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 Full Bayesian significance test applied to multivariate
 normal structure models

 Marcelo Lauretto1, Carlos Alberto de Bragança Pereira2
 Julio Michael Stern2 and Shelemyahu Zacks3
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 2 University of São Paulo

 3 State University of New York at Bighamton

 Abstract: The Pull Bayesian Significance Test (FBST) for precise hy-
 potheses is applied to a Multivariate Normal Structure (MNS) model. In
 the FBST we compute the evidence against the precise hypothesis. This evi-

 dence is the probability of the Highest Relative Surprise Set (HRSS) tangent
 to the sub-manifold (of the parameter space) that defines the null hypothesis.

 The MNS model we present appears when testing equivalence conditions for

 genetic expression measurements, using micro-array technology.

 Key words: Credibility, evidence, full Bayesian significance test, relative
 surprise, structural models for multivariate normals.

 1 Introduction

 The Full Bayesian Significance Test (FBST) is presented in Pereira and Stern as
 a coherent Bayesian significance test, see Pereira and Stern (1999a, b, 2001a, b),
 Madruga et al. (2003), Stern (2003a, b). The FBST is intuitive and has a geometric
 characterization. It can be implemented using modern numerical optimization and
 integration techniques. Like all Bayesian analysis, the FBST regards likelihoods
 as the proper means for representing statistical information, a principle stated
 by Barnard (1947, 1949), Basu (1988), Birnbaum (1962, 1972), Finneti (1974,
 1981, 1991, 1993), Good (1983), Kempthorne (1976, 1980), Kempthorne and Folks
 (1971), Royall (1997), and others, to simplify and unify statistical analysis. The
 method is "Fully" coherent with the Bayesian likelihood principle, meaning that
 the information gathered from observations is represented by (and only by) the
 likelihood function. The FBST needs no additional assumption, like a positive
 prior probability of the precise hypothesis, that leads to Lindley's paradox, Lindley
 (1957).

 In this paper we study the dose-equivalence hypothesis.
 The dose-equivalence hypothesis, H , asserts a proportional response of a pair

 of response measurements to two different stimuli. The hypothesis also asserts
 proportional standard deviations, and equivalent correlations for each response
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 pair. The proportionality coefficient, í, is interpreted as the second stimulus dose
 equivalent to one unit of the first.

 This can be seen as a simultaneous generalization of the linear mean structure,
 the linear covariance structure, and the Behrens-Fisher problems. The test proved
 to be useful when comparing levels of genetic expression, as well as to calibrate
 micro array equipment at BIOINFO, the genetic research task force at University
 of Sao Paulo. The application of the dose-equivalence model is similar to the
 much simpler bio-equivalence model used in pharmacology, and closely related
 by several other classic covariance structure models used in biology, psychology,
 and social sciences, as described in Anderson (1969), Bock and Bargnann (1966),
 Jiang and Sarkar (1998, 1999, 2000a, b), Jöreskog (1970), and McDonald (1962,
 1974, 1975). We are not aware of any alternative test for the dose-equivalence
 hypothesis published in the literature.

 In Section 2 we define the FBST, give an outline of its properties, and give a
 simple example of its application. In Section 3 we remember the basic facts about
 the Normal-Wishart distribution and its use in Bayesian statistics. In Section
 4 we review Multivariate Structure Models. In Section 5 and 6 we describe the

 numerical optimization and integration algorithms used to implement the FBST.
 In Section 7 we describe the procedures used to establish the rejection level and
 the empirical power of the test. We also give the sufficient statistics of two data-
 sets, and use them as case studies in the paper. In Section 8 we give some final
 remarks.

 In this article we use the following matrix notation: The transpose of matrix
 M is M' . A family of matrices indexed by h = 1, 2, . . . is written Ml,M2

 The ż-th row, the j- th column, and the z, j-th element of matrix of the h- th
 matrix, Mh, are, respectively, Mļ ¿ and The vectors of zeros and
 ones, with appropriate dimension given by the context, are 0 and 1. In (M + 1>),
 where v is a column (row) vector of compatible dimension, v is added to each
 column (row) of matrix M. The Hadamard or pointwise product, O, is defined
 by M = A O B = Ai¿ Bij. The squared Frobenius norm of a matrix is
 defined by frob2 (M) = •

 2 FBST procedure definition

 Let Xi, ... , Xn be random variables having a joint density f(x ; 0), with respect
 to a cr-finite measure ļi. 6 is a parameter vector in a parameter space 0 Ç Rp
 (p > 1). We are interested in a precise null hypothesis Ho : 0 G ©o, ©o C 0,
 and dim(0o) < dim(0). 0o is usually given by (vector) inequality and equality
 constraints. In the case of a sharp hypothesis, we have at least one equality
 constraint

 0O = {$ € 0 1 9(ß) < 0 A h(9) - 0} .

