A modified ROM-based parareal method for the simulation of urban floods

J. G. Caldas Steinstraesser ^{1,2} V. Guinot ^{1,3} A. Rousseau ^{1,2}

¹ Inria - LEMON team ² IMAG, Univ. Montpellier ³ HSM, Univ. Montpellier

14 January 2021

Table of Contents

- 1 Introduction
- 2 The parareal method
- **3** Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

Table of Contents

- 2 The parareal method
- 3 Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

 Numerical simulation of urban floods using the shallow water equations (SWE);

- Numerical simulation of urban floods using the shallow water equations (SWE);
- Accurate results: high computational cost;

[Guinot et al. (2017)]

Alternative: coarser models

- Alternative: coarser models
 - Coarser SWE

- Alternative: coarser models
 - Coarser SWE
 - Porosity-based SWE [Defina (2000); Guinot and Soares-Frazão (2006), ...]

- Alternative: coarser models
 - Coarser SWE
 - Porosity-based SWE [Defina (2000); Guinot and Soares-Frazão (2006), ...]
- Coarser mesh, larger time step ⇒ smaller computational cost (2-3 orders of magnitude);

- Alternative: coarser models
 - Coarser SWE
 - Porosity-based SWE [Defina (2000); Guinot and Soares-Frazão (2006), ...]
- Coarser mesh, larger time step ⇒ smaller computational cost (2-3 orders of magnitude);
- Good global approximations, but less accurate inside the urban zone (zones of interest)

• Objective: **coupled model** between the SWE at different scales:

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.
- Parareal method:

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

Parareal method:

Objective: reduce the computational cost of a fine model;

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

- Objective: reduce the computational cost of a fine model;
- Simultaneous use of a fine and a coarse model;

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

- Objective: reduce the computational cost of a fine model;
- Simultaneous use of a fine and a coarse model;
- Parallelize the fine simulation in time;

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

- Objective: reduce the computational cost of a fine model;
- Simultaneous use of a fine and a coarse model;
- Parallelize the fine simulation in time;
- Adaptations for solving hyperbolic problems: use of reduced-order models (ROMs);

• Objective: **coupled model** between the SWE at different scales:

- More accurate results inside the urban zone;
- Reduced computational cost compared to SWE.

- Objective: reduce the computational cost of a fine model;
- Simultaneous use of a fine and a coarse model;
- Parallelize the fine simulation in time;
- Adaptations for solving hyperbolic problems: use of reduced-order models (ROMs);
- Further improvements

Table of Contents

1 Introduction

2 The parareal method

- 3 Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

The parareal method: definitions

[Lions et al. (2001)]

A simple problem:

$$\begin{cases} \frac{d}{dt}\mathbf{y}(t) + A\mathbf{y}(t) = 0, & \text{in } [0, T] \\ \mathbf{y}(0) = \mathbf{y}_0 \end{cases}$$
(1)

The parareal method: definitions

[Lions et al. (2001)]

A simple problem:

$$\begin{cases} \frac{d}{dt} \mathbf{y}(t) + A \mathbf{y}(t) = 0, & \text{in } [0, T] \\ \mathbf{y}(0) = \mathbf{y}_0 \end{cases}$$

• $\mathcal{F}_{\delta t}$: A fine discretization (propagator) of (1)

- Time step δt
- Accurate but too expensive

(1)

The parareal method: definitions

[Lions et al. (2001)]

A simple problem:

$$\begin{cases} \frac{d}{dt} \mathbf{y}(t) + A \mathbf{y}(t) = 0, & \text{in } [0, T] \\ \mathbf{y}(0) = \mathbf{y}_0 \end{cases}$$

• $\mathcal{F}_{\delta t}$: A fine discretization (propagator) of (1)

- $\blacksquare \ {\sf Time \ step} \ \delta t$
- Accurate but too expensive

• $\mathcal{G}_{\Delta t}$: A coarser discretization (propagator) of (1)

- Time step $\Delta t > \delta t$
- Much cheaper but inaccurate

(1)

- Predictor-corrector iterative method;
- y^k_n: solution at instant t_n and iteration k.

- Predictor-corrector iterative method;
- y_n^k: solution at instant t_n and iteration k.
- Initial prediction (k=0):

$$\boldsymbol{y}_{n+1}^0 = \mathcal{G}_{\Delta t}(\boldsymbol{y}_n^0)$$
 (seq.)

