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Abstract

Recommender systems leverage user social and demographic information, e.g., age, gender and political
affiliation, to personalize content and monetize on their users. Oftentimes, users do not volunteer this
information due to privacy concerns or to the lack of initiative in filling out their profile information. In this
work, we illustrate a new threat in which the system can nevertheless learn the private attribute for those
users who do not voluntarily disclose them. We design an active attack that solicit ratings for strategically
selected items, and could thus be used by a recommender system to pursue its hidden agenda. Our method
is based on a novel usage of Bayesian matrix factorization in an active learning setting. Evaluations, on
multiple datasets, illustrate that such an attack is indeed feasible and can be carried out using significantly
fewer rated items than the previously proposed static inference methods. Importantly, this threat can succeed
without sacrificing the quality of the regular recommendations made to the user.

1 Introduction

Recommender systems rely on knowing their users – not just their preferences (i.e., ratings on items), but
also their social and demographic information, e.g., age, gender, political affiliation, and ethnicity. A rich user
profile allows a recommender system to better personalize its service, and at the same time enables additional
monetization opportunities, such as targeted advertising.

Users of a recommender system know they are disclosing their preferences (or ratings) for movies, books, or
other items (we use movies as our running example). In order for a recommender system to obtain additional
social and demographic information about its users, it can choose to explicitly ask users for this information.
While some users may willingly disclose it, others may be more privacy-sensitive and may explicitly elect not
volunteer any information beyond their ratings. Users are increasingly becoming privacy-conscious. Even on
Facebook, a social network in which people are likely to reveal intimate details about themselves, studies show
that almost 30% of users do not disclose their age, 20% do not disclose their gender, and more than 95% do not
disclose their political affiliation [19,28]. We expect these figures to be much higher for recommender systems,
where the benefits of disclosing private information may not be obvious to a user.

Although users may wish to withhold some demographic information, a recommender systems can still
undermine users’ attempt at privacy. In our previous work [29], we showed that users’ movie ratings can be used
to predict their gender with 80% accuracy. Other studies have also shown the potential to infer demographics
from a range of online user activities [1, 2, 15, 16]. In this work, we consider a recommender system that offers a
legitimate service, yet is simultaneously malicious in the sense that it purposefully attempts to extract certain
attributes from those who choose to withhold them. Unlike previous work that study static attacks on the
complete data, we consider an active learning setting, in which the recommender system aims to efficiently
(quickly and accurately) infer a user’s private attribute via interactive questioning. Recommender systems often
ask users to rate a few items, as means to assist them in a “cold start” setting, or to improve the quality of
recommendations. We leverage these instances of interactions with the user alongside with the observation that
recommender systems do not disclose how they choose the order of items that a user is asked to rate to propose
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a new active attack. We hypothesize that if the sequence of questions (items to rate) is carefully selected, the
recommender system can quickly (so as not to be detected by the user) determine a user’s private attribute
with high confidence, thereby violating her privacy. A key idea in the design of this attack, is to leverage matrix
factorization (MF) as the basis for inference. Most recommender systems use matrix factorization (MF) models
as a building block for providing recommendations [14]. While MF is well understood for rating prediction, it
has generally not been applied for inference. To the best of our knowledge, this paper is the first to leverage
MF as the basis for building both (a) an inference method of private attributes using item ratings and (b) an
active learning method that selects items in a way that maximizes inference confidence in the smallest number of
questions.

Our contributions are as follows:
• First, we propose a novel classification method for determining a user’s binary private attribute – her

type – based upon ratings alone. In particular, we use matrix factorization to learn item profiles and
type-dependent biases, and show how to incorporate this information into a classification algorithm. This
classification method is consistent with the underlying assumptions employed by matrix factorization.

• Second, we demonstrate that the resulting classification method is well suited for the task of active learning
of a user’s type. We design a method to select the next item to ask a user to rate, so that each subsequent
selection is made to maximize the expected confidence of the inference, equivalently, minimize the expected
risk of misclassifying the user’s private attribute.

• Third, we show that our active learning method can be implemented efficiently, as item selection can reuse
computations made during previous selections. We show that this reduces the näıve solution that is cubic
in the number of ratings, to one that is quadratic in the number of ratings.

• Fourth, we extensively evaluate the classifier and selection methods on three real-world datasets: Movielens,
Flixster and Politics-and-TV. We show that our method consistently outperforms baseline methods; with
only 10 questions, we achieve between 3-20% higher classification accuracy on different datasets. Importantly,
such an attack can be carried out without any sacrifice to the recommendations made to the user.

In the remainder of the paper, we first review related work (??) and formulate our problem (??). We then present
our factor-based classifier (??) and our active learning method (??), and conclude after presenting empirical
results (??).

2 Related Work

A number of studies have shown that user demographics can be inferred from various types of online user activity.
For example, Bhagat et al. [1] show that it is possible to learn age and gender information from blogs. Mislove
et al. [16] study data from online social networks and illustrate that even when only a fraction of users provide
profile attributes (such as location, interests, etc.), it is possible to infer these attributes among users who do not
disclose them. Bi et al. [2] illustrated how demographics can be inferred from search queries.

Recommender systems were shown to be exploitable by several works utilizing passive, off-line attacks. Most
recently, Goyal and Lakshmanan [8] show that recommender systems can be used for targeted advertising to
larger audience by carefully selecting the set of seed users that are presented with the product’s ad. Calandrino et
al. [3] propose a method for inferring transactions made by users based on temporal changes that can be observed
from the output of recommender systems. In an extreme case of inference, Narayanan et al. [18] famously showed
that movie ratings can be used for full de-anonymization (through a linkage attack), thereby enabling the unique
identification of users.

In previous work [29], we empirically studied how to infer a user’s gender from her movie ratings using a
variety of different classifiers. We showed that logistic regression and SVMs succeed with an accuracy close to
80%. In this paper, we depart from [29] in multiple ways. First, we introduce a novel factor-based classifier,
that relies on the Bayesian assumptions behind MF. Second, we study a recommender system in an adversarial
setting that actively adapts item selection to quickly learn the private attributes. Finally, we establish that our
factor-based classifier is very well suited for this task.

