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ABSTRACT

Context. Charting the extent and amount of dark matter (DM) in the Universe is highly appealing but is equally hard since it is only
through the interpretation of its effect that we can track the DM distribution. Given the implementational problems, it is non-trivial
to quantify the effects of DM on the motion of individual test particles in an elliptical galaxy, with the aim of identifying its total
gravitational (i.e. luminous+dark) mass distribution; expectedly, this has caused controversy.
Aims. Leaving such technical details aside, in this article we report on the dangerof the very notion that test particle velocities can
reliably imply total mass distribution in galaxies.
Methods. We expose the fallibility of this mass determination route, by undertaking a Bayesian analysis of the observed line-of-sight
velocities of individual test particles belonging two distinct types: planetarynebulae (PNe) and globular clusters (GCs) that span the
outskirts of the galaxy NGC 3379.
Results. The PNe and GC data are shown to be drawn from independent phase space distributions and total mass density distributions
that are derived from implementations of the two kinematic data sets are found to be significantly different, leading to significant
(at 1-σ level) differences in the resulting enclosed mass profiles. The assumption of isotropy in phase space is tested with a robust
Bayesian test of hypothesis; the GC velocities are found to be much more supportive of the assumption of isotropy than are the PNe
data. We find that this recovered difference in the state of isotropy between the phase space distributions that thedata are drawn from,
cannot be used to reconcile the differences in the recovered mass density distributions.
Conclusions. The recovered dichotomy is indicative of the risk involved in the interpretation of mass distribution obtained from tracer
kinematics, as the galactic mass distribution.
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1. Introduction

NGC 3379, or M 105, seems to have initiated its journey within
the observational domain, in neglect - though Pierre Mechain is
credited with its discovery in 1781, it did not initially make it to
Messier’s catalogue. Amends were made later in 1947, when it
was among four new objects that were “added to the accepted
list of Messier’s catalogue as nos. 104, 105, 106 and 107” (from
Helen Sawyer, 1947). In spite of this early inattention, NGC
3379 has recently been in vogue. Romanowsky et. al (2003)
had advanced the idea that this system is one of the five “naked
galaxies”, the mass distributions of which were tracked with the
Planetary Nebula Spectrograph (PNS). Such claims were con-
tested by Dekel et. al (2005), though Douglas et. al (2007) de-
fend the earlier result of Romanowsky et. al (2003) by analysing
the kinematic data of 214 planetary nebulae (PNe) in NGC 3379.

Dekel et. al (2005) advance the possibility that NGC 3379
might in actuality be a triaxial system and that it is this intrinsic
asphericity that causes the measured line-of-sight projected ve-
locity dispersion (σp) to appear less than what it is, for certain in-
clinations. However, Douglas et. al (2007) argue that such age-
ometric reasoning, though possible, is unlikely to be a plausible
explanation for the other three naked galaxies that were reported
by Romanowsky et. al (2003). Additionally, the suggestion that
it is the idiosyncracy of this system that the detected PNe data
might be tracing a sample of younger stars, rather than the stel-
lar population as a whole, was judged implausible by Douglas
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et. al (2007) based on the rarity of such an occurrence within
a single system, with the sole identification of the presenceof
multiple PN populations in NGC 4697 (Sambhus, Gerhard &
Méndez 2006; Sambhus et al. 2005).

However, the most pressing concern of Dekel et. al (2005)
is the possibility that radial anisotropy might be introduced as
a result of a merger; Douglas et. al (2007) disagree that this
could explain the identification of the low dark matter content
in NGC 3379, given that the existence of anisotropy was in-
cluded in the data-fitting process employed in Romanowsky et.
al (2003). They stress that the anisotropy profile recoveredfrom
the PNS data and that obtained from the simulations presented
in Dekel et. al (2005), are similar in nature.

Similar concerns about the mass-anisotropy degeneracy have
repeatedly been voiced by various workers in the field of mass
estimation from tracer kinematics (Łokas & Mamon 2003;
Koopmans 2006; Ĉoté et al. 2001, 2003). The relevant question
to ask would be: is the uncertainty in mass estimates, implied
by our lack of information about the prevalence of anisotropy,
so large that we cannot conclude anything significant about the
mass distribution in the system? If the response is in the af-
firmative, then of course it is futile to seek a solution for the
mass density from tracer kinematics. Recovering the host galaxy
mass distribution, while incorporating full-fledged anisotropy,
requires the tracer kinematic sample size to exceed typicalnum-
bers - in fact, the sample of 214 planetary velocities that isavail-
able for NGC 3379, represents one of the relatively larger sam-
ples available. If on the other hand, our analysis can - basedupon
the limited measurements and the assumptions invoked to tackle
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the lack of anisotropy estimates - allow us to infer usable in-
formation about the mass distribution of the system, then itstill
makes sense to undertake such analysis. Of course, such inferred
mass distributions will have to be qualified adequately, in light
of the relevant assumptions.

