
Factor Modeling for Advertisement Targeting

Ye Chen∗
eBay Inc.

yechen1@ebay.com

Michael Kapralov
Stanford University

kapralov@stanford.edu

Dmitry Pavlov†
Yandex Labs

dmitry-pavlov@yandex-team.ru

John F. Canny
University of California, Berkeley
jfc@cs.berkeley.edu

Abstract

We adapt a probabilistic latent variable model, namely GaP (Gamma-Poisson) [6],
to ad targeting in the contexts of sponsored search (SS) and behaviorally targeted
(BT) display advertising. We also approach the important problem of ad posi-
tional bias by formulating a one-latent-dimension GaP factorization. Learning
from click-through data is intrinsically large scale, even more so for ads. We scale
up the algorithm to terabytes of real-world SS and BT data that contains hundreds
of millions of users and hundreds of thousands of features, by leveraging the scal-
ability characteristics of the algorithm and the inherent structure of the problem
including data sparsity and locality. Specifically, we demonstrate two somewhat
orthogonal philosophies of scaling algorithms to large-scale problems, through
the SS and BT implementations, respectively. Finally, we report the experimen-
tal results using Yahoo’s vast datasets, and show that our approach substantially
outperform the state-of-the-art methods in prediction accuracy. For BT in partic-
ular, the ROC area achieved by GaP is exceeding 0.95, while one prior approach
using Poisson regression [11] yielded 0.83. For computational performance, we
compare a single-node sparse implementation with a parallel implementation us-
ing Hadoop MapReduce, the results are counterintuitive yet quite interesting. We
therefore provide insights into the underlying principles of large-scale learning.

1 Introduction

Online advertising has become the cornerstone of many sustainable business models in today’s In-
ternet, including search engines (e.g., Google), content providers (e.g., Yahoo!), and social networks
(e.g., Facebook). One essential competitive advantage, over traditional channels, of online adver-
tising is that it allows for targeting. The objective of ad targeting is to select most relevant ads to
present to a user based on contextual and prior knowledge about this user. The relevance measure or
response variable is typically click-through rate (CTR), while explanatory variables vary in different
application domains. For instance, sponsored search (SS) [17] uses query, content match [5] relies
on page content, and behavioral targeting (BT) [11] leverages historical user behavior. Nevertheless,
the training data can be generally formed as a user-feature matrix of event counts, where the feature
dimension contains various events such as queries, ad clicks and views. This characterization of data
naturally leads to our adoption of the family of latent variable models [20, 19, 16, 18, 4, 6], which
have been quite successfully applied to text and image corpora. In general, the goal of latent variable
models is to discover statistical structures (factors) latent in the data, often with dimensionality re-
duction, and thus to generalize well to unseen examples. In particular, our choice of Gamma-Poisson
(GaP) is theoretically as well as empirically motivated, as we elaborate in Section 2.2.
∗†This work was conducted when the authors were at Yahoo! Labs, 701 First Ave, Sunnyvale, CA 94089.

1

Sponsored search involves placing textual ads related to the user query alongside the algorithmic
search results. To estimate ad relevance, previous approaches include similarity search [5], logistic
regression [25, 8], classification and online learning with perceptron [13], while primarily in the
original term space. We consider the problem of estimating CTR of the form p(click|ad, user, query),
through a factorization of the user-feature matrix into a latent factor space, as derived in Section 2.1.
SS adopts the keyword-based pay-per-click (PPC) advertising model [23]; hence the accuracy of
CTR prediction is essential in determining the ad’s ranking, placement, pricing, and filtering [21].