The Bayesian model underlying MF (discussed in detail in ??) was recently employed by Silva and Carin [27]
to actively learn the actual factors (i.e., the user and item profiles) in MF. More specifically, the authors consider
a recommender system that adaptively selects which items to ask its users to rate in order to diminish the
entropy of its user and item profiles as quickly as possible. The entropy estimation is based on the Gaussian
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Figure 1: System description. The recommender system uses a dataset of user ratings to train a type classifier.
An item selection process proposes items to the user, which she subsequently rates; these ratings are used to
infer her type.

noise and prior assumptions underlying MF, which we also employ in our work. Nevertheless, we depart from
the above work as the goal of our learning task is to discover a user’s demographic information, captured by a
categorical type, rather the user and item factors. In turn, this leads to a significantly different item selection
process, built upon on the factor-based classifier we introduce, rather than on entropy minimization.

Biases have been used extensively to improve prediction performance in MF [13,14]. Our introduction of
demographic-specific biases is not for improving prediction per se–though this does happen; rather, incorporating
such biases allows us to use the classic MF model as a basis for classification and, subsequently, active learning.

In the classic active learning setting [5, 6], a learner wishes to disambiguate among a set of several possible
hypotheses, each represented as a function over a set of inputs. Only one of the hypotheses is valid; to discover it,
the learner has access to an oracle that returns the evaluation of the valid hypothesis on a given input. The goal
of the learner is to adaptively select which function evaluations to conduct – i.e., which input queries to submit
to the oracle – in order to discover the valid hypothesis as quickly as possible. In the case of a noiseless oracle,
that always returns the correct evaluation on a query, Dasgupta [5] proposes an algorithm called Generalized
Binary Search (GBS) that discovers the valid hypothesis in a number of queries within a polylogarithmic factor
from the optimal. Recently, Golovin et al. improved upon this bound (in terms of constants) by casting active
learning in the context of adaptively submodular optimization [6].

Our setup can be cast into the above framework in the context of a noisy oracle, whose evaluations may not
necessarily be exact: the hypothesis space comprises linear maps, each corresponding to a unique user profile
and type; the query space comprises the items to be ratings, and ratings can be seen as noisy evaluations of
the linear map over the query space. GBS is known to yield arbitrarily suboptimal results in the presence of
noise [7]. In general, though algorithms with general performance guarantees are not known in the presence
of an oracle with arbitrary noise, such guarantees can be provided for restricted noise models (see, e.g., [20]
and [7]). Unfortunately, none of these models directly apply to the noise setting we encounter here.

3 System Description

3.1 Problem Statement

We consider a recommender system, depicted in ??, that provides a legitimate item recommendation service,
but at the same time maliciously seeks to infer a private user attribute. The system has access to a dataset,
provided by non-privacy-sensitive users, that contains item ratings as well as a categorical variable, which we
refer to as the user type. The type is a private attribute such as gender, age, political affiliation, etc..

A new user, who is privacy sensitive (i.e., her type is unknown) interacts with the system. The recommender
system actively presents items for the user to rate, masquerading it as a way to improve recommendations in the
cold-start setting. In this context, our goal is twofold:
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1. We wish to design a type classifier that discovers the type of the user based on her ratings. We seek to
leverage the latent factor model prevalent in matrix-factorization, a technique successfully used for rating
prediction by recommender systems.

2. We wish to address the problem of actively learning a user’s type. We aim to design an item selection
method, that determines the order in which items are shown to a user for her to rate. The best order finds
the user’s type as quickly as possible.

We consider these two goals because in order for the attack to be considered successful, the recommender system
needs to obtain high confidence in the value of the inferred type, with a minimum number of questions posed to
the user, so that the user is unaware of the hidden agenda.

As both our classifier and item selection methods will rely heavily on matrix factorization, we review this as
well as the latent factor model that belies it in the remainder of this section.

3.2 Data Model

We use the following notation to describe the training dataset accessible to the recommender system. The dataset
comprises of ratings to m items in set M≡ {1, . . . ,m} given by n users in set N ≡ {1, . . . , n}. We denote by
rij the rating user i ∈ N gives to item j ∈ M, and by E ⊂ N ×M the set of user-item pairs (i, j), for which
a rating rij is present in the dataset. Each user in the dataset is characterized by a categorical type, which
captures demographic information such as gender, occupation, income category, etc. Focusing on binary types,
we denote by ti ∈ T ≡ {+1,−1} the type of user i ∈M.

We assume that the ratings are generated from the standard generative model used in matrix factorization,
augmented with type-dependent biases. More specifically, we assume that there exist latent factors ui ∈ Rd,
i ∈ N , and vj ∈ Rd, j ∈ M (the user and item profiles, resp.) such that ratings are given by the following
bi-linear relationship

rij = uTi vj + zjti + εij , (i, j) ∈ E (1)

where εij ∼ N(0, σ2
0) are independent Gaussian noise variables and zjt is a type bias, capturing the effect of a

type on the item rating. Our model is thus parametrized by U = [uTi ]i∈N ∈ Rn×d,V = [vTj ]j∈M ∈ Rm×d, and

Z = [zj,t]j∈M,t∈T ∈ Rm×|T |. We further assume a prior on user and item profiles: for all i ∈ N , j ∈M,

ui ∼ N(0, σ2
uI), and vj ∼ N(0, σ2

vI), (2)

i.e., profiles are sampled from independent zero-mean multivariate Gaussian priors.
The Gaussian priors (??) are used in many works on so-called Bayesian matrix factorization (see, e.g. [11, 17,

22,23,25,27]), and have several advantages. First, maximum a-posteriori estimation of the latent factors (i.e.
user and item profiles and biases) under these priors reduces to a least squares minimization augmented with `2
regularization terms, discussed further in the next section. This estimation method is known to perform very
well in determining parameters that yield good rating prediction results, thereby motivating the selection of the
above priors. Second, endowing model parameters with such priors allows the analysis of matrix factorization
from a Bayesian perspective; we exploit this point of view both in the development of our factor-based classifier
as well as our active learning algorithm.