In this contribution, we report on an investigation of the va-
lidity of the usage of tracer kinematics in the determination of
the mass of the host galaxy. This is done in reference to the el-
liptical galaxy NGC 3379, which is the only elliptical galaxy yet,
for which kinematic information is available for individual mem-
bers of two tracer samples that pertain to two separate classes
(PNe and GCs), over an extensive radial range spanning the outer
parts of the galaxy (radius&5RE). The analysis is performed
with the Bayesian algorithm CHASSIS under the assumptions
of spherical geometry and the necessary assumption of phase
space isotropy (given the small GC data sample); relaxationof
the latter assumption is being explored currently (Chakrabarty
& Saha, in preparation). CHASSIS has been calibrated against
N-body descriptions of star clusters (Chakrabarty & Portegies
Zwart 2005) and has been applied to gauge the total mass den-
sity distributions in various systems (Chakrabarty & Saha 2001;
Chakrabarty 2006; Chakrabarty & Raychowdhury 2008).

The basic motivation behind our work is to check the effect
of distinct tracer kinematic data in determining the mass distri-
bution of a given galactic system. If the data sets imply different
σp profiles, we can infer that the data are drawn from distinct
phase space distributions. However, we expect that a uniquepo-
tential of the galaxy must be arrived at, irrespective of thekine-
matic data that is input into the used mass determination scheme.
Consequently, if we obtain different mass profiles with two dif-
ferent data sets, we would feel alarmed and question the com-
patibility of each data set with the assumptions inherent tothe
used scheme. The aim for such an exercise is to ascertain if the
differences between the derived mass profiles can be reconciled
by invoking the discord between the assumptions and the data.
In case such reconciliation is not possible, we will use the results
to argue for caution against galactic mass distributions obtained
from tracer kinematics.

On the other hand, the structure of the conventionally used
Jeans Equation formalism does not suggest any a-priori reasons
for anticipating the recovery of a unique enclosed mass distribu-
tion from the implementation of distinctσp and number density
(ν) distributions unless a conspiracy exists between the gradi-
ents of theσp andν, to always yield the same mass distribution.
Similarly, if any operational mass determination scheme implies
different mass distributions with distinct kinematic data, it is not
altogether surprising.

The input data used in the work include LOS velocities of
164 planetaries (PNe) from the PNS survey (Douglas et. al 2007)
and of 29 globular clusters (GC) that were reported by (Bergond
et. al 2006). Given that an assumption of isotropy is question-
able, Bayesian significance testing of the goodness of this as-
sumption will be undertaken for each data input.

2. CHASSIS

CHASSIS is a Bayesian non-parametric algorithm that uses
MCMC optimisation to recover the total gravitational potential
Φ and the phase space distribution functionf of a host system,
by analysing a sample of one or more components of the ve-
locity vector of tracers that reside in this host. Actually,Φ is
calculated at each iterative step from the total mass density ρ
using Poisson equation. We assume aspherical geometryand
isotropy in velocity space: ρ = ρ(r) and f = f (E) wherer is the

spherical radius andE the energy. We are basically looking for
Pr(f (E), ρ(r)|data) and estimate this using Bayes theorem - the
{ f , ρ} pair that gives the highest posterior probability is sought.
However, in this search for the most likely configuration, wedo
not have any prior notions aboutf (E) or ρ(r), except that we
require:

f (E) ≥ 0, and ρ(r) ≥ 0,
d f(E)

dE
< 0 and

dρ
dr
< 0. (1)

Other than such monotonicity & positivity conditions, the sought
functions are retained as completely free-form. In fact,ρ(r) and
f (E) are represented by constructions that are each akin to one
dimensional bar-graphs or theρ−histogramand f −histogram;
the radial range is binned and density is held a constant in each
radial bin, during any step. Similarlyf is a constant over any
energy bin.

The algorithm starts with seeds for thef andρ and at the be-
ginning of each step, thef andρ histograms are tweaked slightly
over their past form, in scale and shape. This process repeats it-
self till the likelihood of the data having been drawn from the
current f , at the current potential, is detected to be the maxi-
mum, by the optimiser which is the Metropolis-Hastings algo-
rithm (Hastings 1970). The recoveredf (E) andρ(r) are ascribed
±1-σ error bars that describe the±1-σ extent of the wandering
within the neighbourhood of the global maxima in the likelihood
function. The observed error bars in velocity are convolvedin,
assuming a Gaussian error distribution for the observed errors.

The quantities that are directly recovered from the algorithm
are used to generate other physically interesting distributions,
such as the enclosed mass and velocity dispersion profiles.

Now, as was discussed in Chakrabarty & Portegies Zwart
(2005), CHASSIS bears the peculiarity that an erroneous as-
sumption of velocity isotropy, over a radial range where
anisotropy actually prevails, results in the over-estimation of
mass. This can be qualitatively understood as the following.
When sphericity is mistakenly assumed in a 3-D spatial volume
in a massive system that is actually eccentric, then at any ra-
dius r, the enclosed mass is over-estimated, i.e. the local value
of the integral of the space density over all volume is over-
estimated. Similarly, when isotropy is mistakenly assumedin
velocity space where anisotropy reigns, the integral of theveloc-
ity space density, over all velocities, is over-estimated.But the
latter is the integral that is proportional to the number density.
Hence, CHASSIS over-estimates the number density at those
radii where anisotropy prevails. It is expected that mass density
does not decrease with number densityν; so our misrepresenting
anisotropy, in general, implies over-estimation of the mass den-
sity (empirically verified in Chakrabarty et. al 2009, in prepara-
tion).