Behavioral targeting leverages historical user behavior to select relevant ads to display. Since BT
does not primarily rely on contextual information such as query and page content; it makes an en-
abling technology for display (banner) advertising where such contextual data is typically unavail-
able, such as reading an email, watching a movie, instant messaging, and at least from the ad’s side.
We consider the problem of predicting CTR of the form p(click|ad, user). The question addressed
by the state-of-the-art BT is instead that of predicting the CTR of an ad in a given category (e.g., Fi-
nance and Technology) or p(click|ad-category, user), by fitting a sign-constrained linear regression
with categorized features [12] or a non-negative Poisson regression with granular features [11,10,7].
Ad categorization is done by human labeling and thus expensive and error-prone. One of the major
advantages of GaP is the ability to perform granular or per-ad prediction, which is infeasible by the
previous BT technologies due to scalability issues (e.g., a regression model for each category).

2 GaP model

GaP is a generative probabilistic model, as graphically represented in Figure 1. Let F be an n×m
data matrix whose element fij is the observed count of event (or feature) i by user j. Y is a matrix
of expected counts with the same dimensions as F . F , element-wise, is naturally assumed to follow
Poisson distributions with mean parameters in Y respectively, i.e., F ∼ Poisson(Y). Let X be a
d ×m matrix where the column vector xj is a low-dimensional representation of user j in a latent
space of “topics”. The element xkj encodes the “affinity” of user j to topic k as the total number of
occurrences of all events contributing to topic k. Λ is an n×dmatrix where the column Λk represents
the kth topic as a vector of event probabilities p(i|k), that is, a multinomial distribution of event
counts conditioned on topic k. Therefore, the Poisson mean matrix Y has a linear parameterization
with Λ and X , i.e., Y = ΛX . GaP essentially yields an approximate factorization of the data
matrix into two matrices with a low inner dimension F ≈ ΛX . The approximation has an appealing
interpretation column-wise f ≈ Λx, that is, each user vector f in event space is approximated by
a linear combination of the column vectors of Λ, weighted by the topical mixture x for that user.
Since by design d� n,m, the model matrix Λ shall capture significant statistical (topical) structure
hidden in the data. Finally, xkj is given a gamma distribution as an empirical prior. The generative
process of an observed event-user count fij follows:

1. Generate xkj ∼ Gamma(αk, βk),∀k.
2. Generate yij occurrences of event i from a mixture of k Multinomial(p(i|k)) with outcome
i, i.e., yij = Λixj where Λi is the ith row vector of Λ.

3. Generate fij ∼ Poisson(yij).

The starting point of the generative process is a gamma distribution of x, with pdf

p(x) =
xα−1 exp(−x/β)

βαΓ(α)
for x > 0 and α, β > 0. (1)

It has a shape parameter α and a scale parameter β. Next, from the latent random vector character-
izing a user x, we derive the expected count vector y for the user as follows:

y = Λx. (2)
The last stochastic process is a Poisson distribution of the observed count f with the mean value y,

p(f) =
yf exp(−y)

f !
for f ≥ 0. (3)

The data likelihood for a user generated as described above is
n∏
i=1

yfi

i exp(−yi)
fi!

d∏
k=1

(xk/βk)αk−1 exp(−xk/βk)
βkΓ(αk)

, (4)

2

×

Fn×m Yn×m Xd×m
Λn×d

F Y Λ
X• fij • yij

Λk

Λi
xj≈ =

fij ~ Poisson(yij) ← yij ~ mixture of Multinomial(p(i|k)) ← xkj ~ Gamma(αk,βk)

topicsusers

fe
at
ur
es

Figure 1: GaP graphical model

query-ad hashmap
(inverted index)

cookie:
‘4qb2cg939usaj’

× X
xj (9869th column)

<9869, 878623>

<‘machine+learning+8532948011’, 42497>

Λi
(42497th row)

query-ad:
‘machine+learning+8532948011’

Λ
= zij

cookie hashmap
(inverted index) xj-cookie lookup

<‘4qb2cg939usaj’, 878623>

Figure 2: GaP online prediction

where yi = Λix. And the log likelihood reads

` =
∑
i

(fi log yi − yi − log fi!)+
∑
k

[(αk − 1) log xk − xk/βk − αk log(βk)− log Γ(αk)]. (5)

