
Chapter 2

Monte Carlo Integration

This chapter gives an introduction to Monte Carlo integration. The main goals are to review

some basic concepts of probability theory, to define the notation and terminology that we

will be using, and to summarize the variance reduction techniques that have proven most

useful in computer graphics.

Good references on Monte Carlo methods include Kalos & Whitlock [1986], Hammer-

sley & Handscomb [1964], and Rubinstein [1981]. Sobol’ [1994] is a good starting point

for those with little background in probability and statistics. Spanier & Gelbard [1969] is

the classic reference for Monte Carlo applications to neutron transport problems; Lewis &

Miller [1984] is a good source of background information in this area. For quasi-Monte

Carlo methods, see Niederreiter [1992], Beck & Chen [1987], and Kuipers & Niederreiter

[1974].

2.1 A brief history

Monte Carlo methods originated at the Los Alamos National Laboratory in the early years

after World War II. The first electronic computer in the United States had just been com-

pleted (the ENIAC), and the scientists at Los Alamos were considering how to use it for the

design of thermonuclear weapons (the H-bomb). In late 1946 Stanislaw Ulam suggested

the use of random sampling to simulate the flight paths of neutrons, and John von Neumann
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developed a detailed proposal in early 1947. This led to small-scale simulations whose re-

sults were indispensable in completing the project. Metropolis & Ulam [1949] published a

paper in 1949 describing their ideas, which sparked to a great deal of research in the 1950’s

[Meyer 1956]. The name of the Monte Carlo method comes from a city in Monaco, famous

for its casinos (as suggested by Nick Metropolis, another Monte Carlo pioneer).

In isolated instances, random sampling had been used much earlier to solve numerical

problems [Kalos & Whitlock 1986]. For example, in 1777 the Comte de Buffon performed

an experiment in which a needle was dropped many times onto a board marked with equidis-

tant parallel lines. Letting L be the length of the needle and d > L be the distance between

the lines, he showed that the probability of the needle intersecting a line isp = 2L�d :
Many years later, Laplace pointed out that this could be used as a crude means of estimating

the value of �.

Similarly, Lord Kelvin used what we would now call a Monte Carlo method to study

some aspects of the kinetic theory of gases. His random number generator consisted of

drawing slips of paper out of a glass jar. The possibility of bias was a significant concern;

he worried that the papers might not be mixed well enough due to static electricity. Another

early Monte Carlo experimenter was Student (an alias for W. S. Gosset), who used random

sampling as an aid to guessing the form of his famous t-distribution.

An excellent reference on the origins of Monte Carlo methods is the special issue of Los

Alamos Science published in memory of Stanislaw Ulam [Ulam 1987]. The books by Ka-

los & Whitlock [1986] and Hammersley & Handscomb [1964] also contain brief histories,

including information on the pre-war random sampling experiments described above.

2.2 Quadrature rules for numerical integration

In this section we explain why standard numerical integration techniques do not work very

well on high-dimensional domains, especially when the integrand is not smooth.



2.2. QUADRATURE RULES FOR NUMERICAL INTEGRATION 31

Consider an integral of the formI = Z
 f(x) d�(x) ; (2.1)

where 
 is the domain of integration, f : 
 ! IR is a real-valued function, and � is a

measure function on 
.1 For now, let the domain be the s-dimensional unit hypercube,
 = [0; 1]s ;
and let the measure function be d�(x) = dx1 � � �dxs ;
where xj denotes the j-th component of the point x = (x1; : : : ; xs) 2 [0; 1]s.

Integrals of this sort are often approximated using a quadrature rule, which is simply a

sum of the form Î = NXi=1wi f(xi) (2.2)

where the weights wi and sample locations xi are determined in advance. Common exam-

ples of one-dimensional quadrature rules include the Newton-Cotes rules (i.e. the midpoint

rule, the trapezoid rule, Simpson’s rule, and so on), and the Gauss-Legendre rules (see Davis

& Rabinowitz [1984] for further details). The n-point forms of these rules typically ob-

tain a convergence rate of O(n�r) for some integer r � 1, provided that the integrand has

sufficiently many continuous derivatives. For example, the error using Simpson’s rule isO(n�4), provided that f has at least four continuous derivatives [Davis & Rabinowitz 1984].

Although these quadrature rules typically work very well for one-dimensional integrals,

problems occur when extending them to higher dimensions. For example, a common ap-

proach is to use tensor product rules of the formÎ = nXi1=1 nXi2=1 � � � nXis=1 wi1wi2 � � �wis f(xi1 ; xi2 ; : : : ; xis)
where s is the dimension, and thewi and xi are the weights and sample locations for a given

1Familiar examples of measures include length, surface area, volume, and solid angle; see Halmos [1950]
for an introduction to measure theory.
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one-dimensional rule. This method has the same convergence rate as the one-dimensional

rule on which it is based (let this be O(n�r)), however it uses a much larger number of

sample points (namely N = ns). Thus in terms of the total number of samples, the con-

vergence rate is only O(N�r=s). This implies that the efficiency of tensor product rules

diminishes rapidly with dimension, a fact that is often called the curse of dimensionality

[Niederreiter 1992, p. 2].

The convergence rate can be increased by using a one-dimensional rule with a larger

value of r, however this has two problems. First, the total number of samples N = ns
can become impractical in high dimensions, since n increases linearly with r (specifically,n � r=2). For example, two-point Guass quadrature requires at least 2s samples, while

Simpson’s rule requires at least 3s samples. Second, faster convergence rates require more

smoothness in the integrand. For example, if the function f has a discontinuity, then the

convergence rate of any one-dimensional quadrature rule is at best O(n�1) (assuming that

the location of the discontinuity is not known in advance), so that the corresponding tensor

product rule converges at a rate no better than O(N�1=s).
Of course, not all multidimensional integration rules take the form of tensor products.

However, there is an important result which limits the convergence rate of any determinis-

tic quadrature rule, called Bakhvalov’s theorem [Davis & Rabinowitz 1984, p. 354]. Essen-

tially, it says that given any s-dimensional quadrature rule, there is function f with r con-

tinuous and bounded derivatives, for which the error is proportional to N�r=s. Specifically,

let CrM denote the set of functions f : [0; 1]s ! IR such that����� @rf@(x1)a1 � � �@(xs)as ����� � M
for all a1; : : : ; as with

P ai = r, recalling that xj denotes the j-th coordinate of the vectorx. Now consider any N -point quadrature ruleÎ(f) = NXi=1 wi f(xi)
where each xi is a point in [0; 1]s, and suppose that we wish to approximate some integralI(f) = Z[0;1]s f(x1; : : : ; xs) dx1 � � � dxs :
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Then according to Bakhvalov’s theorem, there is a function f 2 CrM such that the error is���Î(f)� I(f)��� > k �N�r=s ;
where the constant k > 0 depends only on M and r. Thus even if f has a bounded, contin-

uous first derivative, no quadrature rule has an error bound better than O(N�1=s).
2.3 A bit of probability theory

Before describing Monte Carlo integration, we review a few concepts from probability and

statistics. See Pitman [1993] for an introduction to probability, and Halmos [1950] for an

introduction to measure theory. Brief introductions to probability theory can also be found

in the Monte Carlo references cited above.

2.3.1 Cumulative distributions and density functions

Recall that the cumulative distribution function of a real-valued random variable X is de-

fined as P (x) = Pr fX � xg ;
and that the corresponding probability density function isp(x) = dPdx (x)
(also known as the density function or pdf). This leads to the important relationshipPr f� � X � �g = Z �� p(x) dx = P (�)� P (�) : (2.3)

The corresponding notions for a multidimensional random vector (X1; : : : ; Xs) are the

joint cumulative distribution functionP (x1; : : : ; xs) = Pr fX i � xi for all i = 1; : : : ; sg
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and the joint density functionp(x1; : : : ; xs) = @sP@x1 � � � @xs (x1; : : : ; xs) ;
so that we have the relationshipPr fx 2 Dg = ZD p(x1; : : : ; xs) dx1 � � � dxs (2.4)

for any Lebesgue measurable subset D � IRs.
More generally, for a random variable X with values in an arbitrary domain 
, its prob-

ability measure (also known as a probability distribution or distribution) is a measure func-

tion P such that P (D) = Pr fX 2 Dg
for any measurable set D � 
. In particular, a probability measure must satisfy P (
) = 1.

