank (PPR) is an effective relevance (prox-
imity) measure in graph mining. The goal of this paper is to
efficiently compute single node relevance and top-k/highly
relevant nodes without iteratively computing the relevances
of all nodes. Based on a “random surfer model”, PPR itera-
tively computes the relevances of all nodes in a graph until
convergence for a given user preference distribution. The
problem with this iterative approach is that it cannot com-
pute the relevance of just one or a few nodes. The heart of
our solution is to compute single node relevance accurately
in non-iterative manner based on sparse matrix representa-
tion, and to compute top-k/highly relevant nodes exactly
by pruning unnecessary relevance computations based on
upper/lower relevance estimations. Our experiments show
that our approach is up to seven orders of magnitude faster
than the existing alternatives.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Theory

Keywords
Personalized PageRank, Relevance computation

1. INTRODUCTION
Graphs arise in a wide range of application domains such

as the Internet, social networks, biological networks and
more [28]. In these graphs, personalized search has be-
come an increasingly important topic in recent years [18].
One of the most important aspects of personalized search is
to measure the relevance (proximity) of nodes according to
the user preference distribution1. Examples of personalized

1
Called as “preference vector” in [23].
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search are “To what degree is a web page relevant to user’s
bookmark pages?”, “Which books have the top ten relevance
scores with a view to being recommended to a user in ac-
cordance with his/her shopping logs?”, and so on.

Many relevance measures have been reported in the liter-
ature [5, 13, 14, 15, 21, 22]. Among the relevance measures,
personalized PageRank (PPR) [10, 23] has attracted consid-
erable attention due to its effectiveness and solid theoretical
foundation. Similar to PageRank [1, 8, 27, 30], PPR is de-
fined with respect to a “random surfer model” and needs to
be computed iteratively. Informally speaking, PPR is the
stationary distribution of random walks; at each step in a
random walk, it randomly selects an outgoing edge from the
current node, and, with a certain probability, it jumps to a
node in accordance with a given preference distribution.

However, this iterative approach has a serious weakness:
it is not effective if the user needs only single node relevance
or top-k/highly relevant nodes. This is because its iterative
computation approach updates the relevance scores of all
nodes that are determined in the previous iteration. If m
and t are the number of edges and the number of iteration
steps until convergence, respectively, it requires O(mt) time;
its computational cost is excessive for large graphs.

1.1 Problem motivation
We address three problems. With our approach, many

applications can be processed more efficiently without sacri-
ficing application efficacy. The first problem is to compute
the PPR relevance score of a single given node for a prefer-
ence distribution. This problem is formalized as follows:

Problem 1 (Single-node relevance computation).

Given: Query node x and query distribution d.

Find: Relevance score of node x according to query dis-
tribution d.

The second problem is to identify the top-k relevant nodes
for a given preference distribution.

Problem 2 (Top-k nodes identification).

Given: The number of required answer nodes, K, and
query distribution d.

Find: Top K nodes with the highest relevance scores with
respect to query distribution d.

We also solve the problem of finding all nodes whose rel-
evance scores are higher than a given threshold:

Problem 3 (Highly relevant node detection).

Given: The threshold, ε, and query distribution d.

Find: Nodes whose relevance scores are higher than ε
with respect to query distribution d.

These three problems have to be resolved to realize the
following applications.
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Graph analysis (Problem 1). In graph analysis, there is
a need for a tool that can analyze the relative importance of
each node in a graph with respect to user preferences [22].
This tool reveals the context of interactive exploration of
graph data. The PPR-based approach, suggested by White
et al., can effectively measure the relative importance of each
node in accordance with user preference [36]. By picking up
several researchers in a co-authorship network who belong to
the same university, this approach reveals that they have low
importance scores if they study different research disciplines.

Recommendation (Problem 2). Recommendation systems
aim to provide personalized items that are interesting for
users. A popular approach is to use the collaborative filter-
ing technique [20]. However, this technique does not directly
utilize information about latent user interests in recommen-
dations. PPR-based methods can be used to capture user’s
possible interest expansion [26]. This method uses PPR to
expand the user’s latent interests estimated by LDA [6]. And
it computes the top-k relevant items for the recommenda-
tions. This method outperforms previous approaches such
as ItemRank [15] and L+ [11].

Link prediction (Problem 3). The link prediction prob-
lem, attempting to infer which new interactions among so-
cial network members are likely to occur in the near future,
is an active research topic [37]. The PPR-based approach by
Liven-Nowell et al. can answer this problem [25]; the prob-
ability of future interactions between members is computed
by PPR. If two members have many friends in common, they
have high mutual PPR scores, and they are more likely to
interact. By identifying those pairs with high PPR scores,
this approach provides better link predictions than the ran-
dom prediction approach.
Our proposed method can also be used in other applica-

tions such as person name disambiguation [32], document
clustering [2], and protein-protein interaction analysis [35],
even though we omit details due to the space limitations.

1.2 Contribution
To the best of our knowledge, our approach is the first

solution to comprehensively handle all the three problems
that theoretically guarantees exactness unlike previous ap-
proximate approaches [3, 4, 10, 17, 23]. To achieve high
efficiency, we use a sparse matrix representation and com-
pute single node relevance in a non-iterative manner. Our
approach also efficiently identifies the top-k/highly relevant
nodes without computing the relevance scores of unneces-
sary nodes by estimating upper/lower relevance scores. Our
approach has the following attractive characteristics:

• Fast: The proposed approach, by utilizing the above
ideas, is significantly faster than existing approaches.

• Exact: Our approach does not sacrifice accuracy; it
returns the exact outputs for the three problems.