Given a corpus of user data F = (f1, . . . , fj , . . . , fm), we wish to find the maximum likelihood
estimates (MLE) of the model parameters (Λ, X). Based on an elegant multiplicative recurrence
developed by Lee and Seung [22] for NMF, the following EM algorithm was derived in [6]:

E-step: x′kj ← xkj

∑
i (fijΛik/yij) + (αk − 1)/xkj∑

i Λik + 1/βk
. (6)

M-step: Λ′ik ← Λik

∑
j

(
fijxkj/yij

)∑
j xkj

. (7)

2.1 Two variants for CTR prediction

The standard GaP model fits discrete count data. We now describe two variant derivations for pre-
dicting CTR. The first approach is to predict clicks and views independently, and then to construct
the unbiased estimator of CTR, typically with Laplacian smoothing:

ĈTRad(i)j =
(
Λclick(i)xj + δ

)
/
(
Λview(i)xj + η

)
, (8)

where click(i) and view(i) are the indices corresponding to the click/view pair of ad feature i,
respectively, by user j; δ and η are smoothing constants.

The second idea is to consider the relative frequency of counts, particularly the number of clicks
relative to the number of views for the events of interest. Formally, let F be a matrix of observed
click counts and Y be a matrix of the corresponding expected click counts. We further introduce a
matrix of observed views V and a matrix of click probabilities Z, and define the link function:

F ≈ Y = V.Z = V.(ΛX), (9)
where ‘.’ denotes element-wise matrix multiplication. The linear predictor Z = ΛX now esti-
mates CTR directly, and is scaled by the observed view counts V to obtain the expected number of
clicks Y . The Poisson assumption is only given to the click events F with the mean parameters Y .
Given a number of views v and the probability of click for a single view or CTR, a more natural
stochastic model for click counts is Binomial(v,CTR). But since in ad’s data the number of views
is sufficiently large and CTR is typically very small, the binomial converges to Poisson(v · CTR).

Given the same form of log likelihood in Eq. (5) but with the extended link function in Eq. (9), we
derive the following EM recurrence:

E-step: x′kj ← xkj

∑
i (fijΛik/zij) + (αk − 1)/xkj∑

i (vijΛik) + 1/βk
. (10)

M-step: Λ′ik ← Λik

∑
j (fijxkj/zij)∑
j (vijxkj)

. (11)

3

2.2 Rationale for GaP model

GaP is a generative probabilistic model for discrete data (such as texts). Similar to LDA (latent
Dirichlet allocation) [4], GaP represents each sample (document or in this case a user) as a mix-
ture of topics or interests. The latent factors in these models are non-negative, which has proved
to have several practical advantages. First of all, texts arguably do comprise passages of prose on
specific topics, whereas negative factors have no clear interpretation. Similarly, users have occa-
sional interests in particular products or groups of products and their click-through propensity will
dramatically increase for those products. On the other hand “temporary avoidance” of a product
line is less plausible, and one clearly cannot have negative click-through counts which would be a
consequence of allowing negative factors. A more practical aspect of non-negative factor models is
that weak factor coefficients are driven to zero, especially when the input data is itself sparse; and
hence the non-zeros will be much more stable, and cross-validation error much lower. This helps to
avoid overfitting, and a typical LDA or GaP model can be run with high latent dimensions without
overfitting, e.g., with 100 data measurements per user; one factor of a 100-dimensional PCA model
will essentially be a (reversible) linear transformation of the input data. On the choice of GaP vs.
LDA, the models are very similar, however there is a key difference. In LDA, the choice of latent
factor is made independently word-by-word, or in the BT case, ad view by ad view. In GaP however,
it is assumed that several items are chosen from each latent factor, i.e., that interests are locally re-
lated. Hence GaP uses gamma priors which include both shape and scale factors. The scale factors
provide an estimated count of the number of items drawn from each latent factor. Another reason for
our preference for GaP in this application is its simplicity. While LDA requires application of tran-
scendental functions across the models with each iteration (e.g., Ψ function in Equation (8) of [4]),
GaP requires only basic arithmetic. Apart from transcendentals, the numbers of arithmetic opera-
tions of the two methods on same-sized data are identical. While we did not have the resources to
implement LDA at this scale in addition to GaP, small-scale experiments showed identical accuracy.
So we chose GaP for its speed and simplicity.

