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Abstract: Primary energy consumption is one of the key drivers of global CO2 emissions that, in turn,
heavily depends on the efficiency of involved technologies. Either improvement in technology
efficiency or the expansion of non-fossil fuel consumption requires large investments. The planning
and financing of such investments by global policy makers or global energy firms require, in turn,
reliable measures of associated global spread and their evolution in time, at least from the point
of view of the principles for responsible investment (PRI). In this paper, our main contribution is
the introduction of index measures for accessing global spread (that is, measures of inequality or
inhomogeneity in the statistical distribution of a related quantity of interest) of technology efficiency
and CO2 emission in primary energy consumption. These indexes are based on the Gini index, as used
in economical sciences, and generalized entropy measures. Regarding primary energy sources,
we consider petroleum, coal, natural gas, and non-fossil fuels. Between our findings, we attest some
stable relations in the evolution of global spreads of technology efficiency and CO2 emission and a
positive relation between changes in global spread of technology efficiency and use of non-fossil fuel.

Keywords: carbon emissions; energy consumption; technology efficiency; Gini index; generalized
entropy index; fossil fuels; non-fossil fuels; petroleum; coal; natural gas

1. Introduction

Primary energy sources are those directly found in nature and usable without any human
engineered transformation. Global consumption of primary energy has been steadily increasing
throughout human history; see [1] for a good account of the last decade. Hence, the efficiencies, in terms
of CO2 emission, of technologies used for primary energy consumption become key drivers of global
CO2 release [2]. There are different primary energy sources and several primary energy consumption
technologies. Primary energy matrices and consumption technologies do vary from country to
country and along time. Our first main contribution in this paper is to define appropriate index
measures of global spread in efficiency, in terms of CO2 emissions, for technologies used in primary
energy consumption.

Primary energy sources are classified as fossil and non-fossil fuels. Fossil fuels comprise crude
oil or petroleum, natural gas, and coal. These fuels come from theh remains of plants and animals
buried millions of years ago and are, therefore, nonrenewable. Moreover the consumption of fossil
fuels is responsible for most of the CO2 release due to human activities. In contrast, non-fossil fuels
comprise hydropower, biomass and biofuels, wind, geothermal, solar, nuclear (fission and fusion),
and so on. Non-fossil fuels are in general renewable, with a few exceptions like fission nuclear fuels.
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Consequently, the spread of non-fossil fuels is a most welcome factor in mankind’s effort to reduce
global CO2 emissions. Our second main contribution in this paper is to define appropriate index
measures of global spread in the use of non-fossil fuels.

Either the improvement of primary energy consumption technology efficiency, in terms of CO2

emission, or the increase of non-fossil fuel consumption requires significant infrastructure adaptations
and large public and private investments. We believe that our proposed index measures of global
spread are useful tools in analysis and decision support that can benefit global policy makers and global
energy sector firms. Since the global demand for energy has been increasing over the last decades and
will continue to grow [3], long-term planning of investments in the energy matrix becomes of utmost
importance [4–10].

Allocation of investments according to principles of responsible investment (PRI) requires
objective measures. Our proposed index measures can provide global views and integrated
perspectives of technology efficiency and non-fossil fuel use across different countries and the evolution
of these scenarios over time. For instance, in a global carbon credit context, such measures could
help to verify the effectiveness of policies for the regions buying or selling carbon credits in terms of
decreasing the global spread of the technology efficiency and non-fossil fuel use over time. Furthermore,
as market analysts and quantitative support experts for large Brazilian and international investment
funds, it is the authors’ experience that the availability of good index measures of global spreads for
energy consumption and efficiency can dramatically alter the perception and evaluation of investment
opportunities in emerging markets. A more complete presentation, bringing graphical supporting
tools and appropriate measures based on scientific facts, helps the decision akers and avoids possible
misconceptions or prejudices due to lack of information.

