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Abstract. In this work we show how to generate random Bayesian net-
works and how to test inference algorithms using these samples. First,
we present a new method to generate random networks through Markov
chains. We then use random networks to investigate the performance
of quasi-random numbers in Gibbs sampling algorithms for inference.
We present experimental results and describe code that implements our
methods.

1 Introduction

Bayesian networks occupy a prominent position in Artificial Intelligence, mainly
as a representation for uncertainty and for causal dependencies [2, 1, 4]. Bayesian
networks can be used for inference; to build a Bayesian network, we may have
to resort to learning. There are several algorithms for inference and learning in
Bayesian networks; given an algorithm, one may ask how to test the algorithm.

The purpose of this work is to present random generation of Bayesian net-
works, and to show how to assess the performance of inference algorithms using
these random networks. This work complements another paper from the authors
that focuses on the random generation of Bayesian networks [6]; here we present
both the generation and the testing of algorithms. The basic idea is to test in-
ference algorithms with a set of networks that is a representative sample of all
possible networks with given properties.

In this paper we test inference algorithms that use quasi-Monte Carlo meth-
ods in MCMC inference. Cheng and Druzdzel [23] used with success quasi-Monte
Carlo methods in importance sampling algorithms, but the performance of quasi-
Monte Carlo methods in MCMC inference is still open [24]. We present new and
interesting results concerning Gibbs sampling based on quasi-Monte Carlo sam-
pling.

In Section 2 we review the theory of Bayesian networks. Quasi-Monte Carlo
methods are discussed in Section 3. In Section 4 we present the problem of
Bayesian network generation and existing approaches; we briefly describe our
methodology for generate connected directed acyclic graphs given the number
of nodes and the maximum number of arcs per node. In Section 5 we show test
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results obtained combining quasi-Monte Carlo methods and MCMC algorithms
in randomly generated Bayesian networks.

2 Bayesian networks

This section summarizes the theory of Bayesian networks and introduces termi-
nology used throughout the paper. All random variables are assumed to have a
finite number of possible values. Denote by p(X) the probability density of X,
and by p(X|Y ) the probability density of X conditional on values of Y .

A Bayesian network represents a joint probability density over a set of vari-
ables X [1]. The joint density is specified through a directed acyclic graph.

In a Bayesian network, each node of its graph represents a random variable
Xi in X. The parents of Xi are denoted by pa(Xi). The semantics of the Bayesian
network model is determined by the Markov condition: Every variable is inde-
pendent of its nondescendants nonparents given its parents. This condition leads
to a unique joint probability density [2]:

p(X) =
∏

i

p(Xi|pa(Xi)) . (1)

Every random variable Xi is associated with a conditional probability density
p(Xi|pa(Xi)). Figure 4 depicts examples of DAGs as Bayesian networks.

An inference with a Bayesian network consists of computing the conditional
distribution of a variable or a set of variables given a set of observed variables.
A general expression for inference (for discrete variables) is:

p(XQ|E) =

∑
X\XQ,E p(X)∑

X\E p(X)
, (2)

where XQ is the queried single variable or a set of variables and E is a set of
observed variables.

There are several algorithms for calculating p(XQ|E) [1], even though the
problem is NP-hard [8]. Approximate methods, often based on sampling through
simulation [9], or searching [11], or conditioning [12]), have been used with suc-
cess in complex systems that have many variables [13].

Approximate methods based on Monte Carlo sampling [14] are employed
in many areas, from Physics to Economics. For high dimensional problems, a
popular solution for approximate inference is offered by Monte Carlo Markov
Chain methods [15, 16] (MCMC) that include Gibbs sampling and Metropolis-
Hasting algorithms[17].

Gibbs sampling is a special case of Metropolis-Hasting algorithms [17, 18]
that was proposed by Geman and Geman [19] for image-processing model stud-
ies. The method generates random variables from a marginal distribution indi-
rectly, without having to calculate the joint density [20]. The basic idea is to
generate samples from the full conditional distribution (conditional distribution
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Algorithm Gibbs sampler

Input:queried variable(XQ), observed variables(E), number of iterations(n) Output:
Return the conditional distribution, p(XQ|E)
01. Inicialize state of all non-observed variables;
02. Repeat the next loop n times;
03. Run-out all variables and for each non-observed variable:
04. Compute the full conditional distribution(fcd) and normalize at the end;
05. Generate a random variable u ∼ U(0, 1);
06. Set the next state of this variable given by the fcd and u;
07. Increment position of value assumed by queried variable(XQ) at vector nQ ;

08. Compute the conditional distribution given by estimator
n

Q

n
;

09. Return conditional distribution estimator;

Fig. 1. Simple Gibbs sampler in Bayesian network with discrete variables.

of a variable given all other variables) and use these samples as a estimator of
equation 2.