3 Sponsored search

We apply the second variant of GaP or the CTR-based formulation to SS CTR prediction, where the
factorization will directly yield a linear predictor of CTR or p(click|ad, user, query), as in Eq. (9).
Based on the structure of the SS click-through data, specifically the dimensionality and the user data
locality, the deployment of GaP for SS involves three processes: (1) offline training, (2) offline user
profile updating, and (3) online CTR prediction, as elaborated below.

3.1 The GaP deployment for SS

Offline training. First, given the observed click counts F and view counts V obtained from a
corpus of historical user data, we derive Λ and X using the CTR-based GaP algorithm in Eqs. (10)
and (11). Counts are aggregated over a certain period of time (e.g., one month) and for a feature
space to be considered in the model. In SS, the primary feature type is the query-ad pair (noted as
QL for query-linead, where linead refers to a textual ad) since it is the response variable of which
the CTR is predicted. Other features can also be added based on their predicting capabilities, such
as query term, linead term, ad group, and match type. This will effectively change the per-topic
feature mixture in Λ and possibly the per-user topic mixture in X , with the objective of improving
CTR prediction by adding more contextual information. In prediction though, one only focuses on
the blocks of QL features in Λ and Z. In order for the model matrix Λ to capture the corpus-wide
topical structure, the entire user corpus should be used as training set.

Offline user profile updateing. Second, given the derived model matrix Λ, we update the user
profiles X in a distributed and data-local fashion. This updating step is necessary for two reasons.
(1) User space is more volatile relative to feature space, due to cookie churn (fast turnover) and
user’s interests change over time. To ensure the model to capture the latest user behavioral pattern
and to have high coverage of users, one needs to refresh the model often, e.g., on a daily basis. (2)
Retraining the model from scratch is relatively expensive, and thus impractical for frequent model
refresh. However, partial model refresh, i.e., updating X , has a very efficient and scalable solution
which works as follows. Once a model is trained on a full corpus of user data, it suffices to keep
only Λ, the model matrix so named. Λ contains the global information of latent topics in the form

4

of feature mixtures. We then distribute Λ across servers with each randomly bucketized for a subset
of users. Note that this bucketization is exactly how production ad serving works. With the global
Λ and the user-local data F and V , X can be computed using E-step recurrence only. According
to Eq. (10), the update rule for a given user xj only involves the data for that user and the global
Λ. Moreover, since Λ and a local X usually fit in memory, we can perform successive E-steps
to converge X within an order of magnitude less amount of time comparing with a global E-step.
Notice that the multiplicative factor in E-step depends on xkj , the parameter being updated, thus
consecutive E-steps will indeed advance convergence.

Online CTR prediction. Finally, given the global Λ and a local X learned and stored in each
server, the expected CTR for a user given a QL pair or p(click|QL, user) is computed online as
follows. Suppose a user issues a query, a candidate set of lineads is retrieved by applying various
matching algorithms. Taking the product of these lineads with the query gives a set of QLs to be
scored. One then extracts the row vectors from Λ corresponding to the candidate QL set to form a
smaller block Λmat, and looks up the column vector xj for that user from X . The predicted CTRs
are obtained by a matrix-vector multiplication zmat

j = Λmatxj . The online prediction deployment is
schematically shown in Figure 2.

3.2 Positional normalization

Our analysis so far has been abstracted from another essential factor, that is, the position of an ad
impression on a search result page. It is known intuitively and empirically that ad position has a
significant effect on CTR [24, 14]. In this section we treat the positional effect in a statistically
sound manner.