• Easy to deploy: Our approach itself does not require
any parameter. Thus it provides the user with a simple
solution to PPR-based applications.

While PPR has been used in many applications, it has
been difficult to utilize due to its high computational cost.
However, by providing exact solutions in a highly efficient
manner, the proposed approach will allow many more PPR-
based applications to be developed in the future.
The remainder of this paper is organized as follows: Sec-

tion 2 overviews the background of this paper. Section 3

Table 1: Definition of main symbols.
Symbol Definition

n Number of nodes
m Number of edges
x Query node for a single node relevance computation
K Number of answer nodes for top-k identification
ε Threshold in finding highly relevant nodes
c Restart probability
su Relevance or steady-state probability of node u
s n×1 relevance vector
d n×1 query distribution vector where

∑
di = 1

A n×n column normalized adjacent matrix
P n×n permutation matrix
Q n×n orthogonal matrix in QR decomposition
R n×n upper triangular matrix in QR decomposition
|R| Number of non-zero elements in matrix R

introduces the details of our approach. Section 4 reviews
the experiments conducted and the results gained. Section 5
details case-studies of our approach. Section 6 describes re-
lated work. Section 7 provides our brief conclusion.

2. PRELIMINARY
We formally define the notations and introduce the back-

ground of this paper. Table 1 lists the main symbols and
their definitions. Measuring the relevance scores of nodes
according to a preference distribution can be achieved by
using PPR. In PPR, starting from one of seed nodes2 whose
preference distribution scores are not zero, a random walk is
performed by iteratively following an edge to another node
at each step. Additionally, at every step, there is a probabil-
ity, c, of returning to a seed node according to the preference
distribution. Let s be an n × 1 vector where n is the num-
ber of nodes, the u-th element su denotes the steady-state
probability that the random walk is at node u. Let d be an
n × 1 column normalized vector of the preference distribu-
tion of seed nodes, i.e.

∑
di = 1, and A be the n×n column

normalized adjacency matrix of the graph. The steady-state
probability for each node can be obtained by recursively ap-
plying the following equation until convergence:

s = (1− c)As+ cd (1)

The steady-state probabilities, s, give the long term visit
rate of each node given the bias indicated by query distri-
bution d. Therefore, su can be considered as the relevance
measure of node u with respect to given distribution d.

But this method is not effective to compute the relevance
score of a single node or identify the nodes with top-k/high
relevance since it recursively updates the relevance scores
of all nodes. It needs O(mt) time until convergence. This
incurs excessive computational cost for large graphs.

3. PROPOSED METHOD
In this section, we describe the proposed approach. The

main advantage of our approach is that it can efficiently com-
pute single node relevance as well as top-k/highly relevant
nodes without loss in accuracy.

3.1 Overview
Computing single node relevance. As described in Sec-
tion 2, exact relevance scores can be obtained by the recur-
sive approach. This approach iteratively updates the rele-
vance scores of all nodes; it cannot compute the relevance of

2
In the special case of only a single seed node, PPR is equivalent to

random walk with restart [13].
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just one single node. To avoid iterative processing, we uti-
lize matrix computations and compute single node relevance
in non-iterative style. The matrices can be obtained from
Equation (1). However, this approach can incur high com-
putational cost if the matrices are dense [31]. We propose
an approach to overcome this problem in Section 3.2.
In a precomputation step, we permute nodes of the ad-

jacent matrix, and compute the QR decomposition [19] of
the matrix. From the resulting matrices, we then compute
the inverse matrices. By properly permuting the nodes, the
inverse matrices have a sparse structure. The permutation
can be obtained by solving an NP-complete problem as de-
scribed in Section 3.2. Thus, we can compute single node
relevance efficiently from the sparse data structure. Since
QR decomposition is not an approximate method, we can
compute exact relevance scores.

Identifying top-k nodes. When a user queries top-k rel-
evant nodes for a preference distribution, the iterative ap-
proach computes the relevance scores of all nodes and finds
the answer nodes. However, this approach requires high
computational cost. For top-k identification, our approach
computes exact relevance scores for just the answer-likely
nodes to avoid unnecessary relevance computations as de-
scribed in Section 3.3.
To find top-k nodes, we estimate the relevance scores of

each node at O(1) time. If a node is estimated to be an
answer-likely node, we compute its exact relevance. The
advantage of this idea is to find top-k nodes exactly although
it uses estimations. Exact answer results are obtained by
estimating upper bounding relevance scores. This means
that we can safely discard unpromising nodes along with
their estimated relevance scores at low computational cost.

Finding highly relevant nodes. Although the upper bound-
ing estimation approach can discard most unlikely nodes, it
still relies on exact relevance computations to guarantee the
exactness of answer results. In section 3.4, we show our
approach that reduces the cost of exact computations for
finding highly relevant nodes whose scores exceed ε.
To find highly relevant nodes, we estimate lower bounding

relevance scores as well as upper bounding relevance scores.
Our approach to find highly relevant nodes is based on the
property that, if the lower bounding relevance of a node is
more than ε, the exact relevance of the node must be greater
than ε. Therefore, the node must be an answer node. This
idea reinforces the idea of upper bounding estimation by
effectively pruning the exact relevance computations. Since
the exact relevance computations are limited to a small num-
ber, we can efficiently find highly relevant nodes.

3.2 Computing single node relevance
In this section, we describe our approach to efficiently

computing the relevance score of a query node for a given
distribution. Section 3.2.1 introduces a definition of PPR
that allows it to be rewritten as non-iterative matrix com-
putation by using QR decomposition, and then shows our
non-iterative approach. In Section 3.2.2, we show that ob-
taining sparse matrices is an NP-complete problem, and we
then show our solution for the problem.

