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1 Introduction

The work developed in this project consists on the coupling of two different
wave propagation models: a spectral one, designed for describing wave propa-
gation in large scales, and a nonlinear dispersive one, which describes nearshore
small scale waves. The models used here are respectively WAVEWATCH III R©
and BOSZ.

1.1 Context

This project took place in the Marine Energy Research & Innovation Center
(MERIC), in Santiago (Chile), and was directed by Antoine ROUSSEAU (Inria
Sophia-Antipolis, LEMON team), also in collaboration with France Énergies
Marines.

MERIC is an excellence center dedicated to the scientific research, technolog-
ical development and innovation linked to the marine renewable energy, aiming
to establish a Chilean and international reference on this subject. Created by
the naval French enterprise Naval Group (formerly DCNS), MERIC is funded
by CORFO (the governmental Chilean organization for promotion of economic
development) and the Chilean Energy Ministry, and conducts its activities in
partnership with Inria Chile, universities (Pontificia Universidad Catolica de
Chile and Universidad Austral de Chile), energy enterprises (Enel Green Power
Chile and Chilectra) and institutions for innovation (Fundacion Chile).

The marine energy has a very huge importance in the context of renewable
energy and sustainable development, pushing up the researches on this very
recent subject for developing the related technologies and reducing their costs.

The Chilean natural characteristics make this study even more relevant: with
more than 6000 kilometers of coast, the tidal and waves movements originate a
huge energetic potential. Furthermore, the extreme natural phenomena due to
the intense seismic activity in the region demand specific studies for a safe and
durable production of marine energy.

In this context, MERIC conducts a very multidisciplinary research, covering
the many aspects concerning the marine energy: the study of potential areas for
its production in the Chilean coast (resource assessment and site characteriza-
tion); impacts on the materials in selected Chilean environments (marine corro-
sion and biofouling); environmental and social impacts (ecosystem assessment,
study on marine mammals, social perception of the marine energy); technol-
ogy development and its adaptation to the Chilean environment; the study of
the Chilean legislation concerning the subject; development of a validation test
bench; and the mathematical modeling for marine energy. The work developed
in this project is part of this last research line.

1.2 Objectives

In the context of mathematical modeling and numerical simulation for the
marine energy, we aim in this project to construct a coupled numerical model
that would be able to model wave propagation in domains covering both off-
shore regions, where spectral models are used, and nearshore regions, better
described by nonlinear dispersive (Boussinesq-type) models.
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There are several differences between these two types kinds of models. The
most important is the nature of the description of the wave propagation, which
reflects in their governing equations. While spectral models work with a statis-
tical and phase-averaged description of the waves, solving the evolution of its
energy spectrum, Boussinesq-type models are phase-resolving and solve nonlin-
ear dispersive shallow water equations for physical variables (surface elevation
and velocity) in the time domain. Furthermore, the time and spatial scales
for the models are very different: they are much larger in the case of spectral
models, which explains its use for modeling off-shore propagation within rela-
tively large time windows; on the other hand, important small scale phenomena
in nearshore areas can be better captured by Boussinesq models, in which the
time step is limited by the CFL condition.

Taking into account the collaborations involved in this project, the spectral
model used here is WAVEWATCH III R©, developed at NOAA/NCEP1, and to
which we refer in this project as WW3. The work in this internship included an
one-week formation in this software, in the European University Institute for
Marine Research (IUEM), in Brest (France).

Concerning the time-domain model, many options were considered, all of
them linked with the context in which this project is inserted. The BOSZ
model, developed by [17], was used, and all the work presented in the report
considers this model. Nevertheless, for the sequel of the project, this choice
remains open, and the model can be changed depending on our needs and some
characteristics of each model, notably the types of boundary conditions that
can be used. Anyway, the coupling was developed in such way that replacing
one model by another could be relatively straightforward.

The work developed here covers both numerical and mathematical aspects.
Concerning the implementation, the main objective is to make both softwares
work together and manage their synchronization, their execution times and
the exchange of informations. It is made via the coupling software OpenPalm
(which we refer here as PALM), developed by CERFACS 2. Several difficulties
were imposed when integrating both models into PALM, including compilation
and compatibility issues.

From the mathematical and modeling point of view, the project consists
mainly in working on the boundary conditions of each model. Firstly, we have
to manage the simultaneous work with spectral and timeseries data. In a second
moment, we seek to study transparent boundary conditions (TBCs) for the
models and develop domain decomposition approaches, for example the Schwarz
methods, to model the interface boundary conditions and improve the exchange
of informations (and thus the results given by the coupled model). Such study
includes both the derivation of (approximate) TBCs and the anaylisis of the
well-posedness of the problem when they are used as boundary conditions.

This mathematical study has been the main subject developed in the “Stage
Ingénieur” for ENPC in 2016, also in MERIC and directed by Antoine ROUSSEAU,
but in the context of another Boussinesq model (the KdV equation)3. Thus,
the work proposed here can be seen as a natural continuation of the experience
of this former internship.

1http://polar.ncep.noaa.gov/waves/wavewatch/
2http://www.cerfacs.fr/globc/PALM WEB/
3A paper was written during that internship and is currently under revision; its notice can

be consulted in HAL platform : https://hal.inria.fr/hal-01617692
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The coupling developed here is designed for one-dimensional simulation. A
testcase, simulating the flow over a sandbank near the Atlantic French coast, is
presented to test the proposed coupling scheme. As we do not dispose of real
output data (we use as reference solution he results given by a 2D simulation
using WW3), we cannot validate the results, but we are able to compare the
results given by the coupled model and by simulations using each individual
model in the entire domain.

This report is organized as follows : in Section 2 we make an overview of
each one of the models, briefly describing their governing equations, numerical
aspects and input and output data. In Section 3 we present the proposed
coupling scheme, describing how the models are incorporated into PALM and
how we exchange the information between them. Numerical simulations on a 1D
testcase, for testing the coupling and comparing its results with the ones given
by the models individually, are presented in Section 4. In Section 5, we study
and propose approximate TBCs for the (linearized) equations solved by BOSZ,
as an initial step for improving the data transmission through the interfaces in
the coupled model. Finally, in Section 6, we study the well-posedness of the
problem using the proposed TBCs. Aditionnal details on the work developed
are presented in three appendices.
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2 The models

We present in this section the wave propagation models coupled in this
project. Besides their governing equations and main physical and implemen-
tation properties, we focus on their characteristics that are specially relevant
for the coupling scheme, namely their input and output data and some aspects
concerning their execution.

2.1 WAVEWATCH III R©
2.1.1 Governing equations

WW3, developed at NOAA/NCEP (National Oceanic and Atmospheric Ad-
ministration / National Centers for Environmental Prediction), models wave
propagation considering a random-phase/amplitude model. The following brief
description of ocean waves under this model is based on [16] and [10, chapters
3,4].

In any specific location, the sea surface elevation is described as function of
time as the sum of harmonic components with amplitude ai,j , wavenumber ki,
relative frequency σi and phase αi,j :

η(t) =
∑
i

∑
j

ai,j cos (σit− kix cos θj − kiy sin θj + αi,j) (1)

In this model, for each frequency σi and each direction θj , both the phase αi,j
and the amplitude ai,j are random variables, being fully characterized by their
probability density function, respectively a uniform distribution and a Rayleigh
distribution with expected value µi,j = E{ai,j} :

p(αi,j) =
1

2π
, 0 < αi,j < 2π (2)

p(ai,j) =
π

2

ai,j
µ2
i,j

exp

(
−
πa2

i,j

4µ2
i,j

)
, ai,j > 0 (3)

Figure 1 illustrates the construction of a discrete frequency spectrum under
the hypotheses of this model:
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Figure 1: Construction of a discrete frequency spectrum in the random-
phase/amplitude model. Figure from [10, figure 3.6]

Considering the idea presented in Figure 1 and passing it to the limit, the
frequency-direction spectrum is defined from the expected value of the random
variable a:

E (fr, θ) = lim
∆fr→0

lim
∆θ→0

1

∆fr∆θ
E

{
1

2
a2

}
where fr = σ/(2π) is the relative frequency, defined for a referential moving
with the mean current (with velocity U).

The integration of E(fr, θ) over all the directions gives the frequency spec-
trum

E(fr) =

∫ 2π

0

E(fr, θ)dθ

Even if the WW3 output gives the more traditional frequency-direction spec-
trum E(fr, θ), its equations are written for the wavenumber-direction spectrum
E(k, θ), which can be obtained by

E(k, θ) =
cg
2π
E(fr, θ)

where cg = ∂σ/∂k is the group velocity.
Another important definition is the action density spectrum

N (k, θ) = E (k, θ) /σ

where the relative angular frequency σ = 2πfr is related to the mean water
depth d by the dispersion relation
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σ2 = gk tanh kd (4)

and to the absolute frequency ω = 2πfa by

ω = σ + k ·U

The action density spectrum N is conserved during propagation in the pres-
ence of ambient current. For this reason, WW3 solves the action balance equa-
tion, which, in Cartesian coordinates, models the evolution of N = N(k, θ; x, t):

∂N

∂t
+∇x · ẋN +

∂

∂k
k̇N +

∂

∂θ
θ̇N =

S

σ
,

ẋ = cg + U,

k̇ = −∂σ
∂d

∂d

∂s
− k · ∂U

∂s
,

θ̇ = −1

k

[
∂σ

∂d

∂d

∂m
+ k · ∂U

∂m

] (5)

with the coordinates s and m respectively parallel and perpendicular to the
direction θ, and cg = (cg sin θ, cg cos θ).

In equation (5), S represents the source term for wave energy. Many physical
processes are parametrized and included in this term, for example wave-bottom,
wind-wave, wave-wave and wave-ice interactions. As the wave propagation is
considered to be linear, nonlinear effects are also included in the source term S.

Moreover, in equation (5), it is implicitly assumed that the wave field, the
water depth and the current vary on time and space scales that are much larger
than the variation scales of a single wave.

2.1.2 The significant wave height

Among the many any statistical informations can be defined in the study of
waves, one of the most important is the significant wave height (H1/3), which
is defined as the mean value of the highest one-third of wave heights in an
observation. As pointed by [10], experiments show that this value is close to the
visually observed wave height.

