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The e-value, a.k.a. the epistemic value of hypothesis H given the obser-
vational data X or, the other way around, the evidence value rendered by the
observational data X in support of hypothesis H, is a significance measure or truth
value conceived for use in statistical modeling, see Pereira and Stern (1999).

The e-value and its associated statistical procedures, like the Full Bayesian
Significance Test (FBST), comply with the best principles of Bayesian inference,
including the likelihood principle, complete invariance, asymptotic consistency, etc.
The e-value and the FBST also exhibit powerful logic or algebraic properties in sit-
uations involving the comparison or composition of distinct hypotheses that can
be formulated either in the same or in different statistical models. Moreover, they
effortlessly accommodate the case of sharp or precise hypotheses, a situation where
alternative methods often require ad hoc and convoluted procedures. Further-
more, the e-value and the FBST exhibit excellent operational characteristics, like
straightforward formulation, simple numerical implementation, robust and reliable
behavior, etc. Finally, test procedures based on the e-value often outperform (in
standard benchmark experiments) alternatives found in the literature for important
applications in statistical modeling and operations research.

The e-value is defined within the standard Bayesian framework for parametric
statistics, where observations, X, prior, p0(θ), and posterior, pn(θ), densities for
the parameters are related by Bayesian learning steps, that is,

pn(θ |X) = (1/cn)p0(θ)
∏n

i=1
p(x(i) | θ) = (1/cn)p0(θ)p(X | θ) . (1)

A statistical hypothesis H states that the parameter θ0 generating the ob-
servations X belongs to a region of the parameter space constrained by (vector)
inequality and equality constraints, that is,

H = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0} . (2)

The dimension of this hypothesis, h, is the dimension of its parameter space,
t, minus the number of its equality constraints, q, that is,

h = dim(H) = t− q ≤ t = dim(Θ) . (3)
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An hypothesis is called sharp or precise if the last inequality is strict, that
is, if h < t; otherwise, if h = t, it is called a slack hypothesis. All major scientific
theories in exact sciences are structured around precise natural laws formulated as
mathematical equations that, in turn, are easily expressed in statistical modeling
as sharp hypotheses. Nevertheless, many traditional significance measures or test
procedures, specially in the Bayesian framework, face theoretical or methodologi-
cal difficulties in the treatment of sharp hypotheses. The e-value and the FBST
were developed to overcome these difficulties, giving a coherent and uniform treat-
ment to either slack or sharp hypotheses. The successful accomplishment of these
goals engender important philosophical, theoretical, methodological and practical
consequences, see Stern (2017, 2020) and Stern et al. (2018, 2022).

The the e-value of H given X, ev (H |X) ∈ [0, 1], and its complement,
ev (H |X) = 1 − ev (H |X), are defined as follows; see Borges and Stern (2007)
and Stern and Pereira (2014) for further details and explanations.

(i) s(θ), the surprise function in a statistical model is defined as the quotient
between the posterior and the reference densities in the model,

s(θ) = pn(θ)/r(θ) . (4)

The reference density, r(θ), can be interpreted as a representation of vague or
weak information about θ, like the uniform distribution, r(θ) ∝ 1, an invariant
prior, or a maximum entropy density, see Stern (2011). Alternatively, the reference
density can be interpreted as a representation of the parameter space’s underlying
information metric, r(θ) =

√
detG(θ), given the metric dl2 = dθtG(θ)dθ, θ ∈ Θ.

(ii) s∗, the maximum (or supremum) of the surprise function constrained to
the hypothesis H, is defined as

s∗ = supθ∈H s(θ) . (5)

A maximizing argument, θ∗ | s∗ = s(θ∗), is called a tangential point ;

(iii) T (v), the closed lower v-cut of the surprise function, and its complement,
the open upper v-cut of the surprise function, T (v), are defined as

T (v) = {θ ∈ Θ | s(θ) ≤ v} , T (v) = {θ ∈ Θ | s(θ) > v} . (6)

The upper v-cut at level v = s∗, T (s∗), is called the tangential set, for its bor-
der corresponds to the contour line of the surprise function that is tangential to
hypothesis H.

(iv) W (v), the truth function or Wahrheitsfunktion at level v, is defined as
the posterior probability mass inside the lower v-cut of the surprise function.

W (v) =

∫
T (v)

pn (θ) dθ , (7)

while its complement is defined as W (v) = 1−W (v).
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(v) ev (H |X), the epistemic value of hypothesis H given the observed data
X, is defined as the truth function W (v) computed at level v = s∗, while its com-
plement, ev (H |X), the evidence given by the observed data X against hypothesis
H, has the complementary probability mass,

ev (H |X) = W (s∗) , ev (H |X) = W (s∗) = 1− ev (H) . (8)

(vi) sev(H |X), the standardized e-value of a hypothesis H ⊂ Θ of dimension
h = dim(H) ≤ t = dim(Θ), and its complement, sev(H |X), are defined as follows:

sev(H |X) = 1− sev(H |X) , sev(H |X) = σ(t, h, ev (H |X)) ; (9)

where σ(t, h, c), the standardization function on arguments t, h ∈ N+ and c ∈ [0, 1],
is defined in terms of the chi-square cumulative distribution with d ∈ N+ degrees
of freedom, Q(d, z), by the expression

σ(t, h, c) = Q
(
t− h,Q−1 (t, c)

)
. (10)

Under appropriate regularity conditions, as the number of observations in-
creases, that is, as n → ∞, sev(H |X) exhibits the following asymptotic behavior:
If H is false, sev(H |X) → 0; If H is true, sev(H |X) → U [0, 1]. Concerning this
behavior, sev(H) resembles the classical p-value and, accordingly, can replace (and
outperform) it in many commonly used test procedures.