Gibbs sampling technique has been emerged as a very popular tool for com-
plex statistical model analysis [21]. In Bayesian computation we have to calculate
expressions with high dimension to get the conditional distribution (see Equation
2) and Gibbs sampling is a very simple way to approximate this expression.

Algorithm Gibbs sampler(figure 1) implements a basic Gibbs sampler for es-
timating the conditional distribution of a queried variable given a set of observed
variables. Choosing the full conditional distribution(fcd) as a transition function
(line 6), we get a ergodic Markov chain and after a sufficient number n of it-
erations, we get a stationary distribution. Each generated chain is a sample of
Monte Carlo estimator(line 7).

Gibbs sampling techniques are well suited for embedded systems that re-
quires low-memory consumption [5], because of simplicity of the method, and
for anytime inference, that is, inference processes that can produce results in a
given time T as required [7].

3 Quasi-Monte Carlo methods

In short, quasi-Monte Carlo use quasi-random numbers instead of pseudo random
numbers — quasi-random numbers form low-discrepancy sequences. Discrepancy
is a measure of non uniformity of a sequence of points placed in a hypercube
[0, 1]d. The most popular distance measure is the star-discrepancy[22], D∗

N . A
sequence x1, . . . , xN of points in [0, 1]d is a low-discrepancy sequence if for any
N > 1:

D∗
N (x1, . . . , xN ) < c(d).

(logN)d

N
(3)

Where the constant c(d) depends on the the problem dimension d. The idea
behind low-discrepancy sequences is to get a set of points in [0, 1]d as close as
possible to its volume.
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Basic low-discrepancy sequences proposed in the literature are those of Hal-
ton[33], Sobol[35] and Faure[36]. These sequences can be viewed as a special case
of generalized (t, d)-sequences[22].

Methods based in standard Monte Carlo have a probabilistic error bound
with order O(N−1/2) derived with the central limit theorem. In quasi-Monte
Carlo methods, we obtain a deterministic error bound of O((logN)d/N) [22],
where N is the number of generated samples and d is the dimension of quasi-
random number generated. We can see that quasi-Monte Carlo methods may
offer better convergence rates than Monte Carlo methods as we increase N . In
fact, there have been quite successful application of quasi-Monte Carlo methods
to computer graphics, computational physics, financial engineering, and approx-
imate integrals in low-dimensionality problems. In high-dimensional problems,
there has been conflicting evidence regarding the performance of quasi-Monte
Carlo methods [23]. As a positive example, Cheng and Druzdzel [23] applied
quasi-Monte Carlo methods in importance sampling algorithms [10] and ob-
tained good results in networks ranging from 5 to 179 variables. There has been
no work applying quasi-Monte Carlo methods with Gibbs sampling algorithms
for Bayesian inference; in fact, the problem of finding an efficient algorithms
based on a combination of quasi-random numbers and Gibbs sampling is still
open [24]. Liao [27] applied quasi-random numbers for variance reduction in
Gibbs sampler for classical statistical models, obtaining good results through
randomly permuted quasi-random sequences.

4 Markov chains for generating Bayesian networks

The basic premise of this paper is that, to test new algorithms such as Gibbs
sampling based on quasi-random numbers, we need randomly generated models
with known average properties. Our goal then is to generate random Bayesian
networks that are uniformly distributed. To generate random Bayesian networks,
the obvious method is to generate a random DAG (directed acyclic graph),
and then to generate the conditional probability distributions for that graph.
Given a DAG, it is relatively easy to generate random conditional distributions
using Dirichlet distributions [6]. The real difficulty is to generate random DAGs
that are uniformly distributed. Many authors have used random graphs to test
Bayesian network algorithms, generating these graphs in some ad hoc manner.
A typical example of such methods is given by the work of Xiang and Miller [3].
By creating some heuristic graph generator, it is usually impossible to guarantee
any distribution on the generated neworks.