The corresponding density function p is defined as the Radon-Nikodym derivativep(x) = dPd� (x) ;
which is simply the function p that satisfiesP (D) = ZD p(x) d�(x) : (2.5)

Thus, the probability that X 2 D can be obtained by integrating p(x) over the given regionD. This should be compared with equations (2.3) and (2.4), which are simply special cases

of the more general relationship (2.5).

Note that the density function p depends on the measure � used to define it. We will

use the notation p = P� to denote the density with respect to a particular measure �, corre-

sponding to the notation ux = @u = @x that is often used in analysis. This notation will be

useful when there are several relevant measure function defined on the same domain 
 (for

example, the solid angle and projected solid angle measures that will be described in Chap-

ter 3). See Halmos [1950] for further information on measure spaces and Radon-Nikodym

derivatives.
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2.3.2 Expected value and variance

The expected value or expectation of a random variable Y = f(X) is defined asE[Y ] = Z
 f(x) p(x) d�(x) ; (2.6)

while its variance is V [Y ] = Eh(Y � E[Y ])2i : (2.7)

We will always assume that expected value and variance of every random variable exist (i.e.

the corresponding integral is finite).

From these definitions, it is easy to see that for any constant a we haveE[a Y ] = aE[Y ] ;V [a Y ] = a2 V [Y ] :
The following identity is also useful:E " NXi=1 Yi# = NXi=1E[Yi] ;
which holds for any random variables Y1; : : : ; YN . On the other hand, the following identity

holds only if the variables Yi are independent:V " NXi=1 Yi# = NXi=1 V [Yi] :
Notice that from these rules, we can derive a simpler expression for the variance:V [Y ] = E[(Y � E[Y ])2] = E[Y 2]� E[Y ]2 :

Another useful quantity is the standard deviation of a random variable, which is simply

the square root of its variance: �[Y ] = qV [Y ] :
This is also known as the RMS error.
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2.3.3 Conditional and marginal densities

Let X 2 
1 and Y 2 
2 be a pair of random variables, so that(X; Y ) 2 

where 
 = 
1 � 
2. Let P be the joint probability measure of (X; Y ), so that P (D) rep-

resents the probability that (X; Y ) 2 D for any measurable subset D � 
. Then the corre-

sponding joint density function p(x; y) satisfiesP (D) = ZD p(x; y) d�1(x) d�2(y) ;
where �1 and �2 are measures on 
1 and 
2 respectively. Hereafter we will drop the mea-

sure function notation, and simply writeP (D) = ZD p(x; y) dx dy :
The marginal density function of X is now defined asp(x) = Z
2 p(x; y) dy ; (2.8)

while the conditional density function p(y jx) is defined asp(y jx) = p(x; y) = p(x) : (2.9)

The marginal density p(y) and conditional density p(x j y) are defined in a similar way,

leading to the useful identityp(x; y) = p(y jx) p(x) = p(x jy) p(y) :
Another important concept is the conditional expectation of a random variable G =g(X; Y ), defined asE[G jx] = Z
2 g(x; y) p(y jx) dy = R g(x; y) p(x; y) dyR p(x; y) dy : (2.10)

We will also use the notation EY [G] for the conditional expectation, which emphasizes the

fact that Y is the random variable whose density function is being integrated.
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There is a very useful expression for the variance of G in terms of its conditional expec-

tation and variance, namely V [G] = EXVYG+ VXEYG : (2.11)

In other words, V [G] is the mean of the conditional variance, plus the variance of the con-

ditional mean. To prove this identity, recall thatV [F ] = E[F 2]� E[F ]2 ;
and observe thatEXVYG+ VXEYG = EX nEY [G2]� [EYG]2o+ EX [EYG]2 � [EXEYG]2= EXEY [G2]� [EXEYG]2= V [G] :
We will use this identity below to analyze certain variance reduction techniques, including

stratified sampling and the use of expected values.

2.4 Basic Monte Carlo integration

The idea of Monte Carlo integration is to evaluate the integralI = Z
 f(x) d�(x)
using random sampling. In its basic form, this is done by independently sampling N pointsX1; : : : ; XN according to some convenient density function p, and then computing the es-

timate FN = 1N NXi=1 f(Xi)p(Xi) : (2.12)

Here we have used the notation FN rather than Î to emphasize that the result is a random

variable, and that its properties depend on how many sample points were chosen. Note that

this type of estimator was first used in the survey sampling literature (for discrete rather

than continuous domains), where it is known as the Horvitz-Thompson estimator [Horvitz
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& Thompson 1952].

For example, suppose that the domain is 
 = [0; 1]s and that the samples Xi are chosen

independently and uniformly at random. In this case, the estimator (2.12) reduces toFN = 1N NXi=1 f(Xi) ;
which has the same form as a quadrature rule except that the sample locations are random.

It is straightforward to show the estimatorFN gives the correct result on average. Specif-

ically, we have E[FN ] = E " 1N NXi=1 f(Xi)p(Xi)#= 1N NXi=1 Z
 f(x)p(x) p(x) d�(x)= Z
 f(x) d�(x)= I ;
provided that f(x)=p(x) is finite whenever f(x) 6= 0.

Advantages of Monte Carlo integration. Monte Carlo integration has the following ma-

jor advantages. First, it converges at a rate of O(N�1=2) in any dimension, regardless of the

smoothness of the integrand. This makes it particularly useful in graphics, where we often

need to calculate multi-dimensional integrals of discontinuous functions. The convergence

rate is discussed in Section 2.4.1 below.

Second, Monte Carlo integration is simple. Only two basic operations are required,

namely sampling and point evaluation. This encourages the use of object-oriented black

box interfaces, which allow great flexibility in the design of Monte Carlo software. In the

context of computer graphics, for example, it is straightforward to include effects such mo-

tion blur, depth of field, participating media, procedural surfaces, and so on.

Third, Monte Carlo is general. Again, this stems from the fact that it is based on ran-

dom sampling. Sampling can be used even on domains that do not have a natural correspon-

dence with [0; 1]s, and are thus not well-suited to numerical quadrature. As an example of
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this in graphics, we observe that the light transport problem can be naturally expressed as

an integral over the space of all transport paths (Chapter 8). This domain is technically an

infinite-dimensional space (which would be difficult to handle with numerical quadrature),

but it is straightforward to handle with Monte Carlo.

Finally, Monte Carlo methods are better suited than quadrature methods for integrands

with singularities. Importance sampling (see Section 2.5.2) can be applied to handle such

integrands effectively, even in situations where there is no analytic transformation to remove

the singularity (see the discussion of rejection sampling and the Metropolis method below).

In the remainder of this section, we discuss the convergence rate of Monte Carlo integra-

tion, and give a brief review of sampling techniques for random variables. We then discuss

the properties of more general kinds of Monte Carlo estimators.

2.4.1 Convergence rates

To determine the convergence rate of Monte Carlo integration, we start by computing the

variance of FN . To simplify the notation let Yi = f(Xi)=p(Xi), so thatFN = 1N NXi=1 Yi :
Also let Y = Y1. We then haveV [Y ] = E[Y 2]� E[Y ]2 = Z
 f 2(x)p(x) d�(x) � I2 :
Assuming that this quantity is finite, it is easy to check that the variance of V [FN ] decreases

linearly with N :V [FN ] = V " 1N NXi=1 Yi# = 1N2 V " NXi=1 Yi# = 1N2 NXi=1 V [Yi] = 1N V [Y ] (2.13)

where we have used V [a Y ] = a2 V [Y ] and the fact that the Yi are independent samples.

Thus the standard deviation is �[FN ] = 1pN �Y ;
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which immediately shows that the RMS error converges at a rate of O(N�1=2).
It is also possible to obtain probabilitistic bounds on the absolute error, using Cheby-

chev’s inequality: Pr 8<:jF � E[F ]j �  V [F ]� !1=29=; � � ;
which holds for any random variable F such that V [F ] < 1. Applying this inequality to

the variance (2.13), we obtainPr 8<:jFN � Ij � N�1=2  V [Y ]� !1=29=; � � :
Thus for any fixed threshold �, the absolute error decreases at the rate O(N�1=2).

Tighter bounds on the absolute error can be obtained using the central limit theorem,

which states thatFN converges to a normal distribution in the limit asN !1. Specifically,

it states that limN!1 Pr ( 1N NXi=1 Yi � E[Y ] � t �[Y ]pN ) = 1p2� Z t�1 e�x2=2 dx ;
where the expression on the right is the (cumulative) normal distribution. This equation can

be rearranged to givePr fjFN � Ij � t �[FN ]g = q2=� Z 1t e�x2=2 dx :
The integral on the right decreases very quickly with t; for example when t = 3 the right-

hand side is approximately 0.003. Thus, there is only about a 0.3% chance thatFN will differ

from its mean by more than three standard deviations, provided that N is large enough for

the central limit theorem to apply.