In the context of economical sciences, the seminal work of Corrado Gini (1912) [11] introduced an
income spread index measure referred to in the literature as the Gini index. The Gini index measures
the equality or inequality (homogeneity or inhomogeneity) of income distribution per capita. The Gini
index has already been used to measure either the spread of the CO2 emissions per capita [12–15] or the
spread of energy consumption per capita [16]. There are other applications of the Gini index related to
electricity consumption [17] or resource inequalities in a broader context [18]. However, it is important
to stress that, in the present paper, differently from [17] or [18], our focus is on the introduction of
index measures for accessing global spreads of technology efficiency in terms of CO2 emission and
non-fossil fuel use. In particular, Soares et al. (2018) [19] have compared the technology efficiency
of different countries using clustering techniques based on the Gini index of CO2 emissions per
capita and presented subsequent comparative analyses of such clusters. In this paper, our approach
is substantially different; it does not rely on group comparisons and, hence, does not depend on
additional criteria used for intermediate cluster formation.

An alternative to the Gini index is entropy indexes conceived to generalize some spread measures
like the mean log deviation, Atkinson index, Theil index, etc.; see [20–23]. According to Bourguignon
(1979) [21], a good spread index should have the property of additive decomposability, that is,
it should provide a measure such that the total spread of a population can be broken down into
a weighted average of spreads within subgroups of the same population. Unfortunately, the Gini index
is not additively decomposable, motivating the construction of more suitable indexes in this respect,
like generalized entropy indexes.

This paper is organized as follows: Section 2 presents details of our proposed methodologies
to measure global spread in efficiencies of technologies used for primary energy consumption or to
measure global spread in the use of non-fossil fuels. Section 3 presents an empirical study, describing
the utilized data and exemplifying the use of the Gini and the generalized entropy index. Section 4
gives our final conclusions.
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2. Methodologies

In this section, we define the efficiency measures used in this paper for primary energy
consumption technology. In addition, we present our proposed methodologies to measure global
spreads of these quantities based on the Gini index and the generalized entropy index. We introduce
the following notations: em

n,t is the CO2 emission of country n derived from consumption of primary
energy source m during time interval t (e.g., MM Tons of CO2); cm

n,t is the consumption of country
n of primary energy m during time interval t (e.g., quad-BTU); n ∈ {1, . . . , N}; m ∈ {1, . . . , M};
t ∈ {1, . . . , T}; N is the number of countries; M is the number of primary energies; and T is the number
of time intervals.

2.1. Efficiencies in Primary Energy Consumption Technologies in Terms of CO2 Emissions

We define the efficiencies in primary energy consumption technology in terms of CO2 emissions
as follows:

εm
n,t =

cm
n,t

em
n,t

. (1)

The technology efficiency εm
n,t is an intensive variable, and consequently, it does not depend on

the countries’ size, population, or gross domestic product. In contrast, the consumptions cm
n,t and

the CO2 emissions em
n,t are extensive variables, depending on the countries’ size. Notice that, for a

fixed em
n,t, the technology efficiency εm

n,t is higher when cm
n,t is higher and vice versa. For a fixed cm

n,t,
the technology efficiency εm

n,t is higher when em
n,t is lower and vice versa.

According to Lawrence et al. (2013) [16], issues of total energy consumption and CO2 emission
are inextricably related to problems of energy inequality among countries, and the study of those
issues constitute one of the main motivations for this paper. However, Lawrence et al. (2013) [16] focus
on the distribution among countries of the total energy consumption per capita (dividing the total
energy consumption per unit time in each country by its population), implicitly assuming that this
quantity can be automatically linked to CO2 emission. An important contribution of this paper is to
include our efficiency measures in this analysis, leading to more accurate perspectives of CO2 emission.
Moreover, our efficiency measures are also specific for each primary energy consumption technology,
hence allowing even more detailed views of energy consumption and its relations to CO2 emissions.

