Chapter 2
Monte Carlo Integration

Thischapter givesan introductionto Monte Carlo integration. Themain goalsareto review
some basic concepts of probability theory, to define the notation and terminology that we
will be using, and to summarize the variance reduction techniques that have proven most
useful in computer graphics.

Good references on Monte Carlo methods include Kaos & Whitlock [1986], Hammer-
dey & Handscomb [1964], and Rubinstein [1981]. Sobol’ [1994] is a good starting point
for those with little background in probability and statistics. Spanier & Gelbard [1969] is
the classic reference for Monte Carlo applications to neutron transport problems; Lewis &
Miller [1984] is a good source of background information in this area. For quasi-Monte
Carlo methods, see Niederreiter [1992], Beck & Chen [1987], and Kuipers & Niederreiter
[1974].

2.1 A brief history

Monte Carlo methods originated at the Los Alamos National Laboratory in the early years
after World War 11. The first electronic computer in the United States had just been com-
pleted (the ENIAC), and the scientists at Los Alamos were considering how to useit for the
design of thermonuclear weapons (the H-bomb). In late 1946 Stanislaw Ulam suggested
the use of random sampling to simulate the flight paths of neutrons, and John von Neumann
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30 CHAPTER 2. MONTE CARLO INTEGRATION

developed adetailed proposal in early 1947. Thisled to small-scale simulations whose re-
sults were indispensable in compl eting the project. Metropolis & Ulam [1949] published a
paper in 1949 describing their ideas, which sparked to agreat deal of research in the 1950's
[Meyer 1956]. The name of the Monte Carlo method comes from acity in Monaco, famous
for its casinos (as suggested by Nick Metropolis, another Monte Carlo pioneer).

In isolated instances, random sampling had been used much earlier to solve numerical
problems[Kaos & Whitlock 1986]. For example, in 1777 the Comte de Buffon performed
an experiment in which aneedle was dropped many timesonto aboard marked with equidis-
tant parallel lines. Letting L be the length of the needle and d > L be the distance between
the lines, he showed that the probability of the needle intersecting alineis

2L
b= Td
Many years later, Laplace pointed out that this could be used as a crude means of estimating

thevaueof 7.

Similarly, Lord Kelvin used what we would now call a Monte Carlo method to study
some aspects of the kinetic theory of gases. His random number generator consisted of
drawing dlips of paper out of aglassjar. The possibility of bias was a significant concern;
he worried that the papers might not be mixed well enough due to static electricity. Another
early Monte Carlo experimenter was Student (an aliasfor W. S. Gosset), who used random
sampling as an aid to guessing the form of his famous ¢-distribution.

An excellent reference on the origins of Monte Carlo methodsisthe special issue of Los
Alamos Science published in memory of Stanislaw Ulam [Ulam 1987]. The books by Ka
los & Whitlock [1986] and Hammersley & Handscomb [1964] also contain brief histories,
including information on the pre-war random sampling experiments described above.

2.2 Quadraturerulesfor numerical integration

In this section we explain why standard numerical integration technigques do not work very
well on high-dimensional domains, especially when the integrand is not smooth.
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Consider an integral of the form

1= [ f@)du(), (2.1)

where (2 is the domain of integration, f : Q@ — IR isarea-valued function, and 1 isa
measure function on 2.1 For now, let the domain be the s-dimensional unit hypercube,

Q = [0,1]°,
and let the measure function be
dp(z) = dat---da*,

where 27 denotes the j-th component of the point = = (2%, ...,2°) € [0, 1]°.
Integrals of this sort are often approximated using aquadrature rule, which issimply a

sum of the form N

I = Zwif(fm (2.2)

=1

where the weights w; and sample locations ; are determined in advance. Common exam-
ples of one-dimensional quadrature rulesinclude the Newton-Cotes rules (i.e. the midpoint
rule, thetrapezoidrule, Simpson’srule, and so on), and the Gauss-Legendrerules(see Davis
& Rabinowitz [1984] for further details). The n-point forms of these rules typically ob-
tain a convergence rate of O(n~") for some integer » > 1, provided that the integrand has
sufficiently many continuous derivatives. For example, the error using Simpson’s rule is
O(n~*), providedthat f hasat |east four continuousderivatives[Davis& Rabinowitz 1984].

Although these quadrature rules typically work very well for one-dimensional integrals,
problems occur when extending them to higher dimensions. For example, a common ap-
proach isto usetensor product rules of the form
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where s isthe dimension, and the w; and z; are theweights and samplelocationsfor agiven

IFamiliar examples of measuresinclude length, surface area, volume, and solid angle; see Halmos[1950]
for an introduction to measure theory.
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one-dimensional rule. This method has the same convergence rate as the one-dimensional
rule on which it is based (let this be O(n™")), however it uses a much larger number of
sample points (namely N = n*). Thusin terms of the total number of samples, the con-
vergence rate is only O(N~"/*). This implies that the efficiency of tensor product rules
diminishes rapidly with dimension, a fact that is often called the curse of dimensionality
[Niederreiter 1992, p. 2].

The convergence rate can be increased by using a one-dimensional rule with a larger
value of r, however this has two problems. First, the total number of samples N = n?
can become impractical in high dimensions, since n increases linearly with » (specificaly,
n > r/2). For example, two-point Guass quadrature requires at least 2° samples, while
Simpson’srulerequires at least 3° samples. Second, faster convergence rates require more
smoothness in the integrand. For example, if the function f has a discontinuity, then the
convergence rate of any one-dimensional quadrature ruleisat best O(n ') (assuming that
the location of the discontinuity isnot known in advance), so that the corresponding tensor
product rule converges at arate no better than O(N~1/%).

Of course, not al multidimensional integration rules take the form of tensor products.
However, thereis an important result which limits the convergence rate of any determinis-
tic quadrature rule, called Bakhvalov'stheorem [Davis & Rabinowitz 1984, p. 354]. Essen-
tialy, it says that given any s-dimensiona quadrature rule, there isfunction f with » con-
tinuous and bounded derivatives, for which the error is proportional to N—"/¢. Specifically,
let C7, denote the set of functions f : [0, 1]* — R such that

of

<
a(x1>a1 .. -3($s>as = M

foral a,...,a, with > a; = r, recalling that 27 denotes the j-th coordinate of the vector

x. Now consider any N-point quadrature rule
N
I(f) = ZM‘f(%‘)

=1

where each z; isapoint in [0, 1]*, and suppose that we wish to approximate some integral
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Then according to Bakhvalov’s theorem, thereisafunction f € '}, such that the error is

Iy =1(f)] > k-N7T7,

where the constant £ > 0 dependsonly on M and r. Thuseven if f hasabounded, contin-
uous first derivative, no quadrature rule has an error bound better than O(N /%),

2.3 A bit of probability theory

Before describing Monte Carlo integration, we review afew concepts from probability and
statistics. See Pitman [1993] for an introduction to probability, and Halmos [1950] for an
introduction to measure theory. Brief introductions to probability theory can also be found
in the Monte Carlo references cited above.

2.3.1 Cumulativedistributions and density functions

Recall that the cumulative distribution function of a real-valued random variable X is de-
fined as

P(z) = Pr{X <z},
and that the corresponding probability density functionis

o) = )

(also known as the density function or pdf). Thisleads to the important relationship

Prin<X <8} = [ p)dr = P(5) - Pla). 23

o

The corresponding notions for amultidimensional random vector (X!, ..., X*) arethe
joint cumulative distribution function

P(x',...,2%) = Pr{X‘ <aiforadli=1,...,s}
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and the joint density function

0°P
1 s _ 1 s
p(x7 7x) axl ..axs( Y 7x>7
so that we have the relationship
Pr{re D} = /p(xl,...,xs)dasl---dars (2.9)
D

for any Lebesgue measurable subset D C R’.

More generadly, for arandom variable X with valuesin an arbitrary domain €2, its prob-
ability measure (also known as a probability distribution or distribution) isameasure func-
tion P such that

P(D) = Pr{X € D}

for any measurableset D C Q. In particular, aprobability measure must setisfy P(Q2) = 1.
The corresponding density function p is defined as the Radon-Nikodym derivative

pu>=%%m,

which is simply the function p that satisfies

PD) = [ pla)du(a). (25)

Thus, the probability that X € D can be obtained by integrating p(z) over the given region
D. Thisshould be compared with equations (2.3) and (2.4), which are simply specia cases
of the more general relationship (2.5).