Finally, note that Monte Carlo integration will converge even if the variance V [Y ] is

infinite, provided that the expectation E[Y ] exists (although convergence will be slower).

This is guaranteed by the strong law of large numbers, which states thatPr ( limN!1 1N NXi=1 Yi = E[Y ]) = 1 :
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2.4.2 Sampling random variables

There are a variety of techniques for sampling random variables, which we briefly review

here. Further details can be found in the references given in the introduction.

One method is the transformation or inversion method. In one dimension, suppose that

we want to sample from a density function p. Letting P be the corresponding cumulative

distribution function, the inversion method consists of letting X = P�1(U), where U is

a uniform random variable on [0; 1]. It is easy to verify that X has the required density p.

This technique can easily be extended to several dimensions, either by computing marginal

and conditional distributions and inverting each dimension separately, or more generally

by deriving a transformation x = g(u) with an appropriate Jacobian determinant (such thatj det(Jg(x))j�1 = p(x), where Jg denotes the Jacobian of g).

The main advantage of the transformation technique is that it allows samples to be strat-

ified easily, by stratifying the parameter space [0; 1]s and mapping these samples into 
 (see

Section 2.6.1). Another advantage is that the technique has a fixed cost per sample, which

can easily be estimated. The main disadvantage is that the density p(x) must be integrated

analytically, which is not always possible. It is also preferable for the cumulative distribu-

tion to have an analytic inverse, since numerical inversion is typically slower.

A second sampling technique is the rejection method, due to von Neumann [Ulam 1987].

The idea is to sample from some convenient density q such thatp(x) � M q(x)
for some constant M . Generally, the samples from q are generated by the transformation

method. We then apply the following procedure:

function REJECTION-SAMPLING()

for i = 1 to 1
Sample Xi according to q.

Sample Ui uniformly on [0; 1].
if Ui � p(Xi) = (M q(Xi))

then return Xi
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It is easy to verify that this procedure generates a sample X whose density function is p.

The main advantage of rejection sampling is that it can be used with any density func-

tion, even those that cannot be integrated analytically. However, we still need to be able to

integrate some functionMq that is an upper bound for p. Furthermore, this bound should be

reasonably tight, since the average number of samples that must be taken before acceptance

is M . Thus, the efficiency of rejection sampling can be very low if it is applied naively.

Another disadvantage is that it is difficult to apply with stratification: the closest approxi-

mation is to stratify the domain of the random vector (X;U), but the resulting stratification

is not as good as the transformation method.

A third general sampling technique is the Metropolis method (also known as Markov

chain Monte Carlo), which will be described in Chapter 11. This technique is useful for

sampling arbitrary densities on high-dimensional spaces, and has the advantage that the

density function does not need to be normalized. The main disadvantage of the Metropolis

method is that the samples it generates are not independent; in fact they are highly corre-

lated. Thus, it is most useful when we need to generate a long sequence of samples from

the given density p.

Finally, there are various techniques for sampling from specific distributions (see Rubin-

stein [1981]). For example, if X is the maximum of k independent uniform random vari-

ables U1; : : : ; Uk, then X has the density function p(x) = kxk�1 (where 0 � x � 1). Such

“tricks” can be used to sample many of the standard distributions in statistics, such as the

normal distribution [Rubinstein 1981].

2.4.3 Estimators and their properties

So far we have only discussed one way to estimate an integral using random samples,

namely the standard technique (2.12). However, there are actually a great variety of tech-

niques available, which are encompassed by the concept of a Monte Carlo estimator. We

review the various properties of estimators and why they are desirable.

The purpose of a Monte Carlo estimator is to approximate the value of some quantity

of interest Q (also called the estimand). Normally we will define Q as the value of a given
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integral, although more general situations are possible (e.g. Q could be the ratio of two in-

tegrals). An estimator is then defined to be a function of the formFN = FN(X1; : : : ; XN) ; (2.14)

where theXi are random variables. A particular numerical value ofFN is called an estimate.

Note that the Xi are not necessarily independent, and can have different distributions.

Note that there are some differences in the standard terminology for computer graphics,

as compared to statistics. In statistics, the value of each Xi is called an observation, the

vector (X1; : : : ; XN) is called the sample, and N is called the sample size. In computer

graphics, on the other hand, typically each of the individual Xi is referred to as a sample,

and N is the number of samples. We will normally use the graphics conventions.

We now define a number of useful properties of Monte Carlo estimators. The quantityFN �Q is called the error, and its expected value is called the bias:�[FN ] = E[FN �Q] : (2.15)

An estimator is called unbiased if �[FN ] = 0 for all sample sizes N , or in other words ifE[FN ] = Q for all N � 1 : (2.16)

For example, the random variableFN = 1N NXi=1 f(Xi)p(Xi)
is an unbiased estimator of the integral I = R
 f(x) d�(x) (as we saw in Section 2.4).

An estimator is called consistent if the error FN �Q goes to zero with probability one,

or in other words if Pr � limN!1FN = Q� = 1 : (2.17)

For an estimator to be consistent, a sufficient condition is that the bias and variance both go

to zero as N is increased: limN!1�[FN ] = limN!1V [FN ] = 0 :
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In particular, an unbiased estimator is consistent as long as its variance decreases to zero asN goes to infinity.

The main reason for preferring unbiased estimators is that it is easier to estimate the

error. Typically our goal is to minimize the mean squared error (MSE), defined byMSE [F ] = E[(F �Q)2] (2.18)

(where we have dropped the subscriptN ). In general, the mean squared error can be rewrit-

ten as MSE [F ] = E[(F �Q)2]= E[(F � E[F ])2] + 2E[F � E[F ]](E[F ]�Q) + (E[F ]�Q)2= V [F ] + �[F ]2 ;
so that to estimate the error we must have an upper bound on the possible bias. In general,

this requires additional knowledge about the estimand Q, and it is often difficult to find a

suitable bound.

On the other hand, for unbiased estimators we haveE[F ] = Q, so that the mean squared

error is identical to the variance:MSE [F ] = V [F ] = E[(F � E[F ])2] :
This makes it far easier to obtain error estimates, by simply taking several independent sam-

ples. Letting Y1; : : : ; YN be independent samples of an unbiased estimator Y , and lettingFN = 1N NXi=1 Yi
as before (which is also an unbiased estimator), then the quantityV̂ [FN ] = 1N � 1 8<: 1N NXi=1 Y 2i ! �  1N NXi=1 Yi!29=;
is an unbiased estimator of the variance V [FN ] (see Kalos & Whitlock [1986]). Thus, error

estimates are easy to obtain for unbiased estimators.
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Notice that by taking many independent samples, the error of an unbiased estimator can

be made as small as desired, sinceV [FN ] = V [F1] =N :
However, this will also increase the running time by a factor of N . Ideally, we would like

to find estimators whose variance and running time are both small. This tradeoff is summa-

rized by the efficiency of a Monte Carlo estimator:�[F ] = 1V [F ]T [F ] (2.19)

where T [F ] is the time required to evaluate F . Thus the more efficient an estimator is, the

lower the variance that can be obtained in a given fixed running time.

2.5 Variance reduction I: Analytic integration

The design of efficient estimators is a fundamental goal of Monte Carlo research. A wide

variety of techniques have been developed, which are often simply called variance reduc-

tion methods. In the following sections, we describe the variance reduction methods that

have proven most useful in computer graphics.2 These methods can be grouped into sev-

eral categories, based around four main ideas:� analytically integrating a function that is similar to the integrand;� uniformly placing sample points across the integration domain;� adaptively controlling the sample density based on information gathered during sam-

pling; and� combining samples from two or more estimators whose values are correlated.

2Note that some variance reduction methods are useful only for one-dimensional integrals, or only for
smooth integrands (e.g. certain antithetic variates transformations [Hammersley & Handscomb 1964]). Since
these situations are usually better handled by numerical quadrature, we do not discuss such methods here.
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We start by discussing methods based on analytic integration. There are actually sev-

eral ways to take advantage of this idea, including the use of expected values, importance

sampling, and control variates. These are some of the most powerful and useful methods

for computer graphics problems.

Note that many variance reduction methods were first proposed in the survey sampling

literature, long before Monte Carlo methods were invented. For example, techniques such

as stratified sampling, importance sampling, and control variates were all first used in survey

sampling [Cochran 1963].