In [16], the authors argue for the convenience of using complementary distribution functions of the
population parameterized by the total energy consumption per capita rather than the corresponding
probability density function because of the discrete number of countries in the world and the fact that it
is a more sensible approach to assign weights to different countries proportional to their populations
to avoid a group of tiny countries outweighing the few most populous countries (for a more detailed
description of the underlying concepts, see Milanović (2007), [24]). Analogoulsy, for our efficiency
measures, it is also a more sensible approach to assign weights to different countries proportional to their
CO2 emissions. As far as we know, our study is the first, among similar studies, focusing primarily on
the global probability density function, fεm

t
(·), and the global complementary cumulative distribution

function, F̄εm
t
(·), of CO2 emissions parameterized by the technology efficiency, εm

t .
By definition, the relationship between F̄εm

t
(·) and fεm

t
(·) is

F̄εm
t
(ε) =

∫ ∞

ε
fεm

t
(z) dz. (2)

The corresponding Lorenz curve is defined as a parametric bidimensional plot having

xεm
t
(ε) = 1− F̄εm

t
(ε) =

∫ ε

0
fεm

t
(z) dz (3)

as its abscissa and
yεm

t
(ε) =

1
〈εm

t 〉

∫ ε

0
z fεm

t
(z) dz, (4)
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as its ordinate. Moreover, ε goes from 0 to ∞ and

〈εm
t 〉 =

∫ ∞

0
z fεm

t
(z) dz (5)

is the global technology efficiency for the consumption of the primary energy m at the time interval t.
This definition for the Lorenz curve is based on [16,22]. Notice that, since the values xεm

t
(ε) and yεm

t
(ε)

are bounded between zero and one, the Lorenz curve always connects the points (0, 0) and (1, 1).
Considering weights to different countries proportional to their CO2 emissions, our empirical

estimator of the global complementary cumulative distribution function of the CO2 emissions
parameterized by the technology efficiency is given by the following (for analytical details for an
analogous case, see [16,24]):

ˆ̄Fεm
t

(
ε̃m

n,t
)
=

∑N
i=n+1 ẽm

i,t

∑N
i=1 ẽm

i,t
, ∀n ∈ {1, . . . , N} , (6)

where the ordered set {
ε̃m

1,t, . . . , ε̃m
N,t
}

(7)

is obtained by sorting the set {
εm

1,t, . . . , εm
N,t
}

(8)

in the ascending order and by the same country order is applied to the sets{
em

1,t, . . . , em
N,t
}

and
{

cm
1,t, . . . , cm

N,t
}

(9)

to obtain, respectively, the ordered sets{
ẽm

1,t, . . . , ẽm
N,t
}

and
{

c̃m
1,t, . . . , c̃m

N,t
}

. (10)

For instance, ε̃m
1,t = min

{
εm

1,t, . . . , εm
N,t

}
and ε̃m

N,t = max
{

εm
1,t, . . . , εm

N,t

}
.

Since the empirical global technology efficiency for consumption of primary energy m at time
interval t is

〈ε̂m
t 〉 =

∑N
i=1 c̃m

i,t

∑N
i=1 ẽm

i,t
=

∑N
i=1 cm

i,t

∑N
i=1 em

i,t
, (11)

it follows that

x̂εm
t

(
ε̃m

n,t
)
=

∑n
i=1 ẽm

i,t

∑N
i=1 ẽm

i,t
and ŷεm

t

(
ε̃m

n,t
)
=

∑n
i=1 c̃m

i,t

∑N
i=1 c̃m

i,t
. (12)

Using both x̂εm
t

(
ε̃m

n,t
)

and ŷεm
t

(
ε̃m

n,t
)
, it is possible to plot the corresponding empirical Lorenz curve.