It can be argued that any generator that produces a uniform distribution on
the space of all DAGs is not very useful. The problem is that Bayesian networks
usually have a reasonably small degree; if a generator produces graphs that are
too dense, these graphs are not representative examples of Bayesian networks.
So, we must be able to generate graphs uniformly over the space of graphs that
are connected, acyclic, and not very dense. We assume that the number of arcs
in a graph is a good indicator of how dense the graph is, so we assume that our
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Algorithm 1: Generating Multi-connected DAG’s

Input: number of nodes (n), maximum number of arcs per node (maxD) , number of
iterations (N).
Output: Return a connected DAG with n nodes and controlled number of arcs.
01. Inicialize a simple ordered tree with n nodes, where all nodes have just one parent,
except the first one that does not have any parent;
02. Repeat the next loop N times:
03. Generate uniformly a pair of distinct nodes i and j;
04. If the arc (i, j) exists in the actual graph, delete the arc, provided that the
underlying graph remains connected;
05. else
06. Add the arc, provided that the underlying graph remains acyclic and satisfy
maxD condition;
07. Otherwise keep the same state;
08. Return the current graph after N iterations.

Fig. 2. Algorithm for Generating multi-connected DAGs.

problem is to uniformly generate connected DAGs with a given number of arcs
or with restrictions on degrees.

Our approach to generate random graphs is to use Markov chains [30]. We
are directly inspired by the work of Melançon et al and Sinclair on random graph
generation [31, 32]. The main difference between Melançon et al’s work and ours
is that they let their graphs be disconnected, a detail that makes considerable
difference in the correctness proofs. In this section, we just describe briefly the
algorithms that we have developed for generating multi-connected graphs and
polytrees, given the number of nodes and the maximum number of arcs per
node. Theoretical details and proofs about this generating process can be find
at Ide[6].

We can generate random graphs by simulating Markov chains. To have a
Markov chain, it is enough that we can “move” from a graph to another graph
in some probabilistic way that depends only on the current graph. This Markov
chain will be irreducible if it can reach any graph from any graph. Also, the
chain will be aperiodic if there exists a self-loop probability, i.e. there is a chance
that the next generated graph is the same as the current one. Irreducibility
and aperiodicity are necessary and sufficient conditions for ergoticity (that is,
the chain has a stationary distribution). Then, if we prove that the transition
matrix of this generating process is doubly stochastic, the unique stationary
distribution is uniform.

Consider a set of n nodes (from 0 to n− 1) and the Markov chain described
by Algorithm 1. We start with a connected graph. The loop between lines 3
and 7 construct the next state from the current state. This procedure defines a
transition matrix for a Markov chain. Our transitions are limited to 2 operations:
add and remove arcs, providing the graph is still acyclic and connected.
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Algorithm 2: Generating Polytree

Input: number of nodes (n), maximum number of arcs per node (maxD) , number of
iterations (N).
Output: Return a polytree with n nodes and controlled number of arcs.
01. Inicialize a simple ordered tree with n nodes as in Algorithm 1.
02. Repeat the next loop N times:
03. Generate uniformly a pair of distinct nodes i and j;
04. If the arc (i, j) exists in the actual graph or if the resultant graph do not
satisfy maxD condition, keep the same state;
05. else
06. Invert the arc with probability 1/2 to (j, i), and then
07. Find the predecessor node k in the path between i and j, remove the arc
between k and j, and add an arc (i, j) or arc (j, i) depending on the result of line 06.
08. Return the current graph after N iterations.

Fig. 3. Algorithm for generating polytrees.

A type of Bayesian network that is of great practical interest is represented
by polytree structures [2]. So, we can establish another problem: to uniformly
generate polytrees with n nodes. To the best of our knowledge, there exists no
algorithm for random generation of polytrees so far. The process of generating
polytrees is similar to Algorithm 1; consider again n nodes, and the transi-
tion matrix defined by Algorithm 2. Notice that we have constructed a ergodic
Markov chain (that is, it has a stationary distribution), ensuring the irreducibil-
ity and the aperiodicity of the chain. Line 6 is important to obtain symmetry
for the transition matrix, what ensure the doubly-stochastic characteristic, and
make the stationary distribution to be uniform.

The maximum number of arcs per node(maxD) condition (line 6 of Algo-
rithm 1 and line 4 of Algorithm 2) provide us density control over generated
Bayesian network structure. That is interesting to obtain more representative
networks.