One can also estimate the significant wave height directly from the energy
spectrum [10]:

Hm0 ≈ 4
√
m0 (6)

with

m0 =

∫ ∞
0

E(f)df

Observations show that the significant wave height H1/3 is, in general, 5%
to 10% lower than Hm0, as consequence of nonlinear processes (e.g. wave
breaking) and the fact that the model hypotheses (i.e. the Rayleigh distribution
of the wave heights and the Gaussian distribution of the surface elevation) are
not exactly verified in real waves [10].
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2.1.3 Comments on the numerical formulation

As specified in [16, section 3], some of the main characteristics of the nu-
merical approaches in WW3 are described below :

• The wave equation is solved using a fractional step method, which treats
separately the temporal variations of the water depth, the intra-spectral
propagation, the spatial propagation and the source term integration. This
splitting scheme allows to use different time steps for each step (four dif-
ferent time steps can be defined by the user).

• For the spatial and the intra-spectral propagation, first, second and third-
order finite volume schemes are available in WW3 and can be chosen in
the compilation. For the simulations presented here, a first-order scheme
is used.

2.1.4 Comments on the execution of WaveWatch III

WaveWatch III is composed by various programs, each one with a purpose in
the simulation. For example, defining the problem, reading the different kinds
of inputs and source terms, running the code and generating the output. In
the first coupling scheme described here, without source term but with an input
energy spectra imposed in a specific point, the following sequence of programs
is run :

• ww3 grid : prepares the model problem (grid, time step, input points);

• ww3 bounc : reads spectra in NetCDF format and imposes them in the
input points defined in ww3 grid ;

• ww3 shel : performs the computation itself;

• ww3 ounp : produces point outputs in selected points (for example, the
energy spectrum) in NetCDF format;

• ww3 ounf : produces field output (for example, the significant height) in
NetCDF format.

2.1.5 Model’s input and output

As described above, energy spectra are “natural” input and output for spec-
tral methods such as WW3. Thus, one can easily impose and get spectra in
chosen points.

2.2 BOSZ

2.2.1 Governing equations

The Boussinesq Ocean and SurfZone (BOSZ) model, developed by [17], is a
dispersive nearshore wave model consisting of a Boussinesq-type system written
in the conservative form of the nonlinear shallow water equations, in order to
incorporate the shock-capturing capabilities of a Godunov-type scheme.

The Boussinesq system from [12], consisting of a continuity and momentum
equation,
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ηt + [(h+ η)U ]x +

[(
z2

2
− h2

6

)
hUxx +

(
z +

h

2

)
h(hU)xx

]
x

= 0

Ut + UUx + gηx + z
[z

2
Utxx + (hUt)xx

]
+ τ +RB = 0

(7)

is reformulated to the following system, which is solved by BOSZ :

Ut + Fx = S (8)

with

U =

[
H
P ∗

]
, F =

[
HU

HU2 + 1
2gH

2

]
,

S =

[
ψC

gHhx + UψC + ψM −H(τ +RB)

]
P ∗ = (HU) +Hz

(z
2
Uxx + (hU)xx

)
, (9)

ψM = Htz
(z

2
Uxx + (hU)xx

)
(10)

ψC =

[(
z2

2
− h2

6

)
hUxx +

(
z +

h

2

)
h(hU)xx

]
x

(11)

where H = h + η, h is the water depth and η is the free surface elevation; U
is the horizontal flow velocity, z is a reference depth for the velocity computa-
tion, g is the gravitational acceleration, τ is the bottom shear stress in terms
of the Manning coefficient and RB is a parametrization of the wave-breaking
characteristics.

The applicability of the model is restricted to shallow waters. In equations
(9) to (11), the value of z, the reference depth to compute the velocity, depends
on the water depth h and has a strong influence on the dispersion characteristics
of the Boussinesq equations of [12], as remarked by [17]. BOSZ adopts the
ratio z/h = −0.53753, determined by comparing the linear dispersion relation
and the analytical solution of the linearized form of the governing equations.
Numerical tests indicate that this ratio provides good dispersion properties for
0 < h/L0 < 0.6, where L0 is the deep water wavelength. [17]

2.2.2 Comments on the numerical formulation

The governing equations (8) are solved using a Finite Volume scheme:

∂

∂t

∫
Ω

UdσΩ = − 1

|Ω|

∫
Σ

FnxdΣ +

∫
Ω

SdΩ (12)

where Ω and Σ are the cell domain and its boundary, and nx is the outward
normal vector. The temporal discretization is made using an explicit fourth-
order predictor-corrector scheme.

The Finite Volume formulation requires the resolution of a local Riemann
problem in each cell interface, in order to compute η and HU . The initial values
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of these variables in the Riemann problem are computed with a fifth-order Total
Variation Diminishing reconstruction scheme.

Nevertheless, numerical simulations show that this FV scheme can be highly
diffusive depending on the wave properties (as we will see in the numerical tests
done in this report, for which the input waves are quite nonlinear). Therefore, it
is implemented in BOSZ an option that allows to discretize the hydrostatic part
of (8) using an upwind Finite Difference scheme between the cells interfaces,
instead of the FV scheme. In this report, both options are used and compared.

Besides these aspects, BOSZ model also has numerical features for account-
ing for breaking waves in the surf zone, reducing instabilities due to the fre-
quency and amplitude dispersion in the presence of strong gradients, and sponge
layers defined in both ends of the domain to avoid reflected waves.

2.2.3 Model’s input: the source function method

Waves can be generated in BOSZ using a source function method, as de-
scribed in [18] and [14]. This feature is explored in this project in order to
impose input data for the model.

The use of this method in BOSZ, instead of the imposition of boundary
conditions in single points, comes from theoretical and practical issues in using
the latter approach in Boussinesq models. As remarked by [18], “the problem of
generating and absorbing waves at the boundary of models based on Boussinsq-
type equations is essentially an unsolved one, due to the fact that the exact
structure of the well-posed initial boundary value problem is unknown for most
forms of the model equations.”

The source function method consists in adding source terms to the set of
Boussinesq equations: a scalar source term is added to the mass balance equa-
tion, and a vector forcing term to the momentum equation.

The source terms are chosen to have a smooth Gaussian shape, so the source
function covers a strictly positive width in the domain, i.e., in the discrete
scheme it is imposed over a range of cells. This width is computed such that
the support of the source function is compact: in points sufficiently far away
from the source region, the source function is negligible.

For example, in the case of the mass conservation equation, if f = f(x, y, t)
denotes the source function, its Fourier transform in time and direction y is
imposed to be under the form

f̂(x, λ, ω) = D(λ, ω)e−βx
2

where the amplitude D of each spectral component satisfies the desired wave
characteristics and β is a parameter that satisfies

e−β(x−xs)2 < e−5 (13)

for every x outside the source region (whose center is denoted by xs). From
equation (13), we conclude that the size of the support of the source function is

W = 2

√
5

β

BOSZ accepts energy spectra as input for computing the source function, a
feature that is used in our coupling scheme for taking into account the spectra
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coming from WW3. In this case, the time series of the source function is com-
puted by discretizing the frequency and the direction domains of the spectrum,
computing the amplitude for each frequency and direction and then summing
up their contributions using a random-phase model. Obviously, in the 1D for-
mulation as studied here, only one direction is considered.

2.2.4 Model’s output: the Welch’s method

Being a time-domain model, BOSZ gives as output, for each point of the
model, the timeseries of the surface elevation and the velocity. Therefore, in the
coupling scheme proposed in this project (section 3), a post-treatment of this
output is necessary for producing energy spectra to be used as input in WW3.
As detailed later, it is done using the Welch’s method.
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3 The coupling scheme

The coupling between WW3 and BOSZ is made with the coupling software
OpenPALM, developed at CERFACS, which allows to exchange data between
different codes, synchronize them and run them in parallel.

We firstly present the initial idea for the coupling scheme, which uses the
main PALM features, and some issues that forced us to modify this scheme.

3.1 Initial coupling scheme

The main characteristics of a PALM coupling are the following:

• The main program, called palm main, is automatically generated by PALM
and calls the coupled programs (“PALM units”) as Python/C/C++ func-
tions or Fortran subroutines;

• Each sequence of commands and units to be executed is called a “PALM
branch”; multiple branches can be defined inside a PALM program and
they can be executed in parallel;

• The data (“PALM objects”) exchange between units is made via the in-
terface functions PALM Get and PALM Put (inserted in the source code
of the coupled units), analogous to the MPI point-to-point communication
functions MPI Send and MPI Recv.

A Graphical User Interface (PrePALM) is available and allows to easily set
up the branches and the communications. An example is showed in Figure 2.

In order to take advantage of the PALM features listed above, we initially
intended to:

• Compile WW3 and BOSZ as functions or subroutines and call them inside
PALM.

• Modify the codes of each model, inserting the PALM communication func-
tions in order to exchange data in specific instants during the simulation;

Nevertheless, important issues prevented us from implementing this scheme:

1. Compiling WW3 as a subroutine : WW3 has a compiling option
(named “PALM”) which allows to compile the main computation program
(ww3 shel) as a subroutine, instead of a program. We were able to compile
WW3 with this option, but the execution stops while reading the model
definition file generated by the grid preprocessor program (mod def.ww3 ).
Some debugging tests indicate that this is not a problem linked exclusively
with PALM, because it also occurs when the WW3 subroutine is called
inside a Fortran program. Apparently, considering the very few references
to this compiling option in the WW3 manual and in the WW3 users’
community, this option is not commonly used and this bug may have been
remained unnoticed during the continuous development of the program.

2. Integrating BOSZ in PALM : As said above, PALM supports Python,
Fortran, C and C++ functions/subroutines, but the main interfaces of
BOSZ are written in Matlab.
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3.2 Modified coupling scheme

In order to avoid the difficulties listed above (and considering the reduced
duration of this project, which made impracticable to look for “definitive solu-
tions”, for example fully translating the BOSZ code for another language), an
alternative coupling scheme was implemented.

For each one of the models, a Python function (named interface WW3 PALM
and interface BOSZ PALM ) is used as PALM unit; in these functions, the fol-
lowing steps are performed:

1. Receive a synchronization flag from the other model;

2. Modify the configuration files depending on the timestep (e.g. simulation
dates, names of input data files);

3. Run the model as a program via a terminal command;

4. Convert the output files to the proper format for the other model;

5. Send a synchronization flag to the other model.

In order to control the frequency of communication between the models, the
total simulation is divided in partial ones, and the functions interface WW3 PALM
and interface BOSZ PALM are called by PALM in each partial simulation.

Figure 2 represents the structure inside PALM (a “PALM canvas”) for run-
ning the proposed coupling scheme.

Figure 2: PALM canvas for the proposed coupling scheme. Each column is
a PALM branch and calls a PALM unit (the central rectangle) for running
the respective model in one of the subdomains. The green lines represent the
transmission of information via the PALM interface functions (in this case, the
synchronizations flags), and, in each column, the region between the white and
the grey circles represent a loop over the number of partial simulations.
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Some advantages and disadvantages of the proposed scheme can be listed:

Advantages:

• There is no need to modify the models’ codes, since the data communica-
tion is made via input and output files and all the coding for the coupling
is made in the Python interface functions;

• It is easy to produce and store intermediate results (they are the output
files of the partial simulations), which can be used both for debugging and
analysis of the results given by the coupling scheme.