 Let L(9 ; x) denote the likelihood function of 0 on 0. Let p(6 ) be a prior density
 on 0, and r(0) a reference density on 0. We denote by pn(Q) the posterior density
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 Pull Bayesian significance test applied to multivariate normal structure models 149

 of 6 on ©, i.e.,

 Pn{9) oc L(9'x)p(9) , x = [xi,...,xn] , 9 = [0i,...,0p]

 and define

 0* = arKmax/^1 ' n - max f Pniß) } -
 ge¿eo'r(0) J ' n - e¿Qo'r(0) max J - { r(9*) J'

 The function sn(0) = pn(0)/r(6) is called the "relative surprise", Good (1983).
 We define now, in the space 0, the Highest Relative Surprise Set 0* of points
 6 e © with higher relative surprise s(9) than any point in ©o, i.e.

 e: = {9ee|7^-s;}-
 Notice that the set ©* is "tangential" to ©o at 0*. The evidence against Ho , given
 by the sample data x , is defined as the posterior probability of the tangential
 HRSS, i.e.,

 Evn = [ pn(Q)dO.
 jQ*n

 This definition of the evidence against Ho is invariant with respect to a proper
 reparameterization. For instance, let u = 0(0), where ^ is a measurable and
 integrable function. For the purpose of illustration, assume that 0 is bijective
 (one-to-one) and continuously differentiate. Let J(u) denote the Jacobian of the
 transformation, i.e.

 - dJtL <9 01 -i
 - r' 1 rr.nl d Ufi d UJ ri

 ąu)= Id" J = L¿M th = : : • Id" J L¿M th ^ : ^ :
 - du>ļ ' ' ' du >n -

 The posterior density of u, given x, is

 Pn(w) =P„(^_1M)|J(a>)|.

 Notice that the reference density under the reparameterization changes to

 r(w) = r(¿-1(w))|J(w)|.

 Thus, the new surprise function is

 «n(w) =PnH/r(u>) =pn(<ļ>-1(u>))/r(<ļ>-1(uj)).

 Let Ū0 = <1>(Qq). It follows that

 K = sup Sn(u) = sup sn(9) = s*n.
 ujÇÍÍq ÖG©o
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 Accordingly, ©£ ^>(0*) = ñ*.
 The evidence under reparameterization is

 Ěvn = / Pn{u))duì = / pn(ô)d6 = Evn.
 Jnļ Je*n

 This proves invariance by proper reparameterizations of Evn.

 Remarks:

 1. The original definition of the evidence against Ho , Pereira and Stern (1999a,
 b), did not employ the reference density r{6). In the former definition, the
 "tangential" set 0* was the Highest Probability Density Set, HPDS (whose
 points have posterior density pn(0) greater than that of any point in ©o),
 instead of the Highest Relative Surprise Set, HRSS.

 The evidence in that former definition is the credibility of the set 0*. If
 this evidence is sufficiently high, it is customary to reject Ho. The former
 definition of evidence is not invariant under reparameterization, as can be
 shown by various examples.

 Taking the reference density as the (possibly improper) uniform density,
 r(0) = t/(0), the former and present definitions of evidence define the same
 tangent set, i.e. the HRSS and the HPDS coincide. In a proper reparame-
 terization u = 0(0), using the present definition, we are just automatically
 mapping to the new coordinates the tangential set computed in the original
 coordinates, fî* = </>(©£).

 2. We can generalize the procedure using other reference densities. For exam-
 ple, we may use as reference density the uninformative prior (also known as
 neutral or reference prior), if one is available. This possibility is suggested
 by Evans (1997), in conjunction with Jeffreys' rules to obtain uninformative
 priors, Zellner (1971, appendix to chapter 2).

 One of Jeffreys' rules to obtain an uninformative prior is to define a trans-
 formation u = (¡){6) of the parameter space so that, in the new coordinate
 system, the "natural" uninformative prior is the uniform density. Accord-
 ing to this perspective, using the uninformative prior as reference density
 is equivalent to specify a transformation <¡> of the parameter space, so that,
 in the transformed parameter space, the uninformative prior is the uniform.
 We also observe that, in ñn, the uniform measure and the evidence com-
 puted by the former definition of the FBST are both invariant under proper
 linear transformations, Klein and Rota (1997) and Santalo (1976).

