
Testing and Estimating the Non-Disjunction Fraction
in Meiosis I using Reference Priors

Rosangela H. Loschi*, Jo�o V. D. Monteiro, Gustavo H. M. A. Rocha,
and Vinicius D. Mayrink

Departamento de Estat�stica – ICEx, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627,
Pampulha, 31270-901 Belo Horizonte, MG, Brazil

Received 01 February 2007, revised 27 March 2007, accepted 26 April 2007

Summary

In this paper we analyze the fraction of non-disjunction in Meiosis I assuming reference (non-informa-
tive) priors. We consider Jeffreys’s approach to built a non-informative prior (Jeffreys’s prior) for the
fraction of non-disjunction in Meiosis I. We prove that Jeffreys’s prior is a proper distribution. We
perform Monte Carlo studies in order to compare Bayes estimates obtained assuming Jeffreys’s and
uniform priors. We consider full Bayesian significance test (FBST) and Bayes factor (BF) for testing
precise hypothesis on the fraction of non-disjunction in Meiosis I. The ultimate goal of this paper is to
compare these two test procedures through simulation studies using both prior specifications. An appli-
cation to Down Syndrome data is also presented.
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1 Introduction

Chromosomal anomalies can be structural or numerical. The numerical chromosomal anomalies,
named aneuploidies, are common causes of mental retardation, pregnancy losses and fetal death in
humans. One of the best known aneuploidies is the trisomy of chromosome 21, which produces a
phenotype known as Down syndrome. Aneuploidies, in general, arise from sporadic error in the chro-
mosomal segregation during the meiotic process, named a non-disjunction. Non-disjunctions can occur
in the first (meiosis I) or second (meiosis II) division in the meiotic process. Despite its importance,
little information about the genetic and environmental causes of aneuploidies is available. The deter-
mination of the rate of non-disjunction in chromosomal segregation, which takes place in meiosis I in
each chromosome, is useful to identify possible factors (as, for example, geography, nutrition, age,
reproductive practices, etc.), which generate such numerical chromosomal anomalies. For example, in
the trisomy of chromosome 21, there is evidence that the rate of non-disjunction increases with the
age of the mother (see Pena, 1998). Moreover, the increase in the rate of non-disjunction in meiosis II
is higher than for meiosis I if the mother’s age is between 35 and 39 years. For sexual chromosomes,
however, high mother age influences only the fraction of non-disjunction in meiosis I. See Franco
et al. (2003) for details.

The meiotic cellular division consists of the DNA replication followed by two cell divisions gener-
ating haploid cells. In meiosis I, aneuploidies are due to the non-disjunction of homologous chromo-
somes which remain unite and migrate to the same cell. In this cases, when the abnormal cell crosses
with a normal gamete we can observe one, two or three different alleles depending on the genetic
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characteristics of the parents. In meiosis II, aneuploidies are a consequence of the non-disjunction of
sister chromatids which remain unite and migrate to the same cell. In this case, the two alleles will be
the same and it is impossible to have a three peaks pattern. In order to make easy the understanding
of the non-disjunction in meiotic process, Franco et al. (2003) provides the scheme presented in Fig-
ure 1, where A and B denote the alleles of a particular microsatellite present in parent 1 and C is the
allele in parent 2 that will joint to the alleles of parent 1 in the fertilization process.

The diagnosis of the syndrome is done by employing a polymerase chain reaction (PCR) based
approach. It is possible to type microsatellites located near the chromosomal centromere (to avoid
problems due to recombination) with the PCR using primers designed from the unique sequence DNA
flanking the tandem repeat arrays, followed by quantitative analysis by computer-assisted laser densi-
tometry (Pena, 1998). Microsatellite loci will be directly informative whenever they show more than
one allele peak. Trisomic patients will display, in informative microsatellite loci, three fragment peaks
of equal intensity, two fragments at an average 2 :1 dosage or one individual fragment. The relative
proportion of the three cases will depend on the type of non-disjunction, although the heterozygosity
level is also important. For a three-allele pattern to emerge it is necessary for the non-disjunction to
occur in the first meiotic division, the mother to be heterozygous at the relevant locus and the allele
carried by the sperm to be different from the two maternal alleles (that is, A, B and C in Figure 1 are
all different alleles). A two-allele pattern is observed either in the first or second meiosis division,
depending on the combination of the chromosomes transmitted by the parents. One peak pattern
occurs if the parents are homozygous for the allele inherited. See details in Hassold and Jacobs
(1984).