Disadvantages:

• The models must be launched in each partial simulation, implying a higher
computational time;

• At the end of each partial simulation, there is need to store the current
status of execution in restart files, to be loaded in the beginning of the
next partial simulation;

• All the data transmission is made via input and output files, instead of
the PALM interface functions. It is a possible source of bugs, demanding
a careful management of these files. Moreover, there is extra computation
and storage costs.

A similar approach was adopted by [3] for coupling WW3 and the MARS3D
model via PALM. Even if it is not detailed how the execution of the models is
performed, the authors define intermediary Palm units in order to prepare the
input variables, minimizing the modification of the source codes and allowing
to an efficient computation in a supercomputer.

3.3 Data transmission through the interfaces

The main challenges for setting up the coupling scheme concerns the ex-
change of informations between the models. As the wave propagation is de-
scribed in different ways in each model, the types of input and output data are
also different, as described in the last section. Moreover, from a more practical
point of view, we also have to take into account the different file formats read
by the models and how the boundary conditions are defined in each software.

In a first moment, before attempting to develop more complex interface
boundary conditions in the context of a domain decomposition method, we sim-
ply transmit the data through the interface at the end of each partial simulation.
The information can be transmitted either from WW3 to BOSZ or from BOSZ
to WW3, as detailed in the subsections below. In the first simulations it is done
only in one way for each interface (from left to right), but in the next ones we
will attempt to perform a communication in both ways, specially when applying
domain decomposition techniques.

In each partial simulation, both models are executed in parallel, following
the scheme represented in Figure 3. Details of the communications are presented
below.
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Figure 3: Scheme indicating the executions and communications performed in
each partial simulation of the coupling.

3.3.1 WW3 → BOSZ

As described in paragraph 2.2.3, a Gaussian source function, covering a range
of computational cells, is computed in BOSZ from an input energy spectrum.

The source function method brings additional difficulties for the purposes
of this project, since we have less control over the definition of the interface
boundary conditions (which is an essential aspect in the context of domain
decomposition methods). Firstly, it represents an intermediary step for trans-
mitting information between the models. As shown in the numerical simulations
in the following section, in this process the input spectra is distorted, due to
pretreatments for computing the source function, such as interpolations and
frequency filtering. This distortion is stronger for highly nonlinear waves. Sec-
ondly, the source function cannot be implemented in a single point, as done in
classical boundary conditions, and its width may vary depending on the wave
properties.

In order to minimize this latter difficulty, some modifications were made in
the computation of the source function inside BOSZ :

• The interface point is chosen in order to be in the center of the range of
cells where the source function is defined;

• The width of the source function is chosen by the user and kept constant
over the entire simulation, instead of being computed by BOSZ in the
beginning of each partial simulation. The criteria (13) is verified to assure
that the source function has a compact support;

• It is verified that the source region thus defined does not overlap with the
sponge layers, present at both ends of the domain.

3.3.2 BOSZ → WW3

BOSZ is able to output the timeseries of the surface elevation in chosen
locations. From this information, the energy spectrum can be computed via a
spectral analysis [10, Appendix C].

In this project, we produce the energy spectra from the surface elevation
timeseries using the Welch’s method 4, which divides the timeseries in possibly

4https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html
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overlapping windows, computes a spectrum for each one of them (using a Fast
Fourier Transform) and averages these spectra.

This method allows to smooth the computed spectra. The number of win-
dows and amount of overlapping is a compromise between the desired accuracy
on the estimation of the spectra and the computational time. In this cou-
pling scheme, we apply the method with ten windows, which allows a good
smoothing of the spectra without high computational costs, since we perform
one-dimensional tests, i.e., with unidirectional spectra. A more detailed study
on the influence of the number of the windows on the result is performed below.

Usually WW3 simulations are performed considering a small number of fre-
quencies (e.g. 32, as in the data available for the test case presented here), de-
fined with a logarithmic scale. As the Python function for the Welch’s method
returns a spectrum defined over a larger discrete frequency domain, we perform
a linear interpolation of the spectra over this smaller set of frequencies.

Contrary to BOSZ, in WW3 the spectral boundary condition can be imposed
in a single point.

Study on the construction of spectra using the Welch’s method
In order to validate and debug the application of the Welch’s method to

construct energy spectra from surface elevation timeseries, and also to study
the influence of the number of frequency windows used in this method, a simple
test is presented here.

From an energy spectrum (the initial input spectrum of the test case pre-
sented in Section 4), we compute a surface elevation timeseries with random
phase, within a certain time window. Then, from this timeseries, we use the
Welch’s method to reconstruct the energy spectrum and compare it with the
original one, since we expect them to be similar.

As described above, the Welch’s method returns a spectrum defined over a
large discrete set of frequencies, but is mainly concentrated in the frequency
range considered in the models’ computations. Therefore, we interpolate the
spectrum to this smaller frequency set, and we rescale it in order to have the
same integral of the non interpolated spectrum.

Figure 4 to 6 present the study performed with timeseries computed using
different numbers of timesteps. In all the cases, the timestep is kept constant
(∆t = 1s) and the final instant varies.

(a) Time series (b) Full spectra computed by the Welch’s method
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(c) Interpolated spectra (d) Interpolated and rescaled spectra

Figure 4: Study of the application of the Welch’s method, with a timeseries
computed with 10000 timesteps, for different numbers of windows (nbw). The
estimation Hm0 of the significant height is computed for each spectrum

(a) Time series (b) Full spectra computed by the Welch’s method

(c) Interpolated spectra (d) Interpolated and rescaled spectra

Figure 5: Study of the application of the Welch’s method, with a timeseries
computed with 1000 timesteps, for different numbers of windows (nbw). The
estimation Hm0 of the significant height is computed for each spectrum
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(a) Time series (b) Full spectra computed by the Welch’s method

(c) Interpolated spectra (d) Interpolated and rescaled spectra

Figure 6: Study of the application of the Welch’s method, with a timeseries
computed with 100 timesteps, for different numbers of windows (nbw). The
estimation Hm0 of the significant height is computed for each spectrum

As a conclusion of the results presented above, we do not observe a direct
relation between the number of windows and the quality of the reconstructed
spectrum when the timeseries is large enough. Nevertheless, when it has few
time steps, there is no sufficient data to produce good estimations of the energy
spectrum; in this case, the smoothing obtained when using more windows in the
Welch’s method becomes more evident, but it causes a reduction of the energy
peak.
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4 1D test case - Guérande sandbank

4.1 Description of the test case

The one-dimensional test case solved here consists in the flow propagation
over a sandbank near Guérande, in the Atlantic coast of France.

The domain has a total length of 45126m, divided with a homogeneous mesh
size ∆x ≈ 4.56m, totalizing 9901 discrete points. As represented in Figure 7,
it was divided in three subdomains, accordingly to the bathymetry profile. In
the outer domains, where the depth is higher than 18 m, the flow is modeled
by WW3; in the central domain, containing the sandbank, the BOSZ model
is used. There is a small overlap between the domains (20 cells around each
interface), resulting in the following number of points for each subdomain:

• WW3 (left) : 5164 points

• BOSZ : 877 points

• WW3 (right) : 3900 points

(a) General view (b) Zoom on the sandbank

Figure 7: Computational domain

We perform a simulation with a total run time of 3000 seconds, divided in
5 partial simulations of 600 seconds, with the following timesteps :

• ∆tWW3 = 0.15s

• ∆tBOSZ ≈ 0.02s, obtained imposing the CFL condition 0.4

These timesteps were chosen after some initial tests, in order to avoid insta-
bilities of the models.

The available input data consist in a set of energy spectra at x ≈ 22700m
(represented in the Figure 7 as the vertical line labeled as “Input spectrum”),
in the beginning of the sand bank. The spectra are defined every 30 min for
the month of February 2014. As the spectra on the first hour (the time window
for the simulation performed here) don’t differ significantly, only the initial
spectrum is considered.
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The data also contain output spectra at x ≈ 27805m, in the exit of the sand
bank (the line “Output spectrum” in Figure 7). These spectra are used here as
a reference solution: the results obtained after 3000s = 50min are compared to
the linear interpolation of the spectra at 30min and 1h. The reference spectra
are not real ones, but were computed in a 2D WW3 simulation in the same
area. This 2D simulation is characterized by the fact that transversal flows are
negligible, so we can expect the 1D simulation to give similar results.

The input and output spectra are represented in Figure 8.

Figure 8: Input and output spectra from data

When defining the subdomains, we took into account not only the water
depths, but we also intended to have similar computational times in all the
PALM branches. Therefore, the WW3 subdomains have similar sizes and are
significantly bigger than the BOSZ subomain, due to the different order of
magnitude of the time steps in each model.

As a consequence, the left WW3 subdomain was defined with the input point
very close to the right boundary. We remark that computations are made in
the left of the input point, but the results in the region do not have a physical
meaning, as the input spectra propagates from off-shore to the coast.

4.2 Verification of the range of validity of the BOSZ model

A brief analysis is presented in the following paragraphs for estimating the
range of validity of the input spectra in the BOSZ model, considering, as said
above, that its parameters were chosen such that the model gives good results
with the water depth verifying 0 ≤ h/L0 ≤ 0.6, where L0 is the deep water
wavelength.

We need firstly to estimate the deep water wavelength. For that, we use some
statistical definitions of characteristic frequencies of the spectrum, following [10,
chapter 4]:

• The peak frequency fpeak, which is, accordingly to empirical observations,
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approximately equal to the significant wave frequency f1/3,swell in the case
of swell (i.e., waves with a narrow spectrum);

• The significant wave frequency for wind sea, f1/3,wind ≈ 1/0.95fpeak;

• The mean frequency fmean = m1/m0;

• The mean frequency of the level crossing, for a surface elevation η : fη =√
m2/m0 exp

(
−η2/(2m0)

)
where mn refer to the m-th order moment of the spectrum:

mn =

∫ ∞
0

fnE(f)df (14)

For each of these frequencies, and for values of depth going from 10 to 1000
meters, the dispersion relation (4) was solved iteratively, using the bisection
method, in order to get the wavelength L. Figure 9 illustrates the results,
showing a convergence of the wavelength for higher values of the water depth.
The converged values were adopted as the deep water wavelength L0.

(a) Overall results (b) Detail for some frequencies

Figure 9: Computed of wavelength for various characteristic frequencies of the
input spectrum Right figure shows some of the curves with the respective con-
verged value of L0.