3.2.1 Non-iterative relevance computation
We show here how to rewrite Equation (1) into non-iterative

matrix form. In our relevance computation, we permute

nodes in the graph. That is, let P be a permutation matrix,
the original adjacent matrix A is transformed into matrix
A′ in the form of A′ = PAPT where matrix PT is the trans-
pose of matrix P [19]. The n × n permutation matrix P is
an orthogonal matrix where every row and column contains
precisely a single 1 with 0s everywhere else, and Pij = 1
indicates that j-th row is permutated into the i-th row. Our
approach to obtaining matrix P is described in Section 3.2.2.

By utilizing matrix P, Equation (1) can be rewritten in
the following matrix form since I = PT IP, P−1 = PT , and
A = PTAP where P−1 is the inverse matrix of P [19]:

s=c {I−(1−c)A}−1 d=c{PT IP−(1−c)PTA′P}−1d

=cPT{I−(1−c)A′}−1Pd
(2)

To compute query node relevance, we perform QR decom-
position of the matrix I− (1−c)A′, i.e., QR = I− (1−c)A′

where matricesQ andR are an orthogonal matrix and upper
triangular matrix, respectively [19]. Formally, we compute
the relevance of node x for the given distribution d from
precomputed QT and R−1 as follows:

Definition 1 (Relevance computation). Let n × n
matrix F = cPTR−1, n × 1 vector g = QTPd and 1 × n
vector fi be the i-th row vector in matrix F. The relevance
of node x, sx, is computed as follows:

sx = fx · g (3)

For Definition 1, we have the following theorem:

Theorem 1 (Relevance computation). Equation (3)
outputs exactly the same result as Equation (1).

Proof From Equation (2), we have the following equa-
tion since QT = Q−1 [19]:

s = cPT (QR)−1 Pd = cPTR−1QTPd = F · g
Therefore, sx, x-th element of n×1 column vector s, can be
computed as the inner product of vectors fx and g. �

Equation (3) implies that we can compute node relevance
as the inner product of vectors fx and g in non-iterative style.
Equation (3) also implies that, in the relevance computation,
we first compute vector g = QTPd from vector d since it is
given by the user.

We provide the following theorem to describe the time
complexity of our relevance computation:

Theorem 2 (Relevance computation cost). Let |fx|
and |Q| be the number of non-zero elements in fx and Q, re-
spectively, it requires O(|fx|+ |Q|) time to compute the rel-
evance score of a single node by our non-iterative approach.

Proof Our approach computes vector g to obtain the
relevance from the given distribution d. Since vector Pd
is obtained by permutating vector d, it needs O(|Q|) time
to compute vector g = QTPd. Since it takes O(|fx| + |Q|)
time to compute the inner product of the vectors fx and g,
it requires O(|fx|+ |Q|) time. �

Theorem 2 implies that the numbers of non-zero elements
in matrices R−1 and Q should be reduced to achieve high
efficiency since F = cPTR−1 and g = QTPd. Note that
the number of non-zero elements in P is trivially n [19]. In
particular, the number of non-zero elements in matrix Q
should be reduced since vector g is computed according to
the user’s query. In the next section, we show our approach
to obtain the sparse matrices R−1 and Q.
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3.2.2 Sparse matrix problem
As shown in Definition 1, we can compute relevance scores

in non-iterative style if we precompute matrices R−1 and Q.
However, this approach can incur high computational cost if
the matrices have dense structures even if the original graph
has sparse structure. In many real graphs, the number of
edges is much smaller than the squared number of nodes,
i.e. m � n2 [29]. In our approach, we permute nodes in the
graph to obtain sparse R−1 and Q. Unfortunately, deter-
mining the node permutation to yield the sparse matrices is
an NP-complete problem.

Theorem 3 (Sparse matrix problem). Setting the
nodes permutation that minimizes non-zero elements in the
matrices R−1 and Q is NP-complete.

Proof We prove the theorem by a reduction from the
minimum fill-in problem [38]. We transform instances of
this problem into instances of the sparse matrices problem
as follows: For the graph of the minimum fill-in problem,
we create matrix A. For the node elimination ordering, we
create the permutation matrix P, and we create matrix R−1

and Q for the chordal graph. Thus, it is easy to show that
there exists a solution to the minimum fill-in problem with
the minimum number of edge additions iff there exists a
solution to the sparse matrices problem with the minimum
increase in non-zero elements in the inverse matrices. Thus,
the sparse matrices problem is trivial in NP. �

We introduce an approach for the problem. At the be-
ginning, we show how to compute matrices Q and R−1 to
describe our approach in detail. Let qi be the i-th column
vector of matrix Q and wi be the i-th column vector of ma-
trix W = I− (1− c)A′, matrices Q and R can be computed
by Gram-Schmidt orthogonalization as follows [19]:

qi = q′
i/||q′

i||, q′
i =

{
wi (i = 1)

wi −∑i−1
j=1(wi · qj)qj (i �= 1)

(4)

Rij =

⎧⎨
⎩

0 (i > j)
||q′

i|| (i = j)
wj · qi (i < j)

(5)

where ||q′
i|| is the norm of q′

i [19]. Elements in matrix R−1

can be computed as follows by backward substitution [31]:

R−1
ij =

⎧⎨
⎩

0 (i > j)
1/Rij (i = j)

−1/Rii

∑j
k=i+1 RikR

−1
kj (i < j)

(6)