The parareal method: construction

• Iteration k + 1:

• y_n^k available for all $n = 0, \dots, N_{\Delta t}$

The parareal method: construction

- Iteration k + 1:
 - y_n^k available for all $n = 0, \dots, N_{\Delta t}$

 $\mathbf{y}_{n+1}^{k+1} = \underbrace{\mathcal{G}_{\Delta t}(\mathbf{y}_n^{k+1})}_{\text{prediction (seq.)}}$

 Coarse prediction (sequentially):

- Iteration k + 1:
 - y_n^k available for all $n = 0, \dots, N_{\Delta t}$
 - Coarse prediction (sequentially):

- Iteration k + 1:
 - y_n^k available for all $n = 0, \dots, N_{\Delta t}$
 - Coarse prediction (sequentially):

The parareal method: construction

- Iteration k + 1:
 - y_n^k available for all $n = 0, \dots, N_{\Delta t}$
 - Coarse prediction (sequentially):

• Fine correction (in parallel):

Parareal method: performance

Fast convergence for many problems;

ſ

Parabolic, diffusive problems

$$u_t + u_{xx} = J$$

Parareal method: performance

- Fast convergence for many problems;
 - Parabolic, diffusive problems
- In the case of hyperbolic problems:
 - Slow convergence
 - Instabilities

$$u_t + u_x = 0$$

Parareal method: performance

- Fast convergence for many problems;
 - Parabolic, diffusive problems
- In the case of hyperbolic problems:
 - Slow convergence
 - Instabilities
- Causes [Ruprecht (2018)]:
 - Mismatch of discrete phase speeds between $\mathcal{F}_{\delta t}$ and $\mathcal{G}_{\Delta t}$
 - Mainly on high wave numbers (damped in parabolic problems);

 $u_t + u_{xx} = f$

$$u_t + u_x = 0$$

Table of Contents

1 Introduction

2 The parareal method

3 Adaptations for nonlinear hyperbolic problems

- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives
Parareal methods for nonlinear hyperbolic problems [Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

Parareal methods for nonlinear hyperbolic problems [Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

$$\frac{dy_1}{dt} = Ay_1 + F(y_1)$$
$$\frac{dy_2}{dt} = Ay_2 + F(y_2)$$
$$\vdots$$
$$\vdots$$
$$\vdots$$
$$\frac{dy_N}{dt} = Ay_N + F(y_N)$$

Parareal methods for nonlinear hyperbolic problems [Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

Parareal methods for nonlinear hyperbolic problems [Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

 $q \ll N$

Parareal methods for nonlinear hyperbolic problems [Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

- The coarser model is replaced by a reduced-order model (ROM), constructed from snapshots of the solution.
 - **POD**: proper orthogonal decomposition (reduction of linear term)
 - Approximation in a space S_q with dimension $q \ll N$ (SVD);

$$\frac{dy_1}{dt} = Ay_1 + F(y_1)$$
$$\frac{dy_2}{dt} = Ay_2 + F(y_2)$$
$$\vdots$$
$$\vdots$$
$$\frac{dy_N}{dt} = Ay_N + F(y_N)$$

 $q \ll N$

Parareal methods for nonlinear hyperbolic problems

[Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

- The coarser model is replaced by a reduced-order model (ROM), constructed from snapshots of the solution.
 - **POD**: proper orthogonal decomposition (reduction of linear term)
 - Approximation in a space S_q with dimension $q \ll N$ (SVD);
 - EIM/POD-DEIM: (discrete) empirical interpolation method (reduction of nonlinear term)
 - Approximation in a space \widehat{S}_m with dimension $m \ll N$;
 - Interpolation from m points in space.

$$\frac{dy_1}{dt} = Ay_1 + F(y_1)$$
$$\frac{dy_2}{dt} = Ay_2 + F(y_2)$$
$$\vdots$$
$$\vdots$$
$$\vdots$$
$$\frac{dy_N}{dt} = Ay_N + F(y_N)$$

$$\frac{\mathsf{Snapshots}}{y(t_1), \ y(t_2), \dots, y(t_s)} \Longrightarrow$$

 $q \ll N$

The ROM-based parareal method

How is the ROM introduced in the parareal method?

The ROM-based parareal method

How is the ROM introduced in the parareal method?

• $\mathcal{G}_{\Delta t}$ is replaced by the ROM $\mathcal{F}^k_{\delta t,r}$, solved with a fine time step δt :

The ROM-based parareal method

How is the ROM introduced in the parareal method?