Finally, Figure 10 presents, for each of the computed frequencies, the ratio
h/L0 for h ≤ 60m; which covers approximately the range of depths in this test
case. We observe that the depth range in which the BOSZ model is defined in
the coupling scheme (h ≤ 18m) is inside its domain of validity.
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Figure 10: Ratio h/L0 for each frequency considered

4.3 Results

Numerical simulations were performed using both the coupling scheme and
each of the models in the entire domain. For analyzing the results, we compare
the spectra obtained in the output point in the end of simulation (after 3000
seconds), and also the reference spectrum available in the data. This comparison
is both qualitative (deformation of the spectrum, position and height of the peak
energy) and quantitative (Hm0).

We emphasize that we do not expect all the simulations to give similar re-
sults, since the models solve different governing equations and have different
properties and assumptions. Furthermore, we recall that our “reference solu-
tion” is not a real one, but the result of a 2D WW3 simulation (thus, we expect
the solution given by 1D WW3 to be similar, even if it is not necessarily a
physically good solution).

4.3.1 Full WW3 simulation

Figure 11 presents the computed spectrum in the output point, at the end
of the simulation, compared to the reference spectrum in the same point and
instant and the input spectrum used in the beginning of the simulation. As
expected, the computed and the “reference solution” are very close. We can ob-
serve that the peak energy is similar in the computed and the reference spectra,
showing a similar decay for this frequency, but for higher frequencies the shape
of the computed spectrum is better conserved regarding to the input one. As a
consequence, it has a higher Hm0 than the reference spectrum. Besides these
small remarks, we can conclude that, in this test case, the 1D WW3 simulation
is a good approximation for the 2D WW3 one.
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Figure 11: Comparison between input and output (computed and reference
spectra)

4.3.2 Full BOSZ simulation using the FV discretization for the fluxes

As described in Section 2.2, the hydrostatic part of the governing equation
(8) can be discretized both with FV or FD schemes. We firstly present the
results with the FV discretization.

Timeseries output data can be obtained in BOSZ by putting “gauges” in
choses points. Some of the gauges positioned on the domain are represented in
Figure 12, including the input and output point (gauges 7 and 9).

Figure 12: Some of the gauges positioned on the domain. Emphasys on the
ones on the input and output points
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Figure 13 represents the timeseries of the surface elevation for some of the
selected points, including the input point (gauge 7) and the output point (gauge
9). In these figures, we can observe the propagation of the spectra from the input
point, since the time series in the farthest points start to be non-zero only after
some time. We can also observe a strong damping of the energy.

Figure 13: Time series of the surface elevation for some points. Gauge 7 and
9 are respectively the input and output points. Results obtained using the FV
scheme in BOSZ

The energy damping can also be observed in the spectra computed from
the timeseries, as represented in Figure 14, for the same gauges. For each
graph, we plot the Hm0 computed from the original spectra obtained by the
Welch’s method and the one computed from the spectra interpolated to the
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frequencies values used in WW3 (showing that the there is not an important
loss of information in this process since the non interpolated spectra is mainly
concentrated in the WW3 frequency range).

Figure 14: Energy spectra for some points. Gauge 7 and 9 are respectively the
input and output points. Results obtained using the FV scheme in BOSZ

4.3.3 Full BOSZ simulation using the FD discretization for the fluxes

We present in Figures 15 and 16 the same results as above, but with the FD
discretization for the hydrostatic part of (8). As discussed above, as the input
wave is highly nonlinear, the numerical damping with this new discretization is
much smaller than the one verified with the FV scheme.
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Figure 15: Time series of the surface elevation for some points. Gauge 7 and
9 are respectively the input and output points. Results obtained using the FD
scheme in BOSZ
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Figure 16: Energy spectra for some points. Gauge 7 and 9 are respectively the
input and output points. Results obtained using the FD scheme in BOSZ

Deformation of the output spectra due to the source function method
In order to verify how the input spectra are incorporated into BOSZ via

the source function method, we placed a gauge in the input point (as shown
in Figure 12), in order to get the timeseries in the same point where the input
data is imposed. Using the Welch’s method, the spectra is reconstructed from
the timeseries. We expect to obtain similar spectra. Figure 17 compares these
spectra, showing that they are deformed, with a stronger concentration of the
energy around the peak frequency, resulting in higher values of Hm0. The fact
that the deformation is not the same when using the FV or the FD schemes
possibly results from flow computations inside the source region.
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Figure 17: Comparison of the input spectra from data and the spectra obtained,
in the same point, from the time series produced by the source function method

4.3.4 Coupled simulation

Before comparing the results of the coupled simulation with the previous
ones, we present, step-by-step, the propagation of the solution through the cou-
pling model, i.e., we show the information transmitted between the subdomains.

Figure 18 presents the evolution of the energy spectrum that is transmitted
from the left WW3 domain to the BOSZ domain. We can see that after 10
minutes of simulation the information to be transmitted has already reached
the interface point and thus converged, which is a consequence of the closeness
between this point and the one where the spectra from the data is imposed.

30



Figure 18: Evolution of the spectrum in the interface between the left WW3
domain and the BOSZ domain. Except for the first time step represented, all
the spectra overlap

Figure 19 and 20 (corresponding respectively to BOSZ with FV and FD
schemes for the fluxes) presents the times series of the surface elevation for
some points, including the interface with the left WW3 domain (gauge 2), i.e.,
where it is defined the input spectrum for BOSZ, and the interface with the right
WW3 domain (gauge 8), i.e., where the spectra is transmitted from BOSZ.

In these figures, as expected, we can observe that, for the first partial sim-
ulation (t ≤ 600s), the surface elevation is zero for all the points, because
no information has come from the left WW3 domain. As in the full BOSZ
simulation, we observe a strong damping of the energy in the case of the FV
discretization.
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Figure 19: Time series of the surface elevation for some points. Gauge 2 and
8 are respectively the input and output points for the left and right WW3
domains. Results obtained using the FV scheme in BOSZ

Figure 20: Time series of the surface elevation for some points. Gauge 2 and
8 are respectively the input and output points for the left and right WW3
domains. Results obtained using the FD scheme in BOSZ

The spectra for these points are presented in Figures 21 and 22.

32



Figure 21: Energy spectra for some points. Gauge 2 and 8 are respectively the
input and output points for the left and right WW3 domains. Results obtained
using the FV scheme in BOSZ
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Figure 22: Energy spectra for some points. Gauge 2 and 8 are respectively the
input and output points for the left and right WW3 domains. Results obtained
using the FD scheme in BOSZ

Figure 23 presents the evolution of the spectra in the output point (in the
right WW3 subdomain), and also the evolution of Hm0. In the end of the total
simulation, the output spectrum has not yet converged, showing that informa-
tion has not been fully transported through the BOSZ subdomain.

(a) Evolution of the spectra (b) Evolution of Hm0

Figure 23: Evolution of the spectra in the output point. Results obtained using
the FV scheme in BOSZ
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(a) Evolution of the spectra (b) Evolution of Hm0

Figure 24: Evolution of the spectra in the output point. Results obtained using
the FD scheme in BOSZ

4.4 Comparison between all the simulations

To resume the results of this first set of simulations, Figure 25 and 26 com-
pare the spectra obtained after 50 minutes in the output point (respectively
with FV and FD schemes in BOSZ).

In the FV case, we can see that the energy damping of the coupling model is
intermediary between the ones verified in the full WW3 and BOSZ simulations.

In the FD case, on the other hand, the damping still exists but is much less
important, as one can see by the values of Hm0. For this reason, the initial
deformation of the spectrum, due to the source function, remains remarkable, so
in the simulations using BOSZ the peak energy of the output spectra is higher.

As a final remark, contrary to the FV case, in the FD case the output spectra
for the coupled simulation is not intermediary between the full WW3 and full
BOSZ simulations, what is not necessary surprising since the source function
acts over different spectra: in the coupling case, this spectra is the one coming
from the left WW3 domain; in the full BOSZ case, it is over the data input
spectrum.
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Figure 25: Comparison between the output spectra off all the simulations. Re-
sults obtained using the FV scheme in BOSZ

Figure 26: Comparison between the output spectra off all the simulations. Re-
sults obtained using the FD scheme in BOSZ

4.5 Conclusions on the simulations

The coupling scheme constructed for the simulations presented in this section
is very simple. Indeed, in this first moment we did not attempt to improve the
interface boundary conditions between the models, and we simply made the
information to be transmitted along all the domain. The main idea here was to
set up a base coupling scheme for future work. As a result of this initial work,
it can be easily adapted for other testcases, and even changing the Boussinesq
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model (as we may do depending on the type of boundary conditions to be used)
or moving to 2D simulations shall not present great difficulties.

For the same reasons, the “validation tests” had the objective of verifying
the good behavior of the scheme in a computational point of view. Due to the
absence of real validation data, we could not physically evaluate the simulation.
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5 Study on transparent boundary conditions for
BOSZ

The work presented until here consisted mainly on setting up a coupled
simulation between WW3 and BOSZ, and the focus was on solving the several
numerical aspects necessary to their synchronization and correct exchange of
information. We did not seek to improve the boundary conditions: we simply
aimed to pass the information from one model to the other, from the off-shore
to the nearshore zone.

In this section, we present initial studies for improving the interface bound-
ary conditions in the coupling scheme. As said previously, the generation and
absorption of waves at the boundaries of Boussinesq-type models is an unsolved
problem; in practice, this fact results on the using of a source function method
and sponge layers in BOSZ model [17], reducing the control over the boundary
conditions.

Therefore, we want to find approximate transparent boundary conditions
(TBCs) for the governing equations of the BOSZ model. TBCs are defined such
that the solution of a problem calculated in a finite computational domain Ω co-
incide with the solution of the entire space, restricted to Ω. Nevertheless, TBCs
are in general non local in time and space, so their exact computation is not
doable both analytically and numerically. Therefore, one needs to approximate
them in order to have an efficient numerical implementation [1].

We study here the TBCs for the linearized form of BOSZ governing equa-
tions. Even in this case, the TBCs must be computed in an approximated way.