 Jeffreys suggests V = logí*7) as a suitable transformation for a parameter
 a €]0, oo[. Using ch/> = da/a , and assuming the uniform reference prior on
 iß we obtain the reference prior for <r, r(a) oc 1/cr. This transformation also
 has the interesting property of being invariant under transformations of the
 form p - an, i.e., r(p) oc 1/p. We will use this prior in following examples.
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 Full Bayesian significance test applied to multivariate normal structure models 151

 In order to be consistent with the Onus Probandi juridical principle, see
 Stern (2003a), we will generally choose as reference density on 0, the uniform
 density or a non-informative prior which yields a proper posterior density
 Pn(9). For the examples in this and the next sections, we use the uniform
 reference density. Using the non-informative prior as reference density would
 have a minor impact (less than 5%) on all the numerical results presented
 for the examples analyzed in this paper. This situation is typical, unless
 the data sets are very small. It is possible to use other reference densities,
 although doing so may impair the adherence to the Onus Probandi principle,
 or change its interpretation, see Stern (2003a).

 3. We notice that the FBST is used in the full dimensionality of the parameter
 space. In the way it is defined and to preserve all its properties, elimination
 of "nuisance" parameters is not recommended.

 4. The tangential set 0* may have more than one connected component, a
 situation that can occur if the relative surprise has several local (or even
 global) maxima. This does not change the FBST definition, but may require
 additional computational effort, as briefly commented in the next remark.

 5. The determination of the "tangential" set 0* might have to be done numer-
 ically, since analytic solutions might not be available, see Stern and Zacks
 (2002). Efficient numerical methods for optimization (finding 6*) and inte-
 gration are readily available. The reader is referred to Bertzekas and Tsit-
 siklis (1989), Censor and Zenios (1997), Evans and Swartz (2000), Iusem
 (1995). In case of several local maxima, global optimization techniques are
 required, see Pflug (1996), Spall (2003). The evidence can be estimated
 by stochastic integration techniques, like Monte Carlo, as shown in Stern
 and Zacks (2002), Zacks and Stern (2003). The final computer implementa-
 tion makes use of user friendly, interactive and extensible environment, like
 Matlab, or open source software like R, Scilab, and Python.

 6. As shown by Madruga et al. (2001), one can define a loss function with
 respect to which, the optimal Bayesian decision is to reject H0 if Evn is
 greater than a critical level 0 < À < 1. The existence of such a cost function
 also ensures that the FBST is a coherent test from a decision theoretic

 perspective, a concept defined in Finetti (1972, 1974, 1981, 1991), see also
 Rubin (1987) and Loschi and Wechsler (2002).

 2.1 Example: Testing coefficients of variation

 As a simple example we present the FBST for testing coefficients of variation.
 Although this is a very simple example of FBST application, the alternative pro-
 posed in Lehmann (1959) gives only an asymptotic confidence interval. The
 Coefficient of Variation (CV) of a random variable X is defined as the ratio
 CV(X ) = cr(X)/E(X)i i.e. the ratio of its standard deviation to its mean.
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 Let X be a normal random variable, with unknown mean and variance. We
 illustrate the FBST construction in a simple case, namely, testing the hypothesis
 that its coefficient of variation is equal to a given constant,

 X ~ N(ß, a) and H : a/ß = c .

 It can be shown that the conjugate family for this problem is the family of bi-
 variate distributions, where the conditional distribution of the mean /?, for a fixed
 precision p = 1/cr2, is normal, and the marginal distribution of the precision
 p is gamma, DeGroot (1970). Using the standard improper priors, uniform on
 ] - oo, +oo[ for /3, and 1/p on ]0, +oo[ for p, we get the posterior joint distribution
 for ß and p:

 pn(ß, p'x)<xy/p exp(-np(ß - xf/2) exp{-psn/ 2)

 ļ n n
 X = {x' . . .xn] , X = - Xi and s = ^ (x¿ - x)2.

 n i=i i=i

 In Figure 1 we plot some level curves of the posterior density function, including
 the level curve tangent to the hypothesis manifold. At the tangency point, 0*, the
 posterior density attains its maximum, p* , on the hypothesis. The interior of the

 Figure 1 FBST for H: CV=0.1
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 Full Bayesian significance test applied to multivariate normal structure models 153

 tangent level curve, 0* , includes all points with posterior density greater than p* ,
 i.e., it is the Highest Density Probability Set tangent to the hypothesis. In Figure
 1 we give the FBST evidence, Ev(if), when testing CV = 0.1 with a 3 samples
 of size n = 16, mean x = 10 and standard deviations std = 1.0, std = 1.1 and
 std =1.5. We can see the tangent set expanding as the sample standard deviation
 over mean ratio gets farther away from the coefficient of variation being tested,
 CV(X) = cr(X)/E(X) = 0.1. In this example we use the standard improper prior
 density and the uniform reference density. In the first plot, the sample standard
 deviation over mean ratio equals the coefficient of variation tested. Nevertheless,
 the evidence against the null hypothesis is not zero; this is because of the non
 uniform prior.