Equation (4) and (5) imply that column vectors of Q and
R are obtained from left to right by computing orthogonal
column vectors and inner products from matrix W. Equa-
tion (6) shows that the column vectors of R−1 are obtained
from right to left and elements in column vectors from bot-
tom to top. Equations (4), (5), and (6) indicate that matri-
cesQ andR are computed from matrixW which is obtained
from matrix A′(= PAPT ).
We can obtain sparse matrix Q based on the following ob-

servation: if column vector wi has a single non-zero element
whose left elements in the matrix W are all zero, column
vector wi is orthogonal to all its left column vectors in ma-
trix Q. This is because the column vector wi is linearly
independent [19], thus matrix Q has a sparse structure.
We obtain sparse matrix R−1 based on the following two

observations: (1) the right/bottom elements of matrix R−1

would be sparse if the corresponding right/bottom elements

Algorithm 1 Node permutation
Input: A, adjacent matrix of the graph; n, the number of nodes
Output: P, permutation matrix
1: P = 0;
2: P = ∅;
3: for i = 1 to n do
4: U = argmin(e(u)|u ∈ V\P);
5: v = argmax(deg(u)|u ∈ U);
6: Piv = 1;
7: append node v to P;
8: end for
9: return P;

of matrix R are sparse, and (2) the right/bottom elements
of matrix R are expected to be zero if the corresponding
right/bottom elements of matrix W are zero.

Algorithm 1 depicts our permutation algorithm for ob-
taining the sparse matrices. Our algorithm uses the above
observations on matrices Q and R−1. In this algorithm, V
and P indicate the node set in the graph and the permu-
tated node set, respectively. deg(u) is the number of edges
incident to node u, i.e. degree of node u. e(u) is the num-
ber of edges that are not incident to node set P from node
u. Our algorithm first sets the permutation matrix P to a
zero matrix, and initializes node set P (lines 1-2). From the
unpermutated set of nodes, V\P, it finds the set of nodes,
U , whose numbers of edges are min(e(u)|u ∈ V\P) based on
the observation on matrix Q (line 4). If the right/bottom
elements of matrix A′ are zero, matrix R−1 has a sparse
structure. Therefore, it identifies node v that has the maxi-
mum number of edges to make the left/top elements of ma-
trix A′ dense (line 5). It then sets an element in matrix P
to determine the permutation (lines 6-7). These procedures
continue until all nodes are permutated.

This approach can effectively reduce the number of non-
zero elements for R−1 and, especially for, Q as shown in
Section 4. Thus, we can efficiently compute a single node
relevance score since F = cPTR−1 and g = QTPd. This
approach has another advantage: we can efficiently precom-
pute matrices Q and R−1 as demonstrated in Section 4.
This is because the efficiency of the precomputation is greatly
enhanced by reducing the number of non-zero elements.

3.3 Identifying top-k nodes
We introduce an algorithm that finds top-k nodes by esti-

mating upper bounding scores. We compute the estimations
in the process of finding the top-k nodes. Our solution is
based on lower bounding estimation which is described in
Section 3.3.1. The details of the upper bounding estimation
approach are introduced in Section 3.3.2. We show our top-k
node identification algorithm in Section 3.3.3.

3.3.1 Lower bounding estimation
So as to find the top-k nodes, we estimate lower bounding

relevance scores from the numbers of minimum hops from
the seed nodes. Let hu be the number of hops from the seed
nodes to node u, and let H(i) be the set of nodes that are i
hops away from the seed nodes; nodes in H(i) form layer i.
H(0) is equivalent to the set of the seed nodes. We formally
estimate the lower bounding relevance scores as follows:

Definition 2 (Lower bound). The following equation
defines the relevance estimation of node u, su:

su =

{
cdu (u ∈ H(0))
(1− c)

∑
v∈H(hu−1) Auvsv (u /∈ H(0))

(7)
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This equation implies that (1) if node u is a seed node, its
estimation is obtained from the restart probability and its
preference score, and (2) if node u is not a seed node, its esti-
mation is computed from that of its upper layer nodes, where
H(0) forms the top layer, with their transition probabilities.
It requires O(n+m) time to compute the estimations of all
nodes. This is because the estimations are yielded from a
single breadth-first search that is rooted on the seed nodes,
and breadth-first search needs O(n+m) time [9].

We introduce the following lemma to show the property
of the above estimation approach:

Lemma 1 (Lower bound). For any node in H(i), su ≤
su holds in the graph.

Proof We prove that Definition 2 gives lower bounding
estimations by using mathematical induction [16].
Initial step: We show the statement holds for any node

in H(0). As described in Section 2, a random walk specifies
seed nodes when (1) it jumps to the seed nodes with proba-
bility c or (2) outgoing edge of a current node is incident to
the seed nodes. In the case of (1), a random walk jumps to
node u of the seed nodes with probability cdu. Therefore,
steady-state probability of node u cannot be lower than cdu.
That is, su ≤ su holds for any node in H(0).
Inductive step: We assume that sv ≤ sv holds for any

node in H(i − 1). We prove the statement holds for any
node in H(i). For a node u in H(i), the following inequality
holds from Equation (1) since H(i−1) is a subset of all node
sets in the graph (i.e. H(i− 1) ⊂ V) and c, du ≥ 0:

su = (1− c)
∑
v∈V

Auvsv + cdu ≥ (1− c)
∑

v∈H(i−1)

Auvsv = su

This completes the inductive step. Therefore, Definition 2
gives lower bounding estimations. �

Therefore, for all nodes in the graph, we can effectively
obtain lower bounding estimations by Definition 2.