5.1 Linearization of the governing equations

We revisit the 1D Boussinesq-type equations of [12] (which were reformulated
by [17] to derive the equations solved in BOSZ model):

ηt + [(h+ η)U ]x +

[(
z2

2
− h2

6

)
hUxx +

(
z +

h

2

)
h(hU)xx

]
x

= 0

Ut + UUx + gηx + z
[z

2
Utxx + (hUt)xx

]
+ τ +RB = 0

(15)

For this initial study, we work on a simplified framework, without bottom
shear stress and wave-breaking parametrization (respectively by taking τ = 0
and RB = 0). We also consider a flat bottom (h = h0) and we perform a
linearization of equation (7):

u = u0 + u′, η = η0 + η′ (16)

around the mean values u0 and η0 = 0. By definition of the total water depth,

H = h+ η = h0 + η (17)

Replacing (16) and (17) into (7), adding initial and boundary conditions
and, for sake of clarity, dropping the prime, we have
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

ηt + h0ux + u0ηx +

(
z2

2
+ h0z +

h2
0

3

)
h0uxxx = 0 in Ω (18a)

ut + u0ux + gηx + z
(z

2
+ h0

)
uxxt = 0 in Ω (18b)

X = Υ on ∂Ω (18c)

X(·, 0) = Xini in Ω (18d)

with X(x, t) = (η(x, t), u(x, t))T .

5.2 Derivation of an optimized Schwarz method

In order to derive approximated TBCs for (18a)-(18d), we follow the work
of [5] and [6] and develop the resolution of this problem using a domain decom-
position method (DDM). We split the computational domain Ω in two possibly
overlapping subdomains Ω1 and Ω2, with Ω = Ω1 ∪ Ω2 and the interfaces

Γ1 = ∂Ω1 ∩ Ω2, Γ2 = ∂Ω2 ∩ Ω1

We implement here an additive Schwarz method (ASM), which consists in
an iterative method. Denoting by Xk

j = (ηkj , u
k
j ) the solution in the subdomain

Ωj in iteration k, the problem to be solved in Ωj is


Llin

(
Xk
j

)
= 0 in Ωj × R+ (19a)

Xk
j = Υ on ∂Ωj\Γj × R+ (19b)

IBC on Γj × R+ (19c)

Xk
j (·, 0) = Xini

j in Ωj (19d)

where

Llin :
(
Ω× R+

)2 −→ R2

(η, u) 7−→
(
ηt + h0ux + u0ηx + h̃uxxx
ut + u0ux + gηx + huxxt

)
and

h̃ =

(
z2

2
+ h0z +

h2
0

3

)
h0, h = z

(z
2

+ h0

)
The symbol Υ indicates the external boundary conditions and IBC indicates

the Interface Boundary Conditions to be defined between the subdomains, and
which characterize the DDM. We want to define the IBCs that provide the
fastest convergence of the method towards the exact solution of the same prob-
lem solved in the monodomain Ω; the fact that such optimal conditions are
exactly the perfectly TBCs [11] is what motivates us to study the TBCs for
(18a)-(18d) via the construction of a DDM.

In order to determine the shape of the IBCs, we derive the natural trans-
mission conditions, i.e., the quantities that are naturally preserved through Γj .
For this, we write (18a)-(18b) in the conservative form:
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ηt +
(
h0u+ u0η + h̃uxx

)
x

= 0

ut +
(
u0u+ gη + huxt

)
x

= 0

which shows that the natural transmission conditions are(
h0u+ u0η + h̃uxx
u0u+ gη + huxt

)
Thus, the IBCs for the ASM have the generic form

Bj(Xk
j ) = B(Xk−1

j′ ) on Γj (20)

where j′ 6= j and the operator Bj is defined as

Bj(X) = nj

(
h0u+ u0η + h̃uxx
u0u+ gη + huxt

)
− SjX

where nj = (−1)j+1 (indicating the outward normal vector to the interface, i.e.,
the positive or negative direction x) and Sj ∈ C2×2 is a generic operator to be
defined. In the optimal DDM, Sj is called the Dirichlet-to-Neumann operator
and is defined by [6]

Sj :
(
Γj × R+

)2 −→ R2

(ηb, ub) 7−→ nj

(
h0ŭ+ u0η̆ + h̃ŭxx
u0ŭ+ gη̆ + hŭxt

)∣∣∣∣
Γj

where X̆ = (η̆, ŭ) is the solution of the following problem, solved in the comple-
mentary set of Ωj , denoted by Ωcj , with (ηb, ub) as Dirichlet boundary condition
on Ωj :


Llin

(
X̆
)

= 0 in Ωcj × R+ (21a)

X̆ = Υ on ∂Ωcj\Γj × R+ (21b)

X̆ = (ηb, ub) on Γj × R+ (21c)

X(·, 0) = 0 in Ωcj (21d)

The ASM using such exact TBCs is optimal in the sense that it converges
in two iterations, and no other ASM can converge faster [11].

We notice that in the ASM the IBCs for computing the solution in each sub-
domain are always written as function of the solution in the neighbor domains
in the previous iteration, as in equation (20).

Let Ekj = (ekj , v
k
j )T be the error of the DDM (compared to the monodomain

solution) in subdomain Ωj at iteration k, i.e.,

ekj = η|Ωj
− ηkj , vkj = u|Ωj

− ukj
By linearity, such errors satisfy
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
Llin

(
Ekj
)

= 0 in Ωj × R+ (22a)

Ekj = 0 on ∂Ωj\Γj × R+ (22b)

Bj(Ekj ) = B(Ek−1
j′ ) on Γj × R+ (22c)

Ekj (·, 0) = 0 in Ωj (22d)

Our goal is to assure, in (22c), that B(Ek−1
j′ ) = 0, so (22a)-(22d) becomes an

homogeneous system and therefore its solution Ekj is zero, i.e., Bj are perfectly
TBCs (the problem (22a)-(22d) is assumed to be well-posed, and we work on
the proof in Section 6 of this report).

We study the error in an infinite domain. Admitting that both subdomains
are semi-infinite, under the form

Ω1 =]−∞, L], Ω2 = [0,∞[

with L ≥ 0. System (22a)-(22d) is then written as


Llin

(
Ekj
)

= 0 in Ωj × R+ (23a)

Ekj → 0 |x| → ∞× R+ (23b)

Bj(Ekj ) = B(Ek−1
j′ ) on Γj × R+ (23c)

Ekj (·, 0) = 0 in Ωj (23d)

We perform a Laplace transform of (22b), with f̂ denoting the Laplace
transform of a function f and s = ε+ξi, ε, ξ ∈ R denoting the Laplace frequency
(with real part ε > 0, which physically means that f decays exponentially at
rate ε [8]):



sêkj + h0
∂

∂x
v̂kj + u0

∂

∂x
êkj + h̃

∂3

∂x3
v̂kj = 0 in Ωj (24a)

sv̂kj − u0 + u0
∂

∂x
v̂kj + g

∂

∂x
êkj + h

∂2

∂x2

[
sv̂kj − u0

]
= 0 in Ωj (24b)

Êkj → 0 |x| → ∞ (24c)

B̂j(Êkj ) = B̂j(Êk−1
j′ ) on Γj (24d)

We seek a solution under the form

Êkj (s, x) =

(
ekj (s)

vkj (s)

)
exp (λ(s)x)

and we consider as an additional simplification that u0 = 0.
Replacing in (24a)-(24b), we get the system(

s h0λ+ h̃λ3

gλ s+ hλ2s

)(
ekj (s)

vkj (s)

)
= 0

which admits nontrivial solutions iff the determinant of the matrix is zero, i.e.
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gh̃λ4 + (gh0 − hs2)λ2 − s2 = 0 (25)

The roots of (25) satisfy

Re(λ1) > 0, Re(λ2) < 0, Re(λ3)ξ > 0, Re(λ4)ξ < 0

which is proved in Appendix 1 of this report.
The solutions of (24a)-(24d) are then written under the form of the following

linear combination:

Êkj =

4∑
l=1

γkj Φl exp (λlx), j = 1, 2 (26)

where Φl is the eigenvector associated to the eigenvalue 0 and corresponding to
λl. These eigenvectors can be written as

Φl =

(
h0λl + h̃λ3

l

−s

)
In expression (26), we must decide, for Êk1 and Êk2 which coefficients among

γkl , l = 1, ..., 4, must be kept to zero, in order to force the exponentials to

vanish at infinity (thus fulfilling the condition (24c)). For Êk1 , defined in Ω1, we
keep the roots λl with positive real part; for Êk2 , defined in Ω2, we keep those
with negative real part. Therefore, admitting that ξ > 0 (which assures to the
Laplace transform a physical sense), we write

Êk1 = γk1 Φ1 exp (λ1x) + γk3 Φ3 exp (λ3x)

Êk2 = γk2 Φ2 exp (λ2x) + γk4 Φ4 exp (λ4x)

As said above, the operators Sj can be determined by imposing that the
right side of the IBCs in (24d) are equal to 0. We explicit the computation of
Ŝ1:

Ŝ1

(
êk−1

2

v̂k−1
2

)
=

(
h0v̂

k−1
2 + h̃

(
v̂k−1

2

)
xx

gêk−1
2 + h

(
v̂k−1

2

)
xt

)
=

=

 −s
(
h0 + h̃λ2

2

)
γk−1

2 exp (λ2x)− s
(
h0 + h̃λ2

4

)
γk−1

4 exp (λ4x)

λ2

(
g
(
h0 + h̃λ2

2

)
− s2h

)
γk−1

2 exp (λ2x) + λ4

(
g
(
h0 + h̃λ2

4

)
− s2h

)
γk−1

4 exp (λ4x)


(27)

Writing Ŝj under the form

Ŝj =

(
Ŝη,ηj Ŝη,uj
Ŝu,ηj Ŝu,uj

)
(28)

we have, matching the coefficients for each function eλix, i = 1, ..., 4,, that the
first and the second components of (27) leads respectively to the resolution of
the linear systems :
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M

(
Ŝη,η1

Ŝη,u1

)
=

 −s(h0 + h̃λ2
2

)
−s
(
h0 + h̃λ2

4

) 
and

M

(
Ŝu,η1

Ŝu,u1

)
=

 λ2

(
g
(
h0 + h̃λ2

2

)
− s2h

)
λ4

(
g
(
h0 + h̃λ2

4

)
− s2h

)  (29)

with

M =

(
h0λ2 + h̃λ3

2 −s
h0λ4 + h̃λ3

4 −s

)
(30)

We obtain :

Ŝη,η1 =
−h̃s (λ2 + λ4)

h0 + h̃ (λ2
2 + λ2λ4 + λ2

4)
, Ŝη,u1 =

(
h0 + h̃λ2

2

)(
1 +

λ2

s
Ŝη,η1

)
Ŝu,η1 = g − s2h

h0 + h̃ (λ2
2 + λ2λ4 + λ2

4)
, Ŝu,u1 = shλ2

(
1− h0 + h̃λ2

2

h0 + h̃ (λ2
2 + λ2λ4 + λ2

4)

)

For writing these expressions under simpler forms, we consider, as described
in Appendix 1, approximations for the roots λi around small values of ε and ξ
and we keep only the terms up to order 1 w.r.t. to these coefficients :

λ2 = − 1

h0

√
|β|
, λ4 = − ε√

gh0

− iξ

h0

√
|β|

We also make use of the notation (also introduced in the Appendix)

h̃ = βh3
0, h = θh2

0, β, θ < 0

Therefore, we have

Ŝη,η1 =

−βh3
0(ε+ iξ)

(
− 1

h0

√
|β|
− ε√

gh0
− iξ

h0

√
|β|

)
h0 + βh3

0

(
1

h2
0|β|

+ ε+iξ

h
3/2
0

√
g|β|

) =
√
gh0

Ŝη,u1 = 0, since h0 + h̃λ2
2 = 0

Ŝu,η1 = g − s2θh2
0

−h
3/2
0√
g

√
|β|s

= g + s
θ√
|β|

√
gh0

Ŝu,u1 = shλ2 = −sh0
θ√
|β|

so, we obtain the approximate operator

Ŝapp1 =

( √
gh0 0

g + sζ
√
gh0 −sh0ζ

)
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with ζ = θ/
√
|β| fixed.