Note that the density function p depends on the measure 1 used to define it. We will
use the notation p = P, to denote the density with respect to a particular measure ., corre-
sponding to the notation u,, = du / dx that is often used in analysis. This notation will be
useful when there are several relevant measure function defined on the same domain €2 (for
example, the solid angle and projected solid angle measures that will be described in Chap-
ter 3). See Halmos [1950] for further information on measure spaces and Radon-Nikodym
derivatives.
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2.3.2 Expected value and variance

The expected value or expectation of arandom variableY = f(X) isdefined as

EY] = [ f(@)pla)du(a), (26
whileitsvarianceis
VIY] = E[(Y - E[Y])?]. (2.7)

Wewill always assumethat expected value and variance of every random variableexist (i.e.
the corresponding integral isfinite).

From these definitions, it is easy to see that for any constant « we have

ElaY] = aFE[Y]
VleY] = a*V[Y].
The following identity is also useful:
N N
plyv| - Sem
i=1

i=1 @
which holdsfor any randomvariablesY, . . ., Yy. Ontheother hand, thefollowing identity
holds only if the variables Y; are independent:

N N
Vx| = v
i=1 i=1
Notice that from these rules, we can derive assimpler expression for the variance:

VY] = E[(Y - EV])?] = E[Y?] - E[Y]".

Another useful quantity isthe standard deviation of arandom variable, which issimply
the square root of its variance:

Thisis aso known asthe RMSerror.
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2.3.3 Conditional and marginal densities
Let X € Q) andY € ), beapair of random variables, so that
(X,Y)eQ

where Q2 = Q; x ,. Let P be the joint probability measure of (X, Y'), sothat P(D) rep-
resents the probability that (X, Y") € D for any measurable subset D C ). Then the corre-
sponding joint density function p(x, y) satisfies

PD) = [ pley) dm (@) dpsly)

where ;1; and o are measures on €2; and €2, respectively. Hereafter we will drop the mea-
sure function notation, and simply write

P(D) = /Dp(%y)dxdy-

The marginal density function of X isnow defined as

p(r) = /Q p(,y) dy, (2.8)

2

while the conditional density function p(y | x) is defined as

plyle) = pla,y)/p(x). (2.9)

The margina density p(y) and conditiona density p(x | y) are defined in a similar way,
leading to the useful identity

p(r,y) = plyle)plr) = plxly)ply).

Another important concept is the conditional expectation of a random variable G =
g(X,Y), defined as

EMﬂaAmwmmwzfﬁﬁﬁgw. (2.10)

We will also use the notation E'y-[] for the conditional expectation, which emphasizesthe
fact that Y isthe random variable whose density function is being integrated.
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Thereisavery useful expression for the variance of GG in termsof its conditional expec-
tation and variance, namely

In other words, V[G] is the mean of the conditional variance, plus the variance of the con-
ditional mean. To prove thisidentity, recall that

V[F] = E[F*] - E[F),
and observe that

ExVyG+VxByG = Bx{Fy[G"] - [EyG’} + Ex[EyG)’ — [Ex EyG)’
= ExEy[G?] — [ExEyG)?
= VI[G].

We will use thisidentity below to analyze certain variance reduction techniques, including
stratified sampling and the use of expected values.

2.4 BasicMonte Carlointegration

The idea of Monte Carlo integration is to evaluate the integral

1= [ f@)du()

using random sampling. Initsbasic form, thisis done by independently sampling /V points
X1, ..., Xy according to some convenient density function p, and then computing the es-
timate

1 X f(X)

Fy = — : (2.12)
A P

Here we have used the notation Fy rather than I to emphasize that the result is a random

variable, and that its properties depend on how many sample points were chosen. Note that

this type of estimator was first used in the survey sampling literature (for discrete rather

than continuous domains), where it is known as the Horvitz-Thompson estimator [Horvitz
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& Thompson 1952].
For example, suppose that the domainis2 = [0, 1]* and that the samples X; are chosen
independently and uniformly at random. In this case, the estimator (2.12) reducesto

1
F = =~ Xz )
v =y 2 S
which has the same form as a quadrature rule except that the sample locations are random.
Itisstraightforward to show theestimator Fy givesthe correct result on average. Specif-

ically, we have
B 1 & f(X5)
mm“‘qﬁgmm]
:%;Q%%mmw
= [ J(@)da)

Il
~

provided that f(x)/p(z) isfinite whenever f(z) # 0.

Advantagesof Monte Carlointegration. Monte Carlo integration hasthefollowing ma-
jor advantages. First, it convergesat arate of O(N~'/2) in any dimension, regardless of the
smoothness of the integrand. This makes it particularly useful in graphics, where we often
need to calculate multi-dimensional integrals of discontinuousfunctions. The convergence
rate is discussed in Section 2.4.1 below.

Second, Monte Carlo integration is simple. Only two basic operations are required,
namely sampling and point evaluation. This encourages the use of object-oriented black
box interfaces, which allow great flexibility in the design of Monte Carlo software. In the
context of computer graphics, for example, it is straightforward to include effects such mo-
tion blur, depth of field, participating media, procedural surfaces, and so on.

Third, Monte Carlo is general. Again, this stems from the fact that it is based on ran-
dom sampling. Sampling can be used even on domainsthat do not have anatural correspon-
dence with [0, 1]*, and are thus not well-suited to numerical quadrature. As an example of
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this in graphics, we observe that the light transport problem can be naturally expressed as
an integral over the space of all transport paths (Chapter 8). This domain istechnically an
infinite-dimensional space (which would be difficult to handle with numerical quadrature),
but it is straightforward to handle with Monte Carlo.

Finally, Monte Carlo methods are better suited than quadrature methods for integrands
with singularities. Importance sampling (see Section 2.5.2) can be applied to handle such
integrandseffectively, evenin situationswherethereisno analytic transformation to remove
the singularity (see the discussion of rejection sampling and the Metropolis method bel ow).

In the remainder of thissection, we discussthe convergencerate of Monte Carlo integra-
tion, and give abrief review of sampling techniques for random variables. We then discuss
the properties of more general kinds of Monte Carlo estimators.

24.1 Convergencerates

To determine the convergence rate of Monte Carlo integration, we start by computing the
variance of Fly. To simplify the notationlet Y; = f(X;)/p(X;), so that

1
FN_NiZIYi.
Alsolet Y = Y]. Wethen have
2
vivl = B —ene = [ L£W 00—
Y] Y] - E[Y] o pz) ()

Assuming that this quantity isfinite, it is easy to check that the variance of V'[Fy| decreases
linearly with V:

VIFN] = Vl%éY] = %V[é y;] = %gv[m = %V[Y] (2.13)

where we have used V[a Y] = a? V[Y] and the fact that the Y; are independent samples.
Thusthe standard deviation is

J[FN] = UYv

1
ﬁ
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which immediately shows that the RM S error converges at arate of O(N—1/2).
It is also possible to obtain probabilitistic bounds on the absolute error, using Cheby-

chev'sinequality:
1/2
Pr{|F—E[F1| > (V) } <4,

which holds for any random variable F' such that V[F| < co. Applying thisinequality to
the variance (2.13), we obtain

1/2
Pr{|FN—I| > N7/2 (@) } < 4.

Thus for any fixed threshold §, the absol ute error decreases at the rate O (N ~1/2).

Tighter bounds on the absolute error can be obtained using the central limit theorem,
which statesthat Fy convergestoanormal distributioninthelimitas N — oo. Specificaly,
it states that

N S L M

where the expression on theright isthe (cumul ative) normal distribution. Thisequation can
be rearranged to give

Pr{|Fy —I| > to[Fy]} \/2/7r/ 12 g

The integral on the right decreases very quickly with ¢; for example when ¢ = 3 the right-
hand sideisapproximately 0.003. Thus, thereisonly about a0.3% chancethat Fy will differ
from its mean by more than three standard deviations, provided that /V islarge enough for
the central limit theorem to apply.

Finally, note that Monte Carlo integration will converge even if the variance V[Y] is
infinite, provided that the expectation E[Y'] exists (although convergence will be slower).
Thisis guaranteed by the strong law of large numbers, which states that

Pr {hm —ZY_E[Y]} = 1.

N —o00 -1
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2.4.2 Sampling random variables

There are a variety of techniques for sampling random variables, which we briefly review
here. Further details can be found in the references given in the introduction.