2.5.1 The use of expected values

Perhaps the most obvious way to reduce variance is to reduce the dimension of the sample

space, by integrating analytically with respect to one or more variables of the domain. This

idea is commonly referred to as the use of expected values or reducing the dimensionality.

Specifically, it consists of replacing an estimator of the formF = f(X; Y ) = p(X; Y ) (2.20)

with one of the form F 0 = f 0(X) = p(X) ; (2.21)

where f 0(x) and p(x) are defined byf 0(x) = Z f(x; y) dyp(x) = Z p(x; y) dy :
Thus, to apply this technique we must be able to integrate both f and pwith respect to y. We

also must be able to sample from the marginal density p(x), but this can be done by simply

generating (X; Y ) as before, and ignoring the value of Y .

The name of this technique comes from the fact that the estimator F 0 is simply the con-

ditional expected value of F :F 0 = EY "f(X; Y )p(X; Y ) #
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This makes the variance reduction easy to analyze. Recalling the identityV [F ] = EXVY F + VXEY F
from equation (2.11), and using the fact that F 0 = EY F , we immediately obtainV [F ]� V [F 0] = EXVY F :
This quantity is always non-negative, and represents the component of the variance of F
that was caused by the random sampling of Y (as one might expect).

The use of expected values is the preferred variance reduction technique, as long as it is

not too expensive to evaluate and sample the analytically integrated quantities. However,

note that if expected values are used for only one part of a larger calculation, then variance

can actually increase. Spanier & Gelbard [1969] give an example of this in the context of

neutron transport problems, by comparing the variance of the absorption estimator (which

records a sample only when a particle is absorbed) to that of the collision estimator (which

records the expected value of absorption at each collision along a particle’s path). They

show that there are conditions where each of these estimators can have lower variance than

the other.

2.5.2 Importance sampling

Importance sampling refers to the principle of choosing a density function p that is similar

to the integrand f . It is a well-known fact that the best choice is to let p(x) = cf(x), where

the constant of proportionality is c = 1R
 f(y) d�(y) (2.22)
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(to ensure that p integrates to one).3 This leads to an estimator with zero variance, sinceF = f(X)p(X) = 1c
for all sample points X .

Unfortunately this technique is not practical, since we must already know the value of

the desired integral in order to compute the normalization constant c. Nevertheless, by

choosing a density function p whose shape is similar to f , variance can be reduced. Typ-

ically this is done by discarding or approximating some factors of f in order to obtain a

function g that can be integrated analytically, and then letting p / g. It is also important

to choose p such that there is a convenient method of generating samples from it. For low-

dimensional integration problems, a useful strategy is to construct a discrete approximation

of f (e.g. a piecewise constant or linear function). This can be done either during a sepa-

rate initialization phase, or adaptively as the algorithm proceeds. The integral of such an

approximation can be computed and maintained quite cheaply, and sampling can be done

efficiently by means of tree structures or partial sums.

In summary, importance sampling is one of the most useful and powerful techniques of

Monte Carlo integration. It is particularly helpful for integrands that have large values on a

relatively small part of the domain, e.g. due to singularities.

2.5.3 Control variates

With control variates, the idea is to find a function g that can be integrated analytically and

is similar to the integrand, and then subtract it. Effectively, the integral is rewritten asI = Z
 g(x) d�(x) + Z
 f(x)� g(x) d�(x) ;
and then sampled with an estimator of the formF = Z
 g(x) d�(x) + 1N NXi=1 f(Xi)� g(Xi)p(Xi)

3We assume that f is non-negative in this discussion. Otherwise the best choice is to let p / jf j, however
the variance obtained this way is no longer zero [Kalos & Whitlock 1986].
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where the value of the first integral is known exactly. (As usual p is the density function

from which the Xi are chosen.) This estimator will have a lower variance than the basic

estimator (2.12) wheneverV "f(Xi)� g(Xi)p(Xi) # � V "f(Xi)p(Xi) # :
In particular, notice that if g is proportional to p, then the two estimators differ only by a

constant, and their variance is the same. This implies that if g is already being used for

importance sampling (up to a constant of proportionality), then it is not helpful to use it as

a control variate as well.4 From another point of view, given some function g that is an

approximation to f , we must decide whether to use it as a control variate or as a density

function for importance sampling. It is possible to show that either one of these choice could

be the best, depending on the particular f and g. In general, if f � g is nearly a constant

function, then g should be used as a control variate; while if f=g is nearly constant, then g
should be used for importance sampling [Kalos & Whitlock 1986].

As with importance sampling, control variates can be obtained by approximating some

factors of f or by constructing a discrete approximation. Since there is no need to gener-

ate samples from g, such functions can be slightly easier to construct. However, note that

for g to be useful as a control variate, it must take into account all of the significant factors

of f . For example, consider an integral of the form f(x) = f1(x) f2(x), and suppose thatf1(x) represents the reflectivity of a surface at the point x, while f2(x) represents the in-

cident power per unit area. Without some estimate of the magnitude of f2, observe that f1
is virtually useless as a control variate. On the other hand, f1 can be used for importance

sampling without any difficulties.

Control variates have had very few applications in graphics so far (e.g. see Lafortune &

Willems [1995a]). One problem with the technique is the possibility of obtaining negative

sample values, even for an integrand that is strictly positive. This can lead to large relative

errors for integrals whose true value is close to zero (e.g. pixels in the dark regions of an

image). On the other hand, the method is straightforward to apply, and can potentially give

a modest variance reduction at little cost.

4See the discussion under Russian roulette below.
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2.6 Variance reduction II: Uniform sample placement

Another important strategy for reducing variance is to ensure that samples are distributed

more or less uniformly over the domain. We will examine several techniques for doing

this, namely stratified sampling, Latin hypercube sampling, orthogonal array sampling, and

quasi-Monte Carlo methods.

For these techniques, it is typically assumed that the domain is the s-dimensional unit

cube [0; 1]s. Other domains can be handled by defining an appropriate transformation of the

form T : [0; 1]s ! 
. Note that by choosing different mappings T , the transformed samples

can be given different density functions. This makes it straightforward to apply importance

sampling to the techniques described below.5

2.6.1 Stratified sampling

The idea of stratified sampling is to subdivide the domain 
 into several non-overlapping

regions 
1, : : :, 
n such that n[i=1
i = 
 :
Each region 
i is called a stratum. A fixed number of samples ni is then taken within each
i, according to some given density function pi.

For simplicity, assume that 
 = [0; 1]s and that pi is simply the constant function on 
i.
This leads to an estimate of the formF 0 = nXi=1 vi Fi (2.23)Fiwhere = 1ni niXj=1 f(Xi;j) : (2.24)

Here vi = �(
i) is the volume of region 
i, and each Xi;j is an independent sample from

5Note that if the desired density p(x) is complex, it may be difficult to find a transformationT that generates
it. This can be solved with rejection sampling, but the resulting samples will not be stratified as well.
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where �2i = V [f(Xi;j)] denotes the variance of f within 
i.
To compare this against unstratified sampling, suppose that ni = viN , where N is the

total number of samples taken. Equation (2.25) then simplifies toV [F 0] = 1N nXi=1 vi �2i :
On the other hand, the variance of the corresponding unstratified estimator is6V [F ] = 1N " nXi=1 vi �2i + nXi=1 vi(�i � I)2# ; (2.26)

where �i is the mean value of f in region 
i, and I the mean value of f over the whole

domain. Since the right-hand sum is always non-negative, stratified sampling can never

increase variance.

However, from (2.26) we see that variance is only reduced when the strata have differ-

ent means; thus, the strata should be chosen to make these means as different as possible.

Ideally, this would be achieved by stratifying the range of the integrand, by finding strata

such that xi 2 
i implies x1 � x2 � � � � � xN .

Another point of view is to analyze the convergence rate. For functions with a bounded

first derivative, the variance of stratified sampling converges at a rate of O(N�1�2=s), while

if the function is only piecewise continuous then the variance is O(N�1�1=s) [Mitchell

1996]. (The convergence rate for the standard deviation is obtained by dividing these ex-

ponents by two.) Thus, stratified sampling can increase the convergence rate noticeably in

low-dimensional domains, but has little effect in high-dimensional domains.

In summary, stratified sampling is a useful, inexpensive variance reduction technique.