2.1. Justifying Choice of Assumption of Isotropy

Here we discuss the motivation behind choosing to work with
the assumption of phase space isotropy, i.e. assumef = f (E)
rather than have a simple anisotropic representation such as a
2-integral f . From experiments with a 2-integralf that are cur-
rently underway, (Chakrabarty & Saha, 2009), it appears that for
sample sizes.200, the recoveredρ is marked by very large er-
ror bars, by which is implied uncertainties high enough to render
the recoveredρ(r) meaningless. Given that the aim of the current
work is to compare the effects of the PNe and GC data - where
the GC sample has only 30 data points in it - the choice of an
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anisotropic f is therefore pointless. Rather,we find it useful to
work with the isotropy-assuming CHASSIS and then undertake
a robust statistical test of hypothesis to check if our recovered
ρ(r) is biased in the available data.

3. Results

Runs were conducted with different initial seeds for the density
and thef , to check for robustness of the answers to seed selec-
tion.

3.1. Seeds

In order to establish the independence of the recovered results
from the initial choice of the seedρ and f , we have performed
multiple runs beginning with distinct seed characteristics. The
general form of the seed densityρseed(r) has been chosen to be:

ρseed(r) =
ρ0

(

r
rc

)α1
(

1+
r
rc

)α2
, (2)

whereρ0 is the amplitude determining parameter andα1, α2 and
rc affect the shape of the seed density profile. Of these, we find
CHASSIS totally unaffected by the choice ofρ0; convergence is
achieved with the other parameters lying in moderately extensive
ranges. Such ranges are reflected in the different seeds that we
work with (see below).

The seedfseed(E) (whereE is energy, with−1 ≤ E ≤ 0),
is chosen to be either power-law in form (with the powerβ) or
exponential:

fseed(E) = exp−E or

= (−E)β (3)

Three different runs performed with the PNe are charac-
terised by seeds that are described as follows.

– PNe-RUN I:rc=30kpc,α1=2.8,α2=1, fseed= exp−E.
– PNe-RUN II:rc=20kpc,α1=3.8,α2=2, fseed= (−E)3.
– PNe-RUN III: rc=10kpc,α1=1.8,α2=3, fseed= (−E)5.

Three different runs performed with the GCs are characterised
by the following seeds.

– GC-RUN I: rc=30kpc,α1=2.8,α2=1, fseed= exp−E.
– GC-RUN II: rc=5kpc,α1=3.6,α2=2, fseed= (−E)5.
– GC-RUN III: rc=10kpc,α1=3.2,α2=3, fseed= (−E)2.

The 3D mass density profiles that are recovered from the
three PNe and GC runs are shown in the panels of Figure 1. The
overlapping of the density distributions recovered from these as-
sorted runs implies that the obtained results are independent of
the initial guess for the density andf . The recovered density pro-
files bear different degrees of uncertainty depending on the data
sizes implemented in the particular run and to a smaller extent,
on values to which the different knobs inside our MCMC opti-
miser are set (for example, the details of the jump probability
distribution and the acceptance probability threshold or temper-
ature).

Figure 1 also presents the phase space distribution functions,
approximated as isotropic, as recovered from two different runs
of CHASSIS, each performed with the kinematic data of a dis-
tinct type of mass tracer.

3.2. Recovered ρ and f ; derived distributions

Given the similarity of the recovered density distributionfrom
different runs performed with a given tracer data, results from
a sample PNe run (PNe-RUN I) are compared to those from
GC-RUN I. This is shown in Figure 2; it includes comparison
between the recovered total mass densityρ(r), enclosed mass
M(r), total cumulative mass to light ratio in theB-bandΥB(< r)
and the circular velocity defined byvc =

√
GM(r)/r.

From the recoveredρ(r), M(r) is estimated.ρ(r) recovered
from PNe-RUN I drops much quicker than that from GC-RUN I.
This is further reflected in the enclosed mass profileM(r), which
flattens out in the result from PNe-RUN I by about 7 kpc, while
continuing to rise even at 25 kpc, in GC-RUN I.

Now, a flat or constant enclosed mass profile would im-
ply that the quantity defined as akin to the circular velocity
(vc =

√
GM(r)/r), would be falling simply asr−1/2, i.e. as in a

Keplerian potential. HereG is Newton’s Universal Gravitational
constant. This quantity is shown in the lower right panel of
Figure 2, on which is over-plotted the true Keplerianr−1/2

function, normalised byG times the mass that is recovered at
r=3RE, from PNe-RUN I. As is evident from the figure, the true
Keplerian fall-off and thevc estimated from PNe-RUN I overlap
very well, thoughvc(r) recovered from GC-RUN I is much flat-
ter than ther−1/2 fall-off. This is only another way of expressing
the fact thatM(r) flattens out to a constant mass for PNe-RUN I
while it continually rises for GC-RUN I.