Many proposed methods to estimate f (given that a non-disjunction occurs, f denotes the condi-
tional probability that a non-disjunction occurs in the first division of meiosis) in trisomies take into
account the comparative studies of pericentromeric DNA polymorphic markers from affected children
and their parents (Hassold and Hunt, 2001). More recently, some estimates of f were obtained consid-
ering only the information extracted from the DNA of affected children through PCR (see Franco
et al. (2003), Nicolaidis and Peterson (1998), Savage et al. (1998), Yoon et al. (1996), Koehler et al.
(1996), Griffin (1996), Peterson et al. (1992), Zaragosa et al. (1994) and many others). For trisomies,
Franco et al. (2003) propose a model for the number of peaks in a polymorphic locus which depends
on the fraction f of meiosis I non-disjunction. This model does not take the parental information into
account. The model proposed by Franco et al. (2003) is very useful since the necessity of using the
parental information can make research more cumbersome and disable the use of archive material,
which could be a problem in rare aneuploidies. Assuming that the relative frequency of each allele is
known and that the hypothesis of Hardy–Weinberg equilibrium (Hartl and Clark, 1997) is verified for
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Figure 1 Meiosis Non-disjunction scheme.
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the population, Franco et al. (2003) establish that the number of individuals with one, two or three
peaks, given f, can be modeled by a multinomial distribution. Franco et al. (2003) present the max-
imum likelihood (ML) estimator and bootstrap intervals for f. Later on, Loschi and Franco (2006)
extended such an analysis including prior information into the problem. These authors compare Bayes
and ML estimators through Monte Carlo studies concluding, as expected, that posterior modes and
ML estimates are similar if the uniform prior distribution is assumed to describe the initial uncertainty
about f. Loschi and Franco (2006) also concluded that Bayes estimators provide better estimates than
ML estimator if fair informative prior distributions for f are considered.

Frequently, the number of trisomic patients is small compromising the use of asymptotic theory (see
Franco et al. (2003), for instance). Moreover, in many circumstances, the initial information about f
can also be rare – which can occur in rare aneuploidies, for example – compromising the use of
informative priors. The usual criticism against Loschi and Franco’s (2006) approach is that they do
not consider reference priors. It is well known that prior specifications permit to incorporate scientific
hypotheses into the analysis and, consequently, their use allows to handle complex problems and situa-
tions in which little sample information is available. In such situations, reference (or non-informative)
priors are frequently used to describe prior uncertainty about the parameter. There are several methods
to construct non-informative priors. In this paper, we consider Jeffreys’s approach (Jeffreys, 1961) to
obtain a non-informative prior for f (Jeffreys’s prior) since it is extensively used in the literature.
According to Migon and Gamerman (1999), the idea behind Jeffreys’s prior is to provide as little prior
information as possible, relative to the sample information. We prove that Jeffreys’s prior is a proper
distribution. We also perform a Monte Carlo study in order to compare the Bayes estimates assuming
two non-informative prior specifications: Jeffreys’s and uniform priors. According to Barros and Franco
(2002) one of the main interest is to verify if, for the Brazilian individuals with Down syndrome, the
fraction of non disjunction in meiosis I is 0:68. Due to the fact that chromosome trisomies are rare
events and, consequently, few information about it are available, Barros and Franco (2002) employ the
bootstrap confidence intervals to test precise hypothesis about f. The ultimate goal of this paper is to
introduce two Bayesian procedures for testing hypothesis about f: full Bayesian significance test
(FBST) (Pereira and Stern, 1999) and Bayes factor (BF) (see Bernardo and Smith (1994), for in-
stance). To test precise hypothesis, BF can lead to Lindley’s paradox (Tsao, 2006). FBST was intro-
duced in literature in order to avoid such a problem. To perform the FBST we need only the knowl-
edge of the parameter space represented by its posterior distribution and do not need additional
assumptions, such as a positive prior probability for the precise hypothesis (Madruga et al. 2003).
Then, it is also our goal to compare these two hypothesis test procedures through simulation studies.
We consider both prior specifications and only precise hypothesis about f. Finally, we analyze a
sample of Brazilian individuals with Down syndrome in order to illustrate the methodologies. The
results are compared with those found in literature.

The paper is organized as follows: Section 2 presents the likelihood function and Jeffreys’s prior for
f. Bayes factor and the evidence of null hypothesis are obtained to test precise hypotesis about f.
Section 3 presents Monte Carlo studies to compare Bayes estimates for f as well as BF and FBST,
using Jeffreys’s and uniform prior specifications. In Section 4, we analyze the data from Brazilian
patients with trisomy of chromosome 21. Finally, in Section 5 we draw some conclusions.

2 Statistical Model

In this section we obtain Jeffreys’s prior for f and describe some techniques for testing and estimat-
ing f from the Bayesian point-of-view.

2.1 Likelihood of f

To construct the likelihood function of f, Franco et al. (2003) assume that the hypothesis of Hardy–
Weinberg equilibrium (Hartl and Clark, 1997) is verified for the population.
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Denote by Yl the number of individuals with l peaks pattern, l ¼ 1; 2; 3, to be observed in a sample
of n trisomic individuals and denote by the random vector ðY1; Y2; Y3Þ. Let pi, i ¼ 1; . . . ;m, be the
relative frequency of the allele i in a multiallelic locus of microsatellites. Denote by f, f 2 ½0; 1�, the
conditional probability of the non-disjunction taking place in meiosis I, given that an error of non-
disjunction occurred. Given f, Franco et al. (2003) show that the random vector Y has a multinomial
distribution with parameters n, q1ðfÞ > 0, q2ðfÞ > 0 and q3ðfÞ > 0, denoted by Y � Mult ðn; q1ðfÞ,
q2ðfÞ; q3ðfÞÞ, which has probability function given by:

PðY ¼ y j fÞ ¼ n!

