MAT5797 - Tópicos de Álgebra Prova P1

1.- Sejam M_1, \ldots, M_n R-módulos à direita e defina $M = \bigoplus_{i=1}^n M_i$. Seja

$$H := \left[\operatorname{Hom}_R(M_j, M_i) \right] = \left\{ \left(\begin{array}{ccc} f_{11} & f_{12} & \dots & f_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{array} \right) : f_{ij} \in \operatorname{Hom}_R(M_j, M_i) \right\}$$

(a) Mostre que H é um anel com as operações:

(0.5 pontos)

$$(f_{ij}) + (g_{ij}) = (f_{ij} + g_{ij})$$

 $(f_{ij})(g_{ij}) = (h_{ij}) \text{ onde } h_{ij} = \sum_{k=1}^{n} f_{ik}g_{kj}.$

(b) Mostre que H é um anel isomorfo a $\operatorname{Hom}_R(M, M)$.

(0.8 pontos)

- (c) Dizemos que um R-módulo a direita S_R é simples se $S \neq 0$ e os únicos submódulos de S são $\{0\}$ e S. Mostre que $\operatorname{Hom}_R(S,S)$ é um anel com divisão. (0.7 pontos)
- (d) Suponha que $M = \bigoplus_{i=1}^{n} S$, onde S é R-módulo à direita simples. Mostre que o anel $\operatorname{Hom}_R(M,M)$ é isomorfo a $M_n(D)$ onde D é um anel com divisão. (0.4 pontos)
- 2.- Seja R um anel. Seja

$$0 \to U \to V \to F \to 0 \tag{1}$$

uma sequência exata curta de R-módulos à direita onde F é um R-módulo livre. Mostre que a sequência exata (1) cinde. (1.2 pontos)

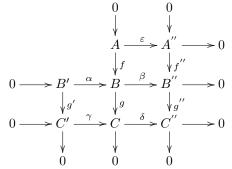
3.- Seja R um anel. Sejam $f: A \to B$ e $g: A \to C$ homomorfismos de R-módulos à direita. Dado o diagrama do pushout de f e g

$$\begin{array}{ccc}
A & \xrightarrow{g} & C \\
f \downarrow & & \downarrow \beta \\
B & \xrightarrow{\alpha} & D
\end{array}$$

Mostre que se g é injetor, então α também é injetor.

(1.2 pontos)

4.- Considere o seguinte diagrama comutativo de *R*-módulos à direita e homomorfismos de *R*-módulos à direita



Suponha que as colunas são exatas e as duas linhas inferiores são exatas. Mostre que a primeira linha é exata. (1.2 pontos)

5.- Sejam R um anel e

$$0 \to X \xrightarrow{\phi} Y \xrightarrow{\psi} Z \to 0 \tag{2}$$

uma sequência exata curta de R-módulos à esquerda.

(a) Seja $\{M_i\}_{i\in I}$ uma família de R-módulos à direita tais que a sequência de grupos abelianos

$$0 \to M_i \otimes_R X \xrightarrow{1_{M_i} \otimes \phi} M_i \otimes_R Y \xrightarrow{1_{M_i} \otimes \psi} M_i \otimes_R Z \to 0$$

é exata para todo $i \in I$. Mostre que

$$0 \to M \otimes_R X \stackrel{1_M \otimes \phi}{\longrightarrow} M \otimes_R Y \stackrel{1_M \otimes \psi}{\longrightarrow} M \otimes_R Z \to 0$$

é exata onde $M = \bigoplus M_i$.

(1.5 pontos)

(b) Se a sequência (2) cinde, mostre que a sequência de grupos abelianos

$$0 \to W \otimes_R X \xrightarrow{1_W \otimes \phi} W \otimes_R Y \xrightarrow{1_W \otimes \psi} W \otimes_R Z \to 0$$

é exata e cinde para todo R-módulo à direita W.

(1.1 pontos)

Escolha um dos seguintes exercícios

- 6.- Seja R um anel comutativo.
 - (a) Mostre que as R-álgebra $M_n(R) \otimes_R M_m(R)$ e $M_{mn}(R)$ são isomorfas para quaisquer inteiros positivos m, n.
 - (b) Sejam $A \in B$ duas R-álgebras. Mostre que as R-álgebras $M_m(A) \otimes_R M_n(B)$ e $M_{mn}(A \otimes_R B)$ são isomorfas para quaisquer inteiros positivos m, n. (1.2 pontos)
- 7.- Sejam R um anel M_R um R-módulo à direita e RN um R-módulo à esquerda. Suponha que existem $x_1, \ldots, x_n \in M, y_1, \ldots, y_n \in N$ tais que

$$0 = \sum_{i=1}^{n} x_i \otimes y_i \in M \otimes_R N.$$

- (a) Mostre que existem submódulos finitamente gerados M_0 de M e N_0 de N tais que satisfazem as seguintes duas condições.
 - (i) Para todo $i \in \{1, ..., n\}, x_i \in M_0, y_i \in N_0.$

- (i) ∑_{i=1}ⁿ x_i ⊗ y_i = 0 em M₀ ⊗_R N₀.
 (ii) ∑_{i=1}ⁿ x_i ⊗ y_i = 0 em M₀ ⊗_R N₀.
 (b) Mostre que ∑_{i=1}ⁿ x_i ⊗ y_i = 0 em M' ⊗_R N' para quaisquer submódulos M' ≤ M e N' ≤ N com M₀ ⊆ M' e N₀ ⊆ N'.
- (c) Suponha que $M_{\mathbb{Z}}$ é um grupo abeliano. Dado o homomorfismo de grupos abelianos

$$\epsilon \colon M \to M \otimes_{\mathbb{Z}} \mathbb{Q}, \quad x \mapsto x \otimes 1,$$

mostre que $\ker \epsilon = \{x \in M : \text{ existe } n \in \mathbb{Z} \text{ tal que } xn = 0\}.$ (1.2 pontos)