5 Experimental Results

We have implemented Gibbs sampling for Bayesian networks and coupled this al-
gorithm with pseudo and quasi random numbers. For generating (pseudo)random
numbers, we have used an efficient generator from the literature, the Mersen-
neTwister [37]. For generating quasi-random sequences, we have used an efficient
variant of the Sobol sequence, Gray code, that was proposed by Antonov and
Saleev[34], and implemented by Bratley and Fox[25]. A Faure sequence generator
implemented by Fox[26] was used, and we noticed that results given by Faure
sequences are always worse than results by Sobol sequences. Quasi-random se-
quences are used in place of (pseudo) random numbers (line 5 of Algorithm Gibbs
sampler) , where for each different variable we use one dimension of quasi-random
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sequence. For example, for a network with 10 nodes, we need a quasi-random
sequence with dimension 10.

We have implemented the Gibbs sampler according to Gelfand and Smiths
purposes[29], that was used by Casella[20]. Their suggestion is to use m samples
picked at the end of k-iterations. The idea is to pick samples with period of k-
iterations, after burn-in phase. Determining the value of k is a difficult issue. We
tested the Gibbs sampling for several values of k, but no substantial difference
was noted from the direct implementation (figure 1).

Following the purpose of Cheng and Druzdzel[23], we used the Mean Square
Error (MSE) as a measure of efficiency for Gibbs sampling algorithms. MSE is
the square root of the sum of square differences between the exact result and
the approximate result obtained, for all set of variables of the network.

Algorithms 1 and 2 were implemented to construct random structures of
networks, and random conditional distributions were generated with Dirichlet
distributions [6]. Network structures are generated given the number of nodes
and the maximum number of arcs per node, and some examples can be found
at figure 4.

(a) (b)

Fig. 4. Bayesian networks are generated in format compatible with freely available Jav-
aBayes system (http://www.cs.cmu.edu/˜javabayes):(a) Multi-connected graph with
15 nodes and maximum of 3 arcs per node, (b) Polytree with 20 nodes and maximum
of 3 arcs per node.

At figures 5 and 6, we have results showing relationships between number
of samples and accuracy of both approximation ( Gibbs sampling with pseudo-
sequence and Sobol sequence), measured by MSE. For each of the tests, we have
generated 1000 uniformly distributed Bayesian networks and tested quasi-Monte
Carlo methods in Gibbs sampling. We varied the number of samples from 250 to
250.000 and generated networks with 5, 10, 15 and 35 nodes. The graphs shown
the mean value of MSE trough all 1000 networks, and their deviation. Notice
that, for left example at figure 5, with 250 samples, we have a deviation of 53
percent. It means that MSE result depends on the particular structure of the
network and their probabilities.



8 Jaime S. Ide and Fabio G. Cozman

MSE Test (n=5, g=1000)
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MSE Test (n=10, g=1000)
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Fig. 5. Mean of MSE’s and their deviation of Gibbs sampler tested with 1000 uniformly
generated Bayesian network with 5 and 10 nodes, varying between N=250 to 250.000
number of simulation

We can see (figure 5 and 6) that Gibbs sampling with Sobol sequence has
better initial convergence rates than pseudo random numbers, but after some
number of sample (at example, 500 to 5000), it converges to a constant error
and MSE given by pseudo numbers converges to zero. This constant error is
possibly due to statistical dependencies between quasi-random sequences and
Gibbs sampling successive draws. Such dependencies could be broken trough
a renewal process[27]. We can state then, based on empirical results, that the
direct use of quasi-random sequences does not work well at inference in Bayesian
networks, using Gibbs sampling, refuting the hypothesis stated at Section 3.

MSE Test (n=15, g=1000)
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MSE Test (n=35, g=1000)
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Fig. 6. Mean of MSE’s and their deviation of Gibbs sampler tested with 1000 uniformly
generated Bayesian network with 15 and 35 nodes, varying between N=250 to 250.000
number of simulation

6 Conclusion

We can summarize this work as follows: we have introduced a consistent method
for testing inference algorithms and obtained new empirical results on quasi-
Monte Carlo methods in Gibbs sampling. To produce such tests, we have in-
troduced algorithms for generation of uniformly distributed random Bayesian
networks, both as multi-connected networks and polytrees. Our algorithms are
flexible enough to allow specification of maximum numbers of arcs and max-
imum degrees, and to incorporate any of the usual characteristics of Bayesian
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networks. We suggest that the methods presented here provide the best available
scheme at the moment for producing valid tests and experiments with Bayesian
networks.

Unfortunately, we have not solved the problem of using quasi-random se-
quences in Gibbs sampling algorithms. The scheme that we provide in this work
allows us to reach this kind of empirical conclusion and gives supports for pro-
ducing valid tests in future works. Renewal process could be applied to broke
dependencies as mentioned at Section 5.
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