y1!y2!y3!
½q1ðfÞ�y1 ½q2ðfÞ�y2 ½q3ðfÞ�y3 ; ð1Þ

where y ¼ ðy1; y2; y3Þ, yl 2 f0; . . . ; ng for l ¼ 1; 2; 3,
P3

l¼1 yl ¼ n, and

q1ðfÞ ¼ f
Pm
i¼1

p3
i þ ð1� fÞ

Pm
i¼1

p2
i ;

q2ðfÞ ¼ 3f
Pm
i¼1

Pm
j¼1

p2
i pj þ ð1� fÞ

Pm
i¼1

Pm
j¼1

pipj; for i 6¼ j ;

q3ðfÞ ¼ f
Pm
i¼1

Pm
j¼1

Pm
k¼1

pipjpk; for i 6¼ j 6¼ k :

Notice that qlðfÞ can be interpreted as the probability of being l, l ¼ 1; 2; 3, the number of frag-
mented peaks to be observed in the microsatellite locus of interest. It can also be observed thatP3

l¼1 qlðfÞ ¼ fð
Pm

i¼1 piÞ3þ ð1� fÞð
Pm

i¼1 piÞ2 ¼ 1.

2.2 Reference analysis

The use of non-informative priors can be useful to study rare aneuploidies, for instance, in which little
initial information about f is available.

There are several methods to obtain reference or non-informative priors. Such methods depend on
the concept of information that is under consideration. The simplest way to obtain a non-informative
opinion about the parameter is to declare a uniform distribution as the measure of the initial uncer-
tainty. However, uniform distribution can be an improper prior, if the range of the parameter is un-
bounded, and it is not invariant to a one-to-one transformation (see Migon and Gamerman (1999),
(Bernardo and Smith (1994) and many others).

A class of non-informative priors which are invariant under transformations is introduced by Jef-
freys (1961). In spite of solving the invariance problem, Jeffreys’s prior – which, under some regular-
ity conditions, is the reference prior introduced by Bernardo (1979) – can also be improper. Jeffreys’s
prior depends exclusively on Fisher’s information. Consequently, it put more mass for values of f for
which data bring more information. The idea behind Jeffreys’s prior comes from the desire of making
inference based on a minimum of subjective previous information. It should be used in situations
where there is little or no initial information or, if it does exist, we do not wish to use it, thus yielding
a neutral analysis.

In this section we obtain Jeffreys’s prior for f and prove that it is a proper distribution. Notice that
for the problem considered here Jeffreys’s prior is easily obtained.

From (1) we obtain that Fisher’s information is given by:

IðfÞ ¼ n
a2

q1ðfÞ
þ b2

q2ðfÞ
þ c2

q3ðfÞ

� �
;
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in which a ¼
Pm

i¼1 p3
i �

Pm
i¼1 p2

i , b ¼
Pm

i¼1

Pm
j¼1 p2

i pj �
Pm

i¼1

Pm
j¼1 pipj, for i 6¼ j, and c ¼Pm

i¼1

Pm
j¼1

Pm
k¼1 pipjpk, for i 6¼ j 6¼ k. Consequently, Jeffreys’s prior for f is:

pðfÞ / a2

q1ðfÞ
þ b2

q2ðfÞ
þ c

f

� �1=2

: ð2Þ

Proposition 1 Let pi 2 ½0; 1�, for all i ¼ 1 . . . ;m, and assume that pi 6¼ 0 for any i. Then, Jeffreys’s
prior given in (2) is a proper distribution.

Proof Notice that

lim
f!0

a2

afþ
Pm

i¼1 p2
i

¼ a2Pm
i¼1 p2

i

lim
f!0

b2

bfþ
Pm

i¼1

Pm
j¼1 pipj

¼ b2Pm
i¼1

Pm
j¼1 pipj

lim
f!0

c
f
¼ 1 :

Consequently, there is k 2 ð0; 1Þ such that a2½afþ
Pm

i¼1 p2
i �
�1 < cf�1 and b2½bfþ

Pm
i¼1

Pm
j¼1 pipj��1

< cf�1 for all f 2 ½0; k�. Thus, it follows that:ðk

0
pðfÞ df <

ðk

0

3c
f

� �1=2

df ¼ 2ð3ckÞ1=2 :

It is also noticeable that, for all f 2 ðk; 1�, pðfÞ < ð3MÞ1=2, in which M ¼ max fa2½afþ
Pm

i¼1 p2
i �
�1;

b2½bfþ
Pm

i¼1

Pm
j¼1 pipj��1, cf�1g þ 1. Concluding the proof.

From (1) and (2) it follows that the posterior distribution of f is given by:

pðf j YÞ ¼
n!

y1!y2!y3! ½q1ðfÞ�y1 ½q2ðfÞ�y2 ½q3ðfÞ�y3 a2

q1ðfÞ þ
b2

q2ðfÞ þ
c
f

� �1=2

Ð 1
0

n!
y1!y2!y3! ½q1ðfÞ�y1 ½q2ðfÞ�y2 ½q3ðfÞ�y3 a2

q1ðfÞ þ
b2

q2ðfÞ þ
c
f

� �1=2
df

: ð3Þ

As a consequence of Proposition 1, the posterior distribution of f given in (3) is proper. It can also
be noticed that pðf j YÞ can not be obtained analytically.

2.3 Bayesian procedures for hypothesis test for f

Suppose that we are interested in a precise null hypothesis for f, that is, consider the following test:

H0 : f 2 F0 versus H1 : f 62 F0 ; ð4Þ
in which F0 ¼ ff0g � F, f0 2 ½0; 1� is a known value and F is the parametric space of f.