3.3. Recovered LOS velocity dispersion

Figure 3 represents the LOS velocity dispersion distributions
σp(r) that are recovered from PNe-RUN I and GC-RUN I. The
recoveredf is used, in conjunction with the derivedρ, to calcu-
lateσp(r). Again, we notice the significantly flatter shape of the
σp(r) distribution that is obtained from GC-RUN I, as distinct
from the steeply falling trend in the distribution estimated from
the PNe-RUN I.

It is not surprising that CHASSIS identifies distinctσp(r)
profiles from the implementation of the 2 different kinematic
samples. After all, such distinct kinematic data sets wouldre-
sult in the construction of the distinctσp(r) profiles (which in
turn imply distinct phase space density distributions).

3.4. Photometry used for ΥB estimation

The cumulativeΥ profile, in theB-band is shown in Figure 2.
The calculation ofΥ(< r) of the galaxy requires knowledge
of photometry. The surface brightness distribution is the same
as used in Douglas et. al (2007) and has been kindly provided
by Aaron Romanowsky. It is deprojected in the spherical ge-
ometry, using the non-parametric deprojection code DOPING
(Chakrabarty & Ferraese 2008), to give us the luminosity den-
sity distribution j(r) (see Figure 4). Though DOPING can per-
form deprojection in general triaxial geometries, here we limit
ourselves to deprojection under sphericity, since CHASSISas-
sumes sphericity (and velocity isotropy). In fact, the photomet-
ric data used to calculatej(r) in Douglas et. al (2007) were anal-
ysed under sphericity too; the deprojection there was performed
by fitting analytical distributions to the data. Figure 4 shows the
analytical 3-D luminosity density distribution obtained by the
fitting method of Douglas et. al (2007), as compared to thej(r)
we recover with DOPING. The luminosity density distributions
compare well with each other, though, as expected, thej(r) ob-
tained by Douglas et. al (2007) from fitting is smoother - the un-
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Fig. 1. Right panel: density profiles recovered from the 3 PNe runs and the 3 GCruns. The results of the PNe runs are shown in red, yellow
and blue while the density distributions obtained by using the GC kinematics are inblack, magenta and cyan. As is apparent from the figure,
starting with different seeds results in density profiles that are consistent with each other, as long as the same kinematic tracer sample is used in the
analysis. Left panel: isotropic (normalised) phase space distribution functions recovered from PNe-RUN I (in red) and from GC-RUN I (in black).
The distribution function is plotted as function of energy.

Fig. 3. The LOS velocity dispersion profiles recovered from PNe-
RUN I (in red) and from GC-RUN I (in black).

dulations in the observed surface brightness is better represented
by our recoveredj(r).

Our deprojectedj(r) is used to calculate the cumulative light
distribution, which when compared toM(r), gives us the cumu-
lative mass-to-light ratioΥ(< r). Our results indicate that the
mass to light ratios of the outer parts of NGC 3379, as trackedby
the PNe velocities is significantly depressed in amplitude com-
pared to that implied by the GC kinematics! Individual consid-
eration of the PNe analysis leads to a “naked” interpretation for

NGC 3379, in line with what was suggested by Douglas et. al
(2007) and Romanowsky et. al (2003). The GCs on the other
hand, paint a diametrically opposite picture of the galaxy in
terms of DM content - in fact, we find the mass-to-light ratios
in B to be high enough to suggest that the galaxy is rich in DM,
in line with Bergond et. al (2006).

TheΥ(< r) recovered from the PNe-RUN, at 5RE lies be-
tween 10 and 20. This is slightly higher than what Douglas et.
al (2007) advance for NGC 3379, in spite of both mass-to-light
calculations having used concurrent luminosity density distribu-
tions (see Figure 4). This slight discrepancy is attributedto the
assumption of isotropy in our work which artifically augments
mass density values wherever anisotropy exists.

Of course, this apparently dichotomous view of the potential
of a given galaxy is not acceptable; this triggers careful exami-
nation of the assumptions involved, the principle among which
is that of isotropy.

4. Testing for isotropy

The test for the validity of the assumption of isotropy, given
the observed data, is an exercise in statistical hypothesistesting.
Such test of significance will notproveor disprovethe isotropic
nature of phase space of NGC 3379 but will provide a proba-
bilistic estimate of the goodness of the assumption of isotropy
in the data. Aproo f of f = f (E) is only possible if CHASSIS
incorporates the full anisotropy - a simple way to do so is to
consider a 2-integralf , such asf = f (E, L) whereL is the angu-
lar momentum. Such a scheme will however yield density pro-
files marked by unacceptably large uncertainties unless theinput
kinematic sample is sufficiently high (see Section 2.1). Given
this operational difficulty, we settle for isotropy and test for the
compatibility of our assumption of isotropy with the measured
data, using a robust statistical test.
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Fig. 2. Top left panel shows the total mass density recovered from PNe-RUN I(in red) and GC-RUN I (in black). The enclosed mass profiles
M(r), as extracted from these runs, are represented in the corresponding colours in the top right panel. The lower left panel represents theB-band
cumulative mass-to-light profilesΥB(< r), estimated from theM(r) recovered from the corresponding run, and the luminosity density shown in
Figure 4. The lower right panel shows the radial distribution of the quantityakin to the circular velocityvc, as obtained from the two runs performed
with the two sets of tracers. The points in cyan correspond to the functionr−1/2, normalised byGM0, whereM0 is the mass (with errors) found to
be enclosed within 3RE, from PNe-RUN I.