3.3 Matrix Factorization as Maximum A-Posteriori Estimation

Using a dataset of ratings as described above, a recommender system can extract user and item profiles for the
purpose of predicting future user ratings. The technique typically used to learn these profiles from a training set,
namely, matrix factorization, can be viewed as maximum a posteriori estimation based on the noise and prior
assumptions presented in the previous section.

More specifically, under (??) and (??), the maximum likelihood estimation of the model parameters reduces
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to the minimization of the following (non-convex) regularized square error:1

min
U,V,Z

∑
(i,j)∈E

(rij − uTi vj − zjti)2+

+λ
∑
i∈N
‖ui‖22 + µ

∑
i∈M
‖vj‖22

(3)

with λ =
σ2

0

σ2
u

and µ =
σ2

0

σ2
v
.

Given a dataset of ratings rij , (i, j) ∈ E and types ti, i ∈ N , the parameters U, V, Z can be computed as local
minima to (??) through standard methods [14], such as gradient descent or alternating minimization, while λ
and µ are typically computed through cross-validation [10].

The last two terms of (??) are called the regularization terms. In practice, they are introduced to avoid
overfitting. Beyond the Bayesian perspective described above, another motivation behind the introduction of
such terms is the prior belief that the model ought to be simple; the regularization terms penalize the complexity
of the parametrized model (through the penalty on the `2-norms of profiles). As such, they act as “Occam’s
razor”, favoring parsimonious or simpler models over models that better fit the observed data. The Bayesian
point of view also agrees with this intuition, as the Gaussian priors indeed bias the parameter selection to profiles
with small norm.

4 A Factor-Based Classifier

We now turn our attention to the following classification problem. Suppose that the recommender system, with
access to the dataset of ratings and types, has computed a set of item profiles V as well as a set of biases Z, e.g.,
by minimizing (??) through gradient descent. A new user arrives in the system and submits ratings for items in
some set A ⊆ M, but does not submit her type. In order to bypass the user’s attempt at privacy, we need to
construct a classifier to infer the type of this new user.

In this section, we present a classifier that uses the item profiles and biases (i.e., the latent factors obtained
through matrix factorization) to accomplish this task. We refer to this classifier as a Factor-Based Classifier (FBC).
Crucially, FBC is consistent with the Bayesian model of matrix factorization presented in the previous section.
In particular, it amounts to the maximum a-posteriori estimation of the type under the bi-linear noise model
(??) and the priors (??).

4.1 Type Posterior

For A ⊂M the set of items for which the user submits ratings, we introduce the following notation. We denote
by rA ≡ [rj ]j∈A ∈ R|A| the vector of ratings provided by the user, by VA ≡ [vTj ]j∈A ∈ R|A|×d the matrix of

profiles for items rated, and by zAt ≡ [zjt]j∈A ∈ R|A| the vector of type-t biases for items rated.
As in the previous section, we assume the new user has an unknown profile u ∈ Rd and a type t ∈ {−1,+1},

such that the ratings she submits follow (??), i.e.,

rj = uT vj + zjt + εj , j ∈ A, (4)

where εj ∼ N(0, σ2
0). That is, conditioned on u and t, the ratings rA = [rj ]j∈A ∈ R|A| given to items in A ⊂ [M ]

are distributed as follows:

Pr(rA | u, t) =
e−‖rA−VAu−zAt‖

2
2/2σ

2
0(

σ0

√
2π
)|A| (5)

where σ2
0 is the noise variance.

Moreover, we assume as in the previous section that profile u follows a zero-mean Gaussian prior with
covariance σ2

uI, and that the type follows a uniform prior (i.e., each of the two types is equally likely). Hence,
the joint prior distribution of parameters u ∈ Rd and t ∈ T is:

Pr(u, t) = 0.5× 1

(σu
√

2π)d
e−‖u‖

2
2/2σ

2
u (6)

1Note that, as is common practice, to ensure that the profiles U, V obtained by (??) are invariant to a translation (shift) of the
ratings, we do not regularize the category biases (or, equivalently, we assume no prior on Z).
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4.2 Classification

Under the above assumptions, it is natural to classify the incoming user using maximum a posteriori estimation
of the type t. In particular, FBC amounts to

t̂(rA) = arg max
t∈T

Pr(t | rA). (7)

Under this notation, FBC can be determined as follows:

Theorem 1. Under noise model (??) and prior (??), the FBC classifier is given by

t̂(rA) =

{
+1, if δTAMAr̄A ≥ 0

−1, o.w.
(8)

where r̄A ≡ rA − zA++zA−
2 , δA ≡ zA+−zA−

2 , MA ≡ I − VAΣ−1
A V TA , and ΣA ≡ λI + V TA VA, for λ =

σ2
0

σ2
u

.

Proof. Under model (??) and prior (??), conditioned on type t, the ratings rA a user gives items in a set A ⊆ [M ]
are distributed according to:

Pr(rA | t) =

∫
u∈Rd e

− ‖rA−VAu−zAt‖
2

2σ2
0

− ‖u‖
2
2

2σ2
u du

(σ0

√
2π)|A|(σu

√
2π)d

=
e

(rA−zAt)
T (VAΣ

−1
A

V TA −I)(rA−zAt)

2σ2
0

(σ0

√
2π)|A|(σu/σ0)d

√
det(ΣA)

(9)

where ΣA ≡ λI + V TA VA and λ ≡ σ2
0

σ2
u

. Hence, the posterior probability of the user’s type is given by:

Pr(t | rA) =
e(rA−zAt)T (VAΣ−1

A V TA −I)(rA−zAt)/2σ2
0∑

t′∈T
e(rA−zAt′ )

T (VAΣ−1
A V TA −I)(rA−zAt′ )/2σ

2
0

(10)

Type t = +1 is thus most likely if

(rA − zA+)T
(
VAΣ−1

A V TA − I
)

(rA − zA+)−
(rA − zA−)T

(
VAΣ−1

A V TA − I
)

(rA − zA−) ≥ 0

and it is easy to verify that (??) follows.