6To obtain this result, observe that an unstratified sample in [0; 1]s is equivalent to first choosing a random
stratum Ij (according to the discrete probabilities vi), and then randomly choosing Xj within 
Ij . From this
point of view, Xj is chosen conditionally on Ij . This lets us apply the identity (2.11) to express the variance
as a sum of two components, yielding equation (2.26).
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It is mainly effective for low-dimensional integration problems where the integrand is rea-

sonably well-behaved. If the dimension is high, or if the integrand has singularities or rapid

oscillations in value (e.g. a texture with fine details), then stratified sampling will not help

significantly. This is especially true for problems in graphics, where the number of samples

taken for each integral is relatively small.

2.6.2 Latin hypercube sampling

Suppose that a total of N samples will be taken. The idea of Latin hypercube sampling is to

subdivide the domain [0; 1]s into N subintervals along each dimension, and to ensure that

one sample lies in each subinterval. This can be done by choosing s permutations �1, : : :,�s of f1; : : : ; Ng, and letting the sample locations beXji = �j(i)� Ui;jN ; (2.27)

where Xji denotes the j-th coordinate of the sample Xi, and the Ui;j are independent and

uniformly distributed on [0; 1]. In two dimensions, the sample pattern corresponds to the

occurrences of a single symbol in a Latin square (i.e. an N � N array of N symbols such

that no symbol appears twice in the same row or column).

Latin hypercube sampling was first proposed as a Monte Carlo integration technique

by McKay et al. [1979]. It is closely related to Latin square sampling methods, which have

been used in the design of statistical experiments since at least the 1920’s (e.g. in agricultural

research [Fisher 1925, Fisher 1926]). Yates [1953] and Patterson [1954] extended these

techniques to arbitrary dimensions, and also analyzed their variance-reduction properties

(in the context of survey sampling and experimental design). In computer graphics, Latin

square sampling was introduced by Shirley [1990a] under the name of N -rooks sampling

[Shirley 1990a, Shirley 1991].

The first satisfactory variance analysis of Latin hypercube sampling for Monte Carlo

integration was given by Stein [1987]. First, we define a function g(x) to be additive if it

has the form g(x) = sXj=1 gj(xj) ; (2.28)
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where xj denotes the j-th component of x 2 [0; 1]s. Next, let fadd denote the best additive

approximation to f , i.e. the function of the form (2.28) which minimizes the mean squared

error Z
(fadd(x)� f(x))2 d�(x) :
We can then write f as the sum of two componentsf(x) = fadd(x) + fres(x) ;
where fres is orthogonal to all additive functions, i.e.Z
 fres(x) g(x) d�(x) = 0
for any additive function g.

Stein [1987] was then able to show that variance of Latin hypercube sampling isV [F 0] = 1N Z
 f 2res(x) d�(x) + o(1=N) ; (2.29)

where o(1=N) denotes a function that decreases faster than 1=N . This expression should be

compared to the variance using N independent samples, which isV [F ] = 1N �Z
 f 2res(x) d�(x) + Z
(fadd(x)� I)2 d�(x)� :
The variance in the second case is always larger (for sufficiently largeN ). Thus Latin hyper-

cube sampling improves the convergence rate for the additive component of the integrand.

Furthermore, it is never significantly worse than using independent samples [Owen 1997a]:V [F 0] � NN � 1 V [F ] for N � 2 :
Latin hypercube sampling is easy to implement and works very well for functions that

are nearly additive. However, it does not work that well for image sampling, because

the samples are not well-stratified in two dimensions. Except in special cases (e.g. pixels

with vertical or horizontal edges), it has the same O(1=N) variance that would be obtained

with independent samples. This is inferior to stratified sampling, for which the variance isO(N�2) for smooth functions and O(N�3=2) for piecewise continuous functions.



54 CHAPTER 2. MONTE CARLO INTEGRATION

2.6.3 Orthogonal array sampling

Orthogonal array sampling [Owen 1992, Tang 1993] is an important generalization of Latin

hypercube sampling that addresses some of these deficiencies. Rather than stratifying all of

the one-dimensional projections of the samples, it stratifies all of the t-dimensional projec-

tions for some t � 2. This increases the rate of convergence for the components of f that

depend on t or fewer variables.

An orthogonal array of strength t is an N�s array of symbols, drawn from an alphabet

of size b, such that every N � t submatrix contains the same number of copies of each of

the bt possible rows. (The submatrix is not necessarily contiguous; it can contain any subset

of the columns.) If we let � denote the number of times that each row appears (where � is

known as the index of the array), it is clear that N = �bt. The following table gives an

example of an orthogonal array whose parameters are OA(N; s; b; t) = (9; 4; 3; 2):
0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

Various methods are known for constructing orthogonal arrays of strength t = 2 [Bose

1938, Bose & Bush 1952, Addelman & Kempthorne 1961], strength t = 3 [Bose & Bush

1952, Bush 1952], and arbitrary strengths t � 3 [Bush 1952]. Implementations of these

methods are publicly available [Owen 1995a].

Let A be an N � s orthogonal array of strength t, where the symbols in the array aref0; 1; : : : ; b� 1g. The first step of orthogonal array sampling is to randomize the array, by

applying a permutation to the alphabet in each column. That is, we letÂi;j = �j(Ai;j) for all i; j ;
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where �1; : : : ; �s are random permutations of the symbols f0; : : : ; b�1g. It is easy to check

that Â is an orthogonal array with the same parameters (N; s; b; t) as the original array A.

This step ensures that each of the bs possible rows occurs in Â with equal probability.

Now let the domain be [0; 1]s, and consider the family of bs subcubes obtained by split-

ting each axis into b intervals of equal size. Each row of Â can be interpreted as an index

into this family of subcubes. The idea of orthogonal array sampling is to take one sample

in each of the N subcubes specified by the rows of Â. Specifically, the j-th coordinate of

sample Xi is Xji = (Âi;j + Ui;j) = b
where the Ui;j are independent uniform samples on [0; 1]. Because of the randomization

step above, it is straightforward to show that each Xi is uniformly distributed in [0; 1]s, so

that FN = (1=N)PNi=1 f(Xi) is an unbiased estimator of the usual integral I .

To see the advantage of this technique, consider the sample distribution with respect to

any t coordinate axes (i.e. project the samples into the subspace spanned by these axes).

This subspace can be divided into bt subcubes by splitting each axis into b intervals. The

main property of orthogonal array sampling is that each of these subcubes contains the same

number of samples. To see this, observe that the coordinates of the projected samples are

specified by a particular N � t submatrix of the orthogonal array. By the definition of or-

thogonal arrays, each of the possible bt rows occurs � times in this submatrix, so that there

will be exactly � samples in each subcube.

Orthogonal array sampling is clearly a generalization of Latin hypercube sampling.

Rather than stratifying the one-dimensional projections of the samples, it stratifies all of thet-dimensional projections simultaneously. (There are
�st� such projections in all.)

2.6.3.1 Analysis of variance decompositions

The variance reduction properties of orthogonal array sampling can be analyzed using con-

tinuous analysis of variance (anova) decompositions [Owen 1994, Owen 1992]. Our de-

scription follows [Owen 1992], which in turn is based on [Efron & Stein 1981].

Let S = f1; : : : ; sg be the set of all coordinate indices, and let U � S be any subset of

these indices (there are 2s possible subsets in all). We will use the notation xU to refer to
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the set of coordinate variables xj for j 2 U . The anova decomposition of a given functionf can then be written as a sum f(x) = XU�S fU(xU ) ; (2.30)

where each function fU depends only on the variables indexed by U .

The function when U = ; does not depend on any variables, and is called the grand

mean: I = f; = Z[0;1]s f(x) dx :
The other 2s � 1 subsets of U are called sources of variation. The components of f that

depend on just one variable are called the main effects and are defined asfj(xj) = Z (f(x)� I) Yi 6=j dxi :
Notice that all of these functions are orthogonal to the constant function f; = I . Similarly,

the two-factor interactions are defined byfj;k(xj;k) = Z �f(x)� I � fj(xj)� fk(xk)� Yi 6=j;k dxi
which represent the components of f that depend on two particular variables together. These

functions are orthogonal to f; and to all the fj .
In general, fU is defined byfU(xU) = Z  f(x)� XV�U fV (xV )! dxS�U (2.31)

where the sum is over all proper subsets of U (V 6= U ). The resulting set of functions is

orthogonal, i.e. they satisfy Z fU(xU ) fV (xV ) dx = 0
whenever U 6= V . This implies the useful property thatZ f 2(x) dx = XU�S Z f 2U(xU) dx ;
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so that the variance of f can be written asZ (f(x)� I)2 dx = XjU j>0 Z f 2U (xU) dx :
As a particular case of this analysis, the best additive approximation to f isfadd(x) = I + sXj=1 fj(xj) ;

where the residual fres = f � fadd is orthogonal to all additive functions. The variance of

Latin hypercube sampling can thus be rewritten as�2LH = 1N XjU j>1 Z f 2U(xU ) dx + o(1=N) ;
i.e. the single-variable components of the variance converge at a rate faster than 1=N .