The observed CTR actually represents a conditional probability p(click|position). We wish to learn
a CTR normalized by position, i.e., “scaled” to a same presentation position, in order to capture
the probability of click regardless of where the impression is shown. To achieve positional normal-
ization, we assume the following Markov chain: (1) viewing an ad given its position, and then (2)
clicking the ad given a user actually views the ad; thus

p(click|position) = p(click|view)p(view|position), (12)

where “view” is the event of a user voluntarily examining an ad, instead of an ad impression itself.
Eq. (12) suggests a factorization of a matrix of observed CTRs into two vectors. As it turns out,
to estimate the positional prior p(view|position) we can apply a special GaP factorization with one
inner dimension. The data matrices F and V are now feature-by-position matrices, and the inner
dimension can be interpreted as the topic of physically viewing.

In both training and evaluation, one shall use the position-normalized CTR, i.e., p(click|view). First,
the GaP algorithm for estimating positional priors is run on the observed click and view counts of
(feature, position) pairs. This yields a row vector of positional priors xpos. In model training, each
ad view occurrence is then normalized (multiplied) by the prior p(view|position) for the position
where the ad is presented. For example, the a priori CTR of a noticeable position (e.g., ov-top+1
in Yahoo’s terminology meaning the North 1 position in sponsored results) is typically higher than
that of an obscure position (e.g., ov-bottom+2) by a factor of up to 10. An observed count of views
placed in ov-top+1 thus has a greater normalized count than that in ov-bottom+2. This normalization
effectively asserts that, given a same observed (unnormalized) CTR, an ad shown in an inferior
position has a higher click probability per se than the one placed in a more obvious position. The
same view count normalization should also be applied during offline evaluation. In online prediction,
however, we need CTR estimates unbiased by positional effect in order for the matching ads to
be ranked based on their qualities (clickabilities). The linear predictor Z = ΛX learned from a
position-normalized training dataset gives exactly the position-unbiased CTR estimation. In other
words, we are hypothesizing that all candidate ads are to be presented in a same imaginary position.
For an intuitive interpretation, if we scale positional priors so that the top position has a prior of 1,
i.e., xpos

ov-top+1 = 1, all ads are normalized to that top position.

Another view of the positional prior model we use is an examination model [25], that is, the proba-
bility of clicking on an ad is the product of a positional probability and a relevance-based probability
which is independent of position. This model is simple and easy to solve for using maximum like-
lihood as explained above. This model is not dependent on the content of ads higher up on the
search page, as for example the cascade [14] or DBN models [9]. These models are appropriate

5

for search results where users have a high probability of clicking on one of the links. However, for
ads, the probability of clicking on ad links is extremely low, usually a fraction of a percent. Thus
the effects of higher ads is a product of factors which are extremely close to one. In this case, the
DBN positional prior reduces to a negative exponential function which is a good fit to the empirical
distribution found from the examination model.

3.3 Large-scale implementation

Data locality. Recall that updating X after a global training is distributed and only involves E-steps
using user-local data. In fact, this data locality can also be leveraged in training. More precisely,
Eq. (10) suggests that updating a user profile vector xj via E-step only requires that user’s data fj
and vj as well as the model matrix Λ. This computation has a very small memory footprint and
typically fits in L1 cache. On the other hand, updating each single value in Λ as in Eq. (11) for
M-step requires a full pass over the corpus (all users’ data) and hence more expensive. To better
exploit the data locality present in E-step, we alternate 3 to 10 successive E-steps with one M-step.

We also observe that M-step involves summations over j ≤ m users, for both the numerator and
the denominator in Eq. (11). Both summing terms (fijxkj/zij and vijxkj) only requires data that
is available locally (in memory) right after the E-step for user j. Thus the summations for M-step
can be computed incrementally along with the E-step recurrence for each user. As thus arranged, an
iteration of 3-10 E-steps combined with one M-step only requires a single pass over the user corpus.