The Gini index is a measure of statistical dispersion introduced by Corrado Gini in 1912 [11]
to measure the income equality/inequality in a population. Using the Lorenz curve for technology
efficiency, we define the Gini index of global spread of primary energy consumption technology
efficiency in terms of CO2 emissions (technology efficiency Gini index) as follows:

Gεm
t
= Aεm

t
/Bεm

t
. (13)

Considering the aforementioned xεm
t
(ε) vs. yεm

t
(ε) plot,Aεm

t
is the area between the line connecting

the points (0, 0) and (1, 1) and the Lorenz curve and Bεm
t

is the area of the triangle formed by the
points (0, 0), (1, 1), and (0, 1). Since Bεm

t
= 0.5, it follows that Gεm

t
= 2Aεm

t
. In addition, 0 ≤ Gεm

t
≤ 1,

with zero representing an equal global spread of the technology efficiency and 1 representing the
highest possible inequality spread of the technology efficiency.
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As an alternative to the Gini index, the generalized entropy index was introduced as a measure
of income equality/inequality in a population [20]. We define the global spread of primary energy
consumption technology efficiency index, in terms of CO2 emissions, based on the generalized entropy
measure (technology efficiency generalized entropy index) as follows:

Eα
εm

t
=


1

Nα(α−1) ∑N
i=1

[(
εm

i,t
ε̄m

t

)α
− 1
]

, α /∈ {0, 1} ,

− 1
N ∑N

i=1 ln
εm

i,t
ε̄m

t
, α = 0,

1
N ∑N

i=1
εm

i,t
ε̄m

t
ln

εm
i,t

ε̄m
t

, α = 1,

. (14)

α is a real number and ε̄m
t is the mean value of εm

i,t, i = 1, . . . , N. The values of Eα
εm

t
go from 0

to ∞, with zero representing an equal global spread of the technology efficiency and higher values
representing higher inequality of technology efficiency spread. The values α = 0 and α = 1 are of
particular interest, namely, E0

εm
t

is the technology efficiency mean log deviation index and E1
εm

t
is the

technology efficiency Theil index.
The Atkinson index was introduced by Atkinson (1970) [23], and it can be derived from the

generalized entropy index as follows. We define the global spread of the primary energy consumption
technology efficiency based on the Atkinson index (technology efficiency Atkinson index) as follows:

Aε
εm

t
=


1− 1

ε̄m
t

[
1
N ∑N

i=1

(
εm

i,t

)1−ε
]1/(1−ε)

, 0 ≤ ε 6= 1,

1− 1
ε̄m

t

(
∏N

i=1 εm
i,t

)1/N
, ε = 1,

. (15)

ε is called the inequality aversion parameter, since Aε
εm

t
becomes more sensitive to changes at the lower

end of the technology efficiency distribution as ε approaches 1 and Aε
εm

t
becomes more sensitive to

changes in the upper end of the technology efficiency distribution as ε approaches 0.

2.2. Non-Fossil Fuel Use

The non-fossil fuel use of a country n during the time interval t is defined as follows:

ρn,t =
c?n,t

cn,t
, (16)

where c?n,t is the non-fossil fuel consumption of country n during the time interval t and cn,t is the
total primary energy consumption of country n during the time interval n, i.e., cn,t = ∑M

i=1 ci
n,t.

Notice that the non-fossil fuel use ρn,t is an intensive variable. As far as we know, our study is the first,
among similar studies, focusing primarily on the global complementary cumulative distribution
function F̄ρt (·) of the total primary energy consumption parameterized by the non-fossil fuel use, ρt.

We define the empirical estimator

ˆ̄Fρt (ρ̃n,t) =
∑N

i=n+1 c̃i,t

∑N
i=1 c̃i,t

, ∀n ∈ {1, . . . , N} , (17)

where the ordered set
{ρ̃1,t, . . . , ρ̃N,t} (18)

is obtained sorting the set
{ρ1,t, . . . , ρN,t} (19)

in the ascending order, and using the same country order, we obtain

{c1,t, . . . , cN,t} and
{

c?1,t, . . . , c?N,t
}

(20)
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{c̃1,t, . . . , c̃N,t} and
{

c̃?1,t, . . . , c̃?N,t
}

. (21)

Moreover, since the empirical global non-fossil fuel use at the time interval t is