While traditionally this is typically done by undertaking
a calculation ofp-values (Kempthorne & Folks 1971), better,
more sophisticated techniques also exist, such as the Bayesian
evidence measures, a robust example of which is the Fully
Bayesian Significance Test or FBST (Pereira & Stern 1999;
Pereira, Stern & Wechsler 2008). A highly satisfying aspect
of the Bayesian evidence value is that it obeys the Likelihood
Principle (Basu 1975; Birnbaum 1962).

p-values provide the probability that the value of the sought
measure, given randomly generated data, is at least as incon-
sistent with the null hypothesis as that corresponding to the ob-
served data is. “Small”p-values imply that the null is unlikely to
be true; the definition of “small”ness is traditionally heldas 5%
significance. Also, the estimation ofp-values is an exploration
in sample space, while we would prefer to work in parameter
space. Most importantly, testing withp-values leads to rejection
or non-rejection of the null hypothesis, at the pre-set significance
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Fig. 4. The points in black in the right panel represent the luminosity density profile( j(r)), of NGC 3379, as obtained by deprojecting the surface
brightness profile in theB-band (shown in red, in the let panel) by the deprojection algorithm DOPING, under an assumption of sphericity. The
projection of this deprojected density (in black, in the right panel) is compared to the measured brightness data. The analyticalj(r) used by Douglas
et. al (2007) is shown in blue in the right panel.

level; the size of the effect cannot be evaluated withp-values.
p-values are indeed mired in a web of problems, including the
potential to falsely inflate compatibility with the null. A rather
severe criticism is presented by Hubbard & Lindsay (2008).

4.1. General FBST - a brief introduction

Given such shortcomings, FBST is a welcome change. Here we
discuss the salient features of the general FBST formalism that
tests the null hypothesis that the relevant parameter -θ - has
a value ofθ0, i.e. H0 : θ = θ0, (say) whereθ is assumed to
be distributed continuously in the parameter spaceΘ. Once the
essence of FBST is clarified, we move on toour implementation
of FBST in a non-parametric context; see Chakrabarty (2009)
for greater details.

FBST measures the evidence in favour ofH0 by identifying
the most likely,H0-obeying measure (θ∗) and then quantifies the
probability of identifyingθ that are more likely thanθ∗1. Such
θ comprise the tangential setT. In other words,T is composed
of all θ that are more consistent with the observed data ({data})
thanθ0 is.

Then the evidence in favour ofH0 is:

ev = 1− Pr(θ ∈ T |{data}), where

T = {θ : Pr(θ|{data}) > Pr(θ∗|H0)}. (4)

Here the probability of recoveringθ, given the measurements
{data} is Pr(θ|{data}) andθ∗ is the point inΘ space, satisfying
H0, that maximises this probability.

Thus, FBST involves identification ofθ∗, followed by inte-
gration overT.

1 In other words, FBST requires identification of allθ, the posterior
probability corresponding to which is in excess of that ofθ∗.

4.2. Implementation of FBST

We present below a version of theevcalculation, adapted for the
case when the measureθ is non-parametrically estimated. This
is the first reported implementation of FBST in a non-parametric
situation. In this case, the integration of Pr(θ|{data}) over theT
is difficult and can be replaced by a case-counting scheme. In
our work,

– θ ≡ {ρ − f }histogram pairs,
– Θ is the space of all{ρ − f }histograms,

For us, the null hypothesis is that the data is isotropic, i.e.

H0 : f̂ = Ψ[E(
∑

i

v2
i /2+ Φ(r))], (5)

where

– f̂ is the phase space density from which theinput kinematic
sample is drawn, and

– Ψ is some function:Ψ > 0 for E < 0 andΨ = 0 otherwise.

We are not sure if the observed GC and PNe data are drawn from
isotropic phase space distributions and so test ifH0 is true.

Our MCMC optimiser, upon convergence, identifies a range
of profiles ofρ(r) and f (E), within a±1-σ error band. Using this
achieved solution, we generaten samples ofNdata-sized data sets
corresponding to the observables, i.e.vz, xp, yp. HereNdata is the
size of the observed data andvz is the LOS velocity coordinate
while the plane of the sky coordinates arexp, yp. Thus, thesen
generated velocity data sets are drawn from theisotropic f(E)
recovered by CHASSIS. Let us refer to these generated data sets
asDCHAS S IS. Therefore, kinematic information inDCHAS S ISare
drawn from a phase space density which is indeed isotropic, un-
like the observed data which are not necessarily drawn from an
isotropic f .