Data sparsity. The multiplicative recurrence exploits data sparsity very well. Note that the inner
loops of both E-step and M-step involve calculating the ratio fij/zij . Since f is a count of very rare
click events, one only needs to compute z when the corresponding f is non-zero. Let Nc be the total
number of non-zero f terms or distinct click events over all users. For each non-zero fij , computing
zij = Λixj dot-product takes d multiplications. Thus the numerators of both E-step and M-step
have a complexity of O(Ncd). Both denominators have a complexity of O(Nv), where Nv is the
total number of non-zero v terms. The final divisions to compute the multiplicative factors in one
outer loop over topics take O(d) time (the other outer loop over m or n has already been accounted
for by both Nc and Nv). Typically, we have Nv � Nc � m > n � d. Thus the smoothed
complexity [26] of offline training is O(Nvdr), where r is the number of EM iterations and r = 20
suffices for convergence.

Scalability. Now that we have reached an algorithm of linear complexity O(Nvdr) with various
implementation tricks as just described. We now illustrate the scalability of our algorithm by the
following run-time analysis. The constant factor of the complexity is 4, the number of division
terms in the recurrence formulae. Suppose the entire Yahoo’s user base of SS contains about 200
million users. A 1/16 sample (32 out of 512 buckets) gives around 10 million user. Further assume
100 distinct ad views on average per user and an inner dimension of 10, thus the total number of
operations is 4 × 1010 for one iteration. The model converges after 15-20 iterations. Our single-
machine implementation with sparse matrix operations (which are readily available in MATLAB [2]
and LAPACK [3]) gives above 100 Mflops, hence it takes 1.6-2.2 hours to train a model.

So far, we have demonstrated one paradigm of scaling up, which focuses on optimizing arithmetic
operations, such as using sparse matrix multiplication in the innermost loop. Another paradigm is
through large-scale parallelization, such as using a Hadoop [1] cluster, as we illustrate in the BT
implementation in Section 4.1.

3.4 Experiments

We have experimented with different feature types, and found empirically the best combination
is query-linead (QL), query term (QT), and linead term (LT). A QL feature is a product of query
and linead. For QTs, queries are tokenized with stemming and stopwords removed. For LTs, we
first concatenate the title, short description, and description of a linead text, and then extract up to
8 foremost terms. The dataset was obtained from 32 buckets of users and covering a one-month
period, where the first three weeks forms the training set and the last week was held out for testing.
For feature selection, we set the minimum frequency to 30 to be included for all three feature types,
which yielded slightly above 1M features comprised of 700K QLs, 175K QTs, and 135K LTs. We
also filtered out users with a total event count below 10, which gave 1.6M users. We used a latent

6

dimension of 10, which was empirically among the best while computationally favorable. For the
gamma prior on X , we fixed the shape parameter α to 1.45 and the scale parameter β to 0.2 across
all latent topics for model training; and used a near-zero prior for positional prior estimation.

We benchmarked our GaP model with two simple baseline predictors: (1) Panama score (historical
COEC defined as the ratio of the observed clicks to the expected clicks [9]), and (2) historical QL
CTR normalized by position. The experimental results are plotted in Figure 3, and numerically
summarized in Tables 1 and 2. A click-view ROC curve plots the click recall vs. the view recall,
from the testing examples ranked in descending order of predicted CTR. A CTR lift curve plots
the relative CTR lift vs. the view recall. As the results show, historical QL CTR is a fair predictor
relative to Panama score. The GaP model yielded a ROC area of 0.82 or 2% improvement over
historical QL CTR, and a 68% average CTR lift over Panama score at the 5-20% view recall range.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GAP
Panama
QLctr

View recall

Click
recall

(a) ROC plots

� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� �
���

�

���

���

��	

���

�

���

���

�

�
���������
��������
�����������

View recall

CTR
lift

(b) Pairwise CTR lift

Figure 3: Model performance comparison among (1) GaP using QL-QT-LT, (2) Panama score pre-
dictor, and (3) historical QL-CTR predictor.

Table 1: Areas under ROC curves
GaP Panama QL-CTR
0.82 0.72 0.80

Table 2: CTR lift of GaP over Panama
View recall 1% 1-5% avg. 5% 5-20% avg.

