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Floods in 1995-2015 (CRED & UNISDR, 2015)

47% of weather-related disasters

2.3 billion people affected

Urban population (United Nations, 2019)
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Increasing impacts and frequency of urban floods

Numerical simulation using the shallow water equations (SWE)

Accurate results: high computational cost;

Limited operational application
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Introduction

Alternative: porosity-based SWE

• Defina et al., 1994; Guinot and Soares-Frazão, 2006; Sanders et al., 2008;
Guinot, 2012; Guinot et al., 2017; Velickovic et al., 2017;...

• Spatially averaged, upscaled equations
• Urban zone: porous media.
• Porosity coefficient ϕ(x, y) ∈ [0, 1] for representing the urban geometry;

Coarser mesh, larger time step =⇒ smaller computational cost;

Good global approximations, but less accurate inside the urban zone.
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Alternative: porosity-based SWE
• Defina et al., 1994; Guinot and Soares-Frazão, 2006; Sanders et al., 2008;

Guinot, 2012; Guinot et al., 2017; Velickovic et al., 2017;...
• Spatially averaged, upscaled equations
• Urban zone: porous media.
• Porosity coefficient ϕ(x, y) ∈ [0, 1] for representing the urban geometry;

Coarser mesh, larger time step =⇒ smaller computational cost;

Good global approximations, but less accurate inside the urban zone.

Computational time: 794s Computational time: 14s
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How to improve results provided by the porosity-based SWE?

Predictor-corrector iterative parallel-in-time methods

• Parareal, PITA, PFASST, MGRIT,...
• Well-known issues when applied to hyperbolic problems.
• Alternatives and adaptations

Coarse model
low-expensive approximation

Prediction

Fine model
more accurate, more expensive

Correction

Time

Solution

• • • •
• • •

•

×
× × ×

× × ×

×
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Objectives

Couple classical and porosity-based SWE using parareal methods

• Review and improvements of parareal methods

▶ Classical and ROM-based parareal methods
▶ Compare methods in terms of convergence, numerical cost, stability
▶ Identify limitations and improve methods

• Application to the simulation of urban floods
▶ Identify additional challenges and improvement opportunities

Contribution to the SW2D software
• Developed by Inria LEMON team
• Classical and porosity-based SWE
• Explicit finite volumes discretization;
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Parareal Improvements Coupling Conclusion
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1 The parareal method and its adaptation using reduced-order models

2 Improving the parareal performance

3 Coupling the classical and porosity-based shallow water models

4 Conclusions and perspectives

6/2601/10/2021 J. G. CALDAS STEINSTRAESSER PhD defense



Parareal Improvements Coupling Conclusion

Table of contents

1 The parareal method and its adaptation using reduced-order models

2 Improving the parareal performance

3 Coupling the classical and porosity-based shallow water models

4 Conclusions and perspectives

7/2601/10/2021 J. G. CALDAS STEINSTRAESSER PhD defense



Parareal Improvements Coupling Conclusion

The parareal method

Lions et al., 2001

[Lions et al., 2001]

Fδt: A fine discretization

• Accurate but too expensive

G∆t: A coarser discretization

• Much cheaper but less accurate
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Parareal Improvements Coupling Conclusion

Performance of parallel-in-time methods

Objective: convergence in few (≪ N∆T ) iterations;

Fast convergence for parabolic, diffusive problems;

In the case of hyperbolic problems: slow convergence, instabilities

Causes (Ruprecht, 2018):

• Mismatch of discrete phase speeds between Fδt and G∆t
• Mainly on high wavenumbers (damped in parabolic problems);
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.
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Fine simulations

Collect snapshots Formulate ROM

ROM Approximate solution

Offline stage (expensive)Offline stage (expensive)

Online stage (low-expensive)

Formulate ROM
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The ROM-based parareal method

Chen et al., 2014

[Chen et al., 2014]

Idea: improve coarse prediction using reduced-order models (ROMs);

Model reduction

Low-dimensional approximation to an expensive problem;

Constructed from snapshots of the solution;

Offline-online procedure.

Nonlinear problems: combined POD-EIM
(Barrault et al., 2004; Chaturantabut & Sorensen, 2010)

• POD: proper orthogonal decomposition
• EIM: empirical interpolation method
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The ROM-based parareal method
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[Chen et al., 2014]

G∆t: only the initial prediction;

ROM-based parareal iteration:
coarse model replaced by a ROM

• Solved using small δt;
• Reformulated on-the-fly at each

iteration.
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Parareal Improvements Coupling Conclusion

First comparisons between the classical and ROM-based parareal

Simple tests; both Fδt and G∆t are discretizations of the classical SWE

Explicit FV discretization

Reference solution:{
yref,0 = y0

yref,n+1 = Fδt(yref,n) n = 0, . . . , N∆T − 1

What to compare?

• Speed of convergence
• Numerical speedup;
• Stability
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Pseudo-2D test case:

Fδt G∆t

δt = 0.001 ∆t = 0.2

δx = 1 ∆x = 1

T = 4, N∆T = 20 time slices,
P = 20 processors
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How to improve the parareal performance?

Increase time slice length (Ruprecht, 2018)

Improve coarse model

Increase spatial interpolation order (Ruprecht, 2014; Lunet, 2018)

Trade-off between convergence, stability and computational cost
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How to improve the ROM-based parareal performance?

Properly choose the ROM dimension

Enrich the model reduction

Perform local-in-time parareal simulations;

Properly choose the computational mesh;

Trade-off between convergence, stability and computational cost

ROM quality =⇒ performance of the ROM-based parareal method
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Parareal for coupling the classical and porosity-based SWE

Application to the simulation of urban floods

• Fine (reference model): classical SWE
• Coarse model: porosity-based SWE

Challenges:

• Large spatial and temporal domains
• Spatial coarsening
• Highly discontinuous solutions
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Parareal Improvements Coupling Conclusion

A more realistic test case

Influence of coarsening between Fδt

and G∆t on the performance;

• Various spatial and temporal mesh
sizes; near CFL.

Qualitative evaluation of convergence
and speedup;
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