4.3 Discussion

There are several important observations to be made regarding FBC, as defined by Theorem 1.

Set of Classifiers. We first note that FBC in fact defines a set of classifiers, each parametrized by set A ⊆M:
each such classifier t̂ : R|A| → {−1,+1} takes as input any possible set of ratings rA ∈ R|A| as input. Note
however that all classifiers are trained jointly from the ratings dataset: this “training” amounts to determining
the item profiles V and the item biases Z through matrix factorization. With V and Z learned, when presented
with ratings rA, the classifier can compute the vectors r̄A, δA and the matrix MA needed to determine the type.
Indeed, the fact that training the classifier amounts to computing the latent factors/item profiles is consistent
with the observation that FBC shares the same underlying Bayesian assumptions as matrix factorization.

Relationship to LDA. Second, for a given set of items A, the classifier defined over ratings rA is a linear
classifier. In particular, (??) defines a hyperplane in R|A| above which the user type is classified as +1 and
below which the type is classified as −1. In fact, when restricted to a specific set of items A, (??) can be seen as
classification through Linear Discriminant Analysis (LDA) [10]. More formally, the proof of Theorem 1 uses the
fact that the ratings rA ∈ R|A| are normally distributed with a mean that depends on the user type (cf eq. (??))
and a covariance MA = (I − VAΣ−1

A VA), as defined in Theorem 1. As such, given a uniform prior on the types,
the most likely type can indeed be determined through LDA, which yields a decision boundary precisely as in
(??) (see, e.g., eq. (4.9) pp. 108 of [10]). Nevertheless, FBC significantly departs from classical LDA in that all
classifiers across all sets A ⊆M are trained jointly.
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Algorithm 1 FBC Active Learning

Input: Item profiles V , item biases Z, confidence τ
1: A← ∅
2: rA ← ∅
3: repeat
4: for all j ∈M \A do
5: Compute Lj through (??)

6: j∗ ← arg min
j∈M\A

Lj

7: Query user to obtan rj∗

8: A← A ∪ {j∗}, rA ← rA ∪ rj∗
9: until Pr(t̂(rA) | rA) > τ

5 Active Learning

The second task in designing this threat is to find a user’s type quickly. We seek to design an algorithm that
adaptively selects items to show to the user, who subsequently rates them. The selection of the next item to
show is based on the ratings that the user has provided so far, and aims to select an item whose rating would
be most informative. More precisely, the active learning algorithm we propose selects an item at each step
whose rating increases the confidence of the classifier the most; maximizing classifier confidence is the same as
minimizing the risk of misclassification (we formally define both confidence and risk below). Our approach has
several important advantages. First, the expected risk of FBC can be computed exactly in closed form. This
allows us to incorporate both the effect that a rating has on the performance of the classifier, and how variable
our estimate is. Second, we demonstrate how this computation can be performed incrementally, thus significantly
reducing the computational complexity of item selection operations. Finally, one might be tempted to consider a
simple point estimate of risk, i.e., the risk for a single predicted rating, rather than computing the expected risk
over a probability distribution of predicted ratings. Although we do not need the point estimate method with
FBC, we discuss it here and use it in comparative evaluations since it can be used with any classifier, for which
a closed-form solution is not trivial or might not even exist.

5.1 FBC Selection Strategy

We use the data model and the FBC classifier presented in ?? to propose a method for selecting which items to
present to the user. Let t̂ be the FBC classifier defined by (??). Given observed ratings rA ≡ [rj ]j∈A ∈ R|A|, for
some A ⊂M, we define the risk L(t̂(rA)) of the classifier to be 0 if the prediction is correct, and 1 otherwise.
Note that, conditioned on rA, the expected risk is

E[L(t̂(rA)) | rA] = 1− Pr(t̂(rA) | rA),

i.e., it equals the 1 minus the confidence of the classifier, the posterior probability of the predicted type,
conditioned on the observed ratings. Since, by (??), FBC selects the type that has the maximum posterior
probability, the expected risk is at most (and the confidence at least) 0.5.

Our active learning algorithm proceeds greedily, showing the item that minimizes the classifier’s expected
risk at each step. More specifically, let A be the set of items whose ratings have been observed so far. To
select the next item to present to the user, the algorithm computes for each item j ∈M \A, the expected risk
E[L(t̂(rA ∪ rj)) | rA] if rating rj is revealed, given by:∫

rj∈R
(1− Pr(t̂(rA ∪ rj)) | rA ∪ rj) Pr(rA ∪ rj | rA)drj .

This expected risk depends on the distribution of the unseen rating rj conditioned on the ratings observed so far.
Under noise model (??) and prior (??), the expected risk for each item j can be computed in a closed form.

In particular, let MA, r̄A, δA be as defined in Theorem 1. Then, the expected risk when revealing the rating of
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item j is proportional to the following quantity, derived in the appendix:

Lj =

∫
rj

e
−
r̄TAj

MAj
r̄Aj

+2|δTAj
MAj

r̄Aj
|+δTAj

MAj
δAj

2σ2
0 drj√

det ΣAj
(11)

where Aj = A ∪ {j}. We note that the integration above is w.r.t. rj , i.e., the predicted rating for item j. The
outcome of the above integration can be computed in closed form, and no numerical integration is necessary.
We also present the corresponding closed form formula in terms of the error function erf in the appendix. The
active learning/item selection algorithm is summarized in Algorithm 1. Each iteration amounts to computing
the “scores” Lj for each item j not selected so far, and picking the item with the lowest score (corresponding to
minimum expected risk). Once the item is presented to the user, the user rates it, adding one more rating to
the set of observed ratings. The process is repeated until the confidence of the classifier (or, equivalently, the
expected risk) reaches a satisfactory level.