CTR lift 0.96 0.86 0.93 0.68

4 Behavioral targeting

For the BT application, we adopt the first approach to CTR prediction as described in Section 2.1.
The number of clicks and views for a given ad are predicted separately and a CTR estimator is
constructed as in Eq. (8). Moreover, the granular nature of GaP allows for significant flexibility in
the way prediction can be done, as we describe next.

4.1 Prediction with different granularity

We form the data matrix F from historical user behavioral data at the granular level, including
click and view counts for individual ads, as well as other explanatory variable features such as page
views. This setup allows for per-ad CTR prediction, i.e., p(click|ad, user), given by Eq. (8). Per-
category CTR prediction as does in previous BT systems, i.e., p(click|ad-category, user), can also
be performed in this setup by marginalizing Λ over categories:

ĈTRcj =

((∑
i∈c

Λclick(i)

)
xj + δ

)
/

((∑
i∈c

Λview(i)

)
xj + η

)
, (13)

where c denotes a category and i ∈ c is defined by ad categorization.

7

The modeling was implemented in a distributed fashion using Hadoop. As discussed in Section 3.3,
the EM algorithm can be parallelized efficiently by exploiting user data locality, particularly in the
MapReduce [15] framework. However, compared with the scaling approach adopted by the SS im-
plementation, the large-scale parallelization paradigm typically cannot support complex operations
as efficient, such as performing sparse matrix multiplication by three-level nested loops in Java.

4.2 Experiments

The data matrix F was formed to contain rows for all ad clicks and views, as well as page views with
frequency above a threshold of 100. The counts were aggregated over a two-week period of time
and from 32 buckets of users. This setup resulted in 170K features comprised of 120K ad clicks or
views, and 50K page views, which allows the model matrix Λ to fit well in memory. The number
of users was about 40M. We set the latent inner dimension d = 20. We ran 13 EM iterations where
each iteration alternated 3 E-steps with one M-step. Prediction accuracy was evaluated using data
from the next day following the training period, and measured by the area under the ROC curve.

We first compared per-ad prediction (Eq. (8)) with per-category prediction (Eq. (13)), and obtained
the ROC areas of 95% and 70%, respectively. One latest technology used Poisson regression for
per-category modeling and yielded an average ROC area of 83% [11]. This shows that capturing
intra-category structure by factor modeling can result in substantial improvement over the state-of-
the-art of BT. We also measured the effect of the latent dimension on the model performance by
varying d = 10 to 100, and observed that per-ad prediction is insensitive to the latent dimension
with all ROC areas in the range of [95%, 96%], whereas per-category prediction benefits from larger
inner dimensions. Finally, to verify the scalability of our parallel implementation, we increased the
size of training data from 32 to 512 user buckets. The experiments were run on a 250-node Hadoop
cluster. As shown in Table 3, the running time scales sub-linearly with the number of users.

Table 3: Run-time vs. number of user buckets
Number of buckets 32 64 128 512
Run-time (hours) 11.2 18.6 31.7 79.8

Surprisingly though, the running time for 32 buckets with a 250-node cluster is no less than a single-
node yet highly efficient implementation as analyzed in Section 3.3 (after accounting for the different
factors of users 4×, latent dimension 2×, and EM iterations 13/15), with a similar 100 Mflops. Ac-
tually, the same pattern has been found in one previous large-scale learning task [11]. We argue that
large-scale parallelization is not necessarily the best way, nor the only way, to deal with scaling; but
in fact implementation issues (such as cache efficiency, number of references, data encapsulation)
still cause orders-of-magnitude differences in performance and can more than overwhelm the addi-
tional nodes. The right principle of scaling up should start with single node and achieve above 100
Mflops with sparse arithmetic operations.