One method isthe transfor mation or inversion method. 1n one dimension, suppose that
we want to sample from a density function p. Letting P be the corresponding cumulative
distribution function, the inversion method consists of letting X = P~'(U), where U is
auniform random variable on [0, 1]. It is easy to verify that X has the required density p.
Thistechnique can easily be extended to several dimensions, either by computing marginal
and conditional distributions and inverting each dimension separately, or more generally
by deriving atransformation x = g(u) with an appropriate Jacobian determinant (such that
| det(J,(z))|~" = p(x), where .J, denotes the Jacobian of g).

The main advantage of the transformation techniqueisthat it alows samplesto be strat-
ified easily, by stratifying the parameter space [0, 1]° and mapping these samplesinto (2 (see
Section 2.6.1). Another advantage is that the technique has a fixed cost per sample, which
can easily be estimated. The main disadvantage is that the density p(z) must be integrated
anaytically, which is not aways possible. It is aso preferable for the cumulative distribu-
tion to have an analytic inverse, since numerical inversion istypicaly slower.

A second sampling techniqueisthergection method, dueto von Neumann [Ulam 1987].
Theideaisto sample from some convenient density ¢ such that

p(r) < Mq(x)

for some constant M. Generally, the samples from ¢ are generated by the transformation
method. We then apply the following procedure:

function REJECTION-SAMPLING()

fori=1tooo
Sample X; according to q.
Sample U; uniformly on [0, 1].
if U, < p(X)/ (Mq(X))
then return X;
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It is easy to verify that this procedure generates a sample X whose density function is p.

The main advantage of rejection sampling isthat it can be used with any density func-
tion, even those that cannot be integrated analytically. However, we still need to be ableto
integrate somefunction M ¢ that isan upper bound for p. Furthermore, thisbound should be
reasonably tight, since the average number of samplesthat must be taken before acceptance
is M. Thus, the efficiency of rgjection sampling can be very low if it is applied naively.
Another disadvantage is that it is difficult to apply with stratification: the closest approxi-
mation isto stratify the domain of the random vector (X, U), but the resulting stratification
isnot as good as the transformation method.

A third general sampling technique is the Metropolis method (also known as Markov
chain Monte Carlo), which will be described in Chapter 11. This technique is useful for
sampling arbitrary densities on high-dimensional spaces, and has the advantage that the
density function does not need to be normalized. The main disadvantage of the Metropolis
method is that the samples it generates are not independent; in fact they are highly corre-
lated. Thus, it is most useful when we need to generate a long sequence of samples from
the given density p.

Finally, there are varioustechniquesfor sampling from specific distributions (see Rubin-
stein [1981]). For example, if X isthe maximum of % independent uniform random vari-
ablesU,, ..., Uy, then X hasthedensity functionp(z) = ka* ! (where0 < 2 < 1). Such
“tricks’ can be used to sample many of the standard distributions in statistics, such as the
normal distribution [Rubinstein 1981].

2.4.3 Estimatorsand their properties

So far we have only discussed one way to estimate an integral using random samples,
namely the standard technique (2.12). However, there are actually a great variety of tech-
niques available, which are encompassed by the concept of a Monte Carlo estimator. We
review the various properties of estimators and why they are desirable.

The purpose of a Monte Carlo estimator is to approximate the vaue of some quantity
of interest © (also called the estimand). Normally we will define Q asthe value of a given
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integral, although more general situations are possible (e.g.  could be the ratio of two in-
tegrals). An estimator isthen defined to be a function of the form

FN :FN(le"'vXN)v (214)
wherethe X; arerandom variables. A particular numerical valueof Fy iscalled an estimate.

Note that the X; are not necessarily independent, and can have different distributions.

Note that there are some differences in the standard terminol ogy for computer graphics,
as compared to statistics. In statistics, the value of each X is called an observation, the
vector (X1,...,Xy) iscaled the sample, and N is called the sample size. In computer
graphics, on the other hand, typically each of the individual X; is referred to as a sample,
and NN isthe number of samples. We will normally use the graphics conventions.

We now define a number of useful properties of Monte Carlo estimators. The quantity
Fy — Q iscaled theerror, and its expected value is called the bias:

BIFy] = E[Fy - Q). (2.15)
An estimator is called unbiased if 5[Fy| = 0 for al samplesizes N, or in other words if
E[Fy] = Q fordlN>1. (2.16)

For example, the random variable

~

1
FN:WZ

=1

(Xi)
(X)

i~

isan unbiased estimator of theintegral 7 = [, f(x) du(x) (aswe saw in Section 2.4).

An estimator is called consistent if the error Fiy — (Q goesto zero with probability one,
or in other wordsiif

pr {]}gnoo Fy = Q} — 1. 2.17)

For an estimator to be consistent, a sufficient condition isthat the bias and variance both go
to zero as NV isincreased:



44 CHAPTER 2. MONTE CARLO INTEGRATION

In particular, an unbiased estimator is consistent aslong asits variance decreases to zero as
N goestoinfinity.

The main reason for preferring unbiased estimators is that it is easier to estimate the
error. Typically our goal isto minimize the mean squared error (MSE), defined by

MSE[F] = E[(F - Q)?] (2.18)

(where we have dropped the subscript V). In general, the mean squared error can be rewrit-
ten as

MSE[F] = E[(F - Q)]

so that to estimate the error we must have an upper bound on the possible bias. In general,
this requires additional knowledge about the estimand Q, and it is often difficult to find a
suitable bound.

On the other hand, for unbiased estimatorswe have E[F'] = @, so that the mean squared
error isidentical to the variance:

MSE[F] = V[F] = E[(F — E[F))}.

Thismakesit far easier to obtain error estimates, by simply taking several independent sam-
ples. Letting Y7, ..., Yy beindependent samples of an unbiased estimator Y, and letting

1 N
Fy = N ; Y;
as before (which is aso an unbiased estimator), then the quantity
. 1 1 X LA
IR = N {(ﬁ 27) - (v 1) }

isan unbiased estimator of the variance V[Fy| (see Kalos & Whitlock [1986]). Thus, error
estimates are easy to obtain for unbiased estimators.
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Noticethat by taking many independent samples, the error of an unbiased estimator can
be made as small as desired, since

VIFy] = VIR]/N.

However, thiswill aso increase the running time by afactor of N. Ideally, we would like
to find estimators whose variance and running time are both small. Thistradeoff is summa-
rized by the efficiency of a Monte Carlo estimator:

(2.19)

where T'[F] isthe time required to evaluate F'. Thus the more efficient an estimator is, the
lower the variance that can be obtained in a given fixed running time.

2.5 Variancereduction I: Analytic integration

The design of efficient estimators is a fundamental goal of Monte Carlo research. A wide
variety of technigques have been developed, which are often simply called variance reduc-
tion methods. In the following sections, we describe the variance reduction methods that
have proven most useful in computer graphics.? These methods can be grouped into sev-
eral categories, based around four main ideas:

e analytically integrating a function that is similar to the integrand,;
e uniformly placing sample points across the integration domain;

e adaptively controlling the sample density based on information gathered during sam-
pling; and

e combining samples from two or more estimators whose values are correlated.

Note that some variance reduction methods are useful only for one-dimensional integrals, or only for
smooth integrands (e.g. certain antithetic variatestransformations[Hammersley & Handscomb 1964]). Since
these situations are usually better handled by numerical quadrature, we do not discuss such methods here.
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We start by discussing methods based on analytic integration. There are actually sev-
eral ways to take advantage of thisidea, including the use of expected values, importance
sampling, and control variates. These are some of the most powerful and useful methods
for computer graphics problems.

Note that many variance reduction methods were first proposed in the survey sampling
literature, long before Monte Carlo methods were invented. For example, techniques such
asstratified sampling, importance sampling, and control variateswereall first used in survey
sampling [Cochran 1963].

2.5.1 Theuse of expected values

Perhaps the most obvious way to reduce variance is to reduce the dimension of the sample
space, by integrating analytically with respect to one or more variables of the domain. This
ideais commonly referred to as the use of expected values or reducing the dimensionality.
Specifically, it consists of replacing an estimator of the form

F = f(X,Y)/p(X.Y) (2.20)

with one of the form
F' = f'(X)/p(X), (2.21)

where f'(x) and p(x) are defined by

o) = [ fay)dy
pla) = [pla.y)dy.

Thus, to apply thistechniquewe must be ableto integrate both f and p with respect toy. We
also must be able to sample from the marginal density p(z), but this can be done by simply
generating (X, Y') as before, and ignoring the value of Y.