5.2 IncFBC Efficient Implementation of FBC Selection Strategy

The algorithm presented in the previous section requires the computation of the scores Lj after each interaction
with the user. Each such calculation involves computing the determinant det(ΣAj ), as well as the matrix

MAj = (I − VAjΣ−1
Aj
V TAj ), both of which appear in (??). Though having a closed form formula for (??) avoids

the need for integration, computing each of these matrices directly from their definition involves a considerable
computational cost.

In particular, the cost of computing ΣA = λI + V TA VA is O(d2|A|). Computing Σ−1
A and det(ΣAj ) have a

cost O(d3) multiplications using, e.g., LU-decomposition, which can be dropped to O(d2.807) using Strassen’s
algorithm for multiplication [4]. Finally, the computation of MA requires O(|A| × d2 + |A|2 × d) multiplications.
As a result, the overall complexity of computing Lj directly is

O(|A| × d2 + |A|2 × d+ d2.807). (12)

However, the performance of these computations can be significantly reduced by constructing these matrices
incrementally. In particular, MAj , Σ−1

Aj
and det(ΣAj ) can be computed very efficiently from MA, Σ−1

A , and

det(ΣA). These calculations exploit the fact that

ΣAj = ΣA + vjv
T
j ,

i.e., results from Σi through a rank-one update. We discuss how each of these can be computed below.

Incremental computation of det(ΣAj ). The determinant can be computed incrementally through the Matrix
Determinant Lemma [9], which relates the determinant of a matrix to the determinant of a rank-one update. In
particular:

det(ΣAj ) = (1 + vTj ΣAvj) det(ΣA). (13)

This computation requires only O(d2) multiplications.

Incremental computation of Σ−1
Aj

. The inverse of a rank-one update of a matrix can be computed through

the Sherman-Morisson formula [26], which gives:

Σ−1
Aj

= Σ−1
A −

Σ−1
A vjv

T
j Σ−1

A

1 + vTj Σ−1
A vj

, (14)

and again reduces the number of multiplications to O(d2).

Incremental computation of MAj . Finally, using (??), we can also reduce the cost of computing MAj , as it
can be written as:

MAj =

[
MA + φφT

1+vTj Σ−1
A vj

−ξ
−ξT 1− vTj ξ

]
(15)
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Algorithm 2 IncFBC Active Learning

Input: Item profiles V , item biases Z, confidence τ
1: A← ∅, rA ← ∅
2: Σ−1

A ← λ−1I, det(ΣA)← λ−d, MA ← ∅,
3: repeat
4: for all j ∈M \A do
5: det(ΣAj )← (1 + vTj ΣAvj) det(ΣA)

6: Σ−1
Aj
← Σ−1

A −
Σ−1
A vjv

T
j Σ−1

A

1+vTj Σ−1
A vj

7: ξ ← VA(Σ−1
Aj
vj), φ← VA(Σ−1

A vj)

8: MAj =

[
MA+ φφT

1+vT
j

Σ
−1
A

vj

−ξ

−ξT 1−vTj ξ

]
9: Compute Lj through (??)

10: j∗ ← arg min
j∈M\A

Lj

11: Query user to obtan rj∗

12: A← A ∪ {j∗}, rA ← rA ∪ rj∗
13: det(ΣA)← det(ΣAj∗ ), Σ−1

A ← Σ−1
Aj∗

, MA ←MAj∗

14: until Pr(t̂(rA) | rA) > τ

where ξ = VA(Σ−1
Aj
vj) and φ = VA(Σ−1

A vj), which reduces the computation cost to O(|A|2 + d2) multiplications.

In conclusion, using the above adaptive operations reduces the cost of computing Lj from (??) by one order
of magnitude to

O(|A|2 + d2),

which is optimal (as MA is an |A| × |A| matrix, and ΣA is d × d). The rank-one adaptations permit such
performance without the use of sophisticated matrix inversion or multiplication algorithms, such as Strassen’s
algorithm. The resulting algorithm is outlined in Algorithm 2, and an empirical comparison of the two
implementations is shown in ??.

5.3 Selection Through Point Estimation

An alternative method for selection can be constructed by replacing the exact estimation of the expected risk
with a “point estimate” (see also [27]). In fact, such a selection method can be easily combined with an arbitrary
classifier that operates on user-provided ratings as input. This makes such an approach especially useful when
the expected risk is hard to estimate in a closed form. We therefore outline this method below, noting however
that several problems arise when the risk is computed through such a point estimation.

We describe the method for a general classifier C, also summarized in Algorithm 3. Given a set of ratings rA
over a set A ⊆M, the classifier C returns a probability

PrC(t | rA),

for each type t ∈ T . This is the probability that the user’s type is t, conditioned on the observed ratings rA.
Given a set of observed ratings rA, we can estimate the type of the user using the classifier C though maximum
likelihood a-posteriori estimation, as

t̂(rA) = arg maxt∈T PrC(t | rA).

Using this estimate, we can further estimate the most likely profile û ∈ Rd through ridge regression [10] over the
observed ratings rA and the corresponding profiles VA (see Algorithm 3 for details). Using the estimated profile
û and the estimated type t̂, we can predict the rating of every item j ∈M \A as

r̂j = ûT vj + zjt̂,

9



Algorithm 3 PointEst Active Learning

Input: Item profiles V , item biases Z, classifier C, confidence τ
1: A← ∅, rA ← ∅
2: repeat
3: t̂← arg maxt∈T PrC(t | rA)
4: û← (λI + V TA VA)−1V TA (rA − zAt̂)
5: for all j ∈M \A do
6: r̂j ← ûT vj + zjt̂
7: Lj ← mint∈T PrC(t | rA ∪ r̂j)
8: j∗ ← arg minj Lj
9: Query user to obtain rj∗

10: A← A ∪ {j∗}, rA ← rA ∪ rj∗
11: until 1− Lj∗ > τ

and subsequently estimate the expected risk if the rating for item j is revealed as

mint∈T PrC(t | rA ∪ r̂j).