Typically, from Bayesian point-of-view, we elicit prior probabilities PðHiÞ for the hypotheses Hi,
i ¼ 0; 1, and accept H0 whenever its posterior probability, computed through Bayes’s theorem, is
larger than the posterior probability of H1. Moreover, assuming that PðH0Þ ¼ PðH1Þ, there is evidence
in favour of H0 if the Bayes factor (BF) is larger than one. For a detailed explanation of BF, see
Bernardo and Smith (1994), Migon and Gamerman (1999) and many others.

For the problem under consideration, assuming that the prior distribution for f is pðfÞ, the Bayes
factor for the hypothesis in (4) is given by:

BFðH0;H1Þ ¼
½q1ðf0Þ�

y1 ½q2ðf0Þ�
y2 ½q3ðf0Þ�

y3
Ð 1

0 pðfÞ dfÐ 1
0 ½q1ðfÞ�y1 ½q2ðfÞ�y2 ½q3ðfÞ�y3 pðfÞ df

: ð5Þ
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It is well known that, for testing precise hypothesis, BF can lead to Lindley’s paradox (Tsao, 2006).
FBST – briefly described in next section – was introduced in literature in order to avoid such a
problem.

2.3.1 Full Bayesian significance test (FBST) for f

FBST (Pereira and Stern 1999, 2001) does not introduce prior probabilities for the hypotheses Hi and
makes the test for precise hypotheses simple. To perform FBST, the only necessary information is the
posterior distribution for f. In this case, H0 is accepted if F0 is in a high posterior probability region
of F. FBST in its invariant formulation due to Madruag et al. (2003) is defined as follows.

Let pðf j yÞ be the posterior density of f. Denote by rðfÞ a reference density on F. Consider the
following highest relative surprise set (HRSS):

TðyÞ ¼ f 2 F :
pðf j yÞ

rðfÞ � sup
F0

pðf j yÞ
rðfÞ

� �( )
:

The evidence in favour of the null hypothesis is given by EV ðH0; yÞ ¼ 1� Pr ðf 2 TðyÞ j yÞ. The
null hypothesis H0 is accepted whenever EV ðH0; yÞ is large. Madruga et al. (2003) prove that the
evidence in favour of H0 is invariant with respect to proper reparametrizations. A discussion about the
“Bayesianity” of FBST can be found in Madruga et al. (2001).

For the fraction of non-disjunction in meiosis I, we will only consider the precise hypothesis in (4).
We assume that the reference density is the uniform distribution. Consequenly, the HRSS TðyÞ reduces
to ff 2 F : pðf j yÞ > pðf0 j yÞg.

2.4 Computational procedures

Since the posterior distribution can not be obtained analytically, we consider a Newton-Cotes type meth-
od, named Simpson rule (Migon and Gamerman, 1999), to approximate the integrals in Eq. (3) and (5).

For computing the evidence of the null hypothesis, we divide the interval ð0; 1Þ into a large number
k of subintervals, that is, we consider 0; 1

k

� �
, 1

k;
2
k

� �
, . . ., k�1

k ; 1
� 	

and evaluate the function

p̂pðf j yÞ ¼
½q1ðfÞ�y1 ½q2ðfÞ�y2 ½q3ðfÞ�y3 a2

q1ðfÞ þ
b2

q2ðfÞ þ
c
f

� �1=2

ÎIp
ð6Þ

at each endpoint of such intervals, in which ÎIp denotes the value provided by Simpson rule to the
integral in (3).

The evidence of the null hypothesis can be obtained by noticing that pðf0 j yÞ can be estimated by
(6) and, consequently, the evidence of H0 is approximated by:

EV ðH0; yÞ ¼ 1�
Pk�1

i¼1 1 p̂p i
k j yÞ � p̂pðf0 j y
� 	
 �

k
;

in which 1fAg denotes the indicator function of A. Posterior means and modes and BF are computed
in the regular way.

If we assume the uniform distribution to describe the prior uncertainty about f, we can obtain the
posterior information for f similarly.

3 Simulation Studies: Test and Estimates of f

In this section, we perform Monte Carlo studies in order to compare Bayes estimates of f and the
two Bayesian procedures for testing hypotheses about f described in Section 2. Following Loschi and
Franco (2006) we assume a microsatellite which presents six alleles with frequencies 0:12, 0:45, 0:09,

6 R. H. Loschi et al.: Testing and Estimating f
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0:31, 0:01 and 0:02. This choice is motivated by the real application presented in Section 4. We
consider two non-informative prior specifications to describe the uncertainty about f: Jeffreys’s and
uniform priors. For the problem considered here, Jeffreys’s prior is more informative and tends to put
most of its mass in small f values.

Following Loschi and Franco (2006), for the SIR procedure we generate an initial sample of f of
size T ¼ 100000 and consider a posterior sample of size S ¼ 5000. We assume two sample sizes:
n ¼ 10 and 100. Samples of size n ¼ 10 are included in the study to evaluate the efficiency of the
estimators and test procedures in rare trissomies. Severous values of f are considered.

3.1 A comparison of Bayes estimates

Tables 1 and 2 present some descriptive statistics for the posterior estimates of f assuming sampling
of sizes n ¼ 10 and n ¼ 100, respectively. We consider 500 replications from the multinomial distribu-
tion given in (1) with parameters f ¼ 0:01, 0:10, 0:5, 0:90 and 0:99.