Next we input each of then DCHAS S ISinto CHASSIS, to start
n new runs. This generates new sets of{ρ − f }histograms.H0 is
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obeyed by these generated{ρ− f }histograms. In fact, at the end of
each step in each of thesen new runs, we recover an null-obeying
{ρ− f }histogram pair. Of all these null-obeying{ρ− f }histograms,
that which maximises the posterior (the pairρ∗, f ∗ does, say) is
recognised as our equivalent ofθ∗. All the other histograms that
we recover from runs of CHASSIS - performed with observed
data - are compared to thisρ∗, f ∗.

Let there be a total ofN {ρ − f }histograms recovered from
all possible runs of CHASSIS - performed with observed data
or the DCHAS S IS data sets. If the number of cases for which
Pr({ρ, f }|{data}) > Pr(ρ∗, f ∗), is M, we obtain ourevas 1−M/N
(Equation 4). Thus, we set:

Pr({ρ, f } ∈ T |{data}) = M
N

(6)

In line with FBST, the null is rejected for “small”ev.
Unlike with p-values, this “small”ness can be objectively

qualified in terms of minimisation of the loss function (Pereira,
Stern & Wechsler 2008; Madruga, Esteves & Wechsler 2001).

4.3. Results from implementation of FBST

The implementation of FBST, as described above, is invoked to
estimate if the assumption of isotropy should be rejected, in the
two different tracer classes that we deal with.

The estimatedev for the different PNe runs are (approxi-
mately):

– PNe-RUN I: 0.61,
– PNe-RUN II: 0.58,
– PNe-RUN III: 0.62.

Theevvalues for the three GC runs are:

– GC-RUN I: 0.96,
– GC-RUN II: 0.96,
– GC-RUN III: 0.93.

The total mass density distribution obtained by using the mea-
sured kinematic data is compared toρ∗ in Figure 5.

The results of our test for the goodness of the assumption of
isotropy, given the data are:

– assumption is more likely to be invalid for the phase space
from which the PNe data are drawn than from which the GC
data is drawn.

– isotropy is a good description of the phase space that the GC
data in NGC 3379 are drawn from, as in M87 and M49, as
reported by Ĉoté et al. (2003) and Ĉoté et al. (2001) respec-
tively.

– the two tracer samples have been drawn from significantly
distinct phase space distributions, i.e.the phase space of
NGC 3379 is marked by at least two distinct basins of at-
tractionsor that NGC 3379 is bistable if not multi-stable.

– the most likely mass density distribution obtained from GC
data, under isotropy, is consistent with density recoveredby
CHASSIS from GC-RUN II.

– the most likely gravitational mass density under isotropy
falls significantly below density recovered by CHASSIS
with PNe data from PNe-RUN II.

It merits mention that while anev > 0.9 would support con-
fidence in the assumption of isotropy, theev ∼0.6 is not
small enough to suggest complete rebuttal of the assumptionof
isotropy by the PNe data. In fact, all we can objectively infer
from our analysis is the comparative adherence of the two data
sets, to the assumption of isotropy.

Fig. 5. The comparison between the density profile achieved upon con-
vergence during a run of CHASSIS and the most likely densityρ∗ that
is recovered under the null hypothesis (implemented kinematic data are
drawn from the isotropic phase space densities achieved at the end of
runs GC-RUN II and PNe-RUN II).ρ from GC-RUN II is in black while
ρ∗ calculated from this run is in green; these density distributions are
seen to be consistent within error bars. On the other hand,ρ andρ∗ from
PNe-RUN II (in red and blue respectively) are significantly different.

4.3.1. Effect of Modeling Anisotropy with Isotropy-assuming
CHASSIS

As was delineated in Chakrabarty & Portegies Zwart (2005),
CHASSIS bears the peculiarity that at radii where phase space
anisotropy prevails, theρ(r) recovered under the erroneous as-
sumption of isotropy is an overestimation. This trend can be
used to infer the state of isotropy in the true phase space from
which the input kinematic samples are each drawn. Thus, we can
explain the differences noted between theρ(r) recovered from
PN2-RUN II andρ∗(r), if we attribute anisotropy to the phase
space from which the PNe velocities are extracted. The overlap
of ρ(r) recovered from GC-RUN II andρ∗ indicates that the GC
data is drawn from an isotropic phase space. In other words, the
aforementioned peculiarity of CHASSIS supports the conjecture
that NGC 3379 is a multi-stable system, unless the sampling of
PNe and/or GC kinematic data are biased in some way.

At the same time, this peculiarity of CHASSIS implies that
if full anisotropy were included in the analysis of the PNe data,
the recovered density would no longer be overestimated, i.e. the
recoveredρ would then be lower at mostr, than that recov-
ered from using the GC data. However, the full incorporation
of anisotropy will not trigger much change in theρ derived from
the GC data. Thus,accounting for anisotropy will enhance the
difference between the density profiles obtained from the PNe
and GC data sets.