Orthogonal array sampling generalizes this result; it is possible to show that the variance

is [Owen 1992, Owen 1994]�2OA = 1N XjU j>t Z f 2U(xU) dx + o(1=N) ;
i.e. the convergence rate is improved with respect to all components of the integrand that

depend on t coordinates or less.

The case t = 2 is particularly interesting for graphics. For example, if we apply this

technique to distribution ray tracing, it ensures that all the two dimensional projections are

well stratified (over the pixel, lens aperture, light source, etc). This achieves a similar result

to the sampling technique proposed by Cook et al. [1984], except that all combinations of

two variables are stratified (including combinations such as the pixel x-coordinate and the

aperture x-coordinate, for example).

2.6.3.2 Orthogonal array-based Latin hypercube sampling

Notice that because the t-dimensional margins are well-stratified, the w-dimensional mar-

gins are also stratified for any w < t. However, the resulting stratification is not as good.

For example, in any one-dimensional projectional there will be exactly �bt�1 samples in
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each interval of width 1=b. This is inferior to Latin hypercube sampling, which places one

sample in each interval of width 1=(�bt).
There is a simple modification to orthogonal array sampling that yields the same one-

dimensional stratification properties as Latin hypercube sampling. (The result, logically

enough, is called orthogonal array-based Latin hypercube sampling [Tang 1993].) The idea

is to remap the �bt symbols within each column into a single sequence f0; 1; : : : ; �bt � 1g,

by mapping the �bt�1 identical copies of each symbol m into a random permutation of the

symbols �bt�1m; : : : ; �bt�1(m+ 1)� 1 :
This process is repeated for each column separately. Letting Â0 be the modified array, the

sample locations are then defined asXji = Â0i;j + Ui;j�bt :
This ensures that the samples are maximally stratified for each one-dimensional projection,

as well as for each t-dimensional projection. It is possible to show that this leads to a further

reduction in variance [Tang 1993].

This technique is similar to multi-jittered sampling [Chiu et al. 1994], which corresponds

to the special case where s = 2 and t = 2.

2.6.4 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods take these ideas a step further, by dispensing with randomness

completely. The idea is to distribute the samples as uniformly as possible, by choosing their

locations deterministically.

2.6.4.1 Discrepancy

Let P = fx1; : : : ; xNg be a set of points in [0; 1]s. Typically, the goal of quasi-Monte Carlo

methods is minimize the irregularity of distribution of the samples with respect to some

quantitative measure. One such measure is the star discrepancy of P . Let B� denote the set
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of all axis-aligned boxes with one corner at the origin:B� = fB = [0; u1]� � � � � [0; us] j 0 � ui � 1 for all ig :
Ideally, we would like each box B to contain exactly �(B)N of the points in P , where�(B) = u1 � � �us is the volume of B. The star discrepancy simply measures how muchP deviates from this ideal situation:D�N(P ) = supB2B� �����#fP \BgN � �(B)����� ; (2.32)

where #fP \ Bg denotes the number of points of P that are inside the box B.

Discrepancy measures can also be defined with respect to other sets of shapes (e.g. ar-

bitrary axis aligned boxes, or convex regions [Niederreiter 1992]). For two-dimensional

image sampling, it is particularly useful to measure discrepancy with respect to edges, by

considering the family of shapes obtained by intersecting [0; 1]2 with an arbitrary half-plane

[Mitchell 1992]. The relevance of discrepancy to image sampling was first pointed out by

Shirley [1991].

The significance of the star discrepancy is that it is closely related to bounds on the in-

tegration error. Specifically, the Koksma-Hlawka inequality states that����� 1N NXi=1 f(xi) � Z[0;1]s f(x) dx����� � VHK(f)D�N(P ) ;
where VHK(f) is the variation of f in the sense of Hardy and Krause [Niederreiter 1992].

Thus, the maximum integration error is directly proportional to the discrepancy, provided

that the variation VHK(f) is finite. By finding low-discrepancy points sets and sequences,

we can ensure that the integration error is small.

It is important to note that for dimensions s � 2, the variation VHK(f) is infinite

whenever f is discontinuous.7 This severely limits the usefulness of these bounds in com-

puter graphics, where discontinuities are common. Also note that since VHK(f) is typically

7More precisely, VHK(f) = 1 whenever f is discontinuous along a surface that is not perpendicular to
one of the s coordinate axes. In general, note that f must be at least s times differentiable in order for VHK(f)
to be bounded in terms of the partial derivatives of f . That is, letting M be an upper bound on the magnitude
of all partial derivatives of degree at most s, then VHK(f) � cM where the constant c depends only on s
[Niederreiter 1992].
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harder to evaluate than the original integral, these worst-case bounds are not useful for es-

timating or bounding the error in practice.

2.6.4.2 Low-discrepancy points sets and sequences

A low-discrepancy sequence is an infinite sequence of points x1; x2; : : : such that the star

discrepancy is D�N(P ) = O (logN)sN !
for any prefix P = fx1; : : : ; xNg. (Note that P is actually a multiset, i.e. the multiplicity of

the elements matters.) This result is achieved by a number of known constructions, and it

is widely believed to be the best possible [Niederreiter 1992]. However, it should be noted

that the best current lower bound for an arbitrary dimension s is onlyD�N (P ) � C(s) � (logN)s=2N ;
i.e. there is a significant gap between these bounds.

If we drop the requirement that P is a prefix of an infinite sequence, the discrepancy

can be improved slightly. A low-discrepancy point set is defined to be a multiset P =fx1; : : : ; xNg for which D�N(P ) = O (logN)s�1N ! :
(More precisely, this should be the definition of a low-discrepancy point set construction,

since the bound does not make sense when applied to a single point set P .)

Combining these bounds with the Koksma-Hlawka inequality, the error of quasi-Monte

Carlo integration is at most O((logN)s�1=N) using a low-discrepancy point set, orO((logN)s=N) using a prefix of a low-discrepancy sequence.

Note that these bounds are of questionable value unless N is very large, since (logN)s
is much larger than N for typical values of N and s. In particular, notice that the function(logN)s=N is monotonically increasing for N < es (i.e. the larger the sample size, the

worse the error bound). In fact, we should not expect these error bounds to be meaningful

until (logN)s < N at the very least, since otherwise the error bound is worse than it would

be for N = 2. To get an idea of how large N must be, consider the case s = 6. It is easy
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to check that (logN)s=N > (log 2)s=2 for all N < 109, and thus we should not expect

meaningful error bounds until N is substantially larger than this.

However, these error bounds are overly pessimistic in practice. Low-discrepancy se-

quences often give better results than standard Monte Carlo even when N is fairly small,

provided that the integrand is reasonably well behaved.

2.6.4.3 Halton sequences and Hammersley points

We now discuss several well-known constructions for low-discrepancy points sets and se-

quences. In one dimension, the radical inverse sequence xi = �b(i) is obtained by first

writing the base-b expansion of i: i = Xk�0 di;kbk ;
and then reflecting the digits around the decimal point:�b(i) = Xk�0 di;k b�1�k :
The special case when b = 2 is called the van der Corput sequence,12 ; 14 ; 34 ; 18 ; 58 ; 38 ; � � � :
The discrepancy of the radical-inverse sequence is O((logN)=N) in any base b (although

the implied constant increases with b).
To obtain a low-discrepancy sequence in several dimensions, we use a different radical

inverse sequence in each dimension:xi = (�b1(i); �b2(i); : : : ; �bs(i))
where the bases bi are all relatively prime. The classic example of this construction is the

Halton sequence, where the bi are chosen to be the first s primes:xi = (�2(i); �3(i); �5(i); : : : ; �ps(i)) :
The Halton sequence has a discrepancy of O((logN)s=N).
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If the number of sample pointsN is known in advance, this discrepancy can be improved

slightly by using equally spaced points i=N in the first dimension. The result is known as

the Hammersley point set:xi = (i=N; �2(i); �3(i); : : : ; �ps�1(i))
where pi denotes the i-th prime as before. The discrepancy of the Hammersley point set isO((logN)s�1=N).
2.6.4.4 (t;m; s)-nets and (t; s)-sequences