From Table 1, in average, we notice that, for n ¼ 10, mode-Uniform always provides better esti-
mates than mode-Jeffreys and that mean-Jeffreys is better than mean-Uniform for values of f smaller
than 0:50. In general, the posterior modes are closer to the real f than the posterior means, except for
f ¼ 0:50 and if the uniform prior distribution is assumed. If the uniform distribution is assumed, it is
also noticeable that the posterior means and modes are higher than we obtain for Jeffreys’s prior. For
f ¼ 0:01 and f ¼ 0:10 we notice that, in general, the posterior means tend to overestimate the param-
eter and that the posterior modes tend to underestimate it. In these cases, it is noticeable that, at least,
75% of mode-Jeffreys and mode-Uniform are 0:0001 while, at least 75% of mean-Jeffreys (mean-Uni-
form) are higher than 0:1217 (0:2303). For such values of f we observe that the distributions of the
estimates present many atypical observations (box-plots not shown) which pull the means up. For

Biometrical Journal 49 (2007) 5 7
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Table 1 Descriptive Statistics for the posterior estimates of f, n ¼ 10.

Real f Estimator Mean St. Dev. Q1 Median Q3

0:01 mean-Jeffreys 0:1496 0:0527 0:1217 0:1409 0:1661
mean-Uniform 0:2654 0:0566 0:2303 0:2598 0:2961
mode-Jeffreys 0:0061 0:0361 0:0001 0:0001 0:0001
mode-Uniform 0:0101 0:0588 0:0001 0:0001 0:0001

0:10 mean-Jeffreys 0:2114 0:1244 0:1217 0:1661 0:2438
mean-Uniform 0:3155 0:1043 0:2303 0:2961 0:3882
mode-Jeffreys 0:0625 0:1313 0:0001 0:0001 0:0001
mode-Uniform 0:0942 0:1791 0:0001 0:0001 0:0001

0:50 mean-Jeffreys 0:4531 0:1899 0:3446 0:4854 0:5899
mean-Uniform 0:5130 0:1543 0:4065 0:5375 0:6217
mode-Jeffreys 0:4066 0:3333 0:1611 0:3330 0:6270
mode-Uniform 0:4737 0:3259 0:2769 0:4921 0:7518

0:90 mean-Jeffreys 0:6239 0:1723 0:5434 0:6502 0:7549
mean-Uniform 0:6561 0:1425 0:5788 0:6703 0:7644
mode-Jeffreys 0:7239 0:3275 0:5031 0:8649 1:0000
mode-Uniform 0:7603 0:2940 0:5694 0:8704 1:0000

0:99 mean-Jeffreys 0:6542 0:1595 0:5899 0:6894 0:7841
mean-Uniform 0:6816 0:1331 0:6217 0:7065 0:7916
mode-Jeffreys 0:7765 0:3032 0:6247 0:8834 1:0000
mode-Uniform 0:8084 0:2658 0:6816 0:8830 1:0000
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f ¼ 0:90 and f ¼ 0:99 we notice that the posterior means and modes tend to underestimate the
parameter. For f ¼ 0:90, for example, we observe that, at least, 50% of mean-Jeffreys (mode-Jeffreys)
are smaller than 0:6502 (0:8649) while for the mean-Uniform (mode-Uniform) the median is 0:6703
(0:8705).

We notice from Table 1 that, for f ¼ 0:01 and f ¼ 0:10 (f ¼ 0:90 and f ¼ 0:99), the distributions
of the estimates present many atypical values (box-plots not shown) pulling the means up (down). For
f ¼ 0:50 the posterior means are, in general, better. For example, in this case, we notice that 50% of
mean-Jeffreys are in the interval ð0:34455; 0:58994Þ while for mode-Jeffreys we observe that 50% of
the estimates are higher than 0:1611 and smaller than 0:627.

As expected, the estimates are considerably improved if we consider large sample size (see Table 2,
for n ¼ 100). Similar to what happened to n ¼ 10, in average, mode-Uniform tends to estimate the
parameter better, except for f ¼ 0:99. The distribution of the posterior estimates are more concen-
trated around their means and their means and medians are close to the real value of f. For all values
of f, mean-Jeffreys (mode-Jeffreys) and mean-Uniform (mode Uniform) have the same behavior, pre-
senting similar medians, means and standard deviations.

3.2 Comparing FBST and BF

In this section we compare BF and FBST for testing precise hypothesis about f, that is, we consider
F0 ¼ ff0g.

Since we are performing a Monte Carlo study, to fairly compare the test procedures, we take into
consideration the following aspects about hypotheses tests. Hypotheses tests are partitions from both
the parametric space, which is defined by the problem, and the sample space, which is defined by the
statistician. Consequently, the statistician should look for the best partition for the sample space. By
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Table 2 Descriptive Statistics for the posterior estimates of f, n ¼ 100.