• $\mathcal{G}_{\Delta t}$ is replaced by the ROM $\mathcal{F}^k_{\delta t,r}$, solved with a fine time step δt :

 $\mathbf{y}_{n+1}^{k+1} = \mathcal{G}_{\Delta t}(\mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{G}_{\Delta t}(\mathbf{y}_n^k)$

The ROM-based parareal method

How is the ROM introduced in the parareal method?

• $\mathcal{G}_{\Delta t}$ is replaced by the ROM $\mathcal{F}^k_{\delta t,r}$, solved with a fine time step δt :

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

The ROM-based parareal method

How is the ROM introduced in the parareal method?

• $\mathcal{G}_{\Delta t}$ is replaced by the ROM $\mathcal{F}^k_{\delta t,r}$, solved with a fine time step δt :

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

• The coarse model $\mathcal{G}_{\Delta t}$ is still used for the initial prediction (k=0).

The ROM-based parareal method

- How is the ROM introduced in the parareal method?
 - $\mathcal{G}_{\Delta t}$ is replaced by the ROM $\mathcal{F}^k_{\delta t,r}$, solved with a fine time step δt :

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

- The coarse model $\mathcal{G}_{\Delta t}$ is still used for the initial prediction (k=0).
- The ROM is reformulated on-the-fly at each iteration, using the solutions from all coarse time steps of all previous iterations.

Table of Contents

1 Introduction

- 2 The parareal method
- 3 Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

- Limitation: quality of the ROM
 - Imprecise snapshots

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:
 - Extra snapshots are available for free;

Computed in fine parallel step but not used

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:
 - Extra snapshots are available for free;
 - Take extra snapshots at every $\widehat{\Delta t} = \alpha \Delta t, \ \delta t \leq \widehat{\Delta t} \leq \Delta t.$

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:
 - Extra snapshots are available for free;
 - Take extra snapshots at every $\widehat{\Delta t} = \alpha \Delta t, \ \delta t \leq \widehat{\Delta t} \leq \Delta t.$
- How many extra snapshots?

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:
 - Extra snapshots are available for free;
 - Take extra snapshots at every $\widehat{\Delta t} = \alpha \Delta t, \ \delta t \leq \widehat{\Delta t} \leq \Delta t.$
- How many extra snapshots?
 - POD (SVD): cost = $\mathcal{O}(n_{\text{snapshots}}^2) = \mathcal{O}(1/\alpha^2)$

- Limitation: quality of the ROM
 - Imprecise snapshots
- Enrichment of the snapshots sets:
 - Extra snapshots are available for free;
 - Take extra snapshots at every $\widehat{\Delta t} = \alpha \Delta t, \ \delta t \leq \widehat{\Delta t} \leq \Delta t.$
- How many extra snapshots?
 - POD (SVD): cost
 - $= \mathcal{O}(n_{\rm snapshots}^2) = \mathcal{O}(1/\alpha^2)$
 - Keep α large (e.g. $\alpha = 1/2$).

$$\frac{\partial}{\partial t}\boldsymbol{U}(t) + \frac{\partial}{\partial x}\boldsymbol{F}(\boldsymbol{U}(t)) + \frac{\partial}{\partial y}\boldsymbol{G}(\boldsymbol{U}(t)) = \boldsymbol{S}(\boldsymbol{U}(t))$$

$$\boldsymbol{U} = \begin{pmatrix} h \\ hu_x \\ hu_y \end{pmatrix}, \ \boldsymbol{F} = \begin{pmatrix} hu_x \\ hu_x^2 + gh^2/2 \\ hu_xu_y \end{pmatrix}, \ \boldsymbol{G} = \begin{pmatrix} hu_y \\ hu_xu_y \\ hu_y^2 + gh^2/2 \end{pmatrix}, \ \boldsymbol{S} = \begin{pmatrix} 0 \\ S_{0,x} + S_{f,x} \\ S_{0,y} + S_{f,y} \end{pmatrix}$$

$$\frac{\partial}{\partial t}\boldsymbol{U}(t) + \frac{\partial}{\partial x}\boldsymbol{F}(\boldsymbol{U}(t)) + \frac{\partial}{\partial y}\boldsymbol{G}(\boldsymbol{U}(t)) = \boldsymbol{S}(\boldsymbol{U}(t))$$

$$\mathbf{U} = \begin{pmatrix} h \\ hu_x \\ hu_y \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} hu_x \\ hu_x^2 + gh^2/2 \\ hu_xu_y \end{pmatrix}, \ \mathbf{G} = \begin{pmatrix} hu_y \\ hu_xu_y \\ hu_y^2 + gh^2/2 \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 0 \\ S_{0,x} + S_{f,x} \\ S_{0,y} + S_{f,y} \end{pmatrix}$$