 In order to test other hypotheses we only have to change the constraint (s)
 passed to the optimizer. Constraints for the hypothesis ß = c and a = c would be
 represented by, respectively, vertical and horizontal lines. All the details for these
 and other simple examples, as well as comparisons with standard frequentist and
 Bayesian tests, can be found in Irony et al. (2001), Pereira and Stern (1999b,
 2000a, b) and Pereira and Wechsler (1993).

 3 Normal-Wishart distribution

 The conjugate family of priors for multivariate normal distributions is the Normal-
 Wishart family of distributions, DeGroot (1970). Consider the random matrix
 X with elements Xi¿ ,i = 1 . . . fc , j = 1 . . . n , n > k where each column,
 X0¿ contains a sample vector from a fc-multivariate normal distribution with
 parameters ß (mean vector) and V (covariance matrix), or R = V~l (precision
 matrix).

 Let x and W denote, respectively, the statistics:

 1 - it*-* =
 J = 1

 n

 w = - ß) (x.j - ß)' = (x - ß)(x - ßy.
 1

 The random matrix W has Wishart distribution with n degrees of freedom and
 precision matrix R. The Normal and Wishart pdfs have the expressions:

 f(x'n,ß,R) = (~^)k/2'R'1/2 eKp(~(x-ß)'R(x-ß)),

 f(W'n,ß,R) = c I W](n_fc_1)/2 exp( -itr (W R)),

 c'1 = |fl|-"/22"*/a **(*-*)/* f[T(n + 2 1 ~j). i=i 2
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 Now consider the matrix X as above, with unknown mean ß and unknown
 precision matrix ñ, and the statistic

 n

 5 = - x) (X.j - x)' = {X- x)(X - X)'.
 3= 1

 Taking as prior distribution for the precision matrix R the wishart distribution
 with a > k - 1 degrees of freedom and precision matrix S and, given i?, taking as
 prior for ß a multivariate normal with mean ß and precision ňR , i.e.

 p(ß,R) = p(R)p(ß'R),

 p(R) oc |fl|(°-fc-1)/2exp(-itr(fí5)),

 p(ß'R) <x |fl|1/2exp (-^(ß-ß)'R(ß-ß)).

 The posterior distribution for the parameters ß and R has the form:

 pn(ß,R'n,x,S) = pn(R'n,x,S)pn(ß'R,n,x,S),

 Pn(R I n,x, S) a |ñ|(o+n_fc~1)/2 exp( -^tr(i?5)),

 pn(ß'R,n,x,S) oc 'R'1/2 exp(-^(ß - ß)'R(ß - ß)),
 ß - ( nx + hß)/n , 7i = n + ń,

 Š = S + Š + -^-r0-x)0-x)'. n + n

 Hence, the posterior distribution for R is a Wishart distribution with a+n degrees
 of freedom and precision 5, and the conditional distribution for /3, given i?, is k-
 Normal with mean ß and precision nR. All covariance and precision matrices are
 supposed to be positive definite, n > k, a > k - 1, and n > 0.

 Non-informative improper priors are given by ň = 0, ß = 0, a = 0, Ś - 0, i.e.
 we take a Wishart with 0 degrees of freedom as prior for Ä, and a constant prior
 for /3, Box and Tiao (1973), DeGroot (1970), Zellner (1971). Then, the posterior
 for R is a Wishart with n degrees of freedom and precision 5, and the posterior
 for /3, given R , is fc-Normal with mean x and precision nR.

 We can now write the simplified log-posterior kernels:

 //(/?, R I n, x, S) = fl(R I n, x, S) + fl(ß ' Ä, n, x, S),

 fl(R'n,x,S) = flr = ° + " ~ k ~ 1 Iog(|iï|) - ^ti(RŠ),

 fl(ß'R,n,x,S) = flb = |log(|Ä|) -^(ß-ßYRiß-ß).

 For the surprise kernel, relative to the uninformative prior, we only have to replace
 the factor (a + n - k - l)/2 by (a + n)/ 2.
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 Full Bayesian significance test applied to multivariate normal structure models 155

 4 Multivariate normal structure models

 As it is usual in the covariance structure literature, we will write V(pf) = ^7 hGh,
 where the matrices Ghi h = 1, . . . k(k + l)/2 form a basis for the space of k x k
 symmetric matrices; in our case, k = 4. Some matrix notation was presented at
 the end of Section 1.