4.3.2. Distinct Mass Distributions

Though it is interesting to find that NGC 3379 is multi-stable,
we are much more excited to note that the total mass density of
NGC 3379 is recovered as distinct, when the two different data
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sets are used. However, if we view the problem from the context
of a Jeans equation formalism, we find that the effect of using
two distinctσp(r) andν(r) profiles will in general imply distinct
enclosed mass distributionsM(r). Again, within CHASSIS, we
realize that the projection of a trialf (E) into the space of observ-
ables (xp, yp, vz), given a trial potentialΦ(r), would yield distinct
likelihood structures for distinct input kinematic data - the global
maxima in the likelihood function (L) would correspond to dis-
tinct {ρ − f }histogram pairs, i.e. each data set would in general
imply distinct mass density distributions as solutions. Here the
projection of f (E) into thepdfof the space of observables is:

µ(xp, yp, vz) =
∫

f [E(v2
x + v2

y + v2
z + 2Φ(r))]dvxdvydz (7)

andL = ln
∑

µ. Here the summation is taken over the whole
data set.

5. Discussions

Our results indicate that the mass distribution tracked by the PNe
velocities is significantly less than that implied by the GC kine-
matics! Individual consideration of the PNe analysis leadsto a
“naked” interpretation for NGC 3379, in line with what was sug-
gested by Douglas et. al (2007) and Romanowsky et. al (2003),
though theΥ(< r) recovered from the PNe-RUN, at 5RE (ly-
ing between 10 and 20) is slightly higher than what Douglas
et. al (2007) advance, due to the assumption of isotropy in our
work (which artifically augmentsρ(r) wherever anisotropy ex-
ists). The GCs on the other hand imply a dark matter rich system,
with ΥB(< r) ∈[30, 80], at the 1-σ error level, at about 9RE.

Alternative representations of the matter density in
NGC 3379 corroborate the same dichotomous picture. These in-
clude:

– vc calculated from the PNe runs concur with the Keplerian
fall-off with r but that from the GC runs are significantly
flatter (Figure 2).

– the M(r) recovered from the PNe runs flatten by aboutr=7
kpc. On the other hand, theM(r) recovered from the GC runs
is rising even at 25 kpc (edge of the radial extent of the data).

We try to reconcile with the results by asking if we could have
misinterpreted something.

5.1. Could We be Wrong?

Is it possible that the assumptions in our analysis have misled
us to develop this seemingly dichotomous view of the galaxy?
Or could there be a problem related to the collection of the data
samples that is causing this view?

5.1.1. Ignoring Anisotropy in Analysis

Would the distinction noted in theρ(r) recovered with the PNe
and GC runs, have vanished if we had not assumed velocity
isotropy in our analysis? The answer is no, as explained below.

As discussed earlier in Section 4.3.1,the inclusion of
anisotropy will render the recoveredρ(r) lower than the pro-
file currently recovered by CHASSIS from PNe data. In other
words, inclusion of anisotropy will increase the gap between the
density profiles recovered from the PNe and GC data. Thus, the
only way to reconcile the difference between the density distri-
butions recovered from the PNe runs and GC runs, is to suggest
that the GC data are drawn from a phase space distribution that

is even more strongly anisotropic than the one from which the
PNe data are drawn. However, our statistical testing indicates
the exact opposite. This implies that there is no way we can rec-
oncile the differences in the recovered density distributions, by
incorporating velocity anisotropy.

5.1.2. Asphericity?

It has been argued that NGC 3379 is actually triaxial rather
than spherical (Dekel et. al 2005); the point is thatσp would
then appear deflated for certain inclinations and that this is the
reason for the PNS studies to recover spuriously low masses.
(Romanowsky et. al 2003; Douglas et. al 2007). Douglas et. al
(2007) reject this as improbable, based on the distributionof the
intrinsic axial ratios of elliptical galaxies. However, this argu-
ment is unacceptable, owing to (i) the obvious errors involved
in the constraining of a property of an individual system, know-
ing only a sample distribution of the characteristic and (ii) the
essentially unconstrained nature of the sought distribution of the
intrinsic axial ratios.

Within CHASSIS, theassumption of sphericity involves the
geometry of the sought gravitational potential of the system and
not that of the tracer spatial distribution. Also, CHASSIS does
not employ theσp profile derived from observations, but mea-
surements of individual tracer LOS velocities.

If however, the radially symmetric assumption onΦ is mis-
placed, then this will affect results - the greater the deviation
from the assumption ofΦ = Φ(r), the greater is the expected
difference in likelihood structure recovered from using the cor-
responding data. However, we have indeed checked for the va-
lidity of this assumption when we checked for the adherence of
an observed data to the assumption of phase space isotropy. As
explained above, the results of such a test indicate distinct mass
density distributions.

5.1.3. GC Data?

It could be argued that the GCs used in our work do not re-
ally trace the mass of NGC 3379 but of a shared dark matter
distribution that might pervade the inter-galaxy space between
NGC 3379 and one or more of its neighbours, among which,
NGC 3384 is the closest. But, it is precisely to avoid such a
predicament that we use the velocities of only 30 of the GCs
that Bergond et. al (2006) advance as definitely belonging to
NGC 3379. Besides, interference from the dark halo of a neigh-
bouring galaxy is not expected to explain the significant differ-
ence between the recoveredM(r) profiles, at 10 kpc. Such ef-
fects, if any could kick in at higher radii.