Explicit FV scheme;

$$\frac{\partial}{\partial t}\boldsymbol{U}(t) + \frac{\partial}{\partial x}\boldsymbol{F}(\boldsymbol{U}(t)) + \frac{\partial}{\partial y}\boldsymbol{G}(\boldsymbol{U}(t)) = \boldsymbol{S}(\boldsymbol{U}(t))$$

$$\mathbf{U} = \begin{pmatrix} h \\ hu_x \\ hu_y \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} hu_x \\ hu_x^2 + gh^2/2 \\ hu_xu_y \end{pmatrix}, \ \mathbf{G} = \begin{pmatrix} hu_y \\ hu_xu_y \\ hu_y^2 + gh^2/2 \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 0 \\ S_{0,x} + S_{f,x} \\ S_{0,y} + S_{f,y} \end{pmatrix}$$

- Explicit FV scheme;
- Referential solution:

$$\begin{cases} \mathbf{y}_{\mathsf{ref},0} = \mathbf{y}_0 \\ \mathbf{y}_{\mathsf{ref},n+1} = \mathcal{F}_{\delta t}(\mathbf{y}_{\mathsf{ref},n}) \qquad n = 0, \dots, N_{\Delta t} - 1 \end{cases}$$

$$\frac{\partial}{\partial t}\boldsymbol{U}(t) + \frac{\partial}{\partial x}\boldsymbol{F}(\boldsymbol{U}(t)) + \frac{\partial}{\partial y}\boldsymbol{G}(\boldsymbol{U}(t)) = \boldsymbol{S}(\boldsymbol{U}(t))$$

$$\mathbf{U} = \begin{pmatrix} h \\ hu_x \\ hu_y \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} hu_x \\ hu_x^2 + gh^2/2 \\ hu_xu_y \end{pmatrix}, \ \mathbf{G} = \begin{pmatrix} hu_y \\ hu_xu_y \\ hu_y^2 + gh^2/2 \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 0 \\ S_{0,x} + S_{f,x} \\ S_{0,y} + S_{f,y} \end{pmatrix}$$

- Explicit FV scheme;
- Referential solution:

$$\begin{cases} \mathbf{y}_{\mathsf{ref},0} = \mathbf{y}_0 \\ \mathbf{y}_{\mathsf{ref},n+1} = \mathcal{F}_{\delta t}(\mathbf{y}_{\mathsf{ref},n}) \qquad n = 0, \dots, N_{\Delta t} - 1 \end{cases}$$

Error per instant and iteration:

$$e_n^k := \frac{\sum_{i=1}^{3N} |[\mathbf{y}_n^k]_i - [\mathbf{y}_{\mathsf{ref, n}}]_i|}{\sum_{i=1}^{3N} |[\mathbf{y}_{\mathsf{ref, n}}]_i|}$$

First test case (pseudo-2D)

- $\Omega = [0, 20]^2;$
- Initial solution: lake-in-rest, $h(t=0) \equiv 1$, flat bottom;
- Boundary conditions: inward unitary mass flux at x = 0.
- Propagators:

$\mathcal{F}_{\delta t}$	SWE	$\delta t = 0.001$	$\delta x = 1$	$\delta y = 1$
$\mathcal{G}_{\Delta t}$	SWE	$\Delta t = 0.2$	$\Delta x = 1$	$\Delta y = 1$

- T = 5, $N_{\Delta t} = 25$, P = 20 processors;
- Enriched snapshots: $\widehat{\Delta t} = 0.1$ ($\alpha = 1/2$);

A modified ROM-based parareal method for urban floods | Enriched ROM-based parareal

First test case (pseudo-2D): errors

First test case (pseudo-2D): errors

First test case (pseudo-2D): errors

A modified ROM-based parareal method for urban floods Enriched ROM-based parareal

First test case (pseudo-2D): h at (x, y) = (10, 5)

14 January 2021

A modified ROM-based parareal method for urban floods Enriched ROM-based parareal

First test case (pseudo-2D): speedup

Second test case: a fictional flood simulation

- $\Omega = [0, 100]^2;$
- Initial solution:

$$\begin{cases} h(t=0, x, y) = 0.1 \\ u_x(t=0, x, y) = 0 \\ u_y(t=0, x, y) = 0 \end{cases} \quad (x, y) \in \Omega$$

Inward unitary flux on the western boundary.