3.3.2 Upper bounding estimation
In this section, we detail our upper bounding estimation

approach which can prune unnecessary exact computations.
The upper bounding estimation is based on the lower bound-
ing estimation introduced in Section 3.3.1. To find the top-
k nodes, nodes are explored one by one, and we compute
the upper bounding estimation and exact relevance score for
each node. Let ui be the i-th explored node, the definition
of the upper bounding estimation is as follows:

Definition 3 (Upper bound). The relevance estima-
tion of i-th explored node ui, sui , is defined as follows:

sui =

{
1−∑n

j=2 suj
(i = 1)

sui
− sui−1 + sui−1 (i �= 1)

(8)

If i = 1, it needs O(n) time to compute the estimation of
a node from already computed lower bounding estimations.
Otherwise, we can incrementally compute the estimation of
a node at the cost of O(1) time since sui

, sui−1 , and sui−1

are already computed before computing sui .
In our approach, nodes are explored in descending order of

their lower bounding estimations. There are two reasons for
this approach. The first is that a node is expected to have
high exact relevance score if its lower bounding relevance
is high. Thus, we can efficiently find top-k nodes. The
second reason is that, if an upper bounding estimation is

Algorithm 2 Top-k node identification
Input: d, query distribution; K, number of answer nodes
Output: Va, set of answer nodes
1: θ = 0;
2: Ve = ∅;
3: Va = ∅;
4: append K dummy nodes to Va;
5: compute the lower bounding estimations of all nodes;
6: while Ve �= V do
7: u = argmax(sv|v ∈ V\Ve);
8: compute the upper bounding estimation of node u;
9: if su < θ then
10: return Va;
11: else
12: compute exact relevance of node u for distribution d;
13: if su > θ then
14: v = argmin(sw|w ∈ Va);
15: remove node v from Va;
16: append node u to Va;
17: θ = min(sw|w ∈ Va);
18: end if
19: end if
20: append node u to Ve;
21: end while
22: return Va;

lower than the K-th highest exact relevance of candidate
nodes, our algorithm terminates the process based on the
following property of the upper bounding estimation:

Lemma 2 (Upper bound). sui ≤ sui ≤ sui−1 holds
for i-th explored node ui if nodes are explored in descending
order of their lower bounding estimations.

Proof We first prove su ≤ su. From Equation (8) and
Lemma 1, the following inequality holds since node relevance
scores are steady-state probabilities:

su=sui
−sui−1+sui−1 =sui

−sui−1+sui−1
−sui−2+ . . .+su1

=

i∑
j=2

suj
−

i−1∑
j=1

suj + 1−
n∑

j=2

suj
= 1−

i−1∑
j=1

suj −
n∑

j=i+1

suj

≥ 1−
i−1∑
j=1

suj −
n∑

j=i+1

suj = 1−
n∑

j �=i

suj = sui

We next prove that sui ≤ sui−1 holds. From Equation (8),
we have sui−1 − sui = sui−1 − sui

≥ sui−1
− sui

≥ 0. This

completes the proof. �

Lemma 2 indicates that, if the upper bounding estima-
tion of an explored node is lower than the K-th highest rele-
vance of the candidate nodes, all other unexplored nodes
have lower relevance scores than that of the K-th node.
Therefore, we can safely terminate the algorithm.

3.3.3 Top-k node algorithm
We show the algorithm that finds the top-k nodes by the

estimation approach. In Algorithm 2, θ, Va, and Ve indi-
cate the K-th highest relevance among the candidate nodes,
the set of candidate/answer nodes, and the set of explored
nodes, respectively. The algorithm sets the candidate nodes
by appending K dummy nodes whose relevance scores are
all 0 (line 4), and computes the lower bounding estima-
tions (line 5). It then finds the node with the highest lower
bounding estimation from the unexplored node set, V\Ve,
and computes the upper bounding estimation of the node
(lines 7-8). If the upper bounding estimation is lower than
θ, the node and all other unexplored nodes cannot be the
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Algorithm 3 Finding highly relevant nodes
Input: d, query distribution; ε, threshold
Output: Va, set of answer nodes
1: Ve = ∅;
2: Va = ∅;
3: compute the lower bounding estimations of all nodes;
4: while Ve �= V do
5: u = argmax(sv|v ∈ V\Ve);
6: compute the upper bounding estimation of node u;
7: if su ≤ ε then
8: return Va;
9: else if su > ε then
10: append node u to Va;
11: else
12: compute exact relevance of node u for distribution d;
13: if su > θ then
14: append node u to Va;
15: end if
16: end if
17: append node u to Ve;
18: end while
19: return Va;

answer nodes (Lemma 2). Therefore, it terminates the pro-
cess (lines 9-10). Otherwise, the node may be an answer
node, so it computes the exact relevance of the node (line
12). If the computed relevance is higher than θ, it updates
the candidate set, Va, and θ (lines 13-18). Finally, it returns
the candidate set, Va, as the answer nodes (line 22).
We introduce the following theorem for Algorithm 2:

Theorem 4 (Exactness in top-k identification).

Algorithm 2 finds top-k nodes exactly.

Proof If θK are the answer nodes with K-th high-
est relevance scores, the upper bounding estimations of the
answer nodes cannot be lower than θK (Lemma 2). The
algorithm prunes a node if the upper bounding estimation
of the node is lower than θ. Since the K-the highest rel-
evance score of the candidate nodes cannot be more than
that of the answer nodes (i.e. θ ≤ θK), the answer nodes
cannot be pruned by the algorithm. And, if a node have
a relevance score less than θ, the node is pruned with its
exact/estimated relevance by the algorithm. �

We discuss here the time complexity of Algorithm 2.

Theorem 5 (Computational cost for top-k nodes).