We refer to this as a “point estimate”, as it replaces the integration that the expected risk corresponds to with
the value of the risk at a single point, namely, the predicted rating r̂j .

Using such estimates, selection can proceed as follows. Given the set of observed ratings A, we can estimate
the risk of the classifier C for every item j in M\A through the above estimation process, and pick the item
with the minimum estimated risk. The rating of this item is subsequently revealed, and new estimates t̂ and û
can thusly be obtained, repeating the process until a desired confidence is reached.

Clearly, point estimation avoids computing the expected risk exactly, which can be advantageous when the
corresponding expectation under a given classifier C is hard to obtain in a closed form. This is not the case
for FBC, as we have seen, but this can be the only tractable option for an arbitrary classifier. Unfortunately,
this estimation can be quite inaccurate in practice, consequently leading to poor performance in selections; we
observe such a performance degradation in our evaluations (??). Put differently, a point estimate of the risk
takes into account what the predicted rating of an item j is in expectation, and how this rating can potentially
affect the risk; however, it does not account for how variable this prediction is. A highly variable prediction
might have a very different expected risk; the exact computation of the expectation does take this into account
whereas point estimation does not.

6 Evaluation

6.1 Datasets and Experimental Setup

We evaluate our method using three datasets: Movielens2, Flixster [12], and Politics-and-TV (PTV) [24]. The
Movielens dataset includes users’ ratings for movies alongside with the users’ gender and age. For simplicity,
we categorize the age group of users as young adults (ages 18–35), or adults (ages 35–65). Flixster is a similar
movie ratings dataset, also containing user gender information. PTV includes ratings by US users on 50 different
TV-shows, along with each user’s gender and political affiliation (Democrat or Republican). We preprocessed
Movielens and Flixster to consider only users with at least 20 ratings, and items that were rated by at least
20 users. Since PTV includes only 50 TV-shows, we preprocessed the data to ensure that each user has at
least 10 ratings. ?? summarizes the datasets used for evaluation. For each user type, the table shows the ratio
between the number of users of one type versus the other type (labeled in the table). ?? shows the cumulative
distribution function (CDF) of the number of ratings per user across the three preprocessed datasets. We see
that for the Movielens and Flixster datasets, there are many users with hundreds of items rated in their profile.

We split each dataset into training and testing and perform MF with 10-fold cross validation. We learn
the item latent factors required by FBC using the training set, with type biases for age, gender and political
affiliation as applicable to the three datasets. For MF, we use 20 iterations of stochastic gradient descent [14] to

2http://www.grouplens.org/node/73
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Dataset Type Users Items Ratings

All 6K 3K 1M
Movielens Gender (Female:Male) 1:2.5 - 1:3

Age (Young:Adult) 1:1.3 - 1:1.6

All 992 50 29.9K
PTV Gender (Female:Male) 1.8:1 - 1.6:1

Political Views (R:D) 1:1.6 - 1:2.1

All 26K 9921 5.6M
Flixster Gender (Female:Male) 1.7:1 - 1.5:1

Table 1: Datasets statistics
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Figure 2: Cumulative distribution of number of ratings per user for (a) Movielens (b) Politics-and-TV (c) Flixster

minimize (??), using the same regularization parameter for users and movies. Through 10-fold cross validation
we determined the optimal dimension to be d = 20, and the optimal regularization parameter to be 0.1, for
each of the biases. We also compute the optimal parameter λ used in the classifier (??) through 10-fold cross
validation, selecting the parameter that maximizes the area under the curve (AUC) obtaining values λ = 100 for
gender and λ = 200 for age for the Movielens dataset, λ = 1 for gender and λ = 10 for political views for the
PTV dataset, and λ = 200 for gender for the Flixster dataset.

6.2 Classification

We first look at the performance of static classifiers that have access to the entire user history, in some cases
with hundreds of ratings. In a regular recommender system, this history can take many months to accumulate.
For this static classification task, we compare FBC to the state-of-the-art, in ??, and show both the AUC and
the accuracy (fraction of users classified correctly) for FBC, logistic regression and multinomial classifier. The
latter two were the top performing among the classifiers studied in our previous work [29] in the context of
predicting gender. Following [29], we train both of these classifiers over rating vectors padded with zeros: an
item not rated by a user is marked with a rating value of 0. Overall, the table shows that the performance of
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Movielens Politics-and-TV Flixster
Gender Age Gender Political Views Gender

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

FBC 0.827 0.773 0.825 0.751 0.683 0.646 0.748 0.695 0.650 0.606

Logistic 0.865 0.804 0.906 0.827 0.756 0.705 0.778 0.707 0.861 0.789

Multinomial 0.810 0.764 0.817 0.761 0.753 0.709 0.758 0.703 0.747 0.725

Table 2: Classification with full user history; item selection not needed
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Figure 3: Average accuracy and confidence per number of questions for the three classifiers: IncFBC, multinomial
(using PointEst selector) and logistic (using PointEst selector). Datasets from left to right – Movielens-Gender,
Movielens-Age, PTV-Gender, PTV-Political Views, Flixster-Gender
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Figure 4: Average accuracy of the FBC classifier per number of questions with different selection strategies.
Datasets from left to right – Movielens-Gender, Movielens-Age, PTV-Gender, PTV-Political Views, Flixster-
Gender

FBC is close to the state-of-the art on the Movielens dataset, and slightly worse on the other two datasets.
Although any of these classifiers could be used for a static attack, we will see below that FBC is better suited to
adaptive attacks with fewer ratings.