Similarly, we compute

Ŝapp2 =

( √
gh0 0

−g − sζ
√
gh0 −sh0ζ

)
Finally, an inverse Laplace Transform results in the followings approximate

TBCs

Bapp1 (X) =

(
h0u+ h̃uxx −

√
gh0η

huxt − ζ
√
gh0ηt + h0ζut

)
Bapp2 (X) =

(
−h0u− h̃uxx −

√
gh0η

−huxt + ζ
√
gh0ηt + h0ζut

) (31)

Therefore, we have constructed relatively simple operators, containing deriva-
tives up to second order in space and first order in time. These operators can be
used in the DDM problem (19a)-(19d), under the form (20). As these operators
were obtained by performing several simplifications, we shall instead consider
operators with generic coefficients to be optimized in terms of the numerical
rate of convergence of the DDM (19a)-(19d) (with initial guesses suggested by
the coefficients in operators (31)):

B̃app1 (X) =

(
a1u+ a2uxx − a3η
a4uxt − a5ηt + a6ut

)
B̃app2 (X) =

(
−a1u− a2uxx − a3η
−a4uxt + a5ηt + a6ut

) (32)

The next steps in this work consist in implementing, testing and optimizing
such conditions, initially for the simplified Boussinesq system (18a)-(18d), and
then for the full governing equations (7) solved by BOSZ. We also have to show
the well-posedness of the DDM (19a)-(19d) when using the operators (32) as
IBCs.
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6 Study of the well-posedness of the problem
using the proposed TBCs

In this section, we seek to prove the well-posedness of the following system,
corresponding to the linearized version of the equations solved by BOSZ:


ηt + h0ux + u0ηx + h̃uxxx = 0 in Ω (33a)

ut + u0ux + gηx + huxxt = 0 in Ω (33b)

TBC on ∂Ω (33c)

X(·, 0) = Xini in Ω (33d)

where X(x, t) = (η(x, t), u(x, t)) and h̃, ĥ < 0.
In order to simplificate this study, we perform the changing of variables

x→ x− u0t

For any function f = f(x, t), we define

f̃(x, t) = f(x− u0t, t)

Then, dropping the tildes, the system (33a)-(33d) is rewritten as


ηt + h0ux + h̃uxxx = 0 in Ω (34a)

ut + gηx + huxxt = 0 in Ω (34b)

TBC on ∂Ω (34c)

X(·, 0) = Xini in Ω (34d)

Therefore, such changing of variables is equivalent to solve the system (33a)-
(33d) considering u0 = 0.

The boundary conditions, denoted as TBCs in (34c), are the approximate
operators derived in the previous section. As, with the changing of variables,
the equation (34a) for the evolution of η contains only time derivatives for η,
only the equation (34b) requires boundary conditions.

The proof developed here follows the same approach as in [15, 7, 13], which
consists on:

• Considering a given u, solve equation (34a) for η and write it under the
form of an integral operator;

• Considering a given η, solve equation (34b) for u and write it under the
form of an integral operator;

• Using a fixed-point theorem for proving the local existence (in time) of a
solution;

• Using the Gronwall’s lemma, prove the uniqueness of the solution.

Details on the inversion of the differential operators follows [9].
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6.1 Derivation of an expression for η

In this case, the derivation is relativly simple. We solve the problem{
ηt = −h0ux − h̃uxxx, x ∈ Ω, t > 0

η(x, 0) = ηini(x), x ∈ Ω
(35)

Integrating (35), we obtain

η(x, t) = ηini(x)−
∫ t

0

(
h0ux(x, s) + h̃uxxx(x, s)

)
ds (36)

6.2 Derivation of an expression for u

We consider the equation (34b), corresponding to the evolution of u, with
η as a given data. For simplicity, we consider a domain Ω = [0, L0], and the
following initial and boundary conditions, written from (31):

αL,R :=

(
1 + δL,R

a4

a6
∂x

)
ut|x=0,L0

= δL,R
a5

a6
ηt + βL,R (37)

u(x, 0) = uini(x) (38)

where

δL,R =

{
δL = −1, x = 0

δR = 1, x = L0

(39)

with L and R standing respectively for the left and the right boundaries. βL,R
are given data, for example, the data from outside the domain:

βL,R := δL,R
a4

a6
(uoutL,R)xt − δL,R

a5

a6
(ηoutL,R)t + (uoutL,R)t (40)

We synthetize here the final result. See details of this derivation on Appendix
2. The solution u can be written as

u(x, t) =uini(x) +

∫ t

0

∫ L0

0

K(x, y)gηdyds

+
N(L0 − x)

M(L0)

∫ t

0

[
αL + σ2 a4

a6
gη(0, s)

]
ds

+
N(x)

M(L0)

∫ t

0

[
αR − σ2 a4

a6
gη(L0, s)

]
ds

(41)

where

K(x, y) =
σ2

2

[
sign(x− y)e−σ|x−y|+

− 1

M(L0)

(
1− σa4

a6

)2

e−σL0 sinh(σ(x− y))

+
1

M(L0)

(
1−

(
σ
a4

a6

)2
)

sinh(σ(L0 − x− y))

] (42)
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N(x) = sinh(σx) + σ
a4

a6
cosh(σx) (43)

M(x) =

(
1 +

(
σ
a4

a6

)2
)

sinh(σx) + 2σ
a4

a6
cosh(σx) (44)

From (37), we also write explicitly the integrals in time of the boundary
conditions: ∫ t

0

αLds = −a5

a6
[η(0, t)− η0(0)] +

∫ t

0

βLds

∫ t

0

αRds =
a5

a6
[η(L0, t)− η0(L0)] +

∫ t

0

βRds

As a conclusion, based on expressions (36) and (41), we write the system
(34a)-(34d) under the form

X = AX

with A := (Aη, Au)T and

AηX = ηini(x)−
∫ t

0

(
h0ux(x, s) + h̃uxxx(x, s)

)
ds

AuX =uini(x) +

∫ t

0

∫ L0

0

K(x, y)gηdyds

+
N(L0 − x)

M(L0)

∫ t

0

[
αL + σ2 a4

a6
gη(0, s)

]
ds

+
N(x)

M(L0)

∫ t

0

[
αR − σ2 a4

a6
gη(L0, s)

]
ds

6.3 Spaces and norms

Before proving the existence and uniqueness of a solution, we define the
Banach spaces and their respcetive norms to be considered here.

We denote by Ck(a, b) the Banach space of the k-times continuously differ-
entiable functions in [a, b], equipped with the norm

‖f‖Ck(a,b) = sup
0≤j≤k

sup
a≤x≤b

|f (j)(x)|

In the case k = 0, we denote

||f || = sup
a≤x≤b

|f(x)|

and

||f || = max
1≤i≤n

‖fi(x)‖

for f = (f1, ..., fn) ∈ (C(a, b))n.
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We also consider, for any Banach space X, the Banach space C(0, T ;X) of
the continuous maps u : [0, T ]→ X, equipped with the norm

||u||C(0,T ;X) = sup
0≤t≤T

||u(t)||X

6.4 Estimations on the kernel K

We present in this subsections some estimations on the norm of the kernel
K of the integral operator (41).

We define the operator

M(v)(x) =

∫ L0

0

K(x, y)v(y)dy

which satisfies the following property: if v ∈ Ck(0, L0), thenM(v) ∈ Ck+1(0, L0)
and there is a constant Dk = Dk(k, L0) such that

‖M(v)‖Ck+1(0,L0) ≤ Dk ‖v‖Ck

Details on the derivation of Dk can be found in Appendix 3. We are specially
interested here in

D3 = max{cK + σ2, 2σ2 max{1, cK}, 2σ2 max{1, 2(cK + σ2)}}

with

cK =
σ2

2
L0

1 +

(
1− σ a4a6

)2

+
(
σ a4a6

)2

1 +
(
σ a4a6

)2



6.5 Local existence of a solution

Let Ĉ(0, L0) :=
{
v ∈ C(0, T0;C2(0, L0)), ‖v‖C2(0,L0) ≤ ‖v‖

}
and C̃ := C(0, T ; Ĉ(0, L0))×

C(0, T ;C3(0, L0)).
We prove here that, for some T, L0 > 0, Xini ∈ Ĉ(0, L0) × C3(0, L0) and

βL,R ∈ C(0, T )× C(0, T ), there is a T0 ≤ T such that there is, for the problem

(34a)-(34d), a solution X ∈ C̃.
The norm of C̃ is defined as

‖v‖C̃ = max
{
‖v1‖C(0,T ;Ĉ(0,L0)) , ‖v2‖C(0,T ;C3(0,L0))

}
Let X and X̃ be two solutions in C̃

⋂
B(0, r) (the ball of radius r centered

in 0). Denoting φ(x) :=M(g(η − η̃)), we have the following estimations

∥∥∥AηX −AηX̃∥∥∥
C(0,T ;Ĉ(0,L0))

≤ sup
0≤t≤T0

sup
0≤x≤L

∫ T0

0

∣∣∣h0 (ux − ũx) + h̃ (uxxx − ũxxx)
∣∣∣ ds

≤ T0

(
h0 ‖ux − ũx‖C(0,T0;C(0,L)) + |h̃| ‖uxxx − ũxxx‖C(0,T0;C(0,L))

)
≤ 2T0 max{h0, |h̃|} ‖u− ũ‖C(0,T ;C3(0,L0))
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∥∥∥AuX −AuX̃∥∥∥
C(0,T ;C3(0,L0))