Although discrepancy is a useful measure of the irregularity of distribution of a set of points,

it does not always accurately predict which sequences will work best for numerical integra-

tion. Recently there has been a great deal of interest in (t;m; s)-nets and (t; s)-sequences,

which define the irregularity of distribution in a slightly different way. Let E be an elemen-

tary interval in the base b, which is simply an axis-aligned box of the formE = sYj=1 � tjbkj ; tj + 1bkj �
where the exponents kj � 0 are integers, and 0 � tj � bkj � 1. In other words, each

dimension of the box must be a non-positive power of b, and the box must be aligned to

an integer multiple of its size in each dimension. The volume of an elementary interval is

clearly �(E) = b�Psj=1 kj :
A (0; m; s)-net in base b is now defined to be a point set P of size N = bm, such that

every elementary interval of volume 1=b�m contains exactly one point of P . This implies

that a (0; m; s)-net is distributed as evenly as possible with respect to such intervals. For

example, suppose that P is (0; 4; 2)-net in base 5. Then P would contain N = 625 points

in the unit square [0; 1]2, such that every elementary interval of size 1 � 1=625 contains a

point of P . Similarly, all the intervals of size 1=5� 1=125, 1=25� 1=25, 1=125� 1=5; and1=625� 1 would contain exactly one point of P .
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The more general notion of a (t;m; s)-net is obtained by relaxing this definition some-

what. Rather than requiring every box of size b�m to contain exactly one point, we require

every box of size bt�m to contain exactly bt points. Clearly, smaller values of t are better.

The reason for allowing t > 0 is to facilitate the construction of such sequences for more

values of b and s. (In particular, (0; m; s)-nets for m � 2 can only exist when s � b + 1
[Niederreiter 1992].)

A (t; s)-sequence is then defined to be an infinite sequence x1; x2; : : : such that for allm � 0 and k � 0, the subsequencexkbm+1; : : : ; xkbm+1
is a (t;m; s)-net in the base b. In particular, every prefix x1; : : : ; xN of size N = bm
is a (t;m; s)-net. Explicit constructions of such sequences for various values of b and s
have been proposed by Sobol’, Faure, Niederreiter, and Tezuka (see Niederreiter [1992] and

Tezuka [1995]).

Every (t; s)-sequence is a low-discrepancy sequence, and every (t;m; s)-net is a low-

discrepancy points set (provided that t is held fixed while m is increased). Thus these

constructions have the same worst-case integration bounds as for the Halton sequences

and Hammersley points. However, note that (t; s)-sequences and (t;m; s)-nets often work

much better in practice, because the discrepancy is lower by a significant constant factor

[Niederreiter 1992].

It is interesting to compare the equidistribution properties of (t;m; s)-nets to orthogonal

array sampling. For simplicity let t = 0, and let A be an orthogonal array of strength m.

Then in the terminology of (t;m; s)-nets, orthogonal array sampling ensures that there is

one sample in each elementary interval E of volume 1=bm, where E has m sides of length1=b and all other sides of length one. The Latin hypercube extension of Tang [1993] ensures

that in addition, there is one sample in each elementary intervalE that has one side of length1=bm and all other of length one. Thus the 1- andm-dimensional projections are maximally

stratified. For comparison, the (0; m; s)-net not only achieves both of these properties, it

also ensures that there is one sample in every other kind of elementary interval of volume1=bm, so that the projections of dimension 2; 3; : : : ; t� 1 are also stratified as well as pos-

sible.
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2.6.4.5 Randomly permuted (t;m; s)-nets and (t; s)-sequences

A significant disadvantage of quasi-Monte Carlo methods is that the sample locations are de-

terministic. In computer graphics, this leads to significant aliasing artifacts [Mitchell 1992].

It also makes it difficult to compute error estimates, since unlike with Monte Carlo methods

we cannot simply take several independent samples.

These difficulties can be resolved by using randomly permuted (t;m; s)-nets and (t; s)-
sequences [Owen 1995b] (also called scrambled nets and sequences). These are obtained by

applying random permutations to the digits of ordinary (t;m; s)-nets and (t; s)-sequences,

in such a way that their equidistribution properties are preserved [Owen 1995b]. The idea

is straightforward to implement, although its analysis is more involved.

Scrambled nets have several advantages. Most importantly, the resulting estimators are

unbiased, since the sample points are uniformly distributed over the domain [0; 1]s. This

makes it possible to obtain unbiased error estimates by taking several independent random

samples (e.g. using different digit permutations of the same original (t;m; s)-net). (See

Owen [1997a] for additional discussion of variance estimates.) In the context of computer

graphics, scrambled nets also provide a way to eliminate the systematic aliasing artifacts

typically encountered with quasi-Monte Carlo integration.

Second, it is possible to show that for smooth functions, scrambled nets lead to a vari-

ance of V [Î] = O (logN)s�1N3 ! ;
and thus an expected error of O((logN)(s�1)=2N�3=2) in probability [Owen 1997b]. This

is an improvement over both the Monte Carlo rate of O(N�1=2) and the quasi-Monte Carlo

rate of O((logN)s�1N�1). In all cases, these bounds apply to a worst-case function f (of

sufficient smoothness), but note that the quasi-Monte Carlo rate uses a deterministic set of

points while the other bounds are averages over random choices made by the sampling al-

gorithm.

Scrambled nets can improve the variance over ordinary Monte Carlo even when the

function f is not smooth [Owen 1997b]. With respect to the analysis of variance decom-

position described above, scrambled nets provide the greatest improvement on the compo-

nents fU where the number of variables jU j is small. These functions fU can be smooth
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even when f itself is not (due to integration over the variables in S � U ), leading to fast

convergence on these components.

2.6.4.6 Discussion

The convergence rates of quasi-Monte Carlo methods are rarely meaningful in computer

graphics, due to smoothness requirements on the integrand and the relatively small sample

sizes that are typically used. Other problems include the difficulty of estimating the varia-

tion VHK(f), and the fact that (logN)s�1 is typically much larger than N in practice. The

lack of randomness in quasi-Monte Carlo methods is a distinct disadvantage, since it causes

aliasing and precludes error estimation.

Hybrids of Monte Carlo and quasi-Monte Carlo seem promising, such as the scrambled(t;m; s)-nets described above. Although such methods do not necessarily work any bet-

ter than standard Monte Carlo for discontinuous integrands, at least they are not worse. In

particular, they do not introduce aliasing artifacts, and error estimates are available.

Keller [1996, 1997] has applied quasi-Monte Carlo methods to the radiosity problem

(a special case of the light transport problem where all surfaces are diffuse). He uses a

particle-tracing algorithm (similar to Pattanaik & Mudur [1993]), except that the directions

for scattering are determined by a Halton sequence. He has reported a convergence rate that

is slightly better than standard Monte Carlo on simple test scenes. The main benefit appears

to be due to the sampling of the first four dimensions of each random walk (which control

the selection of the initial point on a light source and the direction of emission).

2.7 Variance reduction III: Adaptive sample placement

A third family of variance reduction methods is based on the idea of adaptively controlling

the sample density, in order to place more samples where they are most useful (e.g. where the

integrand is large or changes rapidly). We discuss two different approaches to doing this.

One is adaptive sampling, which can introduce bias unless special precautions are taken.

The other approach consists of two closely related techniques called Russian roulette and

splitting, which do not introduce bias and are especially useful for light transport problems.
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2.7.1 Adaptive sampling

The idea of adaptive sampling (also called sequential sampling) is to take more samples

where the integrand has the most variation. This is done by examining the samples that have

been taken so far, and using this information to control the placement of future samples.

Typically this involves computing the variance of the samples in a given region, which is

then refined by taking more samples if the variance exceeds a given threshold. A number of

such techniques have been proposed in graphics for image sampling (for example, see Lee

et al. [1985], Purgathofer [1986], Kajiya [1986], [Mitchell 1987], Painter & Sloan [1989]).

Like importance sampling, the goal of adaptive sampling is to concentrate samples

where they will do the most good. However, there are two important differences. First, im-

portance sampling attempts to place more samples in regions where the integrand is large,

while adaptive sampling attempts to places more samples where the variance is large. (Of

course, with adaptive sampling we are free to use other criteria as well.) A second important

difference is that with adaptive sampling, the sample density is changed “on the fly” rather

than using a priori information.

The main disadvantage of adaptive sampling is that it can introduce bias, which in

turn can lead to image artifacts. Bias can be avoided using two-stage sampling [Kirk &

Arvo 1991], which consists of first drawing a small sample of size n from a representative

region R � 
, and then using this information to determine the sample size N for the re-

maining portion 
 � R of the domain.8 Although this technique eliminates bias, it also

eliminates some of the advantages of adaptive sampling, since it cannot react to unusual

samples encountered during the second stage of sampling.