 10 f" 7i 75 77 78
 V{i) wy = Y lhGh= 75 72 79 710 , where
 wy ^ 77 79 73 76

 L 78 710 76 74
 ¿/i,l 5/1,5 5h, 7 5/1,8

 ph _ Öh,5 5/1,2 5M ¿/^10
 5/!, 7 5M Sh, 3 5^,6
 5/i,s 5/l)io 5/^6 5M

 and the Kronecker-delta is 0h¿ = 1 if h = i and 5/^ = 0 if hj^i.
 The dose-equivalence hypothesis, H , asserts a proportional response of a pair

 of response measurements to two different stimuli. Each pair of response measure-
 ments is supposed to be a bivariate normal variate. H also asserts proportional
 standard deviations, and equivalent correlations for each pair of response measure-
 ments. The proportionality coefficient, S, is interpreted as the dose, calibration or
 proportionality coefficient.

 In order to get simpler expressions for the log-likelihood, the constraints and
 its gradients, we use in the numerical procedures an extended parameter space
 including the coefficient 5, and state the dose-equivalence optimization problem
 on the extended 15-dimentional space, with a 5-dimentional constraint:

 e = {e = [y, ß' s'' e ñ10+4+1 , v w > o},
 0o - {0€0|Ä(0)=O},

 " ¿27l _ 73 *
 S2 72 - 74

 h{9) = 75 - 76 .
 5ß' - 03
 502 - ßi

 In order to be able to compute some gradients needed in the next section,
 we recall some matrix derivative identities, see Anderson (1969), Harville (1997),
 McDonald and Swaminathan (1973), Rogers (1980). We use V = ^(7), R = V~l ,
 and C for a constant matrix.

 _ Qh dR _ h
 diH~G _ Qh ' dīh-~RG _
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 aftoM(V-O) y, (K_c)oG>. 9-* ir
 We also define the auxiliary matrices:

 Ph = RGh and Qh = Ph R .

 5 Numerical optimization

 To find 6 * we use an objective function, to be minimized on the extended param-
 eter space, given by a centralization term minus the log-posterior kernel,

 f(6 I n, x, 5) = en frob2(F - C) - fir - fib

 = en frob2(V - C) - a + T*~k log(|fí|)
 Zi

 +ltr(RS)+^(ß-ßYR(ß-ß).

 Large enough centralization factors, c, times the squared frobenius norm of (V -
 C), where C are intermediate approximations of the constrained minimum, make
 the first points of the optimization sequence remain in the neighborhood of the
 empirical covariance (the initial C ). As the optimization proceeds, we relax the
 centralization factor, i.e. make c - » 0, and maximize the pure posterior function.
 This is a standard optimization procedure following the regularization strategy
 of Proximal-Point algorithms, see Bertzekas and Tsitsiklis (1989), Iusem (1995),
 Censor and Zenios (1997). In practice this strategy let us avoid handling explicitly
 the difficult constraint V (7) > 0.

 Using the matrix derivatives given in the last section, we find the objective
 function's gradient, d f/d0,

 -f( ß-ß)'Qh(ß-ß)
 n

 +2 cn ^2{V-C)oGh,
 i,j= 1

 % =

 For the surprise kernel and its gradient, relative to the uninformative prior, we
 only have to replace the factor (a + n - k)/ 2 by (a + n + l)/2.
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 Full Bayesian significance test applied to multivariate normal structure models 157

 The Jacobian matrix of the constraints, dh/dO , is:

 " ¿2 0 -1 0 0 00000000 0 2¿7I "
 0 <52 0 -1 0 00000000 0 2¿72
 0 0 0 0 Ö2 -1 0 0 0 0 0 0 0 0 2¿75 .
 00 0 0 0 OOOOOJO-IO ßi
 00 0 0 0 000000í0-l/?2_

 At the optimization step, Variable-Metric Proximal-Point algorithms, working
 with the explicit analytical derivatives given above, proved to be very stable, in
 contrast with the often unpredictable behavior of some methods found in most
 statistical software, like Newton-Raphson or "Scoring" . Optimization problems of
 small dimension, like above, allow us to use dense matrix representation without
 significant loss, Stern (1994).

 In order to handle several other structural hypotheses, we only have to replace
 the constraint, and its Jacobian, passed to the optimizer. Hence, many different
 hypothesis about the mean and covariance or correlation structure can be treated
 in a coherent, efficient, exact, robust, simple, and unified way.