Real f Estimator Mean St. Dev. Q1 Median Q3

0:01 mean-Jeffreys 0:0263 0:0214 0:0136 0:0147 0:0469
mean-Uniform 0:0457 0:0198 0:0334 0:0358 0:0616
mode-Jeffreys 0:0067 0:0133 0:0001 0:0001 0:0161
mode-Uniform 0:0114 0:0202 0:0001 0:0001 0:0318

0:10 mean-Jeffreys 0:1182 0:0598 0:0798 0:1140 0:1608
mean-Uniform 0:1337 0:0585 0:0943 0:1282 0:1756
mode-Jeffreys 0:0871 0:0599 0:0494 0:0841 0:1295
mode-Uniform 0:1025 0:0605 0:0649 0:0993 0:1454

0:50 mean-Jeffreys 0:5117 0:1119 0:4388 0:5120 0:5874
mean-Uniform 0:5197 0:1096 0:4492 0:5202 0:5935
mode-Jeffreys 0:4954 0:1182 0:4167 0:4976 0:5746
mode-Uniform 0:5041 0:1158 0:4275 0:5052 0:5813

0:90 mean-Jeffreys 0:8398 0:0728 0:8015 0:8510 0:8941
mean-Uniform 0:8410 0:0714 0:8034 0:8518 0:8944
mode-Jeffreys 0:8880 0:1043 0:8182 0:8992 1:0000
mode-Uniform 0:8885 0:1025 0:8197 0:8988 0:9992

0:99 mean-Jeffreys 0:8806 0:0562 0:8532 0:8948 0:9230
mean-Uniform 0:8812 0:0553 0:8539 0:8949 0:9230
mode-Jeffreys 0:9445 0:0790 0:8993 0:9934 1:0000
mode-Uniform 0:9444 0:0781 0:8989 0:9902 1:0000
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best partition it is meant the partition which minimizes the expected error that can be produced by our
decision. DeGroot (1989) suggests using a partition which minimizes linear combinations of type I (a)
and type II (b) errors. In order to eliminate further considerations, in this paper we look for partitions
which minimize aþ b. The spaces associated to the statistics BF ðH0;H1Þ and EV ðH0; yÞ are parti-
tioned as ½0; kÞ [ ðk;1Þ and ½0; k*Þ [ ðk*; 1�, respectively. The null hypothesis is rejected if the statis-
tic is less than the cut point – say, k for the BF and k* for the evidence. The best procedure is the
one for which aþ b evaluated in the best partition is the minimum.

We consider 100 replications from the multinomial distribution given in (1) with parameters
f ¼ f0, 0:1, 0:2, . . ., 0:9 and assume f0 ¼ 0:01, 0:10, 0:25, 0:50, 0:75, 0:90, 0:99. We also consider
the cut points k* ¼ 0:1, 0:2, . . ., 0:9 and k ¼ 0:45, 0:90, . . ., 3:60, 4:05.

For each partition and both test procedures, we calculate a and b as follows. The type I error a for
the FBST is the proportion of samples for which we observe EV ðH0; yÞ < k* whenever f ¼ f0. Simi-
larly, we obtain a for the Bayes factor. The type II error can be obtained using some results from
probability calculus. The type II error b for the FBST is obtained, firstly, evaluating the proportion of
samples satisfying EV ðH0; yÞ � k*, for every f 6¼ f0 and then taking the weighted average of these
proportions using the prior density of f to define the weights entering this averages. For the Bayes
factor, assuming that PðH0Þ ¼ p, p 2 ð0; 1Þ, the type II error is given by:

b ¼ 1
1� p

ðf0

0
PðBF ðH0;H1Þ � k j fÞ pðfÞ dfþ

ð1

f0

PðBF ðH0;H1Þ � k j fÞ pðfÞ df

( )
:

In the simulation study, we consider a discretization of the parametric space and also assume that the
probability 1� p is uniformly distributed among all f 6¼ f0 – as usually done in Bayes Factor ap-
proach for testing. Consequently, in order to obtain a convex linear combination of the probabilities
PðBF ðH0;H1Þ � k j fÞ, we approximate b by:

b ¼ 1
l

P
f 6¼f0

PðBF ðH0;H1Þ � k j fÞ ;

where l is the number of points considered in the discretization of ð0; 1Þ space.
Figures 2 and 3 show the average for the posterior evidences of H0 and Bayes factors for uniform

(solid line) and Jeffreys’s (dashed line) priors for samples of size n ¼ 10 and n ¼ 100, respectively.
The cut points for both test procedures are also plotted considering dotted lines for the uniform prior
and dotdashed lines for Jeffreys’s prior. The results are shown for f0 ¼ 0:01, 0:50 and 0:99 only.

From Figure 2 we notice that, in average, FBST is less influenced by the prior specifications than
Bayes factor, for both sample sizes. It is noticeable that the mean evidences for both prior specifica-
tions are close. As expected, for samples of size n ¼ 100 (see Figure 3), in general, the evidence in
favour (whenever f ¼ f0) or against (whenever f 6¼ f0) H0, giving by FBST as well as BF, tends to
be stronger than it was observed for n ¼ 10.

Particularly, for samples of size n ¼ 10, in average, we notice that FBST and BF lead to the same
decision for f0 ¼ 0:99 and both prior specifications rejecting the null hypothesis for f equal to 0:1,
0:2, 0:3 and 0:4. For f0 ¼ 0:01, we observe that FBST and BF lead to different decisions for some
values of f and also that the same test procedure can yield different result if different priors are
assumed. Notice, for instance, that if we consider the uniform distribution, FBST leads to the rejection
of H0 for f ¼ 0:5, . . . , 0:9 while BF leads to the rejection of H0 for f ¼ 0:7, 0:8, 0:9. In this case,
we can also observe that, for Jeffreys’s prior, FBST (BF) leads to the rejection of the null hypothesis
if f ¼ 0:7, 0:8, 0:9 (f ¼ 0:6, 0:7, 0:8, 0:9). Moreover, for f0 ¼ 0:50, we observe that H0 is always
accepted if we consider Jeffreys’s prior and FBST or if we elicit the uniform prior and consider de BF
to make decisions about H0.