5.1.4. Non-linear Dynamics

It is perhaps likely that a fraction of the PNe and GC orbits are
chaotic. Even if this were the case, this does not nullify theob-
servation that the phase space distributions from which thePNe
and GC data are drawn are different and that such data imply dis-
tinct mass distributions. If anything, the probabilistic measures
of the free-formf andρ that CHASSIS provides the best possi-
ble description of the ramifications of non-linearity.

5.2. Risk of using Tracer Kinematics

To sum up the arguments of Section 4.3.2, we state that in gen-
eral, kinematic data drawn from distinct phase spaces will yield
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distinct M(r) profiles and this is not solely because of the is-
sue of phase space isotropy. Thus, for example, within the Jeans
equation formalism, it is possible to obtain distinctM(r) using
kinematics from two data sets that are drawn from two distinct
phase space distributions that are equally anisotropic (asparam-
eterised by the anisotropy parameterβ(r)) - thend lnσp(r)/d ln r
andd ln ν(r)/d ln r terms would in general be different in the two
cases, even ifβ(r) is the same. In other words, it is not surprising
that we think that we have inferred distinct mass density distri-
butions for the same galaxy, using distinct tracer kinematic data.

To put it differently: it is potentially risky to refer to the grav-
itational potential recovered using an observed tracer sample, as
the potential of the galaxy. We have demonstrated this with the
example of NGC 3379 and shown that the distinct mass distribu-
tions recovered, cannot be made to collapse into consistentforms
by invoking the effects of phase space anisotropy, non-linear ef-
fects or by attributing errors to the observed GC data.

However, in contrast to PNe and GC samples, if two sets
of tracer kinematics can be inferred to have been drawn from the
same phase space, we will expect consistency in the gravitational
matter density that is recovered by using such data sets in a mass
determination formalism. Such a possibility is discussed in the
following section.

5.3. Distinct Phase Space Distributions & Multi-stability of
NGC 3379

We have seen that in Section 4.3 that thephase space of the
galaxy NGC 3379 is actually marked by multiple attractors. The
stability of such a dynamical system is an interesting issue. It is
possible thatsuch a configuration arises from the modification
of the system, introduced by the action of resonant perturbations
(Chizhevsky, Corbalan & Pisarchik 1997)2. We conjecture that
such is possible in NGC 3379. The original primary attractoris
split into multiple new attractors, one of which could be that sub-
set of the galactic phase space that can describe the GC orbital
distribution while the other could explain the PNe orbits.

However, such distinct phase space density distributions is
not altogether surprising, given that the evolutionary history of
PNe and GCs is very different. PNe are basically the end states of
(low to medium mass) stars. Thus, it is envisaged that the phase
space density that describes PNe motion will be similar to that
of old, low to medium mass stars. In that case, PNe velocity data
and the kinematics of such a stellar population will be drawn
from the same part of the galactic phase space and the recovered
M(r) will be consistent in these two cases.

5.4. “Naked Galaxies”

The upshot is that the splitting of the entire orbital distribution
into two or more distinct basins of attractions, is not improba-
ble. When such occurs, it is possible to fall prey to our igno-
rance about the galactic phase space structure, and infer spu-
rious galactic properties based on the characteristics of one of
these distinct regions of phase space. Expectedly, increasing the
range of measurements to multiple tracer classes, will onlyhelp
to impose tighter constraints on the solution.

It is possible, that the low DM content of the 5 “naked”
galaxies, (Romanowsky et. al 2003) was achieved as a result

2 In this work it was shown that such weak periodic perturbations
induce two or more attractors in the system in place of the one ini-
tial attractor. Thus, the system is renderedbistable(Ott 1993; Banerjee
2003).

of this situation. Incorrect mass distributions can emanate from
substituting information about the galactic phase space bythat
of orbital distribution of the particular class of tracers at hand.
Scanning over a wide range of the parameterisation of velocity
anisotropy, is not enough in general, to compensate for the er-
rors caused by this substitution. Thus, cross-validation of results
obtained with different tracer classes, wherever possible, is wel-
come.

5.5. True Mass Distribution

At the end of the analyses and conjectures presented above, we
will naturally want to know what the true mass distribution of
NGC 3379 is. Given the greater adherence to the assumption of
isotropy, the results from the GC runs should be considered as
better approximations of the state of NGC 3379 than those from
the PNe runs.

Thus, NGC 3379 is advanced as a dark matter rich galaxy,
with ΥB(< r) ∈ [30,80], approximately, at a radius just inner
to 20 kpc (r ≈ 9Re f f), where this range of values pertain to
1-σ errors of analysis. The enclosed mass at this radius is about
55

2.5×1011M⊙. The LOS velocity dispersion is flat, as is typical of
dark matter rich systems. Enhancement of the GC data sample
will reduce these errors of analysis.

We conclude that it is risky to refer to the mass distribution
recovered upon application of tracer kinematics, as the mass dis-
tribution of the galaxy.
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Sambhus, N., Gerhard, O., & Ḿendez, R. H., 2005, Planetary Nebulae as

Astronomical Tools, 804, 317.
Sawyer Hogg, H., 1947, Journal of the Royal Astronomical Society of Canada,

41, 265.