 6 Numerical integration
 The best approach to the numerical integration step required by the FBST is
 approximation by Monte Carlo (MC) simulation, see Evans and Swartz (2000)
 and Zacks and Stern (2003). We want an estimate of the ratio

 - m Je. f{0;n,x,S)dd
 Ev(n, X, - S) m = f" f {ßi S jdu • J@ f {ßi W") S jdu

 Since the space 0 is unbounded, we randomly chose the values of 6 according
 to an "importance sampling" density g{0 ), which is positive on 0. The evidence
 function is equivalent to

 Ev(n { " X " S) } - ~ Ž'
 { " X " S) } ~ - /© Zg(ô; n, X, S)g(6)d9 '

 where

 <7 /a. „ « cN _ f(6;n,x,S)
 S) cN _ - g{0) '

 Z;(0;n,£,S) = I*(0;n,x,S)Zg(d-,n,x,S),
 i*(o-,n,x,s) = 1 (flee;).

 Thus, a Monte Carlo estimate of the evidence is

 Ěv mši - sr.. z;c<,
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 where = 1 ...ra are iid and independently chosen in 0 according to the
 importance sampling density g(6). Thus,

 Evgirn{n,x, S) Ev(n,x, S) a.s.[p].

 The goodness of the MC estimation depends on the choice of g and ra. Johnson
 (1980) describes a simple procedure to generate the cholesky factor of a Wishart
 variate W - U' U with n degrees of freedom, from the cholesky factorization of
 the covariance parameter V = R~l = C'C'

 Li}j = N( 0, 1) , i > j,
 Liti = 'J x2(n - i + 1) ; U = L' C .

 At the integration step it is important to perform all matrix computations directly
 from cholesky factors, Golub and van Loan (1989), Jones (1985). In this problem
 we can therefore use "exact sampling" , what simplifies substatialy the integration
 step, i.e., Zg(0;nix1S) = 1.

 6.1 Precision of the MC simulation

 In order to control the number of points, ra, used at each MC simulation, we
 need an estimate of MC precision for evidence estimation. For a fixed large value
 ra, the asymptotic distribution of Evg^n, x , S ) is normal with mean Ev(n¡ x, S )
 and asymptotic variance V^(n, ž, S). According to the delta method, Bickel and
 Doksům (2001), we obtain that

 V'^'S) = m(ý 1 //t*2 + Í^-2íř7')' rr 2 ..*2 * '
 1 //t*2 rr 2 ..*2 * '

 where

 Pg = [ Zg(9-,n,x,S)g(6)d(e), Je

 ß* = í Z* (0; n, x, S)g(6)d(6),
 J ©

 cr g2 = [ (Zg(6;n, x, S)- pg)2g(0)d(6), Je

 of = f (z;{6-,n,x,S)-ß*g)2g{6)d{e),
 J ©

 7g2 = f ( Zg(6;n,x,S)-fig)(Z;(e-,n,x,S)-fi*g)g(e)d(8 )
 J ©

 are the expected values, variances and covariance of Z(6' n, x , S ) and Z*(0; n, x, S)
 with respect to g(0).
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 Full Bayesian significance test applied to multivariate normal structure models 159

 Define the coefficients

 « - î-
 For abbreviation, let rj = Ev{n,x,S). Also note that 77 = ß*g/lig. Then the

 asymptotic variance is

 Vg(n,x,S) = - (c2 + i?V-2^) •
 Let us define the complementary variables

 Zg(d;n,x, S) = Ic(9;n,x,S)Zg(6-,n,x,S),
 Ic(9'n,x,S) = l-r(0;n,x,S),

 of = Vg(Zc(0;n,x,S)),
 = fl

 9 ßg'

 Some algebraic manipulation give us Vg(n,x , S ) in terms of £* and ££, namely

 Vg(n,x,S) = i(^2(l-^ + ^2í72 + 2í?2(1_T?)2j
 For large values of m, the asymptotic (1 - ß ) level confidence level confidence

 interval for r¡ is ÊvgiTn(n,x,S) ± Ag>mtß, where

 Alm,ß = Fl~ß^m) (ffí1 - v)2 + ti v2 + 2r?2(l - v)2) ,

 where m) is the 1 - /3 quantile of the F(l, ra) distribution, and 77, £* and
 are consistent estimators of the respective quantities.
 For large ra, we can also use the approximation

 ^ = ^(í'O-íl' + íV + J«!-«)1),
 since F(l, ra) converges in distribution to the chi-square distribution with 1 degree
 of freedom, as ra - » 00.