6.3 Active Learning

In our active learning setting, the recommender system infers user attributes from a set of strategically selected
items. To understand the effectiveness of FBC compared to other classification methods in an active learning
setting, we perform the following evaluation. We first split the dataset into a training set (e.g., users that are
willing to disclose the private attribute) and evaluation set (e.g., users that are privacy-sensitive), and train a
classifier on the training set – in the case of FBC we learn the item profiles and biases. Then, for each user in
the evaluation set, we select items to show that the user rates incrementally. We use the selector to pick an
item (we refer to the item, either a movie or a TV-show, as a “question” that is presented to the user), limiting
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Figure 5: Effect of λ on PointEst in Movielens-Gender

our selections only to the set of the movies that the user has rated. We then emulate a user “response”, by
assigning the true user rating to the selected movie. At each iteration, we use the classifier to infer the private
type and also derive the confidence in this classification. We note that we must limit the selector to the set of
rated movies and not the entire movie catalog because we have no rating information regarding movies that the
user did not actually rate.

Using this evaluation process we compute the accuracy and the average confidence of the classifier across all
users, as a function of the number of questions presented to the users. Notice that not all users have rated the
same number of movies. For instance, as seen in ??, roughly 50% of the users of Movielens have rated less than
100 movies out of 3000. Therefore, we limit the number of questions asked to 100 for Movielens and Flixster and
all 50 for PTV.

We seek to compare the performance of FBC with other classification methods. Unless specified, all
evaluations were done using the efficient incremental implementation IncFBC. We compare our selection method
to the logistic and multinomial classifiers with the point-estimate (PointEst) active learning method described
in ?? (see Algorithm 3). For the remainder of this section we refer to PointEst with a logistic and multinomial
classifiers as Logistic and Multinomial, respectively.

Accuracy and Confidence. ?? plots the accuracy of classification for a given number of ratings (“questions”)
ordered using PointEst, for all datasets. PointEst selector enables us to compare FBC with the other
classifiers for which we do not have a closed-form solution for selection. Note that these plots are not directly
comparable with ??, because the table considers all ratings performed by all users in each dataset, whereas the
plots show the average accuracy computed over the users that have rated no more than the indicated number of
questions. In all datasets, the plots show that IncFBC either outperforms or is very close to both logistic and
multinomial within a few questions, and reaches an improvement in accuracy of over 10% in the Movielens and
Flixster datasets. Using IncFBC with just 20 movies per user we obtain a classification accuracy that is close or
even better than that obtained by static inference techniques which use the complete dataset. PointEst with
the other two classifiers starts in some cases with a relatively good accuracy (around 0.7), however, these are
essentially the class priors, as can be seen in ??. Furthermore, the improvement in accuracy is extremely slow,
indicating that these classifiers do not substantially improve beyond the class priors, whereas IncFBC exhibits a
much faster increase in accuracy. We note that this is in stark contrast with the performance of these classifiers
over the entire dataset (??), where both classifiers perform significantly better.

?? shows the average corresponding classification confidence. Compared to ??, we see that both logistic and
multinomial are “over-confident”, in that they assign high confidence to users even while failing to classify them
correctly. Moreover, in the PTV dataset, the final TV-shows selected by both logistic and multinomial actually
reduce their confidence. These are TV-shows that the selector would not ask to rate in the presence of better
options, but are eventually selected because of the limited number of shows available (50). In contrast, IncFBC
is consistent and robust to the addition of such items, increasing both in terms of confidence and accuracy.

Comparing Selectors. Given the relative complexity of the IncFBC selector, a natural question is how well
does the FBC classifier perform with simpler selectors. We thus compare the results of IncFBC, to PointEst,
which essentially approximates the optimal selector, and to a random selector that selects items uniformly at
random from the set of rated items. ?? illustrates the results of this comparison across different datasets. Clearly,
IncFBC consistently outperforms other selectors by achieving 3− 20% higher accuracy in fewer questions.

We observe that for the PTV dataset, the performance of PointEst is very close to IncFBC, however, for
the other datasets, it is significantly lower than IncFBC. On careful investigation, we find that the performance
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Figure 6: Running time improvement of IncFBC over FBC
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Figure 7: Impact on recommendation as captured by the Root Mean Squared Error (RMSE) of predicted ratings
on datasets (left to right) Movielens-Gender, Movielens-Age, PTV-Gender, PTV-Political Views, Flixster-Gender

of PointEst is greatly affected by the amount of noise in the dataset. ?? shows the results of this comparison
using two different values of λ, 1 and 100, on the Movielens-Gender dataset. Recall that the λ parameter is used
to estimate the amount of noise that exists in the users’ ratings; a small λ assumes that there is little noise,
therefore PointEst should perform close to IncFBC. When the noise is large, PointEst fails to correctly
estimate the expected risk, and performs significantly worse than IncFBC. This is precisely the behavior we
observe in ??, the PointEst selection closely follows IncFBC for λ = 1, and fails to do so for λ = 100. For all
datasets, the optimal value of lambda is found through cross validation (λ = 100 for Movielens age and gender),
and correctly captures the inherent noise in the data. Similarly, the optimal λ was 200 for Flixster, and 1 and 10
for PTV-Gender and PTV-Political Views, respectively.

Running Time. Next, we seek to quantify the improvement in execution time obtained by the incremental
computations of IncFBC. To this end, we ran both FBC and IncFBC on a commodity server with a RAM
size of 128GB and a CPU speed of 2.6GHz. ?? shows the average time per movie selection for both FBC and
IncFBC for increasing number of questions (movies presented to the user). The error bars depict the 95%
confidence interval surrounding the mean. The plot shows that when the number of questions is small the time
per question is relatively constant, and as the number of questions increases the time per question also increases.
As discussed in ??, when the number of questions is smaller than the dimension of the factor vectors (in our case
d = 20), the complexity of the efficient algorithm is dominated by d. In the first few questions FBC is slightly
faster than IncFBC. This is the result of the efficient implementation of inversion for small matrices. However,
as the matrix becomes larger, the size of the matrix dominates the complexity and the incremental computations
performed in IncFBC are significantly faster than FBC, reaching a speedup of 30%.