Another problem with adaptive sampling is that it is not very effective for high-

dimensional problems. The same problems are encountered as with stratified sampling:

there are too many possible dimensions to refine. For example, if we split the region to be

refined into two pieces along each axis, there will be 2s new regions to sample. If most of

the sampling error is due to variation along only one or two of these axes, the refinement

will be very inefficient.

8Alternatively, two samples of size n andN could be drawn over the entire domain, where the first sample
is used only to determine the value of N and is then discarded.
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2.7.2 Russian roulette and splitting

Russian roulette and splitting are two closely related techniques that are often used in parti-

cle transport problems. Their purpose is to decrease the sample density where the integrand

is small, and increase it where the integrand is large. Unlike adaptive sampling, however,

these techniques do not introduce any bias. The applications of these methods in computer

graphics have been described by Arvo & Kirk [1990].

Russian roulette. Russian roulette is usually applied to estimators that are a sum of many

terms: F = F1 + � � �+ FN :
For example, F might represent the radiance reflected from a surface along a particular

viewing ray, and each Fi might represent the contribution of a particular light source.

The problem with this type of estimator is that typically most of the contributions are

very small, and yet all of theFi are equally expensive to evaluate. The basic idea of Russian

roulette is to randomly skip most of the evaluations associated with small contributions, by

replacing these Fi with new estimators of the formF 0i = 8<: 1qi Fi with probability qi ;0 otherwise :
The evaluation probability qi is chosen for each Fi separately, based on some convenient

estimate of its contribution. Notice that the estimator F 0i is unbiased whenever Fi is, sinceE[F 0i ] = qi � 1qiE[Fi] + (1� qi) � 0= E[Fi] :
Obviously this technique increases variance; it is basically the inverse of the expected

values method described earlier. Nevertheless, Russian roulette can still increase efficiency,

by reducing the average time required to evaluate F .

For example, suppose that each Fi represents the contribution of a particular light source

to the radiance reflected from a surface. To reduce the number of visibility tests using Rus-

sian roulette, we first compute a tentative contribution ti for each Fi by assuming that the
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light source is fully visible. Then a fixed threshold � is typically chosen, and the probabili-

ties qi are set to qi = min(1; ti = �) :
Thus contributions larger than � are always evaluated, while smaller contributions are ran-

domly skipped in a way that does not cause bias.

Russian roulette is also used to terminate the random walks that occur particle transport

calculations. (This was the original purpose of the method, as introduced by Kahn — see

[Hammersley & Handscomb 1964, p. 99].) Similar to the previous example, the idea is to

randomly terminate the walks whose estimated contributions are relatively small. That is,

given the current walk x0x1 � � �xk, the probability of extending it is chosen to be propor-

tional to the estimated contribution that would be obtained by extending the path further, i.e.

the contribution of paths of the form x0 � � �xk0 where k0 > k. This has the effect of terminat-

ing walks that have entered unproductive regions of the domain. In computer graphics, this

technique is used extensively in ray tracing and Monte Carlo light transport calculations.

Splitting. Russian roulette is closely related to splitting, a technique in which an estimatorFi is replaced by one of the form F 0i = 1k kXj=1Fi;j ;
where the Fi;j are independent samples from Fi. As with Russian roulette, the splitting fac-

tor k is chosen based on the estimated contribution of the sample Fi. (A larger estimated

contribution generally corresponds to a larger value of k.) It is easy to verify that this trans-

formation is unbiased, i.e. E[F 0i ] = E[Fi] :
In the context of particle transport calculations, this has the effect of splitting a single

particle into k new particles which follow independent paths. Each particle is assigned a

weight that is a fraction 1=k of the weight of the original particle. Typically this technique is

applied when a particle enters a high-contribution region of the domain, e.g. if we are trying

to measure leakage through a reactor shield, then splitting might be applied to neutrons that
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have already penetrated most of the way through the shield.

The basic idea behind both of these techniques is the same: given the current statex0x1 � � �xk of a random walk, we are free to use any function of this state in deciding

how many samples of xk+1 will be taken. If we predict that the contribution of the pathx0 � � �xk+1 will be low, then most of the time we will take no samples at all; while if the

contribution is high, we may decide to take several independent samples. If this is applied

at every vertex, the resulting structure is a tree of paths.

In general, Russian roulette and splitting can be applied to any process where each sam-

ple is determined by a sequence of random steps. We can use any prefix of this sequence to

estimate the importance of the final sample. This is then used to decide whether the current

state should be discarded (if the importance is low) or replicated (if the importance is high).

Although this idea is superficially similar to adaptive sampling, it does not introduce any

bias.

Russian roulette is an indispensable technique in transport calculations, since it allows

otherwise infinite random walks to be terminated without bias. Splitting is also useful if it

is judiciously applied [Arvo & Kirk 1990]. In combination, these techniques can be very

effective at directing sampling effort into the most productive regions of the domain.

2.8 Variance reduction IV: Correlated estimators

The last family of variance reduction methods we will discuss is based on the idea of finding

two or more estimators whose values are correlated. So far these methods have not found

significant uses in graphics, so our discussion will be brief.

2.8.1 Antithetic variates

The idea of antithetic variates is to find two estimators F1 and F2 whose values are nega-

tively correlated, and add them. For example, suppose that the desired integral is
R 10 f(x) dx,

and consider the estimator F = (f(U) + f(1� U)) = 2
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where U is uniformly distributed on [0; 1]. If the function f is monotonically increasing (or

monotonically decreasing), then f(U) and f(1 � U) will be negatively correlated, so thatF will have lower variance than if the two samples were independent [Rubinstein 1981,

p. 135]. Furthermore, the estimator F is exact whenever the integrand is a linear function

(i.e. f(x) = ax + b).
This idea can be easily adapted to the domain [0; 1]s, by considering pairs of sample

points of the formX1 = (U1; : : : ; Us) and X2 = (1� U1; : : : ; 1� Us) :
Again, this strategy is exact for linear integrands. If more than two samples are desired, the

domain can be subdivided into several rectangular regions 
i, and a pair of samples of the

form above can be taken in each region.

Antithetic variates of this type are most useful for smooth integrands, where f is ap-

proximately linear on each subregion 
i. For many graphics problems, on the other hand,

variance is mainly due to discontinuities and singularities of the integrand. These contribu-

tions tend to overwhelm any variance improvements on the smooth regions of the integrand,

so that antithetic variates are of limited usefulness.

2.8.2 Regression methods

Regression methods are a more advanced way to take advantage of several correlated esti-

mators. Suppose that we are given several unbiased estimators F1, : : :, Fn for the desired

quantity I , and that the Fi are correlated in some way (e.g. because they use different trans-

formations of the same random numbers, as in the antithetic variates example). The idea

is to take several samples from each estimator, and apply standard linear regression tech-

niques in order to determine the best estimate for I that takes all sources of correlation into

account.

Specifically, the technique works by taking N samples from each estimator (where thej-th samples from Fi is denoted Fi;j). We then compute the sample meansÎi = 1N NXj=1 Fi;j for i = 1; : : : ; n ;
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and the sampling variance-covariance matrix V̂, a square n� n array whose entries areV̂i;j = 1N � 1 NXk=1 (Fi;k � Îi) (Fj;k � Îj) :
The final estimate F is then given byF = (X� V̂�1X)�1X� V̂�1 Î ; (2.33)

whereX� denotes the transpose ofX,X = [1 : : : 1]� is a column vector of lengthn, and Î =[Î1 : : : În]� is the column vector of sample means. Equation (2.33) is the standard minimum-

variance unbiased linear estimator of the desired mean I , except that we have replaced the

true variance-covariance matrix V by an approximation V̂. Further details can be found in

Hammersley & Handscomb [1964].

Note that this technique introduces some bias, due to the fact that the same random sam-

ples are used to estimate both the sample means Îi and the variance-covariance matrix en-

tries V̂i;j (which are used to weight the Îi). This bias could be avoided by using different

random samples for these two purposes (of course, this would increase the cost).

The main problem with regression methods is in finding a suitable set of correlated esti-

mators. If the integrand has discontinuities or singularities, then simple transformations of

the form f(U) and f(1� U) will not produce a significant amount of correlation. Another

problem is that this method requires that a substantial number of samples be taken, in order

to estimate the covariance matrix with any reasonable accuracy.
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