 If we wish to have AgjTTliß < 5 , for a prescribed value of S , then ra should be
 such that

 m > (^2(l-î))2 + ^V + 2772(l-j7)2) .
 The computation of the evidence, for a typical data set and 0.005 precision,

 takes less than a second on an Pentium microcomputer. Several other details for
 an efficient implementation of the evidence functions, as well as for refinement-
 estimation iterative procedures needed to estimate quantile and power functions
 can be found in Zacks and Stern (2003), and also in the program documentation,
 available from the authors, upon request.
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 7 Quantiles under the null hypothesis, empirical
 power and case studies

 We want to estimate the empirical power of the FBST for a given experimental
 data set. Given the sufficient statistic, n,x, 5, we consider 6 and 0*, the uncon-
 strained and constrained posteriori maxima.

 Given the constrained maximum 0* we simulate s = IO4 independent samples
 Xi , Si of size n. For each of the s simulated samples generated around 0*, we then
 estimate the evidence 77* = Ev(n,Xi,Si) according to the last section. Finally we
 establish the rejection level estimating the (1 - a) quantile À = ça,n(0*) from the
 77?, i = l's.

 Next we consider the unconstrained maximum, 0. We simulate t = 104 samples
 around 0, and estimate the test empirical power as the fraction of these t samples
 around 0 whose evidence against H , fjj , j - 1 : t , is above the rejection level A
 at 0 *. The power is 1 - /5, where ß is the probability of accepting H when H is
 not valid, the type II error. As in the quantile estimation, a careful estimation-
 refinement procedure is necessary to obtain the desired accuracy in reasonable
 computation time.

 In the following example we choose a in order to minimize the total error,
 a + /3. (The origin of data-sets A and B is briefly explained at the end of this
 section). In order to accomplished the determination of this minimum total error
 we have to, after each estimation-refinement step, re-optimize the level a.

 The minimum empirical total error estimate, a + /?, as a function of the sample
 size, n, for the two experimental data available, are presented in Figure 2, showing
 interpolated values. As expected, Figure 2 indicates that the power of the test is
 an increasing function of n. We are not aware of competing tests for this problem,
 so we can not compare the FBST power with any alternative.

 As case studies for the FBST applied to the Multivariate Normal Structure
 problem presented in the last sections, we use sufficient statistics x and cov =
 (1 /n)Si the experimental mean vector and covariance matrix, for samples A and
 1?, both observations taken with sample size n = 50. These statistics come from
 calibration tests for micro-array measurement equipment, and its interpretation
 is very similar to classical pharmacological bio-equivalence studies. In this experi-
 ments, two dependent response measurements are taken in two different situations,
 supposed to be equivalent, up to a calibration factor.

 In pharmacological bio-equivalence studies one usually measures maximum and
 total bio-availability (maximum and area under the plasma concentration curve)
 of a chemical compound delivered by two different formulations, in a crossover
 design, where the responses of the two formulations become correlated. For a
 detailed analysis and interpretation see Jiang and Sarkar (1998, 1999, 2000a, b).
 In the micro array calibration experiments red and green light intensities are
 measured in two experimental situations, supposed to be equivalent. The analysis
 of the micro array data is more complex, because the structure in the covariance
 matrix and in the mean vector as well as the calibration coefficient have to be

 assessed all at once. Perhaps this simultaneous assessment is also more realistic
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 Figure 2 FBST for Minimum Total Error , a + ß

 in several bio-equivalence experiments.

 " 0.9909 ] i' 1.1271 0.5075 0.4891 0.4373 "
 0.7631 A 0.5075 1.2392 0.5356 0.5400

 T = rnv =

 1.8485 0.4891 0.5356 2.3241 1.1486

 _ 1.7373 J L °-4373 °-5400 ^1486 21694 .
 " 0.9496 ļ I" 1.3820 0.7482 0.2157 -0.0085 "

 -B 0.7352 s 0.7482 1.4807 0.5087 0.3908
 r = COM -

 1.4163 0.2157 0.5087 1.5811 0.5275 *

 _ 1.6411 J L -Ū-0085 0.3908 0.5275 2.3600

 We perform the FBST, for samples A and B , where the hypothesis to be tested
 is described in Section 4. We also perform the test artificially varying the sample
 size value, n, but always using the same mean and covariance statistics, to give
 an idea of the test sensibility. Table 1 displays the evidence in favor of the null
 hypothesis according to the sample size value.
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 Table 1 Evidence in favor of 5 -equivalence hypothesis

 Sample Sample Size
 IÕÕ 75 60 50 40 30 25~

 A 0.47 0.77 0.90 0.96 0.99 1.00 1.00
 B 0.24 0.55 0.76 0.88 0.96 0.99 1.00

 8 Final remarks

 In the sequel we stress the fact that the FBST departs from two major statistical
 paradigms:
 Nuisance parameters elimination:

 Consider the situation where the hypothesis constraint, H : h(6) - h(S) =
 0 , 9 = [¿, A] is not a function of some of the parameters, A.