A logical formalism can be conceived as an algebra for obtaining truth-values
of complex statements from its constituent or elementary parts. In this perspec-
tive, the e-value has strong logical properties captured by the algebraic formalism
explained in the sequel. Let us consider alternative elementary hypotheses, H(i,j),
i = 1 . . . q, defined in j = 1 . . . k independent constituent models, M (j), and also
a complex hypothesis, H, defined by logical composition in homogeneous disjunc-
tive normal form (disjunction of conjunctions) of the aforementioned elementary
hypotheses in the product model M = M (1) × . . .×M (k), that is:

H =
∨q

i=1

∧k

j=1
H(i,j) , M (i,j) = {Θ(j), H(i,j), p

(j)
0 , p(j)n , r(j)} , (11)

M = {Θ, H, p0, pn, r} , Θ =
∏k

j=1
Θ(j) , pn =

∏k

j=1
p(j)n , r =

∏k

j=1
r(j). (12)

Then, ev (H), the e-value supporting the complex hypothesis, is computed as:

ev

(∨q

i=1

∧k

j=1
H(i,j)

)
= W

(
q

max
i=1

∏k

j=1
s∗(i,j)

)
= W

(
q

max
i=1

s∗(i)
)

(13)

=
q

max
i=1

W
(
s∗(i)

)
=

q
max
i=1

ev

(∧k

j=1
H(i,j)

)
=

q
max
i=1

ev
(
H(i)

)
; (14)

where the cumulative surprise distribution of the product model, W (v), is given by
the Mellin convolution operation, see Borges and Stern (2007), defined as

W =
⊗

1≤j≤k

W (j) , W (1) ⊗W (2)(v) =

∫ ∞

0

W (1)(v/y)W (2)(dy) . (15)
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The probability distribution of the product of two independent positive ran-
dom variables is given by the Mellin convolution of their distributions. From this
interpretation, we immediately see that ⊗ is a commutative and associative oper-
ator. Moreover, we observe that, in the extreme case of null-or-full support, that
is, when, for 1 ≤ i ≤ q and 1 ≤ j ≤ k, s∗(i,j) = 0 or s∗(i,j) = ŝ(j), the e-values of
the constituent elementary hypotheses are either 0 or 1, and the conjunction and
disjunction composition rules of classical logic hold.

The Generalized Full Bayesian Significance Test, GFBST, rejects H if its e-
value stays below an established threshold, c, that is, if ev (H) < c, and accepts H if
it rejects its complement, that is, if ev (H) < c, where H = Θ−H. In this context,
the standard modal logic operators of necessity, □ ; possibility, ♢ ; contingency, ∇ ;
and negation, ¬ ; are used to conveniently represent accepting H, □H, rejecting it
(impossibility), ¬♢H, or remaining agnostic (undecided), ∇H = ♢H ∧ ¬□H.

Since the GFBST is directly engendered by the e-value, it inherits all its good
statistical and compositional properties. Moreover, the GFBST obeys the following
rules for consistent reasoning concerning the logical modalities of necessity, possi-
bility and contingency or, alternatively, rules for consistent decision in accepting,
rejecting, or remaining agnostic concerning interrelated statistical hypotheses:

(I) Invertibility: Applied to an hypothesis H and its complement, H = Θ−H.
(I.i) Necessity inversion: □H ⇔ ¬♢H;
(I.ii) Possibility inversion: ♢H ⇔ ¬□H;
(I.iii) Contingency inversion: ∇H ⇔ ∇H.

(M) Monotonicity: Applied to an hypothesis H and a superset, H ′ ⊃ H.
(M.i) Monotonic necessity: □H ⇒ □H ′;
(M.ii) Monotonic possibility: ♢H ⇒ ♢H ′.

(C) Consonance: Applied to an indexed set of hypotheses, H(i) , for i ∈ I.
(C.i) Union consonance: ♢(∪i∈IH

(i)) ⇒ ∃i ∈ I |♢H(i);
(C.ii) Intersection consonance: ∀i ∈ I, □H(i) ⇒ □(∩i∈IH

(i)).

The aforementioned rules for consistent reasoning correspond to basic prin-
ciples of rational argumentation that are natural and intuitive for human inter-
pretation. Using inference or decision procedures that violate these rules of good
reasoning brings the danger of miscommunication, misunderstanding, or misinfor-
mation. Moreover, using arguments of mathematical analysis, it is possible to use
the same rules of consistent reasoning to give an (essentially) unique characteriza-
tion of the GFBST, see Esteves et al. (2016) and Stern et al. (2018).

For detailed discussions of the GFBST, its statistical features, logical prop-
erties, and philosophical consequences, see Esteves et al. (2016), Madruga et al.
(2001), Pereira et al. (2008), and Stern et al. (2018). The review articles by
Pereira and Stern (2020) and Stern et al. (2022) include references for hundreds of
applications of the e-value and the FBST in science and technology, several further
theoretical, methodological, and computational developments, discussion of some
consequences in epistemology and philosophy of science of this approach for evalu-
ating and testing statistical hypotheses, and some directions for further research.
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