Algorithm 2 requires O(n log n+m+ |F|+ |Q|) time to find
top-k nodes.

Proof The algorithm first computes lower bounding es-
timations for all nodes by single breadth-first search which
takes O(n+m) time. Next, it finds the node of the highest
lower bounding estimation and computes the upper bound-
ing estimation of the node. This requires O(n log n) and
O(n) time, respectively, if binomial heap [9] is used and
none of the nodes are pruned. It takes O(|F|+ |Q|) time to
compute exact relevance scores of all nodes since

∑n
i=1 |fi|+|Q| = |F|+|Q| (Theorem 2). Therefore, it needs O(n log n+

m+ |F|+ |Q|) time to find the top-k nodes. �

3.4 Finding highly relevant nodes
In this section, we describe our approach to finding nodes

whose relevance scores are higher than threshold ε. All
proofs in this section are omitted due to the space limi-
tations. To find highly relevant nodes, we utilize the lower
bounding estimations to avoid unnecessary relevance compu-
tations; if the lower bounding estimation of a node is higher
than ε, the node must be an answer node. Therefore, we
prune the exact relevance computation of the node.

Nodes are explored in descending order of their lower
bounding estimations. And the upper bounding estimations
are utilized to skip unnecessary relevance computations as in
top-k search. However, as shown in Definition 3, we cannot
compute the upper bounding estimations of node ui without
the exact relevance of node ui−1. In that case, we compute
the upper bounding estimation of node ui as follows:

Definition 4 (Upper bound w/o exact relevances).

The relevance estimation of node ui, sui , is computed as fol-
lows without the exact relevance computation of node ui−1:

sui = sui
− sui−1

+ sui−1 (9)

We introduce the following lemma to show the property
of the above estimation approach:

Lemma 3 (Upper bound w/o exact relevances).

For i-th explored node ui, sui ≤ sui ≤ sui−1 holds, and it
requires O(1) time to compute the estimation if i �= 1 in the
estimation obtained by Definition 4.

Algorithm 3 depicts our approach for finding highly rele-
vant nodes. It first computes the lower bounding estimations
for all nodes (line 3). It next finds the node with the highest
lower bounding estimation and computes the upper bound-
ing relevance of the node (lines 5-6). If the upper bounding
estimation is not higher than ε, the node and remaining
unexplored nodes cannot be answer nodes. Therefore, it
terminates the process (lines 7-8). If the lower bounding es-
timation is higher than ε, its exact relevance must be higher
than ε. So, we add the node to the answer node set (lines
9-10). Otherwise, the node can be answer node, so its exact
relevance is computed (lines 11-16).

We have the following theorem for Algorithm 3:

Theorem 6 (Finding highly relevant nodes). Al-
gorithm 3 requires O(n log n+m+ |F|+ |Q|) time to exactly
find highly relevant nodes.

4. EXPERIMENTAL EVALUATION
We performed experiments to demonstrate the efficiency

of the proposed approach against the iterative and approx-
imate approaches. We used following three public datasets
for the experiments:

• Social3: This is a graph taken from Slashdot.org4. The
network contains interaction links between the users of
Slashdot. There are 82, 168 nodes and 948, 464 edges.

• Routing5: We used routing information of the Internet.
This graph was constructed from BGP tables posted
by the University of Oregon Route Views Project6.
This graph has 22, 963 nodes and 48, 436 edges.

• Web7: This dataset was taken from web pages in Uni-
versity of Notre Dame8. In this dataset, nodes rep-
resent pages from domain nd.edu and edges represent
hyperlinks between them. There are 325, 729 nodes
and 1, 497, 135 edges.

3
http://snap.stanford.edu/data/soc-Slashdot0902.html

4
http://slashdot.org/

5
http://www-personal.umich.edu/˜mejn/netdata/as-22july06.zip

6
http://routeviews.org/

7
http://vlado.fmf.uni-lj.si/pub/networks/data/ND/NDnets.htm

8
http://www.nd.edu/
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Table 2: Ratio of non-zero elements.
Data set

Social Routing Web

|Q|/n2 3.40 × 10−6 4.88 × 10−6 2.76 × 10−4

|R−1|/n2 9.25 × 10−3 2.40 × 10−3 1.93 × 10−2

We set the restart probability c = 0.9 as [13] did, and ran-
domly selected ten nodes as seed nodes where the preference
scores were equally set to same score. All the experiments
were conducted on a Linux 2.26 GHz Intel Xeon server with
144GB of main memory. GCC 4.1.2 was used to implement
all approaches.

4.1 Relevance computation time
We assessed relevance computation time for the proposed

approach and the iterative approach since the none of previ-
ous approximate approaches can compute relevance exactly.
To make the comparison fair, we also evaluated the relevance
computation time of our approach for all nodes even though
our approach can compute just single node relevance.
Figure 1 shows the computation time of the proposed ap-

proach for a single node relevance and all nodes relevances,
referred to as “Proposed” and “Proposed all”, respectively.
“Iterative” indicates the results of the iterative approach.
Table 2 shows the ratio of non-zero elements in Q and R−1

to the squared number of nodes, n2.
Figure 1 indicates that our approach is up to seven orders

of magnitude faster than the iterative approach. The pro-
posed approach is up to 70 times faster even if it computes
the relevance scores of all nodes. As shown in Theorem 2, the
proposed approach requires O(|fx| + |Q|) time to compute
a single node relevance; the number of non-zero elements
have an effect on the efficiency of relevance computations
in our approach since F = cPTR−1 and g = QTPd. Our
permutation approach, as described in Section 3.2.2, is de-
signed to obtain sparse matrices Q and R−1. As shown in
Table 2, we can reduce the number of non-zero elements for
R−1 and, especially for, Q. That is, |Q| � |R−1| � n2.
Therefore, we can compute relevance scores efficiently for
the given distribution d since vector g is obtained from d.
However, as described in Section 2, the iterative approach
recursively updates the relevance scores of all nodes until
convergence. This leads to high computational cost. There-
fore, we can compute relevance more efficiently than the
iterative approach.