The name of thistechnique comes from the fact that the estimator F” is simply the con-
ditional expected value of F"
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f(X,y)

p(X,y)

/f(Xv y)  p(X,y)
p(X,y) [p(X,y)dy

= f(X)/p(X).

ply| X)dy

dy

This makes the variance reduction easy to analyze. Recalling the identity
VI[F] = ExVwF + VxEyF

from equation (2.11), and using the fact that F’' = FEy F', we immediately obtain
VIF]=VIF] = ExWyF.

This quantity is always non-negative, and represents the component of the variance of F
that was caused by the random sampling of Y (as one might expect).

The use of expected valuesisthe preferred variance reduction technique, aslong asit is
not too expensive to evaluate and sample the analytically integrated quantities. However,
note that if expected values are used for only one part of alarger calculation, then variance
can actually increase. Spanier & Gelbard [1969] give an example of thisin the context of
neutron transport problems, by comparing the variance of the absor ption estimator (which
records a sample only when a particle is absorbed) to that of the collision estimator (which
records the expected value of absorption at each collision along a particle’s path). They
show that there are conditions where each of these estimators can have lower variance than
the other.

2.5.2 Importance sampling

Importance sampling refers to the principle of choosing a density function p that is similar
totheintegrand f. Itisawell-known fact that the best choiceisto let p(x) = ¢f(z), where
the constant of proportionality is

1
= I (2.22)
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(to ensure that p integrates to one).® This leads to an estimator with zero variance, since

_ 1
p(X) o«
for all sample points X.

Unfortunately this technique is not practical, since we must aready know the value of
the desired integral in order to compute the normalization constant ¢. Nevertheless, by
choosing a density function p whose shape is similar to f, variance can be reduced. Typ-
ically this is done by discarding or approximating some factors of f in order to obtain a
function ¢ that can be integrated analytically, and then letting p o« ¢. It is aso important
to choose p such that there is a convenient method of generating samples from it. For low-
dimensional integration problems, auseful strategy isto construct a discrete approximation
of f (e.g. apiecewise constant or linear function). This can be done either during a sepa-
rate initialization phase, or adaptively as the algorithm proceeds. The integral of such an
approximation can be computed and maintained quite cheaply, and sampling can be done
efficiently by means of tree structures or partial sums.

In summary, importance sampling is one of the most useful and powerful techniques of
Monte Carlo integration. It is particularly helpful for integrands that have large valueson a
relatively small part of the domain, e.g. dueto singularities.

2.5.3 Control variates

With control variates, theideaisto find afunction ¢ that can be integrated analytically and
issimilar to the integrand, and then subtract it. Effectively, theintegral is rewritten as

1= [ g@)du(@) + [ f@) - g(@) du(a).

and then sampled with an estimator of the form

Fo= /QQ(:U) du(x) + % ; f(X;)(;(g(Xi>

3We assume that f is non-negativein this discussion. Otherwise the best choiceisto let p oc |f|, however
the variance obtained this way is no longer zero [Kalos & Whitlock 1986].
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where the value of the first integral is known exactly. (Asusua p is the density function
from which the X; are chosen.) This estimator will have a lower variance than the basic
estimator (2.12) whenever

V[P < v R

In particular, notice that if ¢ is proportional to p, then the two estimators differ only by a

constant, and their variance is the same. This impliesthat if ¢ is aready being used for
importance sampling (up to a constant of proportionality), then it is not helpful to useit as
a control variate as well.* From another point of view, given some function ¢ that is an
approximation to f, we must decide whether to use it as a control variate or as a density
function for importance sampling. Itispossibleto show that either one of these choice could
be the best, depending on the particular f and g. In general, if f — ¢ isnearly a constant
function, then ¢ should be used as a control variate; whileif f/g isnearly constant, then ¢
should be used for importance sampling [Kalos & Whitlock 1986].

Aswith importance sampling, control variates can be obtained by approximating some
factors of f or by constructing a discrete approximation. Since there is no need to gener-
ate samples from ¢, such functions can be slightly easier to construct. However, note that
for ¢ to be useful as a control variate, it must take into account all of the significant factors
of f. For example, consider an integral of theform f(x) = fi(z) f2(x), and suppose that
f1(x) represents the reflectivity of a surface at the point =, while f»(x) represents the in-
cident power per unit area. Without some estimate of the magnitude of f,, observe that f;
isvirtually useless as a control variate. On the other hand, f; can be used for importance
sampling without any difficulties.

Control variates have had very few applicationsin graphics so far (e.g. see Lafortune &
Willems[1995a]). One problem with the technique is the possibility of obtaining negative
sample values, even for an integrand that is strictly positive. Thiscan lead to large relative
errors for integrals whose true value is close to zero (e.g. pixels in the dark regions of an
image). On the other hand, the method is straightforward to apply, and can potentially give
amodest variance reduction at little cost.

4See the discussion under Russian roul ette bel ow.
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2.6 Variancereduction I1: Uniform sample placement

Another important strategy for reducing variance is to ensure that samples are distributed
more or less uniformly over the domain. We will examine severa techniques for doing
this, namely stratified sampling, Latin hypercube sampling, orthogonal array sampling, and
guasi-Monte Carlo methods.

For these techniques, it is typically assumed that the domain is the s-dimensional unit
cube [0, 1]°. Other domains can be handled by defining an appropriate transformation of the
formT : [0,1]* — Q. Notethat by choosing different mappings 7', the transformed samples
can be given different density functions. This makesit straightforward to apply importance
sampling to the techniques described below.®

2.6.1 Stratified sampling

Theidea of stratified sampling is to subdivide the domain €2 into several non-overlapping
regions €y, ..., §2,, such that

=1

Each region Q; iscalled astratum. A fixed number of samplesn; isthen taken within each
Q2;, according to some given density function p;.

For simplicity, assumethat 2 = [0, 1]* and that p; issimply the constant function on €2;.
This leads to an estimate of the form

Fo= SuF (229)

Here v; = 1(2;) isthe volume of region €2;, and each X ; is an independent sample from

SNotethat if thedesired density p(z) iscomplex, it may bedifficult to find atransformation 7" that generates
it. This can be solved with rejection sampling, but the resulting samples will not be stratified as well.
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p;. Thevariance of thisestimator is
VIF = > vio?/ni, (2.25)
=1

where o7 = V[ f(X; ;)] denotes the variance of f within ;.

To compare this against unstratified sampling, suppose that n; = v; /N, where NV isthe
total number of samplestaken. Equation (2.25) then ssimplifiesto

1 n
VIF'] = N ; v; 07
On the other hand, the variance of the corresponding unstratified estimator is®
1 [ "
VIF] = N Z%U? + Zvi(ﬂi_DQ , (2.26)
i=1 =1

where 1i; is the mean value of f in region €2;, and I the mean value of f over the whole
domain. Since the right-hand sum is aways non-negative, stratified sampling can never
increase variance.

However, from (2.26) we see that variance is only reduced when the strata have differ-
ent means; thus, the strata should be chosen to make these means as different as possible.
Ideally, this would be achieved by stratifying the range of the integrand, by finding strata
suchthat z; € Q; impliesxz; < xy < --- < ay.

Another point of view isto analyze the convergencerate. For functionswith a bounded
first derivative, the variance of stratified sampling convergesat arate of O(N~'=2/%), while
if the function is only piecewise continuous then the variance is O(N~'~1/*) [Mitchell
1996]. (The convergence rate for the standard deviation is obtained by dividing these ex-
ponents by two.) Thus, stratified sampling can increase the convergence rate noticeably in
low-dimensional domains, but has little effect in high-dimensional domains.

In summary, stratified sampling is a useful, inexpensive variance reduction technique.

5To obtain this result, observethat an unstratified samplein [0, 1]° is equivalent to first choosing arandom
stratum I; (according to the discrete probabilities v;), and then randomly choosing X ; within Q;,. From this
point of view, X ; is chosen conditionally on I;. This lets us apply the identity (2.11) to express the variance
as a sum of two components, yielding equation (2.26).
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It ismainly effective for low-dimensional integration problems where the integrand is rea-
sonably well-behaved. If thedimensionishigh, or if theintegrand has singularitiesor rapid
oscillationsin value (e.g. atexture with fine details), then stratified sampling will not help
significantly. Thisisespecially truefor problemsin graphics, where the number of samples
taken for each integral isrelatively small.