 This situation is described by Basu (1988): "If the inference problem at hand
 relates only to 5, and if information gained on A is of no direct relevance to
 the problem, then we classify A as the Nuisance Parameter. The big question in
 statistics is: How can we eliminate the nuisance parameter from the argument ?"

 Basu goes on listing at least 10 categories of procedures to achieve this goal,
 like using the max' or f dX operators, in order to obtain a projected profile
 or marginal posterior function, f(6'x). The FBST does not follow the nuisance
 parameters elimination paradigm. In fact, staying in the original parameter space,
 in its full dimension, explains the "Intrinsic Regularizaron" property of the FBST,
 when it is used for model selection, Pereira and Stern (2001b).

 N ey man-Pear son :

 The paradigm states hypothesis testing in a decision theoretic framework look-
 ing the test as an (optimal) choice between the (null) hypothesis, Hq , and an
 Alternative, H'. The original Neyman-Pearson formulation deals with an unitary
 hypothesis and alternative: Hq = {0o}> Hi = {0i}. The extension of Neyman-
 Pearson paradigm, specially to sharp hypothesis, has been a source of endless
 controversy.

 Kempthorne (1980) remarks the underlying semantic confusion:
 " This (Neyman-Pearson) led in 1933 to what I regard as a total alteration of
 the idea of quantifying evidence or degree of support for a model into a decision
 process"

 The dominating asymmetry expressed by the maxima "Increase sample size
 to reject/accept", reveals the hazards of using this paradigm to test a sharp (zero
 Lebesgue measure) hypothesis, in either a frequentist or a Bayesian setting.

 This situation is highly uncomfortable, inducing positions as extreme as deny-
 ing the existence in science of real sharp hypothesis, as a justification for some
 statistical procedures. However this is a very fragile epistemological position,
 Harlow et al. (1997). Good (1983), confronts this dilemma with great intellectual
 integrity. Sometimes he uses the precise hypothesis denial,
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 " Let us consider a null hypothesis that is a (sharp) simple statistical hypothesis
 H. This is often done in statistical practice, although it would usually be more
 realistic to lump in with H a small neighborhood of close hypotheses

 With the same line of argument Good also gives a justification for Jeffreys'
 tests:

 "My own view on induction is close to that of Jeffreys (1939) in that I think
 that the initial probability is positive for every self- consistent scientific theory with
 consequences verifiable in a probabilistic sense

 It is very interesting that a second argument used by Good to justify Jeffreys'
 tests, the holy grail of checkability, is naturally achieved by the FBST:

 " Since I regard refutation and corroboration as both valid eritema for this (sci-
 ence) demarcation it is convenient to use another term, Checkability, to embrace
 both processes. I regard checkability as a measure to which a theory is scientific,
 where checking is to be taken in both its positive and negative senses, confirming
 and disconfirming. "

 " Very often the statistician doesn't bother to make it quite clear whether his
 null hypothesis is intended to be sharp or only approximately sharp. ... It is hardly
 surprising then that many Fisherians (and Popperians) say that - you can't get
 (much) evidence in favor of the null hypothesis but can only refute it."

 Finally, Good postulates that a real sharp hypothesis should have a proper
 alternative, not just everything else:

 " It is very difficult to decide on numerical values for the probabilities, but it
 is not quite so difficult to judge the ratio of the subjective initial probabilities of
 two theories by comparing their complexities. This is one reason why the history
 of science is scientifically important

 This position is far more acceptable than the blunt denial of precise hypothesis,
 Kuhn (1996). Nevertheless, this position also runs into epistemological difficulties.
 As noticed by Feyerabend (1993), this position may be fine for "post mortem"
 historical analyses, but not for active living science, where statistical practice is
 most needed.

 In contrast, to the Neyman-Pearson paradigm, the complement of the evidence
 computed by the FBST is a measure of significance for the Hypothesis itself, not
 a ratio against an alternative. Checkability, i.e. convergence to the Boolean
 indicator for the hypothesis, is just a natural characteristic of the FBST.

 As noticed at the end of Section 5, the methodology presented in this article
 is very general, and several other structural hypotheses can be treated in a coher-
 ent, efficient, exact, robust, simple, and unified way. In order to do so we only
 have to replace the constraint and its Jacobian, passed to the optimizer. FBST
 computer programs for several related structural hypothesis, including also some
 other distributions, are now being implemented and will be made available to the
 scientific community as soon as possible.
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