4.2 Computation time for top-k nodes
We performed experiments to demonstrate the effective-

ness of our approach to find top-k nodes in a comparison to
Basic Push Algorithm [17]. This algorithm approximately
identifies the top-k nodes. It exploits precomputed relevance
scores of all nodes from hub nodes to estimate the upper rel-

evance bound. This implies it theoretically guarantees that
the recall9 of its answer results is always 1; all of the an-
swer nodes output by the iterative approach are contained
in those output by this algorithm. Other approximate ap-
proaches such as [3, 4] do not have this property. This also
implies the number of answer nodes yielded by Basic Push
Algorithm can be more than K. Hub nodes are selected
according to degrees.

Figure 2 shows the efficiency of each approach where the
number of hub nodes is set to 1, 000. In this figure, the re-
sults of the proposed approach and Basic Push Algorithm
are referred to as “Proposed(K)” and “BPA(K)”, respec-
tively, where K is the number of answer nodes. Figure 3
shows the precision with the various numbers of hub nodes
for Social dataset in finding the top ten nodes. Precision
is the fraction of answer nodes among top-k results by each
approach that match those of the iterative approach. We
additionally confirmed similar results for the other datasets
even though we omit the results due to space limitations.

As shown in Figure 2, our approach can find the top-k
nodes up to 50 times faster than the Basic Push Algorithm.
In the worst case, the proposed approach computes the rel-
evance scores of all nodes if none of the nodes are pruned.
However, the number of relevance computations is limited
to small numbers due to the effectiveness of the estimation
approach. It takes O(n) times to compute the estimations
for all nodes. Thus our approach can efficiently prune un-
necessary relevance computations.

Figure 3 indicates that our approach outputs the same
results as the iterative approach. Figure 3 also shows that
Basic Push Algorithm can find top-k nodes more accurately
as the number of the hub nodes increase since this algo-
rithm computes the upper bounding estimations from the
hub nodes10. However, this algorithm cannot find the top-
k nodes exactly while our approach outputs only exact an-
swers. Moreover, the precomputation time of the Basic Push
Algorithm is proportional to the number of hub nodes since
the relevance scores of all nodes from all hub nodes must be
precomputed by the iterative approach until convergence.
Figure 2 and 3 show that our approach is superior to this
algorithm in both speed and accuracy.

4.3 Precomputation time
Our approach precomputes the matrices Q and R−1 to

compute node relevance scores. Thus we evaluated the ef-
fectiveness of our permutation approach in terms of precom-

9
Recall is the fraction of answer nodes extracted by the iterative

approach that were successfully extracted by this algorithm.
10

We confirmed that this algorithm more efficiently finds answer nodes
as the number of the hub nodes increases for the same reason.
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Figure 5: Highly relevant cities for San Diego, Denver, Orlando, and New York as detected by each approach.

putation time. In Figure 4, “Random” represents the results
achieved when nodes are premutated in random order.
Figure 4 indicates that our permutation approach enhances

the precomputation time as well as reducing the number of
non-zero elements. Our approach is up to 1, 200 times faster
than the random permutation approach. Since the matrices
Q and R−1 have sparse data structures in our approach,
we can effectively reduce computations of non-zero matrices
elements in Equation (4), (5), and (6). Therefore, we can
efficiently obtain the matrices Q and R−1.

5. CASE-STUDIES
Our approach can exactly find nodes whose relevances are

higher than ε. To show the applicability of our approach,
we demonstrate the results of case-studies on a real dataset.
Because none of the previous approaches, including Basic
Push Algorithm, are designed to find highly relevant nodes,
we compared our approach to the state-of-the-art approx-
imate method by Avrachenkov et al. [3]. This approach
uses Monte Carlo method to compute approximate relevance
scores by performing multiple random walks. The results of
case-studies revealed that our approach can obtain reason-
able results more efficiently than the Monte Carlo method.
For this evaluation, we used the city dataset11 consisting

of 71, 959 direct flights between 456 cities in North Amer-
ica. Flights and cities correspond to edges and nodes. Edge
weights in the adjacency matrix are proportional to city
proximities. We identified the nodes whose relevance scores
exceeded 5×10−4. We set San Diego, Denver, Orlando, and
New York as the seed nodes. The preference scores of the
seed nodes were equally set to the same score where the
restart probability, c, was set to 0.9, the same as in the
previous section. Figure 5 shows the results. The number
of random walks in the Monte Carlo approach was set to
250 and 1, 000, 000 in Figure 5-(2) and 5-(3), respectively.
In Figure 5, circles and triangles represent seed nodes and
highly relevant nodes, respectively.
Figure 5-(1) shows highly relevant cities for San Diego,

Denver, Orlando, and New York as determined by the pro-
posed approach. These cities are all large ones in the United
States. These cities have big airline hubs from which almost
all cities can be directly accessed. Since PPR computes ran-
dom walks from seed nodes, highly connected nodes from
other nodes are expected to be highly relevant nodes if large
cities are selected as seed nodes. As expected, relevant
cities were Los Angeles, Phoenix, Colorado Springs, Day-
tona Beach, Philadelphia, and Washington, D.C. which also
have big airline hubs. That is, we can detect cities with air-
line hubs from among large cities. Note that the results of
our approach equal those of the iterative approach.