2.6.2 Latin hypercube sampling

Supposethat atotal of N sampleswill betaken. Theideaof Latin hypercube samplingisto
subdivide the domain [0, 1]° into NV subintervals along each dimension, and to ensure that
one sample lies in each subinterval. This can be done by choosing s permutations 74, . . .,
7 of {1,..., N}, and letting the sample locations be
. 7w:(i) — U, ;

xj = B =l 227)
where X/ denotes the j-th coordinate of the sample X;, and the U, ; are independent and
uniformly distributed on [0, 1]. In two dimensions, the sample pattern corresponds to the
occurrences of asingle symbol in alLatin square (i.e.an N x NN array of N symbols such
that no symbol appears twice in the same row or column).

Latin hypercube sampling was first proposed as a Monte Carlo integration technique
by McKay et al. [1979]. Itisclosely related to Latin square sampling methods, which have
been used inthe design of statistical experimentssinceat |east the 1920’s(e.g. in agricultural
research [Fisher 1925, Fisher 1926]). Yates [1953] and Patterson [1954] extended these
techniques to arbitrary dimensions, and also analyzed their variance-reduction properties
(in the context of survey sampling and experimental design). In computer graphics, Latin
sguare sampling was introduced by Shirley [1990a] under the name of N-rooks sampling
[Shirley 1990a, Shirley 1991].

The first satisfactory variance analysis of Latin hypercube sampling for Monte Carlo
integration was given by Stein [1987]. First, we define a function g(x) to be additive if it
has the form

o@) = T i), 229)
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where 27 denotes the j-th component of = € [0, 1]°. Next, let f.qq denote the best additive
approximation to f, i.e. the function of the form (2.28) which minimizes the mean squared
error

[ (Faaalw) = (@) du(a).
We can then write f as the sum of two components

f(x) = fadd(x) + freS(m) )

where f,. isorthogonal to al additive functions, i.e.

| feel@) g(a) du@) = 0
for any additive function g.

Stein [1987] was then able to show that variance of Latin hypercube samplingis

VIF) = & [ 2 dute) + o(1/N), 229)

where o(1/N) denotes afunction that decreasesfaster than 1/N. Thisexpression should be
compared to the variance using /N independent samples, which is

VIFl = 5 ([ 2@ dne) + [ Gualo) = 1 duto))

Thevarianceinthe second caseisalwayslarger (for sufficiently large /V). ThusL atin hyper-
cube sampling improves the convergence rate for the additive component of the integrand.
Furthermore, it is never significantly worse than using independent samples[Owen 1997a):

N

VIF <
[ ]_N—l

VIF| for N > 2.

Latin hypercube sampling is easy to implement and works very well for functions that
are nearly additive. However, it does not work that well for image sampling, because
the samples are not well-stratified in two dimensions. Except in special cases (e.g. pixels
with vertical or horizontal edges), it hasthe same O(1/N) variance that would be obtained
with independent samples. Thisisinferior to stratified sampling, for which the variance is
O(N~2) for smooth functions and O (N ~*/2) for piecewise continuous functions.
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2.6.3 Orthogonal array sampling

Orthogonal array sampling [Owen 1992, Tang 1993] isan important generalization of Latin
hypercube sampling that addresses some of these deficiencies. Rather than stratifying all of
the one-dimensional projections of the samples, it stratifies all of the ¢-dimensional projec-
tionsfor somet > 2. Thisincreases the rate of convergence for the components of f that
depend on ¢ or fewer variables.

Anorthogonal array of strength ¢ isan N x s array of symbols, drawn from an al phabet
of size b, such that every N x ¢ submatrix contains the same number of copies of each of
the b’ possiblerows. (The submatrix isnot necessarily contiguous; it can contain any subset
of the columns.) If we let A denote the number of times that each row appears (where A is
known as the index of the array), it is clear that N = \b'. The following table gives an
example of an orthogonal array whose parametersare OA(N, s, b,t) = (9,4, 3, 2):

NINMNINFPIPIP OO O
NIFRP|IO|IN|IP|IO|IN|F—L|O
RP|IO|IN|IO|IN|FL|IN|FL,|O
OFRPINI N O|FRL|IFP|IN|O

Various methods are known for constructing orthogonal arrays of strength ¢ = 2 [Bose
1938, Bose & Bush 1952, Addelman & Kempthorne 1961], strength ¢ = 3 [Bose & Bush
1952, Bush 1952], and arbitrary strengths¢ > 3 [Bush 1952]. Implementations of these
methods are publicly available [Owen 19953].

Let A bean N x s orthogona array of strength ¢, where the symbolsin the array are
{0,1,...,b— 1}. Thefirst step of orthogonal array sampling is to randomize the array, by
applying a permutation to the alphabet in each column. That is, we let

Ai,j = ﬂ—j(Ai,j> for al i,j,
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wherer, ..., 7, arerandom permutationsof thesymbols{0, ..., b—1}. Itiseasy to check
that A is an orthogonal array with the same parameters (N, s,b,t) astheorigina array A.
This step ensures that each of the b* possible rows occursin A with equal probability.

Now let the domain be [0, 1]*, and consider the family of b* subcubes obtained by split-
ting each axisinto b intervals of equal size. Each row of A can be interpreted as an index
into this family of subcubes. The idea of orthogonal array sampling is to take one sample
in each of the V subcubes specified by the rows of A. Specifically, the j-th coordinate of
sample X; is

X! = (Ai; +U,) /b

2

where the U; ; are independent uniform samples on [0, 1]. Because of the randomization
step above, it is straightforward to show that each X; is uniformly distributed in [0, 1]*, so
that Fiv = (1/N) N, f(X;) isan unbiased estimator of the usual integral 1.

To see the advantage of this technique, consider the sample distribution with respect to
any t coordinate axes (i.e. project the samples into the subspace spanned by these axes).
This subspace can be divided into b subcubes by splitting each axisinto b intervals. The
main property of orthogonal array samplingisthat each of these subcubes containsthe same
number of samples. To see this, observe that the coordinates of the projected samples are
specified by a particular N x ¢ submatrix of the orthogonal array. By the definition of or-
thogonal arrays, each of the possible ' rows occurs A timesin this submatrix, so that there
will be exactly A samplesin each subcube.

Orthogona array sampling is clearly a generalization of Latin hypercube sampling.
Rather than stratifying the one-dimensional projections of the samples, it stratifies all of the
t-dimensional projections simultaneously. (There are (j) such projectionsin all.)

2.6.3.1 Analysisof variance decompositions

The variance reduction properties of orthogonal array sampling can be analyzed using con-
tinuous analysis of variance (anova) decompositions [Owen 1994, Owen 1992]. Our de-
scription follows [Owen 1992], whichin turn is based on [Efron & Stein 1981].

Let S ={1,...,s} betheset of al coordinate indices, and let U C .S be any subset of
these indices (there are 2° possible subsetsin al). We will use the notation 2V to refer to
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the set of coordinate variables 27 for j € U. The anova decomposition of a given function
f can then be written as asum

flz) = Z fu@Y), (2.30)

where each function f;; depends only on the variablesindexed by U.
The function when U = () does not depend on any variables, and is called the grand
mean:
[ = = dr .
fo /[0’1]5 f(x)de
The other 2° — 1 subsets of U are called sources of variation. The components of f that
depend on just one variable are called the main effects and are defined as

fi@) = [(f@)=1) [Tda".
i#]
Noticethat al of these functions are orthogonal to the constant function f; = I. Similarly,
the two-factor interactions are defined by

fir@™) = [ (@)= 1= f) = fla) T] o’
ik
which represent the componentsof f that depend on two particular variablestogether. These
functions are orthogonal to fj; and to al the f;.
In generdl, f; isdefined by
fo(@’) = / (f(:v) -3 fv(xv)> dz5~V (2.31)
vcU

where the sum is over al proper subsets of U (V' # U). The resulting set of functionsis
orthogonal, i.e. they satisfy

[ foa”) fo@¥yde = 0
whenever U # V. Thisimpliesthe useful property that

/fQ(x)da: = Z /ff](a:U)da:,

Ucs
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so that the variance of f can be written as

[rt) - > [

|U|>0

Asaparticular case of thisanalysis, the best additive approximationto f is
faaa(z) = I+Zf] (27)

wheretheresidua f,.. = f — f.qq 1SOrthogonal to al additive functions. The variance of
Latin hypercube sampling can thus be rewritten as

= % X [ Radr +o(1/N),
|U\>1
i.e. the single-variable components of the variance converge at arate faster than 1/N.
Orthogonal array sampling generalizesthisresult; it ispossibleto show that the variance
is[Owen 1992, Owen 1994]

Oon = — Z /fU )dx + o(1/N),

\U|>t

i.e. the convergence rate is improved with respect to all components of the integrand that
depend on ¢ coordinates or |ess.