Comparing the two test procedures, from Figure 2 we notice that, in average, FBST (BF) is slightly
better for f ¼ 0:01; 0:50 and if the uniform (Jeffreys’s) prior is assumed. In general, both test proce-
dures tend to accept the null hypothesis for real values of f close to f0.
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Figure 2 Mean evidence and Mean Bayes factor for uniform (solid line) and Jeffreys’s (dashed line)
priors, n ¼ 10, cut point-uniform (dotted line) and cut point-Jeffreys’s (dotdashed line).
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Figure 3 Mean evidence and Mean Bayes factor for uniform (solid line) and Jeffreys’s (dashed line)
priors, n ¼ 100, cut point-uniform (dotted line) and cut point-Jeffreys’s (dotdashed line).
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Figure 3 shows the results for samples of size n ¼ 100. In average, FBST leads to the same conclu-
sion for both prior specifications and for all values of f0 considered in the analysis. Although the
mean BF is quite different for Jeffreys’s and uniform priors – what is not observed by the FBST –
the results obtained using such priors are basically the same being different only for f0 ¼ 0:50. In this
case, we notice that BF leads to the rejection of H0 if the uniform prior is assumed, for f ¼ 0:7 only.
That is, FBST and BF lead to similar conclusions about H0 for f0 ¼ 0:01 and 0:99 as well as for
f0 ¼ 0:50 whenever the uniform prior is assumed as prior specification.

Tables 3 and 4 provide the best partition and type I and type II errors associated to BF and FBST
for samples of size n ¼ 10 and 100, respectively. Type I and type II errors are obtained through
simulation.

For samples of size n ¼ 10, we notice from Table 3 that FBST, in general, has upper performance
for both prior specifications (except for f0 ¼ 0:01 and considering Jeffreys’s prior and for f0 ¼ 0:25
assuming the uniform prior). We notice that FBST and BF provide equal values for aþ b if
f0 ¼ 0:01; 0:99 for the uniform prior. Table 4 shows that, for n ¼ 100, in general, FBST has upper
performance for both prior specifications and for f0 ¼ 0:50; 0:75; 0:90 and 0:99 (except for f0 ¼ 0:75,
if the uniform prior is under consideration). BF presents better results for small values of f0 and for
both priors (except for f0 ¼ 0:10 if we assume the Jeffreys’s prior). In short, we can say that, for
small sample sizes, FBST is, in general, better and for large sample sizes, FBST has upper perfor-
mance for large values of f0.

4 Case Study: The Down Syndrome Data

In order to illustrate the methodology presented in previous sections we analyze the data set reported
in Franco et al. (2003) which consists of a random sample of blood from 34 Brazilian individuals with
trisomy of chromosome 21. The trisomy of chromosome 21 produces the Down syndrome and, in
humans, is the most common cause of mental retardation of genetic origin. For this data set, the
observed numbers of patients with one, two and three peaks are 6, 22 and 6, respectively. The hypoth-
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Table 3 Best partition and errors for FBST and BF, n ¼ 10.

Evidence Bayes Factor

f0 Prior Distribution a b aþ b k� a b aþ b k

0.01 Uniform 0.050 0.291 0.341 0.30 0.050 0.291 0.341 0.45
Jeffreys 0.030 0.358 0.388 0.20 0.050 0.291 0.341 0.45

0.10 Uniform 0.210 0.315 0.525 0.50 0.150 0.379 0.529 0.90
Jeffreys 0.090 0.305 0.395 0.60 0.150 0.379 0.529 0.90

0.25 Uniform 0.300 0.408 0.708 0.70 0.320 0.387 0.707 1.35
Jeffreys 0.200 0.483 0.683 0.70 0.190 0.622 0.812 0.90

0.50 Uniform 0.400 0.374 0.774 0.60 0.220 0.593 0.813 0.90
Jeffreys 0.360 0.378 0.738 0.50 0.210 0.558 0.768 1.35

0.75 Uniform 0.280 0.411 0.691 0.60 0.360 0.337 0.697 1.35
Jeffreys 0.340 0.298 0.638 0.70 0.300 0.389 0.689 1.80

0.90 Uniform 0.180 0.319 0.499 0.50 0.120 0.426 0.546 0.90
Jeffreys 0.180 0.264 0.444 0.40 0.180 0.319 0.499 1.35

0.99 Uniform 0.150 0.358 0.508 0.30 0.150 0.358 0.508 0.90
Jeffreys 0.150 0.298 0.448 0.30 0.170 0.352 0.522 1.35
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esis of Hardy–Weinberg equilibrium is verified for the Brazilian population and six alleles are found
with frequencies 0:12, 0:45, 0:09, 0:31, 0:01 and 0:02.

The maximum likelihood estimates for f and its asymptotic variance obtained by Franco et al.
(2003) are 0:6552 and 0:0481, respectively.

Table 5 shows the results obtained by considering Jeffreys’s and uniform prior distributions and the
procedures presented in previous sections.