Impact on Recommendations. Finally, if a recommender system uses FBC to maliciously learn user features,
it is important that such a mechanism for strategic solicitation of ratings has a minimal impact on the quality of
recommendations, otherwise the user may detect its hidden agenda.

We measure the quality of the recommendations by holding out an evaluation set of 10 items for each
user. After every 10 questions (solicited ratings) we predict the ratings on the evaluation set by applying ridge
regression using the provided ratings and item profiles to learn a user profile. Using the predicted ratings, we
compute the root mean squared error (RMSE) over the evaluation sets of all users. In order to understand
how IncFBC affects the RMSE, we compare it with two other item selection methods. The first is a random
selection, which we consider to be a natural baseline as users may rate items in any arbitrary order. The second
method presents items to the user in descending order of their rating entropy, i.e., start with items that have
polarized ratings. This method was shown to be efficient in a cold-start setting in [21] as it can quickly build
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user profiles in a matrix factorization based recommender system.
?? plots the RMSE for an increasing number of rated items, using IncFBC, random, and entropy-based

ordering. The figures show that in all datasets, IncFBC performs almost identical to a random selection,
indicating that IncFBC does not incur significant impact on the RMSE relative to an arbitrary order in which
a user may rate items. Furthermore, IncFBC has an RMSE similar to the entropy method, which is directly
designed to improve the RMSE in a cold-start setting. We note that while entropy-based method may have
lower RMSE than IncFBC when considering very few questions (e.g., less than 5) its performance is similar as
questions increase. Overall, these results show that a malicious recommender system that uses IncFBC to infer
a private attribute of its users can also use the solicited ratings to provide recommendations, making it difficult
for users to detect the hidden agenda.

7 Conclusion and Future Work

In this paper, we present a new attack that a recommender system could use to pursue a hidden agenda
of inferring private attributes for users that do not voluntarily disclose them. Our solution, that includes a
mechanism to select which question to ask a user, as well as a classifier, is efficient both in terms of the number
of questions asked, and the runtime to generate each question. After evaluation on 5 datasets, we showed that
we consistently outperform other baseline methods in terms of classification accuracy, and that we do so with far
fewer questions.

We plan to pursue some important extensions to broaden the scope our our work. First, we intend to
move beyond binary attributes to multi-category attributes. Second, we plan to study the problem of selecting
questions to infer multiple private attributes (e.g., age and gender) simultaneously. In addition, we want to
consider broader use cases, such as the impact of our attack for users with pre-existing profiles (having already
rated some items), where the recommender system’s goal is to improve its confidence in the inferred attribute.
This could be useful when a subset of the users are hard to classify. Finally, we seek to explore the attack from
the user’s perspective, to better advise users on ways to identify and potentially mitigate such attacks.

APPENDIX

Derivation of Equation (??) For Aj = A ∪ {j} and tc the binary complement of t, the expected risk
E[L(t̂(rAj )) | rA], if the rating for movie j is revealed is∫

rj∈R
Pr(t̂c(rAj ) | rAj ) Pr(rAj | rA)drj

=

∫
rj∈R

Pr(b̄(rAj ) | rAj )
Pr(rAj )

Pr(rA)
drj

(??),(??)
= C

∫
rj∈R

e
yT
t̂c(rAj

)

(
VAjΣ−1

Aj
V TAj
−I

)
yb̂c(rAj

)/2σ
2
0
drj√

det(ΣAj )

where yt̂(rAj ) = rAj − zAj t̂c(rAj ), ΣAj = λI + V TAjVAj , and C a term that does not depend on j. The expected

risk is thus proportional to:

Lj =

∫
rj∈R e

−(rAj−zAjt̂c(rAj
))
TMAj

(rAj−zAjt̂c(rAj
))/2σ

2
1
drj√

|ΣAj |

where |ΣAj | = det(ΣAj ) MAj = I − VAjΣ−1
Aj
V TAj and t̂c(rAj ) the complement of prediction under rAj . Under

Theorem 1, as t̂ is given by (??), Lj simplifies to (??).

Closed Form of (??). Let ξ = VA(Σ−1
Aj
vj), φ = VA(Σ−1

A vj), µ1 = MA + φφT

1+vTj Σ−1
A vj

and µ2 = 1 − vTj Σ−1
Aj
vj .
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Then, from (??) we get that:

r̄TAjMAj r̄Aj + 2|δTAjMAj r̄Aj |+ δTAjMAjδAj =

µ2r̄
2
j − 2r̄TAξr̄j + |(δjµ2 − δTAξ)r̄j + δTAµ1r̄A − δjξT r̄A|

+ r̄TAµ1r̄A + δTAjMAjδAj

For simplicity of exposition, let α1 = µ2/σ
2
1 , α2 = −2rTAξ/σ

2
1 , α3 = (zjµ2−zTAξ)/σ2

1 , α4 = (zTAµ1−zjξT )rA/σ
2
1 , α5 =

(rTAµ1rA + zTAjMAjzAj )/σ
2
1 If α3 > 0, substituting these in the risk, we have,

Lj =
1√
|ΣAj |

(∫ −α4
α3

rj=−∞
e−(α1r

2
j+(α2−α3)rj−α4+α5)/2drj

+

∫ ∞
rj=−α4

α3

e−(α1r
2
j+(α2+α3)rj+α4+α5)/2drj

)
Letting x =

√
α1rj + α2−α3

2
√
α1

and y =
√
α1rj + α2+α3

2
√
α1

, and substituting dx = dy =
√
α1drj we can rewrite the

above as,

Lj =
1√

α1|ΣAj |

(
e

(α2−α3)2

4α1
−α5+α4

2 h

(
α2 − α3

2
√
α1
−
α4
√
α1

α3

)
+

e

(α2+α3)2

4α1
−α5−α4

2 h

(
−α2 + α3

2
√
α1

+
α4
√
α1

α3

))
where h(x) =

∫ x
−∞ e−x

2/2dx, which can be expressed in terms of the error function (erf). A similar derivation
applies if α3 ≤ 0.
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