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Introduction

Alternative: coarser models

Coarser SWE
Porosity-based SWE [Defina (2000); Guinot and Soares-Frazão (2006), ...]

Coarser mesh, larger time step =⇒ smaller computational cost (2-3
orders of magnitude);
Good global approximations, but less accurate inside the urban zone
(zones of interest)
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Objectives and methodology

Objective: coupled model between the SWE at different scales:

More accurate results inside the urban zone;
Reduced computational cost compared to SWE.

Parareal method:

Objective: reduce the computational cost of a fine model;
Simultaneous use of a fine and a coarse model;
Parallelize the fine simulation in time;
Adaptations for solving hyperbolic problems: use of reduced-order
models (ROMs);
Further improvements
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The parareal method: definitions
[Lions et al. (2001)]

A simple problem: {
d
dty(t) + Ay(t) = 0, in [0,T]

y(0) = y0

(1)

Fδt: A fine discretization (propagator) of (1)

Time step δt
Accurate but too expensive

G∆t: A coarser discretization (propagator) of (1)

Time step ∆t > δt
Much cheaper but inaccurate
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The parareal method: construction

Predictor-corrector iterative
method;
yk

n: solution at instant tn and
iteration k.

0

t1 t2 t3

T

• • • • • • • • • • • • • • • • •• • • • •

∆t

δt

Initial prediction (k = 0):
y0

n+1 = G∆t(y0
n) (seq.)

0 t1 t2 t3 T• • • • • • • • • • • • • • • • •• • • • •
G∆t(y00) G∆t(y01) G∆t(y02) G∆t(y03)
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Parareal method: performance

Fast convergence for many problems;
Parabolic, diffusive problems

In the case of hyperbolic problems:

Slow convergence
Instabilities

Causes [Ruprecht (2018)]:

Mismatch of discrete phase speeds between Fδt and G∆t
Mainly on high wave numbers (damped in parabolic problems);

ut + uxx = f

ut + ux = 0
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Parareal methods for nonlinear hyperbolic problems
[Barrault et al. (2004); Chaturantabut and Sorensen (2010); Chen et al. (2014)]

The coarser model is replaced by a reduced-order model (ROM),
constructed from snapshots of the solution.

POD: proper orthogonal decomposition (reduction of linear term)

Approximation in a space Sq with dimension q ≪ N (SVD);

EIM/POD-DEIM: (discrete) empirical interpolation method
(reduction of nonlinear term)

Approximation in a space Ŝm with dimension m ≪ N;
Interpolation from m points in space.

dy1
dt

= Ay1 + F(y1)

dy2
dt

= Ay2 + F(y2)

...

...
dyN
dt

= AyN + F(yN)

Snapshots
y(t1), y(t2), . . . , y(ts)

=⇒

dỹ1
dt

= Ãỹ1 + F̃(ỹ1)

...
dỹq

dt
= Ãỹq + F̃(ỹq)

q ≪ N
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dỹ1
dt
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The ROM-based parareal method

How is the ROM introduced in the parareal method?

G∆t is replaced by the ROM Fk
δt,r, solved with a fine time step δt:

The coarse model G∆t is still used for the initial prediction (k = 0).
The ROM is reformulated on-the-fly at each iteration, using the
solutions from all coarse time steps of all previous iterations.

0 t1 t2 t3 T• • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • •

Snapshots
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Improvement of the ROM-based parareal method

Limitation: quality of the ROM
Imprecise snapshots

Enrichment of the snapshots
sets:

Extra snapshots are available for
free;
Take extra snapshots at every
∆̂t = α∆t, δt ≤ ∆̂t ≤ ∆t.

How many extra snapshots?

POD (SVD): cost
= O(n2

snapshots) = O(1/α2)
Keep α large (e.g. α = 1/2).

0 t1 t2 t3 T• • • • • • • • • • • • • • • • •• • • • •
• Snapshots

• • • • • • • • • • • •

•Computed in fine parallel step but not used

∆t

tn tn+1

• • • • • • • • • •• •• •

∆̂t = α∆t

∆t

•Extra snapshots
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Numerical tests - SWE

∂

∂tU(t) + ∂

∂xF(U(t)) + ∂

∂yG(U(t)) = S(U(t))

U =

 h
hux
huy

 , F =

 hux
hu2

x + gh2/2
huxuy

 , G =

 huy
huxuy

hu2
y + gh2/2

 , S =

 0
S0,x + Sf,x
S0,y + Sf,y



Explicit FV scheme;
Referential solution:{

yref,0 = y0

yref,n+1 = Fδt(yref,n) n = 0, . . . ,N∆t − 1

Error per instant and iteration:

ek
n :=

∑3N
i=1 |[yk

n]i − [yref, n]i|∑3N
i=1 |[yref,n]i|
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First test case (pseudo-2D)