〈ρ̂t〉 =
∑N

i=1 c̃?i,t
∑N

i=1 c̃i,t
=

∑N
i=1 c?i,t

∑N
i=1 ci,t

, (22)

it follows that

x̂ρt (ρ̃n,t) =
∑n

i=1 c̃i,t

∑N
i=1 c̃i,t

and ŷρt (ρ̃n,t) =
∑n

i=1 c̃?i,t
∑N

i=1 c̃?i,t
. (23)

Using both x̂ρt (ρ̃n,t) and ŷρt (ρ̃n,t), it is possible to plot the corresponding empirical Lorenz curve.
Using the Lorenz curve for the non-fossil fuel use, we define the global spread of the non-fossil

fuel use based on the Gini index (non-fossil fuel use Gini index) as follows:

Gρt = Aρt /Bρt . (24)

Considering the xρt (ρ) vs. yρm
t
(ρ) plot, Aρm

t
is the area between the line connecting the points

(0, 0) and (1, 1) and the corresponding Lorenz curve and Bρt is the area of the triangle formed by the
points (0, 0), (1, 1) and (0, 1). Since Bρt = 0.5, it follows that Gρt = 2Aρt . Moreover, 0 ≤ Gρt ≤ 1,
with zero representing a homogeneous global spread of the non-fossil fuel use and 1 representing the
most inhomogeneous spread possible for non-fossil fuel use.

Analogously, for the technology efficiency generalized entropy index, we define the global spread
of non-fossil fuel use based on the generalized entropy index (non-fossil fuel generalized entropy
index) as follows:

Eα
ρt =


1

Nα(α−1) ∑N
i=1

[(
ρi,t
ρ̄t

)α
− 1
]

, α /∈ {0, 1} ,

− 1
N ∑N

i=1 ln ρi,t
ρ̄t

, α = 0,
1
N ∑N

i=1
ρi,t
ρ̄t

ln ρi,t
ρ̄t

, α = 1,

. (25)

where α is a real number and ρ̄t is the mean value of ρi,t, i = 1, . . . , N. The values of Eα
ρt goes from 0 to

∞, with zero representing an equal global spread of non-fossil fuel use and higher values representing
higher inequality spreads of non-fossil fuel use. Of particular interest are the values α = 0 and α = 1:
E0

ρt is the non-fossil fuel mean log deviation index, and E1
ρt is the non-fossil fuel Theil index.

Analogously, for the technology efficiency Atkinson index, we define the non-fossil fuel Atkinson
index as follows:

Aε
ρt =

 1− 1
ρ̄t

[
1
N ∑N

i=1 (ρi,t)
1−ε
]1/(1−ε)

, 0 ≤ ε 6= 1,

1− 1
ρ̄t

(
∏N

i=1 ρi,t

)1/N
, ε = 1,

. (26)

The scalar ε is known as the inequality aversion parameter, since Aε
ρt becomes more sensitive to

changes at the lower end of the non-fossil fuel use distribution as ε approaches 1 and Aε
ρt becomes

more sensitive to changes in the upper end of the non-fossil fuel use distribution as ε approaches 0.

3. Results and Discussion

This section illustrates the use of our proposed methodology using the US Energy Information
Administration (EIA) data [25] from 1980 to 2015, for a set of 41 countries (Albania, Argentina,
Australia, Austria, Bangladesh, Belgium, Brazil, Bulgaria, Burma, Canada, Chile, China, Colombia,
Egypt, Finland, France, Hungary, India, Indonesia, Iran, Ireland, Italy, Japan, Luxembourg, Malaysia,
Mexico, Morocco, Netherlands, New Zealand, Nigeria, Norway, Pakistan, Peru, Romania, Spain,
Switzerland, Taiwan, Tunisia, United Kingdom, United States, and Venezuela). Countries were
selected using criteria of data availability for the time period under consideration. Consumptions and
emissions data are in quad-BTU and MM Tons of CO2, respectively.
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3.1. Consumption Technology Efficiency in Terms of CO2 Emissions

Regarding fossil primary energy sources, we consider petroleum, coal, and natural gas. We present
the consumption technology efficiency in terms of CO2 emissions along time in Figures 1–4 for
petroleum, coal, natural gas, and fossil fuel, respectively. For each case, we present technology
efficiencies for a selected group of countries, also including the median, 5% percentile, and 95%
percentile of the entire set of considered countries. This group of countries was selected based on data
availability and their importance for a comparative analysis aiming to overcome misconceptions and
prejudices already alluded to in the introduction.