Second test case: a fictional flood simulation

Propagators:

$\mathcal{F}_{\delta t}$	SWE	$\delta t = 0.001$	$\delta x = 2$	$\delta y = 2$
$\mathcal{G}_{\Delta t}$	por-SWE	$\Delta t = 1$	$\Delta x = 10$	$\Delta y = 10$

•
$$T = 20$$
, $N_{\Delta t} = 20$, $P = 20$ processors

ROM-based parareal with 4 extra snapshots per Δt ($\alpha = 1/5$);

Second test case: a fictional flood simulation

Error per instant and iteration

A modified ROM-based parareal method for urban floods Enriched ROM-based parareal

Test case: water depth at t = 20

Test case: probes locations

Second test case: water depth at A(34, 47)

A modified ROM-based parareal method for urban floods Enriched ROM-based parareal

Test case: water depth at B(47, 47)

Test case: speedup

• Coarse model (iteration 0) \approx 0.11 s (speedup \approx 3500)

Table of Contents

1 Introduction

- 2 The parareal method
- 3 Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

[Maday and Mula (2020)]

Modification of the classical parareal method

- Modification of the classical parareal method
 - The parallel efficiency is limited by the fine propagator;

- Modification of the classical parareal method
 - The parallel efficiency is limited by the fine propagator;
 - Idea: use fine propagators with an increasing accuracy ζ along iterations;

- Modification of the classical parareal method
 - The parallel efficiency is limited by the fine propagator;
 - Idea: use fine propagators with an increasing accuracy ζ along iterations;

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{G}_{\Delta t}(\mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{G}_{\Delta t}(\mathbf{y}_n^k)$$

- Modification of the classical parareal method
 - The parallel efficiency is limited by the fine propagator;
 - Idea: use fine propagators with an increasing accuracy ζ along iterations;

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{G}_{\Delta t}(\mathbf{y}_n^{k+1}) + [\mathcal{E}(\mathbf{y}_n^k), \zeta^k] - \mathcal{G}_{\Delta t}(\mathbf{y}_n^k)$$

[Maday and Mula (2020)]

- Modification of the classical parareal method
 - The parallel efficiency is limited by the fine propagator;
 - Idea: use fine propagators with an increasing accuracy ζ along iterations;

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{G}_{\Delta t}(\mathbf{y}_n^{k+1}) + [\mathcal{E}(\mathbf{y}_n^k), \zeta^k] - \mathcal{G}_{\Delta t}(\mathbf{y}_n^k)$$

Ideally: same precision is attained.

A modified ROM-based parareal method for urban floods | Adaptative ROM-based parareal

Adaptative ROM-based parareal

• Define
$$\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$$
 with increasing accuracy.

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

$$\mathbf{y}_{n+1}^{k+1} = \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \mathcal{F}_{\delta t}(\mathbf{y}_n^k) - \mathcal{F}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

$$\mathbf{y}_{n+1}^{k+1} = \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \widehat{\mathcal{F}}_{\delta t}^k(\mathbf{y}_n^k) - \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

ROM-based parareal iteration:

$$\mathbf{y}_{n+1}^{k+1} = \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \widehat{\mathcal{F}}_{\delta t}^k(\mathbf{y}_n^k) - \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

Reduced cost of the fine propagator;

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

$$\mathbf{y}_{n+1}^{k+1} = \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \widehat{\mathcal{F}}_{\delta t}^k(\mathbf{y}_n^k) - \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

- Reduced cost of the fine propagator;
- Reduced cost for formulating the ROMs;

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

$$\mathbf{y}_{n+1}^{k+1} = \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \widehat{\mathcal{F}}_{\delta t}^k(\mathbf{y}_n^k) - \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

- Reduced cost of the fine propagator;
- Reduced cost for formulating the ROMs;
- Reduced cost for solving the ROMs;

• Define $\widehat{\mathcal{F}}^1_{\delta t}, \widehat{\mathcal{F}}^2_{\delta t}, \dots, \widehat{\mathcal{F}}^{\overline{n}}_{\delta t} = \mathcal{F}_{\delta t}$ with increasing accuracy.

$$\mathbf{y}_{n+1}^{k+1} = \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^{k+1}) + \widehat{\mathcal{F}}_{\delta t}^k(\mathbf{y}_n^k) - \widehat{\mathcal{F}}_{\delta t,r}^k(\mathbf{P}^k \mathbf{y}_n^k)$$

- Reduced cost of the fine propagator;
- Reduced cost for formulating the ROMs;
- Reduced cost for solving the ROMs;
- More stable ROMs.