Thecaset = 2 is particularly interesting for graphics. For example, if we apply this
technique to distribution ray tracing, it ensures that al the two dimensional projections are
well stratified (over the pixel, lens aperture, light source, etc). Thisachievesasimilar result
to the sampling technique proposed by Cook et al. [1984], except that all combinations of
two variables are stratified (including combinations such as the pixel z-coordinate and the
aperture x-coordinate, for example).

2.6.3.2 Orthogonal array-based L atin hypercube sampling

Notice that because the ¢-dimensional margins are well-stratified, the w-dimensional mar-
gins are also stratified for any w < t. However, the resulting stratification is not as good.
For example, in any one-dimensional projectional there will be exactly \b'~! samplesin
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each interva of width 1/b. Thisisinferior to Latin hypercube sampling, which places one
samplein each interval of width 1/(Ab").

There is a simple modification to orthogonal array sampling that yields the same one-
dimensional stratification properties as Latin hypercube sampling. (The result, logicaly
enough, iscalled orthogonal array-based Latin hypercube sampling [ Tang 1993].) Theidea
isto remap the Ab* symbolswithin each columninto asingle sequence {0, 1, ..., \b' — 1},
by mapping the \b' ! identical copies of each symbol m into arandom permutation of the
symbols

Mmoo AT (m 1) — 1.

This process is repeated for each column separately. Letting A’ be the modified array, the
sample locations are then defined as
AL+ U
X! = JATJ :
Thisensures that the samples are maximally stratified for each one-dimensional projection,
aswell asfor each t-dimensional projection. It ispossibleto show that thisleadsto afurther
reduction in variance [ Tang 1993].

Thistechniqueissimilar to multi-jittered sampling [Chiu et a. 1994], which corresponds
to the special casewheres =2 andt = 2.

2.6.4 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods take these ideas a step further, by dispensing with randomness
completely. Theideaisto distribute the samplesas uniformly as possible, by choosing their
locations deterministically.

2.6.4.1 Discrepancy

Let P = {xq,..., 2y} beasetof pointsin [0, 1]*. Typically, the goa of quasi-Monte Carlo
methods is minimize the irregularity of distribution of the samples with respect to some
guantitative measure. One such measureisthe star discrepancy of P. Let B* denote the set
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of all axis-aligned boxes with one corner at the origin:
B* = {B=[0,u1] x---x[0,us] |0 <wu; <1foralli}.

|deally, we would like each box B to contain exactly A\(B)N of the pointsin P, where
A(B) = uy---u, isthe volume of B. The star discrepancy simply measures how much
P deviates from thisideal situation:

Dy(P) = sup LUDQB} -

sup [ A(B)|, (2.32)

where #{ P N B} denotes the number of points of P that are inside the box B.

Discrepancy measures can also be defined with respect to other sets of shapes (e.g. ar-
bitrary axis aligned boxes, or convex regions [Niederreiter 1992]). For two-dimensional
image sampling, it is particularly useful to measure discrepancy with respect to edges, by
considering the family of shapes obtained by intersecting [0, 1] with an arbitrary half-plane
[Mitchell 1992]. The relevance of discrepancy to image sampling was first pointed out by
Shirley [1991].

The significance of the star discrepancy isthat it is closely related to bounds on the in-
tegration error. Specifically, the Koksma-Hlawka inequality states that

% ;f(xl) — /[ flx)dz| < Vug(f) DN(P),

071]5

where Vy; « (f) isthe variation of f in the sense of Hardy and Krause [Niederreiter 1992].
Thus, the maximum integration error is directly proportional to the discrepancy, provided
that the variation V x (f) isfinite. By finding low-discrepancy points sets and sequences,
we can ensure that the integration error is small.

It is important to note that for dimensions s > 2, the variation Vy x(f) is infinite
whenever f isdiscontinuous.” This severely limitsthe useful ness of these boundsin com-
puter graphics, where discontinuitiesare common. Also notethat since Vi i (f) istypically

"More precisely, Vi (f) = oo whenever f is discontinuous along a surface that is not perpendicular to
oneof the s coordinate axes. In general, notethat f must beat least s timesdifferentiablein order for Vi i (f)
to be bounded in terms of the partial derivativesof f. That is, letting M be an upper bound on the magnitude
of al partia derivatives of degree at most s, then Vi (f) < ¢M where the constant ¢ depends only on s
[Niederreiter 1992].
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harder to evaluate than the original integral, these worst-case bounds are not useful for es-
timating or bounding the error in practice.

2.6.4.2 Low-discrepancy points setsand sequences

A low-discrepancy sequence is an infinite sequence of points x1, x», . . . such that the star

discrepancy is
Dy(P) = O (7(10%\[)3)
for any prefix P = {z1,...,xx}. (Notethat P isactualy amultiset, i.e. the multiplicity of
the elements matters.) Thisresult is achieved by a number of known constructions, and it
iswidely believed to be the best possible [Niederreiter 1992]. However, it should be noted
that the best current lower bound for an arbitrary dimension s isonly
Di(P) > Cf. 8N

i.e. there isasignificant gap between these bounds.

If we drop the requirement that P is a prefix of an infinite sequence, the discrepancy
can be improved dlightly. A low-discrepancy point set is defined to be a multiset P =
{z1,...,xy} for which

s—1
Di(P) = O (Lg ]]\i) > .
(More precisely, this should be the definition of a low-discrepancy point set construction,
since the bound does not make sense when applied to asingle point set P.)

Combining these bounds with the Koksma-Hlawkainequality, the error of quasi-Monte
Carlo integration is a most O((log N)*~'/N) using a low-discrepancy point set, or
O((log N)*/N) using a prefix of alow-discrepancy sequence.

Note that these bounds are of questionable value unless N isvery large, since (log N)*
is much larger than NV for typical values of N and s. In particular, notice that the function
(log N)*/N is monotonically increasing for N < e* (i.e. the larger the sample size, the
worse the error bound). In fact, we should not expect these error bounds to be meaningful
until (log N)* < N at thevery least, since otherwise the error bound isworse than it would
befor N = 2. To get an idea of how large NV must be, consider the case s = 6. It iseasy
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to check that (log N)*/N > (log2)®/2 for al N < 10% and thus we should not expect
meaningful error bounds until /V is substantially larger than this.

However, these error bounds are overly pessimistic in practice. Low-discrepancy se-
guences often give better results than standard Monte Carlo even when N isfairly small,
provided that the integrand is reasonably well behaved.

2.6.4.3 Halton sequences and Hammer sley points

We now discuss several well-known constructions for low-discrepancy points sets and se-
quences. In one dimension, the radical inverse sequence x; = ¢,(i) is obtained by first
writing the base-b expansion of i:

i= 3 digbt,

k>0
and then reflecting the digits around the decimal point:
ou(i) = Y dipb™'7F.
k>0

The specia case when b = 2 iscalled the van der Corput sequence,

) ' o) o

co| ot
ol W

co|

3
) 47

DO |
e

The discrepancy of the radical-inverse sequenceis O((log N)/N) in any base b (although
the implied constant increases with b).

To obtain alow-discrepancy sequence in several dimensions, we use a different radical
inverse sequence in each dimension:

i = (@b, (1), Doy (1), - - -, Pb, (7))

where the bases b; are all relatively prime. The classic example of this construction is the
Halton sequence, where the b; are chosen to be thefirst s primes:

Ty = (¢2(i>7 ¢3(i>7 ¢5(i), R ¢ps(i>> .

The Halton sequence has a discrepancy of O((log N)°/N).
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If the number of sample points /V isknownin advance, thisdiscrepancy can beimproved
dightly by using equally spaced pointsi/N in the first dimension. The result is known as
the Hammer sley point set:

Ty = (i/N7 ¢2(i), ¢3(i), R ¢p5_1(i>>

where p; denotes the i-th prime as before. The discrepancy of the Hammersley point set is
O((log N)*=!/N).