= sup
0≤t≤T0

sup
0≤j≤3

sup
0≤x≤L

∫ T0

0

|φ(j)|(x)ds

≤ T0 sup
0≤t≤T0

‖φ‖C3(0,L) ≤ T0D3 sup
0≤t≤T0

‖g(η − η̃)‖C2(0,L)

≤ T0gD3 ‖η − η̃‖C(0,T ;Ĉ(0,L0))

Then, ∥∥∥AX −AX̃∥∥∥
C̃
≤ Θ

∥∥∥X − X̃∥∥∥
C̃

(45)

with

Θ := T0 max{gD3, 2 max{h0, |h̃|}} (46)

For X ∈ B(0, r), we denote B(x, t) = (Bη(x, t), Bu(x, t)) the terms involving
the initial and boundary conditions, with

Bη(x, t) = ηini(x)

Bu(x, t) =uini(x)

+
N(L0 − x)

M(L0)

[
−a5

a6
(η(0, t)− ηini(0)) +

∫ t

0

(
σ2 a4

a6
gη(0, s) + βL

)
ds

]
+

N(x)

M(L0)

[
a5

a6
(η(L0, t)− ηini(L0))−

∫ t

0

(
σ2 a4

a6
gη(L0, s) + βR

)
ds

]
We have the following norm estimations:

‖Bη‖C(0,T ;Ĉ(0,L0)) ≤ sup
0≤t≤T0

sup
0≤x≤L0

∣∣ηini∣∣ =
∥∥ηini∥∥

C(0,L)

‖Bu‖C(0,T ;C3(0,L0)) ≤
∥∥uini∥∥

C3(0,L0)

+2
1

1 +
(
σ a4a6

)2

(
1 + σ

a4

a6

1 + e−2L0

1− e−2L0

)[∣∣∣∣a5

a6

∣∣∣∣ (‖ηb‖C(0,L0) +
∥∥ηini∥∥

C(0,L0)

)

+T0

(
σ2 a4

a6
g ‖ηb‖C(0,L0) + ‖β‖C(0,T )

)]
Then

‖B‖C̃ ≤ b :=

(
1 + ψ

∣∣∣∣a5

a6

∣∣∣∣) ∥∥Xini
∥∥
Ĉ(0,L0)×C3(0,L0)

+ ψ

(∣∣∣∣a5

a6

∣∣∣∣+ T0σ
2 a4

a6
g

)
‖ηb‖C(0,T ) + ψT0 ‖β‖C(0,T )

(47)

with
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ψ = 2
1

1 +
(
σ a4a6

)2

(
1 + σ

a4

a6

1 + e−2L0

1− e−2L0

)

Then

‖AX‖C̃ = ‖AX −A0 +B‖C̃ ≤ Θr + b

Taking

r = 2b, Θ =
1

2
(48)

we have

‖AX‖C̃ ≤ r

This last result means that A is a contracting mapping from C̃
⋂
B(0, r) into

C̃
⋂
B(0, r). Using the contraction-mapping (or fixed point) theorem, we can

state the local existence (within 0 ≤ t ≤ T0) of a solution for (33a)-(33d).
Let us notice that there is a T0 > 0 such that Θ = 1/2, which can be easily

seen in expression (46).
Nevertheless, it is necessary to remark some unsolved issues on the proof

developed above. Firstly, as we can see in equation (47), the norm estimation
for B depends on the boundary values of η, for which we do not have any a
priori estimation (we recall that, in the system (34a)-(34b), it is not required
boundary conditions for η).

Secondly, for imposing that bothX andAX are in the same space, we had to
define a quite unusual space for η, requiring that it is continuously differentiably
up to the second derivative, but with its norm majorated by η itself.

Finally, as with the changing of variables performed we get rid of the bound-
ary conditions for η, the norm majorations do not depend explictly on the co-
efficients a1, a2 and a3 of our TBCs.

6.6 Uniqueness of the solution

If X and X̃ are two solutions of (33a)-(33d) in C̃, and X̂ = X − X̃, we
show, in a similar way as above, that∥∥∥X̂∥∥∥

C̃
=
∥∥∥AX̂∥∥∥

C̃
≤ c

∫ t

0

∥∥∥X̂∥∥∥
C̃
ds = λ+ c

∫ t

0

∥∥∥X̂∥∥∥
C̃
ds

with 0 ≤ t ≤ T1 and λ = 0. The Gronwall’s lemma implies that∥∥∥X̂∥∥∥
C̃
≤ λ exp

(
c

∫ t

0

ds

)
= 0

thus
∥∥∥X̂∥∥∥

C̃
= 0 and X̂ = 0.
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7 Conclusion

In this report, we presented the achievements and results of the work devel-
oped in this project in MERIC. We constructed the basis for the proposed cou-
pling scheme between a spectral model (WaveWatch III) and a Boussinesq-type
model (BOSZ), and we proposed and studied trasnaprent boudnary conditions
for the BOSZ model in order to improve the coupling. Both topics will permit
to seek for further objectives in the sequel of this research.

In the first half of the project, the main work consisted fundamentally in
structuring the coupling, from the point of view both of the implementation
and the treating of different types of wave propagation models.

The coupling software OpenPALM, used for coupling the models, allows to
synchronize their executions and run them in parallel. Facing various issues that
prevented us from incorporating the models into PALM in a “traditional” way,
we proposed an alternative approach that, even not optimal in terms of compu-
tational time, avoided the modification of the models’ source codes and easily
allows to configure the coupling for new test cases. Moreover, possible future
modifications of the coupling scheme, including the use of other Boussinesq-type
models or configuring 2D testcases, would be relatively straightforward.

For exchanging data between the models, we had to considerate the differ-
ent types of variables used by them. While WW3, as a spectral model, solves a
governing equation for the wave energy spectrum, i.e., in the frequency domain,
BOSZ, as a time-domain model, solves for the surface elevation and the velocity
as function of time. Therefore, conversion procedures are required: we imple-
mented the Welch’s method for passing from the surface elevation timeseries
to the energy spectrum; in the other way, a source function method (already
implemented in BOSZ) is used. While the first case has been validated, the sec-
ond one still remains relatively unclear, reducing the user control for imposing
boundary conditions in BOSZ.

For testing the coupling scheme, we performed simulations in a testcase over
a sandbank, and we compared the results with the simulations done with each
individual model over the entire domain. We remark that this test case cannot
be used for physical validation, as the reference output does not come from
real data, but from a 2D WW3 simulation. Moreover, as each model has dif-
ferent properties and domains of validity, we cannot predict a “correct” result.
Evidently, the WW3 simulations gave the results that are closest from the ref-
erence. Concerning the BOSZ model, we were able to evaluate its performance
and energy damping with two alternatives for the discretization of the fluxes: a
finite volume and a finite difference schemes; this last one showed to be much
less dissipative, and then was chosen for the implementation.

The work deveoped in the second half of the project was motivated by our
objective of implementing domain decomposition techniques in order to improve
the coupling. In the first scheme proposed here, the informations were simply
transmitted from one model to the other, always from offshore to the coast. The
two last section of this report presents initial steps in this direction, where we
study and propose approximate transparent boundary conditions for a linearized
and simplified version of the equations solved by BOSZ.

The derivation of such operators was done following a classical approach
for constructing approximate TBCs for linear equations. Such approach intend
to ontour the difficults of obtaining and computing the exact TBCs. Then,
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we obtained relatively simple operators, which are local in time, depending
on a set of six coefficients that should be numerically optimized, concerning
the numerical rate of convergence of a DDM problem using these operators as
interface boundary conditions.

Nevertheless, before implementing these operators, it was necessary to prove
that they lead to a well-posed problem. Even if we were able to advance on this
proof, there are still unsolved issues concerning the proof of the local existence in
time. Firstly, we had to impose the solution to be in an unusual space (limiting
the application of the operators), and, secondly, the norm majorations depend
on the boundary values of the surface elevation, for which we do not dispose of
a priori estimations.

Therefore, among the following steps in the remaining months of the project,
the first one will be the revision of this proof or the derivation of another approx-
imate TBCs by an alternative approach, following other works in the litterature.
If we succeed in this task, we will be able to implement, test and optimize the
proposed operators. Evidently, for physically evaluating their results, we will
need to consider a test case with real reference output data.

The implementation of these operators would be done in the following se-
quence: firstly, as boundary conditions for the linearized equations used to
derive them; then, as IBCs for solving this equations with a DDM. After that,
we would implement them in the full BOSZ equations (i.e., the non linearized
equations), expecting the operators to have a similar behaviour. Finally, af-
ter validating this step, we would return to the first half of the project and
implement the operators in the coupling with WW3.
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Appendix 1: study on the roots of the character-
istic polynomial

Sign analysis

We are interested in studying the sign of the real part of the four roots
λl, l = 1, ..., 4, of the characteristic polynomial (25), to decide which should be
kept to zero such that condition (23b) is satisfied.

We follow the approach adopted by [4] for studying the TBCs for the Airy’s
equation. We write explicitly the real and the imaginary parts (respectively ε
and ξ) of the frequency s and we perform a series expansion around ε = 0. We
obtain

λ1 = A+ iBε+O(ε2), λ2 = −λ1

λ3 = A′ − iB′ε+O(ε2), λ4 = −λ3

with

A =
√

3|ξ|

√
−
a+ b+

√
(a+ b)2 − 4(c+ ab)

c+ ab

B =
A

2ξ

a− b−
√

(a+ b)2 − 4(c+ ab)√
(a+ b)2 − 4(c+ ab)

A′ =
√

3|ξ|

√
−a− b+

√
(a+ b)2 − 4(c+ ab)

c+ ab

B′ =
A′

2ξ

a− b+
√

(a+ b)2 − 4(c+ ab)√
(a+ b)2 − 4(c+ ab)

a = 6gh0, b = 3z(2h0 + z)ξ2 = 3αh2
0(2 + α)ξ2, c = 12gh3

0ξ
2

For the definition of b, we wrote z = αh0, with α < 0. In fact, as mentioned
before, z is a reference depth in which the velocity is computed; as specified in
[17], BOSZ uses the value α = −0.53753, for which the model gives good results
for depths in the range 0 < h/L0 < 0.6, where L0 is the deep water wavelength.