Second test case with the adaptative ROM-parareal

• Coarse model (iteration 0): $\Delta t = 1$; $\Delta x = \Delta y = 10$

Second test case with the adaptative ROM-parareal

- Coarse model (iteration 0): $\Delta t = 1$; $\Delta x = \Delta y = 10$
- Fine models:

Iteration	Fine model	δt	$\delta x = \delta y$
1	$\widehat{\mathcal{F}}^{1}_{\delta t}$	0.05	4
2	$\widehat{\mathcal{F}}_{\delta t}^2$	0.01	4
3	$\widehat{\mathcal{F}}^3_{\delta t}$	0.005	4
4	$\widehat{\mathcal{F}}^4_{\delta t}$	0.005	2
5	$\widehat{\mathcal{F}}_{\delta t}^5 = \mathcal{F}_{\delta t}$	0.001	2

Adaptative test case: errors

A modified ROM-based parareal method for urban floods Adaptative ROM-based parareal

Adaptative test case: water depth at t = 20

Adaptative test case: water depth at probes

Test case: speedup

Speedup (iteration 5):

- Non-adaptative: 1.4
- Adaptative: 4.2

Table of Contents

1 Introduction

- 2 The parareal method
- 3 Adaptations for nonlinear hyperbolic problems
- 4 Enriched ROM-based parareal
- 5 Adaptative ROM-based parareal
- 6 Conclusion and perspectives

 ROM-based parareal methods are efficient for speeding up nonlinear hyperbolic problems;

- ROM-based parareal methods are efficient for speeding up nonlinear hyperbolic problems;
- Crucial aspect: formulation of the ROM;

- ROM-based parareal methods are efficient for speeding up nonlinear hyperbolic problems;
- Crucial aspect: formulation of the ROM;
- Enrichment of the snapshots sets:
 - No extra cost for computing the extra snapshots;
 - More stability and faster convergence;
 - Quadratic dependency of the POD on the number of snapshots

- ROM-based parareal methods are efficient for speeding up nonlinear hyperbolic problems;
- Crucial aspect: formulation of the ROM;
- Enrichment of the snapshots sets:
 - No extra cost for computing the extra snapshots;
 - More stability and faster convergence;
 - Quadratic dependency of the POD on the number of snapshots
- Adaptative approach
 - Progressive refinement of $\mathcal{F}_{\delta t}$;
 - Improved speedup and stability;

Perspectives

- Adaptative approach: study configurations, propose objective criteria for defining the fine models;
- Application to more realistic test cases:
 - Long simulations;
 - Solutions with strong variation;
 - Interpolation between spatial meshes

Thank you for your attention

- Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004). An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. *Comptes Rendus Mathematique*, 339(9):667 – 672.
- Chaturantabut, S. and Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. *SIAM Journal on Scientific Computing*, 32(5):2737–2764.
- Chen, F., Hesthaven, J. S., and Zhu, X. (2014). On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method, pages 187–214. Springer International Publishing, Cham.
- Defina, A. (2000). Two-dimensional shallow flow equations for partially dry areas. *Water Resources Research*, 36(11):3251–3264.
- Guinot, V., Sanders, B. F., and Schubert, J. E. (2017). Dual integral porosity shallow water model for urban flood modelling. *Advances in Water Resources*, 103:16 31.
- Guinot, V. and Soares-Frazão, S. (2006). Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids. *International Journal for Numerical Methods in Fluids*, 50(3):309–345.
- Lions, J.-L., Maday, Y., and Turinici, G. (2001). Résolution d'edp par un schéma en temps 'pararéel'. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 332(7):661 - 668.
- Maday, Y. and Mula, O. (2020). An Adaptive Parareal Algorithm. *Journal of Computational and Applied Mathematics*.
- Ruprecht, D. (2018). Wave propagation characteristics of Parareal. *Computing and Visualization in Science*, 19:1–17.