2.6.44 (t,m,s)-netsand (t, s)-sequences

Although discrepancy isauseful measureof theirregularity of distribution of aset of points,
it does not aways accurately predict which sequences will work best for numerical integra-
tion. Recently there has been a great deal of interest in (¢, m, s)-nets and (¢, s)-sequences,
which define theirregularity of distributionin adlightly different way. Let F' be an elemen-
tary interval in the base b, which is simply an axis-aligned box of the form

S ort: ti+1
E:H{b_’if’ ]b’ff)

i=1

where the exponents &; > 0 areintegers, and 0 < t; < b% — 1. In other words, each
dimension of the box must be a non-positive power of b, and the box must be aligned to
an integer multiple of its size in each dimension. The volume of an elementary interval is
clearly

ME) = b =

A (0,m, s)-net in base b is now defined to be a point set P of size N = ™, such that
every elementary interval of volume 1/b~"™ contains exactly one point of P. Thisimplies
that a (0, m, s)-net is distributed as evenly as possible with respect to such intervals. For
example, supposethat P is (0,4, 2)-netin base 5. Then P would contain N = 625 points
in the unit square [0, 1]%, such that every elementary interval of size 1 x 1/625 contains a
point of P. Similarly, al theintervalsof size1/5 x 1/125,1/25 x 1/25,1/125 x 1/5, and
1/625 x 1 would contain exactly one point of P.
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The more genera notion of a (¢, m, s)-net is obtained by relaxing this definition some-
what. Rather than requiring every box of size b= to contain exactly one point, we require
every box of size b'~™ to contain exactly v' points. Clearly, smaller values of ¢ are better.
The reason for alowing ¢ > 0 isto facilitate the construction of such sequences for more
values of b and s. (In particular, (0, m, s)-netsfor m > 2 can only exisswhen s < b + 1
[Niederreiter 1992].)

A (t, s)-sequence is then defined to be an infinite sequence x4, -, . . . such that for all
m > 0 and k£ > 0, the subsequence

Tibmyly -y Lppm+l

isa (t,m,s)-net in the base b. In particular, every prefix xy,...,zy of Size N = "
isa (t,m, s)-net. Explicit constructions of such sequences for various values of b and s
have been proposed by Sobol’, Faure, Niederreiter, and Tezuka (see Niederreiter [1992] and
Tezuka [1995]).

Every (¢, s)-sequence is a low-discrepancy sequence, and every (¢, m, s)-net is alow-
discrepancy points set (provided that ¢ is held fixed while m is increased). Thus these
constructions have the same worst-case integration bounds as for the Halton sequences
and Hammersley points. However, note that (t, s)-sequences and (¢, m, s)-nets often work
much better in practice, because the discrepancy is lower by a significant constant factor
[Niederreiter 1992].

It isinteresting to compare the equidistribution propertiesof (¢, m, s)-netsto orthogonal
array sampling. For simplicity let t = 0, and let A be an orthogona array of strength m.
Then in the terminology of (¢, m, s)-nets, orthogonal array sampling ensures that there is
one sample in each elementary interval E of volume 1/0™, where E hasm sides of length
1/band al other sidesof length one. The Latin hypercube extension of Tang [1993] ensures
that in addition, thereisone samplein each e ementary interval E that hasone side of length
1/b™ and al other of length one. Thusthe 1- and m-dimensional projectionsare maximally
stratified. For comparison, the (0, m, s)-net not only achieves both of these properties, it
also ensures that there is one sample in every other kind of elementary interval of volume
1/b™, so that the projections of dimension 2, 3, ..., ¢ — 1 are also stratified as well as pos-
sible.
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2.6.45 Randomly permuted (t, m, s)-netsand (t, s)-sequences

A significant disadvantage of quasi-Monte Carlo methodsisthat the samplelocationsare de-
terministic. In computer graphics, thisleadsto significant aliasing artifacts[Mitchell 1992].
It also makesit difficult to compute error estimates, since unlike with Monte Carlo methods
we cannot simply take several independent samples.

These difficulties can be resolved by using randomly permuted (¢, m, s)-netsand (¢, s)-
sequences[Owen 1995b] (also called scrambled netsand sequences). These are obtained by
applying random permutations to the digits of ordinary (¢, m, s)-netsand (t, s)-sequences,
in such away that their equidistribution properties are preserved [Owen 1995b]. The idea
is straightforward to implement, although its analysisis more involved.

Scrambled nets have several advantages. Most importantly, the resulting estimators are
unbiased, since the sample points are uniformly distributed over the domain [0, 1]°. This
makes it possible to obtain unbiased error estimates by taking several independent random
samples (e.g. using different digit permutations of the same origina (¢, m, s)-net). (See
Owen [19974] for additional discussion of variance estimates.) In the context of computer
graphics, scrambled nets also provide a way to eliminate the systematic aliasing artifacts
typically encountered with quasi-Monte Carlo integration.

Second, it is possible to show that for smooth functions, scrambled nets lead to a vari-

Vi = 0 (M) ,

ance of
N3

and thus an expected error of O((log V)©*~1/2N=3/2) in probability [Owen 1997b]. This
isan improvement over both the Monte Carlo rate of O(N~'/2) and the quasi-Monte Carlo
rate of O((log N)*~'N~1). Inal cases, these bounds apply to a worst-case function f (of
sufficient smoothness), but note that the quasi-Monte Carlo rate uses a deterministic set of
points while the other bounds are averages over random choices made by the sampling al-
gorithm.

Scrambled nets can improve the variance over ordinary Monte Carlo even when the
function f is not smooth [Owen 1997b]. With respect to the analysis of variance decom-
position described above, scrambled nets provide the greatest improvement on the compo-
nents f;; where the number of variables |U| is small. These functions f;; can be smooth
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even when f itself is not (due to integration over the variablesin S — U), leading to fast
convergence on these components.

2.6.4.6 Discussion

The convergence rates of quasi-Monte Carlo methods are rarely meaningful in computer
graphics, due to smoothness requirements on the integrand and the relatively small sample
sizesthat are typically used. Other problemsinclude the difficulty of estimating the varia-
tion Vi (f), and the fact that (log NV)* ! istypicaly much larger than N in practice. The
lack of randomnessin quasi-Monte Carlo methodsisadistinct disadvantage, sinceit causes
aliasing and precludes error estimation.

Hybrids of Monte Carlo and quasi-Monte Carlo seem promising, such as the scrambled
(t, m, s)-nets described above. Although such methods do not necessarily work any bet-
ter than standard Monte Carlo for discontinuous integrands, at least they are not worse. In
particular, they do not introduce aiasing artifacts, and error estimates are available.

Keller [1996, 1997] has applied quasi-Monte Carlo methods to the radiosity problem
(a specia case of the light transport problem where all surfaces are diffuse). He uses a
particle-tracing algorithm (similar to Pattanaik & Mudur [1993]), except that the directions
for scattering are determined by aHalton sequence. He hasreported a convergence rate that
isdlightly better than standard Monte Carlo on simpletest scenes. The main benefit appears
to be due to the sampling of the first four dimensions of each random walk (which control
the selection of theinitial point on alight source and the direction of emission).

2.7 Variancereduction I11: Adaptive sample placement

A third family of variance reduction methodsis based on the idea of adaptively controlling
the sampledensity, in order to place more sampleswherethey are most useful (e.g. wherethe
integrand is large or changes rapidly). We discuss two different approaches to doing this.
One is adaptive sampling, which can introduce bias unless specia precautions are taken.
The other approach consists of two closely related techniques called Russian roulette and
splitting, which do not introduce bias and are especially useful for light transport problems.
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2.7.1 Adaptive sampling

The idea of adaptive sampling (also called sequential sampling) is to take more samples
wheretheintegrand hasthe most variation. Thisisdone by examining the samplesthat have
been taken so far, and using this information to control the placement of future samples.
Typically this involves computing the variance of the samplesin a given region, which is
then refined by taking more samplesif the variance exceeds agiven threshold. A number of
such techniques have been proposed in graphics for image sampling (for example, see Lee
et al. [1985], Purgathofer [1986], Kajiya[1986], [Mitchell 1987], Painter & Sloan [1989]).

Like importance sampling, the goal of adaptive sampling is to concentrate samples
where they will do the most good. However, there are two important differences. First, im-
portance sampling attempts to place more samplesin regions where the integrand is large,
while adaptive sampling attempts to places more samples where the variance is large. (Of
course, with adaptive sampling we are freeto use other criteriaaswell.) A second important
differenceis that with adaptive sampling, the sample density is changed “on the fly” rather
than using a priori information.

The main disadvantage of adaptive sampling is that it can introduce bias, which in
turn can lead to image artifacts. Bias can be avoided using two-stage sampling [Kirk &
Arvo 1991], which consists of first drawing a small sample of size n from arepresentative
region R C §2, and then using this information to determine the sample size NV for the re-
maining portion Q@ — R of the domain.2 Although this technique eliminates bias, it also
eliminates some of the advantages of adaptive sampling, since it cannot react to unusual
samples encountered during the second stage of sampling.

