
LEMON

Coupling large and small scale shallow
water models with porosity in the
presence of anisotropy

Ph.D. defense of

João Guilherme CALDAS STEINSTRAESSER

under the supervision of

Vincent GUINOT and Antoine ROUSSEAU

1 October 2021



Introduction

Increasing impacts and frequency of urban floods

Numerical simulation using the shallow water equations (SWE)

2/2601/10/2021 J. G. CALDAS STEINSTRAESSER PhD defense



Introduction

Increasing impacts and frequency of urban floods

Numerical simulation using the shallow water equations (SWE)

2/2601/10/2021 J. G. CALDAS STEINSTRAESSER PhD defense



Introduction

Increasing impacts and frequency of urban floods

Numerical simulation using the shallow water equations (SWE)
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2.3 billion people affected

Urban population (United Nations, 2019)
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Increasing impacts and frequency of urban floods

Numerical simulation using the shallow water equations (SWE)

Accurate results: high computational cost;

Limited operational application
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Alternative: porosity-based SWE

• Defina et al., 1994; Guinot and Soares-Frazão, 2006; Sanders et al., 2008;
Guinot, 2012; Guinot et al., 2017; Velickovic et al., 2017;...

• Spatially averaged, upscaled equations
• Urban zone: porous media.
• Porosity coefficient ϕ(x, y) ∈ [0, 1] for representing the urban geometry;

Coarser mesh, larger time step =⇒ smaller computational cost;

Good global approximations, but less accurate inside the urban zone.
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Alternative: porosity-based SWE
• Defina et al., 1994; Guinot and Soares-Frazão, 2006; Sanders et al., 2008;

Guinot, 2012; Guinot et al., 2017; Velickovic et al., 2017;...
• Spatially averaged, upscaled equations
• Urban zone: porous media.
• Porosity coefficient ϕ(x, y) ∈ [0, 1] for representing the urban geometry;

Coarser mesh, larger time step =⇒ smaller computational cost;

Good global approximations, but less accurate inside the urban zone.

Computational time: 794s Computational time: 14s
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How to improve results provided by the porosity-based SWE?

Predictor-corrector iterative parallel-in-time methods

• Parareal, PITA, PFASST, MGRIT,...
• Well-known issues when applied to hyperbolic problems.
• Alternatives and adaptations

Coarse model
low-expensive approximation

Prediction

Fine model
more accurate, more expensive

Correction

Time

Solution

• • • •
• • •

•

×
× × ×

× × ×

×
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Objectives

Couple classical and porosity-based SWE using parareal methods

• Review and improvements of parareal methods

▶ Classical and ROM-based parareal methods
▶ Compare methods in terms of convergence, numerical cost, stability
▶ Identify limitations and improve methods

• Application to the simulation of urban floods
▶ Identify additional challenges and improvement opportunities

Contribution to the SW2D software
• Developed by Inria LEMON team
• Classical and porosity-based SWE
• Explicit finite volumes discretization;
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Parareal Improvements Coupling Conclusion
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Parareal Improvements Coupling Conclusion

The parareal method

Lions et al., 2001

[Lions et al., 2001]

Fδt: A fine discretization

• Accurate but too expensive

G∆t: A coarser discretization

• Much cheaper but less accurate
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Parareal Improvements Coupling Conclusion

Performance of parallel-in-time methods

Objective: convergence in few (≪ N∆T ) iterations;

Fast convergence for parabolic, diffusive problems;

In the case of hyperbolic problems: slow convergence, instabilities

Causes (Ruprecht, 2018):

• Mismatch of discrete phase speeds between Fδt and G∆t
• Mainly on high wavenumbers (damped in parabolic problems);
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dy1

dt
= Ay1 + F (y1)

dy2

dt
= Ay2 + F (y2)

.

.

.

.

.

.

dyM
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.

.
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= Ãỹm + F̃ (ỹm)

m ≪ M
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Fine simulations

Collect snapshots Formulate ROM

ROM Approximate solution

Offline stage (expensive)Offline stage (expensive)

Online stage (low-expensive)

Formulate ROM
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The ROM-based parareal method

Chen et al., 2014

[Chen et al., 2014]

Idea: improve coarse prediction using reduced-order models (ROMs);

Model reduction

Low-dimensional approximation to an expensive problem;

Constructed from snapshots of the solution;

Offline-online procedure.

Nonlinear problems: combined POD-EIM
(Barrault et al., 2004; Chaturantabut & Sorensen, 2010)

• POD: proper orthogonal decomposition
• EIM: empirical interpolation method
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The ROM-based parareal method
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[Chen et al., 2014]

G∆t: only the initial prediction;

ROM-based parareal iteration:
coarse model replaced by a ROM

• Solved using small δt;
• Reformulated on-the-fly at each

iteration.
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Parareal Improvements Coupling Conclusion

First comparisons between the classical and ROM-based parareal

Simple tests; both Fδt and G∆t are discretizations of the classical SWE

Explicit FV discretization

Reference solution:{
yref,0 = y0

yref,n+1 = Fδt(yref,n) n = 0, . . . , N∆T − 1

What to compare?

• Speed of convergence
• Numerical speedup;
• Stability
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Pseudo-2D test case:

Fδt G∆t

δt = 0.001 ∆t = 0.2

δx = 1 ∆x = 1

T = 4, N∆T = 20 time slices,
P = 20 processors
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How to improve the parareal performance?

Increase time slice length (Ruprecht, 2018)

Improve coarse model

Increase spatial interpolation order (Ruprecht, 2014; Lunet, 2018)

Trade-off between convergence, stability and computational cost
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How to improve the ROM-based parareal performance?

Properly choose the ROM dimension

Enrich the model reduction

Perform local-in-time parareal simulations;

Properly choose the computational mesh;

Trade-off between convergence, stability and computational cost

ROM quality =⇒ performance of the ROM-based parareal method
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Parareal for coupling the classical and porosity-based SWE

Application to the simulation of urban floods

• Fine (reference model): classical SWE
• Coarse model: porosity-based SWE

Challenges:

• Large spatial and temporal domains
• Spatial coarsening
• Highly discontinuous solutions
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Parareal Improvements Coupling Conclusion

A more realistic test case

Influence of coarsening between Fδt

and G∆t on the performance;

• Various spatial and temporal mesh
sizes; near CFL.

Qualitative evaluation of convergence
and speedup;
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