11
http://www.psi.toronto.edu/index.php?q=affinity propagation

As shown in Figure 5-(2), if the number of random walks
is 250, the Monte Carlo approach outputs different results
from the proposed approach except for Washington, D.C.
and Colorado Springs. The process time of the Monte Carlo
approach was 21 microseconds while that of our approach
was 20.5 microseconds; they are almost the same. As shown
in Figure 5-(3), if the number of random walks is increased,
the Monte Carlo approach has the same outputs as the pro-
posed approach except for Baltimore. However, this leads
to high computational time since the computational cost of
the Monte Carlo approach is proportional to the number of
random walks [3]. The Monte Carlo approach took 80.7 mil-
liseconds with this setting; the proposed approach is more
than 3, 900 times faster.

The result of our approach is reasonable, and is consis-
tent with our intuition. While our approach achieves high
efficiency, it is guaranteed to output the same results as the
iterative approach. This indicates that our approach can be
another option for the research community in utilizing PPR.

6. RELATED WORK
Several approximate approaches have been proposed fo-

cusing on efficient computation for PPR. However, none of
them guarantees the exact answer result; their outputs can
differ from that of the iterative approach. Therefore, it is
difficult for these approximate approaches to enhance the
quality of real applications. None of them can be taken as a
unified scheme that comprehensively solves the three prob-
lems described in Section 1.

Jeh et al. suggested a framework that, for nodes that be-
long to a highly linked subset of hub nodes, provides a scal-
able solution for PPR [23]. The approach is based on the ob-
servation that relevance scores for a given distribution can be
approximated as a linear combination of the relevance scores
from a single node in hub nodes. They compute approximate
relevance scores for a given distribution using the relevance
scores precomputed from hub nodes. Fogaras et al. pro-
posed a Monte Carlo algorithm for PPR [10]. To compute
approximate relevance scores, they use fingerprints of sev-
eral nodes; a fingerprint of a node is a random walk starting
from the node. They precompute fingerprints by simulat-
ing random walks and approximate relevance distributions
from the ending nodes of these random walks. They approx-
imate relevance scores by exploiting the linearity property of
PPR. Avrachenkov et al. and Bahmani et al. independently
improved the realization of the Monte Carlo method [3, 4].
Basic Push Algorithm is an approach that finds top-k nodes
approximately but efficiently for PPR [17]. The approach
uses precomputed relevance scores of hub nodes to estimate
the upper relevance bound. However, their approach out-
puts ineligible nodes for top-k search, i.e. those that have
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low relevance scores as shown in Section 4. Basic Push Al-
gorithm, proposed Chakrabarti et al., efficient approximate
approach for ER graphs [7].
Random walk with restart (RWR) [13] is a special case

of PPR in that it has only a single seed node; many papers
have targeted the enhancement of RWR efficiency. Sun et
al. proposed an approximate approach for RWR [33]. They
used METIS [24] to partition a graph into several disjoint
subgraphs, and they performed RWR only on the subgraph
that contains the seed node. All nodes outside the subgraph
are simply assigned RWR relevance scores of 0. In other
words, their approach outputs a local estimation of RWR.
Their approach is based on the observation that some of
the nodes that are just a few hops away from the seed node
have high RWR relevance scores. Based on the same obser-
vation, K-dash finds top-k nodes efficiently for RWR [12].
By using upper bounding estimations, it prunes unneces-
sary relevance computations of nodes that are far from the
seed nodes. However, these two approaches do not support
the case that there are multiple seed nodes as is true in
PPR. Tong et al. showed that eigen-value decomposition
[19] can be utilized to approximate RWR relevance scores
[34]. They also showed the proof of an error bound of the
approach. However, their proof is based on the assumption
that the normalized graph Laplacian [39] can be exploited
to represent a graph. Furthermore, it is impractical to com-
pute eigen-value decomposition of a large graph since it is
extremely time-consuming as they themselves pointed out.

7. CONCLUSIONS
We addressed the problems of computing single node rele-

vance and finding the top-k/highly relevant nodes efficiently
and exactly for PPR. Our approach is to compute single
node relevance from sparse matrices in a non-iterative style
and to prune unnecessary relevance computations by up-
per/lower relevance estimations. Experiments show that the
proposed approach can achieve high efficiency without sac-
rificing the accuracy of answer results. PPR is fundamental
in many applications. The proposed approach allows many
applications to be implemented more efficiently, and helps
to improve the effectiveness of future applications.

8. REFERENCES
[1] R. Andersen, F. R. K. Chung, and K. J. Lang. Local Graph

Partitioning Using PageRank Vectors. In FOCS, pages
475–486, 2006.

[2] K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S. K. Pham, and
E. Smirnova. PageRank Based Clustering of Hypertext
Document Collections. In SIGIR, pages 873–874, 2008.

[3] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and
M. Sokol. Quick Detection of Top-k Personalized PageRank
Lists. In WAW, pages 50–61, 2011.

[4] B. Bahmani, A. Chowdhury, and A. Goel. Fast Incremental and
Personalized PageRank. PVLDB, 4(3):173–184, 2010.

[5] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
ObjectRank: Authority-based Keyword Search in Databases. In
VLDB, pages 564–575, 2004.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[7] S. Chakrabarti, A. Pathak, and M. Gupta. Index Design and
Query Processing for Graph Conductance Search. VLDB J.,
20(3):445–470, 2011.

[8] Y.-Y. Chen, Q. Gan, and T. Suel. Local Methods for
Estimating PageRank Values. In CIKM, pages 381–389, 2004.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2009.
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