Another problem with adaptive sampling is that it is not very effective for high-
dimensiona problems. The same problems are encountered as with stratified sampling:
there are too many possible dimensionsto refine. For example, if we split the region to be
refined into two pieces along each axis, there will be 2° new regions to sample. If most of
the sampling error is due to variation along only one or two of these axes, the refinement
will be very inefficient.

8Alternatively, two samplesof sizen and N could be drawn over the entire domain, wherethe first sample
is used only to determine the value of NV and is then discarded.
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2.7.2 Russian roulette and splitting

Russian roulette and splitting are two closely related techniquesthat are often used in parti-
cletransport problems. Their purposeisto decrease the sample density where the integrand
issmall, and increase it where the integrand is large. Unlike adaptive sampling, however,
these techniques do not introduce any bias. The applications of these methods in computer
graphics have been described by Arvo & Kirk [1990].

Russianroulette. Russian rouletteisusually applied to estimatorsthat are asum of many
terms:
F=FK+--+Fy.

For example, F' might represent the radiance reflected from a surface along a particular
viewing ray, and each F; might represent the contribution of a particular light source.

The problem with this type of estimator is that typically most of the contributions are
very small, and yet all of the F; areequally expensiveto evaluate. The basicideaof Russian
roulette is to randomly skip most of the eval uations associated with small contributions, by
replacing these F; with new estimators of the form

F =

(2

i F; with probability ¢; ,
0 otherwise.

The evaluation probability ¢; is chosen for each F; separately, based on some convenient
estimate of its contribution. Notice that the estimator F is unbiased whenever F; is, since

E[F]] = Qi'éE[E]‘f‘(l—qi)'O
— E[F].

Obviously this technique increases variance; it is basically the inverse of the expected
values method described earlier. Nevertheless, Russian roulette can still increase efficiency,
by reducing the average time required to evaluate F'.

For exampl e, supposethat each F; representsthe contribution of aparticular light source

to the radiance reflected from a surface. To reduce the number of visibility tests using Rus-
sian roulette, we first compute a tentative contribution ¢; for each F; by assuming that the
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light sourceisfully visible. Then afixed threshold 4 istypically chosen, and the probabili-
tiesq; are set to
¢; = min(1,¢;,/9).

Thus contributions larger than ¢ are always evaluated, while smaller contributions are ran-
domly skipped in away that does not cause bias.

Russian roulette is al so used to terminate the random walks that occur particle transport
calculations. (Thiswas the original purpose of the method, as introduced by Kahn — see
[Hammersley & Handscomb 1964, p. 99].) Similar to the previous example, the ideaisto
randomly terminate the walks whose estimated contributions are relatively small. That is,
given the current walk xyx; - - - x;, the probability of extending it is chosen to be propor-
tional to the estimated contribution that would be obtai ned by extending the path further, i.e.
the contribution of pathsof theformx - - - x;» where &’ > k. Thishasthe effect of terminat-
ing walks that have entered unproductive regions of the domain. In computer graphics, this
technique is used extensively in ray tracing and Monte Carlo light transport calcul ations.

Splitting. Russianrouletteisclosely related to splitting, atechniquein which an estimator
F;; isreplaced by one of the form

| =

k
ro_
F; = Fij,
=1

?N

[~

J

wherethe F; ; areindependent samplesfrom F;. Aswith Russian roulette, the splitting fac-
tor k is chosen based on the estimated contribution of the sample F;. (A larger estimated
contribution generally correspondsto alarger valueof £.) It iseasy to verify that thistrans-
formation isunbiased, i.e.

E[F]] = E[F].

2

In the context of particle transport calculations, this has the effect of splitting a single
particle into k& new particles which follow independent paths. Each particle is assigned a
weight that isafraction 1 /£ of theweight of the original particle. Typically thistechniqueis
applied when a particle enters a high-contribution region of thedomain, e.g. if wearetrying
to measure |eakage through areactor shield, then splitting might be applied to neutrons that
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have aready penetrated most of the way through the shield.

The basic idea behind both of these techniques is the same: given the current state
XX - - - X5, Of a random walk, we are free to use any function of this state in deciding
how many samples of x; ., will be taken. If we predict that the contribution of the path
X - -+ X1 Will be low, then most of the time we will take no samples at all; while if the
contribution is high, we may decide to take several independent samples. If thisis applied
at every vertex, the resulting structure is atree of paths.

In general, Russian roulette and splitting can be applied to any process where each sam-
pleisdetermined by a sequence of random steps. We can use any prefix of this sequenceto
estimate the importance of the final sample. Thisisthen used to decide whether the current
state should be discarded (if theimportanceislow) or replicated (if theimportanceishigh).
Although this ideais superficialy similar to adaptive sampling, it does not introduce any
bias.

Russian roulette is an indispensable technique in transport calculations, since it allows
otherwise infinite random walks to be terminated without bias. Splitting is also useful if it
isjudiciously applied [Arvo & Kirk 1990]. In combination, these techniques can be very
effective at directing sampling effort into the most productive regions of the domain.

2.8 Variancereduction |V: Correlated estimators

Thelast family of variance reduction methodswe will discussisbased ontheideaof finding
two or more estimators whose values are correlated. So far these methods have not found
significant uses in graphics, so our discussion will be brief.

2.8.1 Antithetic variates

The idea of antithetic variatesisto find two estimators F; and F» whose values are nega
tively correlated, and add them. For example, supposethat thedesiredintegral is [ f(x) dx,
and consider the estimator

F=(fU)+f1-0))/2
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where U isuniformly distributed on [0, 1]. If thefunction f ismonotonically increasing (or
monotonically decreasing), then f(U) and f(1 — U) will be negatively correlated, so that
F will have lower variance than if the two samples were independent [Rubinstein 1981,
p. 135]. Furthermore, the estimator F' is exact whenever the integrand is alinear function
(i.e f(x) = ax + D).

This idea can be easily adapted to the domain [0, 1%, by considering pairs of sample
points of the form

Xlz(Ulj...,US) and XQZ(]_—UI,...,]_—US).

Again, this strategy isexact for linear integrands. If more than two samples are desired, the
domain can be subdivided into several rectangular regions €2;, and a pair of samples of the
form above can be taken in each region.

Antithetic variates of this type are most useful for smooth integrands, where f is ap-
proximately linear on each subregion 2;. For many graphics problems, on the other hand,
variance ismainly dueto discontinuities and singularities of theintegrand. These contribu-
tionstend to overwhelm any variance improvements on the smooth regions of the integrand,
so that antithetic variates are of limited usefulness.

2.8.2 Regression methods

Regression methods are a more advanced way to take advantage of severa correlated esti-
mators. Suppose that we are given several unbiased estimators F1, . . ., F), for the desired
quantity 7, and that the F; are correlated in someway (e.g. because they use different trans-
formations of the same random numbers, as in the antithetic variates example). The idea
is to take several samples from each estimator, and apply standard linear regression tech-
niquesin order to determine the best estimate for I that takes all sources of correlation into
account.

Specifically, the technique works by taking N samples from each estimator (where the
j-th samples from F; is denoted F; ;). We then compute the sample means
N
Y F; fori=1,...,n,

J=1

ji:
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and the sampling variance-covariance matrix V, asquare n x n array whose entries are

1 N

Vii = v 1 k;l (Fir = L) (Fjp — 1) -

Thefinal estimate F' isthen given by

F = (X*V!'X)"'X*V'I, (2.33)
where X* denotesthetransposeof X, X = [1...1]* isacolumnvector of lengthn, and I =
[f 1on. fn]* isthe column vector of sample means. Equation (2.33) isthe standard minimum-
variance unbiased linear estimator of the desired mean I, except that we have replaced the
true variance-covariance matrix V by an approximation V. Further details can be found in
Hammersley & Handscomb [1964].

Notethat thistechniqueintroduces some bias, dueto thefact that the same random sam-
ples are used to estimate both the sample means I; and the variance-covariance matrix en-
tries V; ; (which are used to weight the 7;). This bias could be avoided by using different
random samples for these two purposes (of course, thiswould increase the cost).

The main problem with regression methodsisin finding a suitable set of correlated esti-
mators. If the integrand has discontinuities or singularities, then simple transformations of
theform f(U) and f(1 — U) will not produce a significant amount of correlation. Another
problem isthat this method requires that a substantial number of samples be taken, in order
to estimate the covariance matrix with any reasonable accuracy.
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