It is noticeable from Table 5 that the posterior estimates using Jeffreys’s and uniform priors are
similar and that, for each prior distribution, mode and mean provide very close estimates. We also
perceived that, if the uniform distribution is assumed to describe the initial uncertainty on f, the
posterior mean and mode are close to the maximum likelihood estimate obtained by Franco et al.
(2003). It is noticeable from Figure 4 that both posterior distributions put substantial mass around
0:65, they are asymmetric distributions and have unique modes. (See Loschi and Franco (2006) for the
analysis using some informative prior distributions).

Bootstrap confidence interval was considered by Barros and Franco (2002) for testing if the fraction
f of non-disjunction in Meiosis I for patients with Down syndrome in the Brazilian population is
0:68. Such procedure leads to accept the null hypothesis. We test the same hypotheses (say,
H0 : f ¼ 0:68 versus Ha : f 6¼ 0:68) using the Bayesian procedures for testing hypotheses introduced
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Table 4 Best partition and errors for FBST and BF, n ¼ 100.

Evidence Bayes Factor

f0 Prior Distribution a b aþ b k� a b aþ b k

0.01 Uniform 0.010 0.033 0.043 0.80 0.020 0.021 0.041 4.05
Jeffreys 0.020 0.036 0.056 0.90 0.020 0.021 0.041 2.25

0.10 Uniform 0.020 0.114 0.134 0.70 0.010 0.116 0.126 0.90
Jeffreys 0.010 0.149 0.159 0.70 0.090 0.121 0.211 0.90

0.25 Uniform 0.080 0.372 0.452 0.70 0.070 0.347 0.417 0.90
Jeffreys 0.250 0.289 0.539 0.80 0.180 0.409 0.439 0.45

0.50 Uniform 0.200 0.286 0.486 0.70 0.200 0.290 0.490 1.35
Jeffreys 0.220 0.252 0.472 0.70 0.190 0.299 0.489 1.80

0.75 Uniform 0.100 0.387 0.487 0.70 0.130 0.341 0.471 1.35
Jeffreys 0.100 0.308 0.408 0.70 0.140 0.319 0.459 2.25

0.90 Uniform 0.030 0.213 0.243 0.60 0.080 0.165 0.328 1.35
Jeffreys 0.030 0.165 0.195 0.60 0.030 0.159 0.239 2.25

0.99 Uniform 0.040 0.203 0.243 0.60 0.040 0.204 0.244 1.35
Jeffreys 0.040 0.159 0.199 0.60 0.040 0.207 0.247 1.35

Table 5 Posterior estimates for f, Brazilian Down syn-
drome patients.

Prior Distributions Posterior Summaries

Mean Variance Mode

Jeffreys’s 0:6417 0:0322 0:6374
Uniform 0:6549 0:0305 0:6552
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in previous sections. We notice from Table 6 that the evidence of the null hypothesis as well as Bayes
factor are quite similar for both prior specifications. They assume very high values which means that
both test procedures lead to accept that f is 0:68 for the Brazilian population. Notice that these
results are in agreement with Barros and Franco (2002) conclusions.

5 Conclusions

In this paper we considered Jeffreys’s approach to obtain a non-informative prior (Jeffreys’s prior) for
the fraction f of non disjunction in meiosis I in the absence of parental information. We proved that
such distribution is proper. Posterior estimates of f obtained using Jeffreys’s and uniform priors were
compared through a Monte Carlo study. Two Bayesian procedures for testing hypotheses about f were
introduced: full Bayesian significance test (FBST) and Bayes factor (BF). From the Bayesian point of
view, BF is by far the most used procedure for testing hypothesis. However, it can lead to Lindley’s
paradox. FBST was introduced in literature as an alternative procedure for testing hypotheses and aims
at avoiding such a problem. For this reason, a Monte Carlo study was performed in order to compare
the efficiency of BF and FBST for testing precise hypothesis about f. We also analyzed 34 Brazilian
patients with trisomy in the chromosome 21 using uniform and Jeffreys’s priors.
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Table 6 Bayes factor and evidence of null Hy-
pothesis, Brazilian Down syndrome patients.

Prior specifications Evidence Bayes factor

Jeffreys’s 0:9158 2:997
Uniform 0:9506 2:0290

Figure 4 Posterior Distributions of f for uniform (solid
line) and Jeffreys’s (dashed line) priors, Brazilian Down
syndrome patients.
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We noticed that the posterior estimates are similar if we consider as prior specifications both, uni-
form and Jeffreys’s priors. Posterior modes, in general, provide better estimates for f and these esti-
mates are even better if the uniform distribution is assumed to describe the uncertainty about f. As
expected, the posterior results are improved if we consider large sample size. Comparing FBST and
BF for testing precise hypothesis about f we notice that FBST is, in general, better for both prior
specifications and both sample sizes. BF shows to be slightly better only for large sample sizes and
small values of f0.

For the Brazilian patients with Down syndrome, we noticed that the estimates for f, the evidence
of the null hypotesis and Bayes factor are quite similar for both prior specifications. It was observed
that the posterior mean and mode are close to the maximum likelihood estimate obtained by Franco
et al. (2003), if the uniform distribution is assumed. We also observed that FBST and BF lead to
accept that fraction of non-disjunction in meiosis I is f ¼ 0:68 for the Brazilian population which is
in agreement with Barros and Franco (2002) statements.
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