Using this notation, we also rewrite the quantities h̃ and h, which will be
used later :

h̃ = βh3
0, β =

α2

2
+ α+

1

3
≈ −0.06 < 0

h = θh2
0, θ = α

(α
2

+ 1
)
≈ −0.4 < 0

(49)

The roots λi are function of h0, ε and ξ. For studying the sign of their real
part, we perform a preliminary investigation by plotting Re(λi) in function of
(h0, ξ) for some fixed values of ε > 0. We intent to find some pattern in the
sign of Re(λi) that would motivate us to study its sign analytically. Figure 27
presents the results for ε = 0.1. Similar results were obtained for other values
of ε > 0.
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(a) Re(λ1) (b) Re(λ2)

(c) Re(λ3) (d) Re(λ4)

Figure 27: Real part of the roots λi in function of (h0, ξ) for ε = 0.1

We can observe the sign of Re(λ1) and Re(λ2) are constant, and that the
sign of Re(λ3) and Re(λ4) depends on the sign of ξ. Therefore, we study their
signs analytically :

Study of Re(λ1) and Re(λ2)

• In the definition of A, the denominator inside the square root is negative
:

c+ ab = 6gh3
0ξ

2(2 + 3α(2 + α)) ≈ −0.36gh3
0ξ

2 < 0

• Thus, (a+ b)2 − 4(c+ ab) > (a+ b)2 and
√

(a+ b)2 − 4(c+ ab) > |a+ b|;
so the numerator of A is positive :

a+ b+
√

(a+ b)2 − 4(c+ ab) > a+ b+ |a+ b| ≥ 0

• As a conclusion

−
a+ b+

√
(a+ b)2 − 4(c+ ab)

c+ ab
> 0 (50)

so A ∈ R.
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• We also conclude that B ∈ R. Therefore

Re(λ1) = Re(A+ iBε) = A > 0,

Re(λ2) = −A < 0
(51)

Study of Re(λ3) and Re(λ4)
In a very similar reasoning:

• in the definition of A′, the numerator is positive:

−a− b+
√

(a+ b)2 − 4(c+ ab) > −(a+ b) + |a+ b| ≥ 0 (52)

As the denominator is negative, we conclude that A′ 6∈ R and B′ 6∈ R

• For studying the sign of B′, we show that

a−b+
√

(a+ b)2 − 4(c+ ab) > a−b+|a+b| =

{
2a > 0, if a+ b > 0

−2b > 0, else

(53)
And we write B′ = σi|A′|/ξ, with σ > 0.

• Finally,
Re(λ3) = Re(A′ − iB′ε) = σ|A′|ε/ξ, (54)

so
sgn(Re(λ3)) = sgn(ξ)

sgn(Re(λ4)) = −sgn(ξ)
(55)

These conclusions are coherent with the results presented in Figure 27.

Further approximations

While approximations around small values of ε were enough for studying the
sign of the roots λi of the characteristic polynomial (25), we need to consider
further approximations for deriving simpler forms for the operators (28): we
perform a series expansion of A,A′, B,B′ around ξ = 0 (which could be phys-
ically justified by the fact that ordinary wind waves have most of its energy
spectrum concentrated around frequencies in the order of 10−1Hz [10, 2]):

A =
1

h0

√
|β|

+O(ξ2), A′ =
iξ

h0

√
|β|

+O(ξ3),

B =
ξ

3g
√
|β|

+O(ξ3), B′ =
i√
gh0

+O(ξ2)

(56)

with β defined in (49). Thus,

λ1 = A+ iBε+O(ε2) =
1

h0

√
|β|

+O(ε2, ξ2, εξ), λ2 = −λ1

λ3 = A′ − iB′ε+O(ε2) =
ε√
gh0

+
iξ

h0

√
|β|

+O(ε2, ξ2), λ4 = −λ3

(57)
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Appendix 2: details on the derivation of an inte-
gral expression for u(x, t)

We present here the details of the derivation of the expression (41). We
rewrite (34b) under the form

(1 + h∂xx)ut = −gηx =: F (x) (58)

We firstly search the solution ut = ut(x) for (58), using the method of
variation of parameters.

The homogeneous equation

(1 + h∂xx)ut = 0 (59)

has the solutions

v1(x) = eσx, v2(x) = e−σx

where, recalling that h < 0,

σ =
1√
|h|

We will thus seek a solution for (58) under the form

ut(x) = c1(x)v1(x) + c2(x)v2(x) (60)

Taking the second derivative of (60) and supposing that

v1(x)
dc1
dx

+ v2(x)
dc2
dx

= 0 (61)

we get

d2

dx2
ut(x) =

dc1
dx

dv1

dx
+
dc2
dx

dv2

dx
+ c1(x)

d2v1

dx2
+ c2(x)

d2v2

dx2
(62)

Replacing (62) into (58) and using the fact that v1 and v2 solve (59), we
have

dc1
dx

dv1

dx
+
dc2
dx

dv2

dx
=
F (x)

h
(63)

Equations (61) and (63) constitute a system on (dc1/dx, dc2/dx)T , whose
solution is (

dc1
dx
dc2
dx

)
=

(
−σ2 v2(x)F (x)
σ
2 v1(x)F (x)

)
Thus,

c1(x) =
σ

2

∫ L

x

e−σyF (y)dy + b1, c2(x) =
σ

2

∫ x

0

eσyF (y)dy + b2
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which verifies the hypothesis (61). The constants b1 and b2 will be determined
using the boundary conditions. For this, we replace the (60) into (37):

αL,R = c1(x)v1(x)

(
1 + δL,Rσ

a4

a6

)
+ c2(x)v2(x)

(
1− δL,Rσ

a4

a6

)
Thus,

αL =

[
σ

2

∫ L

0

e−σyF (y)dy + b1

]
ω+
L + b2ω

−
L (64)

αR = b1e
σLω+

R +

[
σ

2

∫ L

0

eσyF (y)dy + b2

]
e−σLω−R (65)

where

ω+,−
L,R = 1± δL,Rσ

a4

a6

Solving (64) and (65) for b1 and b2, we get

b1 =
αL

ω+
L

+
ω−L

ω−Rω
+
L e
−σL − ω−Lω

+
Re

σL

[
αL

ω+
R

ω+
L

eσL − αRω−L +
σ

2
e−σL

∫ L

0

2N(y)F (y)dy

]

b2 =
ω+
L

ω−Rω
+
L e
−σL − ω−Lω

+
Re

σL

[
αR − αL

ω+
R

ω−L
eσL +

σ

2

∫ L

0

2N(L− y)F (y)dy

]

where N is defined in (43).
Coming back to (60) and using the values of δL and δR as defined in (39),

we obtain

ut(x) =

∫ L

0

G(x, y)F (y)dy +
N(L− x)

M(L)
αL +

N(x)

M(L)
αR (66)

where M is defined in (43) and

G(x, y) =
σ

2

[
e−σ|x−y|+

+
1

M(L)

(
1− σa4

a6

)2

e−σL cosh(σ(x− y))

− 1

M(L)

(
1−

(
σ
a4

a6

)2
)

cosh(σ(L− x− y))

]
We notice that, for all x ∈ Ω,

G(x, 0) = σ2 a4

a6

N(L− x)

M(L)
, G(x, L) = σ2 a4

a6

N(x)

M(L)

Thus, recalling the definition of F and integrating (66) by parts w.r.t, and
also integrating it in time, we finally get
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u(x, t) =uini(x) +

∫ t

0

∫ L

0

K(x, y)gηdyds

+
N(L− x)

M(L)

∫ t

0

[
αL + σ2 a4

a6
gη(0, s)

]
ds

+
N(x)

M(L)

∫ t

0

[
αR − σ2 a4

a6
gη(L, s)

]
ds

(67)

with K(x, y) := ∂G/∂y(x, y) defined in (42)
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Appendix 3: details on the norm estimations for
the kernel K

Proof We have the following estimation on the norm of M(v), ∀v ∈ C(0, L):

||M(v)|| = sup
0≤x≤L

|
∫ L

0

K(x, y)v(y)dy| ≤ sup
0≤x≤L

∫ L

0

|K(x, y)v(y)|dy

≤ ||v|| sup
0≤x≤L

∫ L

0

|K(x, y)|dy

≤ cK ||v||

(68)

with

cK =
σ2

2
L

1 +

(
1− σ a4a6

)2

+
(
σ a4a6

)2

1 +
(
σ a4a6

)2


since, supposing that a4/a6 > 0,

sinh(x)

M(L)
=

sinh(x)(
1 +

(
σ a4a6

)2
)

sinh(x) + 2σ a4a6 cosh(x)

≤ sinh(x)(
1 +

(
σ a4a6

)2
)

sinh(x)

≤ 1

1 +
(
σ a4a6

)2

(69)

and

cosh(x)

M(L)
=

cosh(x)(
1 +

(
σ a4a6

)2
)

sinh(L) + 2σ a4a6 cosh(L)

≤ cosh(x)(
1 +

(
σ a4a6

)2
)

sinh(L)

≤ 1

1 +
(
σ a4a6

)2

1 + e−2L

1− e−2L

for every x such that |x| < L, thus

|K(x, y)| ≤ σ2

2

1 +

∣∣∣∣(1− σ a4a6
)2
∣∣∣∣

1 +
(
σ a4a6

)2 +

∣∣∣∣1− (σ a4a6)2
∣∣∣∣

1 +
(
σ a4a6

)2


≤ σ2

2

1 +

(
1− σ a4a6

)2

+
(
σ a4a6

)2

1 +
(
σ a4a6

)2


(70)

We notice that, for each x ∈ [0, L], K(x, y) is continuous, except in y = x,
where the jump of the function is

K(x, x+)−K(x, x−) = σ2
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Then, denoting φ(x) =M(v), we have

φ′(x) =

∫ L

0

∂

∂x
K(x, y)v(y)dy + σ2v(x) (71)

Noticing that, ∀x 6= y and ∀j ≥ 0

∂j+2

∂xj+2
K(x, y) = σ2 ∂

j

∂xj
K(x, y)

we have, for j ≤ 1

φ(j+2)(x) = σ2φ(j)(x) + σ2v(j+1)(x) (72)

From (68) and (71), we have

‖φ‖C1(0,L) = max{cK , cK + σ2} ‖v‖ = (cK + σ2) ‖v‖

And, from the recurrence relation (72), one can obtain estimations on Dk.
We compute here D3:∥∥∥φ(2)

∥∥∥ ≤ σ2 ‖φ‖+ σ2 ‖v′‖ ≤ σ2cK ‖v‖+ σ2 ‖v′‖

≤ 2σ2 max{1, cK} ‖v‖C1(0,L)∥∥∥φ(3)
∥∥∥ ≤ σ2 ‖φ′‖+ ≤2 ‖v′′‖ ≤ 2σ2(cK + σ2) ‖v‖+ σ2 ‖v′′‖

≤ 2σ2 max{1, 2(cK + σ2)} ‖v‖C2(0,L)

Finally,

‖φ‖C3(0,L) ≤ D3 ‖v‖C2(0,L)

with

D3 = max{cK + σ2, 2σ2 max{1, cK}, 2σ2 max{1, 2(cK + σ2)}}
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