Ω = [0, 20]2;
Initial solution: lake-in-rest,
h(t = 0) ≡ 1, flat bottom;
Boundary conditions: inward
unitary mass flux at x = 0. x

0.0 2.5 5.0 7.510.012.515.017.520.0

y

0.0
2.5

5.0
7.510.012.515.017.520.0

h

0.96

0.98

1.00

1.02

1.04

Water depth in t = 0

x

0.0 2.5 5.0 7.510.012.515.017.520.0

y

0.0
2.5

5.0
7.510.012.515.017.520.0

h

1.05

1.10

1.15

1.20

1.25

Water depth in t = 2.0

Propagators:
Fδt SWE δt = 0.001 δx = 1 δy = 1

G∆t SWE ∆t = 0.2 ∆x = 1 ∆y = 1

T = 5, N∆t = 25, P = 20 processors;
Enriched snapshots: ∆̂t = 0.1 (α = 1/2);
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First test case (pseudo-2D): errors
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First test case (pseudo-2D): h at (x, y) = (10, 5)
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First test case (pseudo-2D): speedup

speedup =
τref

τparareal
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Second test case: a fictional flood simulation
Ω = [0, 100]2;
Initial solution: 

h(t = 0, x, y) = 0.1

ux(t = 0, x, y) = 0 (x, y) ∈ Ω

uy(t = 0, x, y) = 0

Inward unitary flux on the western boundary.
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Second test case: a fictional flood simulation

Propagators:
Fδt SWE δt = 0.001 δx = 2 δy = 2

G∆t por-SWE ∆t = 1 ∆x = 10 ∆y = 10

T = 20, N∆t = 20, P = 20 processors
ROM-based parareal with 4 extra snapshots per ∆t (α = 1/5);
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Second test case: a fictional flood simulation

Error per instant and iteration
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Test case: water depth at t = 20
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Test case: probes locations

A
B
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Second test case: water depth at A(34, 47)
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Test case: water depth at B(47, 47)
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Test case: speedup

speedup =
τref

τparareal

Coarse model (iteration 0) ≈ 0.11 s (speedup ≈ 3500)

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

35

Co
m

pu
ta

tio
n 

tim
e 

(s
)

POD-DEIM parareal
Reference

1 2 3 4 5
Iteration

1

2

3

4

5

6

7

Sp
ee

du
p

POD-DEIM parareal
Reference

| 14 January 2021 29 / 41



A modified ROM-based parareal method for urban floods | Adaptative ROM-based parareal

Table of Contents

1 Introduction

2 The parareal method

3 Adaptations for nonlinear hyperbolic problems

4 Enriched ROM-based parareal

5 Adaptative ROM-based parareal

6 Conclusion and perspectives

| 14 January 2021 30 / 41



A modified ROM-based parareal method for urban floods | Adaptative ROM-based parareal

Adaptative parareal
[Maday and Mula (2020)]

Modification of the classical parareal method

The parallel efficiency is limited by the fine propagator;
Idea: use fine propagators with an increasing accuracy ζ along
iterations;

Ideally: same precision is attained.
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Adaptative ROM-based parareal

Define F̂1
δt, F̂2

δt, . . . , F̂n
δt = Fδt with increasing accuracy.

ROM-based parareal iteration:

Reduced cost of the fine propagator;
Reduced cost for formulating the
ROMs;
Reduced cost for solving the ROMs;
More stable ROMs.

Innacurate snapshots

Fδt,rF̂1
δt,r

F̂2
δt,r . . . F̂n−1

δt,r

×
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Second test case with the adaptative ROM-parareal

Coarse model (iteration 0): ∆t = 1; ∆x = ∆y = 10

Fine models:
Iteration Fine model δt δx = δy

1 F̂1
δt 0.05 4

2 F̂2
δt 0.01 4

3 F̂3
δt 0.005 4

4 F̂4
δt 0.005 2

5 F̂5
δt = Fδt 0.001 2
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Adaptative test case: errors

Error per instant and iteration
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Adaptative test case: water depth at t = 20
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(b) Iteration 5 (non-adaptative)
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Adaptative test case: water depth at probes
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Test case: speedup
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Conclusions

ROM-based parareal methods are efficient for speeding up nonlinear
hyperbolic problems;

Crucial aspect: formulation of the ROM;
Enrichment of the snapshots sets:

No extra cost for computing the extra snapshots;
More stability and faster convergence;
Quadratic dependency of the POD on the number of snapshots

Adaptative approach
Progressive refinement of Fδt;
Improved speedup and stability;
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Perspectives

Adaptative approach: study configurations, propose objective criteria
for defining the fine models;
Application to more realistic test cases:

Long simulations;
Solutions with strong variation;
Interpolation between spatial meshes
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Thank you for your attention
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