5 Discussion

GaP is a dimensionality reduction algorithm. The low-dimensional latent space allows scalable
and efficient learning and prediction, and hence making the algorithm practically appealing for
web-scale data like in SS and BT. GaP is also a smoothing algorithm, which yields smoothed click
prediction. This addresses the data sparseness issue that is typically present in click-through data.
Moreover, GaP builds personalization into ad targeting, by profiling a user as a vector of latent
variables. The latent dimensions are inferred purely from data, with the objective to maximize the
data likelihood or the capability to predict target events. Furthermore, position of ad impression
has a significant impact on CTR. GaP factorization with one inner dimension gives a statistically
sound approach to estimating the positional prior. Finally, the GaP-derived latent low-dimensional
representation of user can be used as a valuable input to other applications and products, such as
user clustering, collaborative filtering, content match, and algorithmic search.

8

References
[1] http://hadoop.apache.org/.

[2] http://www.mathworks.com/products/matlab/.

[3] http://www.netlib.org/lapack/.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. The Journal of Machine Learning
Research, 3:993–1022, 2003.

[5] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to contextual advertising.
ACM Conference on Information Retrieval (SIGIR 2007), pages 559–566, 2007.

[6] J. F. Canny. GaP: a factor model for discrete data. ACM Conference on Information Retrieval (SIGIR
2004), pages 122–129, 2004.

[7] J. F. Canny, S. Zhong, S. Gaffney, C. Brower, P. Berkhin, and G. H. John. Granular data for behavioral
targeting. U.S. Patent Application 20090006363.

[8] D. Chakrabarti, D. Agarwal, and V. Josifovski. Contextual advertising by combining relevance with click
feedback. International World Wide Web Conference (WWW 2008), pages 417–426, 2008.

[9] O. Chapelle and Y. Zhang. A dynamic Bayesian network click model for web search ranking. Interna-
tional World Wide Web Conference (WWW 2009), pages 1–10, 2009.

[10] Y. Chen, D. Pavlov, P. Berkhin, and J. F. Canny. Large-scale behavioral targeting for advertising over a
network. U.S. Patent Application 12/351,749, filed: Jan 09, 2009.

[11] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. ACM Conference on Knowledge
Discovery and Data Mining (KDD 2009), 2009.

[12] C. Y. Chung, J. M. Koran, L.-J. Lin, and H. Yin. Model for generating user profiles in a behavioral
targeting system. U.S. Patent 11/394,374, filed: Mar 29, 2006.

[13] M. Ciaramita, V. Murdock, and V. Plachouras. Online learning from click data for sponsored search.
International World Wide Web Conference (WWW 2008), pages 227–236, 2008.

[14] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias
models. Web Search and Web Data Mining (WSDM 2008), pages 87–94, 2008.

[15] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.

[17] D. C. Fain and J. O. Pedersen. Sponsored search: a brief history. Bulletin of the American Society for
Information Science and Technology, 32(2):12–13, 2006.

[18] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1-
2):177–196, 2001.

[19] A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans-
actions on Neural Networks, 10(3):626–634, 1999.

[20] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[21] A. Lacerda, M. Cristo, M. A. Gonçalves, W. Fan, N. Ziviani, and B. Ribeiro-Neto. Learning to advertise.
ACM Conference on Information Retrieval (SIGIR 2006), pages 549–556, 2006.

[22] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Advances in Neural
Information Processing Systems (NIPS 2000), 13:556–562, 2000.

[23] S. Pandey and C. Olston. Handling advertisements of unknown quality in search advertising. Advances
in Neural Information Processing Systems (NIPS 2006), 19:1065–1072, 2006.

[24] F. Radlinski and T. Joachims. Minimally invasive randomization for collecting unbiased preferences from
clickthrough logs. National Conference on Artificial Intelligence (AAAI 2006), pages 1406–1412, 2006.

[25] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: estimating the click-through rate for
new ads. International World Wide Web Conference (WWW 2007), pages 521–530, 2007.

[26] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually
takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

9

	Introduction
	GaP model
	Two variants for CTR prediction
	Rationale for GaP model

	Sponsored search
	The GaP deployment for SS
	Positional normalization
	Large-scale implementation
	Experiments

	Behavioral targeting
	Prediction with different granularity
	Experiments

	Discussion