Notice that, while the technology efficiency medians are relatively stable along time,
the percentiles have different behaviors. The distance between the percentiles and the medians
gives an intuitive idea of the global spread of technology efficiency along time.

(a) (b)
Figure 1. Petroleum consumption technology efficiency in terms of CO2 emissions for (a) a sample of
countries and (b) the set’s median, 5% percentile, and 95% percentiles.

(a) (b)
Figure 2. Coal consumption technology efficiency in terms of CO2 emissions for (a) a sample of
countries and (b) the set’s median, 5% percentile, and 95% percentile.

In order to measure the global spread of technology efficiency, we first use the technology
efficiency Gini index, computed from the corresponding Lorenz curve, and these are present in
Figures 5–8 for petroleum, coal, natural gas, and fossil fuels. For each case, we present the Lorenz
curve for two dates: 1980 and 2015. In addition, we also indicate some of the countries in the figures for
illustration purposes. Since the obtained Lorenz curves are very close to the diagonal line, we conclude
that technology efficiency is nearly equally distributed between countries.
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(a) (b)
Figure 3. Natural gas consumption technology efficiency in terms of CO2 emissions for (a) a sample of
countries and (b) the set’s median, 5% percentile, and the 95% percentile.

(a) (b)
Figure 4. Fossil fuels consumption technology efficiency in terms of CO2 emissions for (a) a sample of
countries and (b) the set’s median, 5% percentile, and 95% percentile.

(a) (b)
Figure 5. Lorenz curve of the petroleum consumption technology efficiency in terms of CO2 emissions
in (a) 1980 and (b) 2015.
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(a) (b)
Figure 6. Lorenz curve of the coal consumption technology efficiency in terms of CO2 emissions in
(a) 1980 and (b) 2015.

(a) (b)
Figure 7. Lorenz curve of the natural gas consumption technology efficiency in terms of CO2 emissions
in (a) 1980 and (b) 2015.

(a) (b)
Figure 8. Lorenz curve of the fossil fuels consumption technology efficiency in terms of CO2 emissions
in (a) 1980 and (b) 2015.

Using technology efficiency Lorenz curves for each year, we obtain evolution along time of
this index. In Figure 9, we present the technology efficiency Gini indexes for petroleum, coal, natural gas,



Energies 2020, 13, 4938 10 of 17

and fossil fuels. The obtained Gini indexes are numerically close to zero along time, indicating
technology efficiencies nearly equally distributed between the countries. Moreover, while the equality
of the technology efficiency for coal and natural gas between 1980 and 2015 seems to be improving,
the opposite seems to occur for petroleum and fossil fuels. Fossil fuels are composed of petroleum, coal,
and natural gas. However, since the Gini index does not satisfy the additive decomposability, it is not
easy to grasp the relation between these those indexes.

Figure 9. Technology efficiency Gini indexes for petroleum, coal, natural gas, and fossil fuels.

In Figure 10a, we present the evolution along time of empirical global technology efficiency
for consumption of petroleum, coal, natural gas, and fossil fuels. It is possible to notice that
the global technology efficiency for the consumption of coal is stable along time while the global
technology efficiencies for the consumption of petroleum and natural gas seem to slightly increase
along time. During the considered time period, the global technology efficiency is highest for natural
gas, and lowest for coal. In Figure 10b, we present the mean value, among countries, for the technology
efficiency for the consumption of petroleum, coal, natural gas, and fossil fuels. Notice that the relative
positions of countries for technology efficiency in fossil fuels consumption is (almost) the same in
several of these plots.

(a) (b)
Figure 10. (a) The empirical global technology efficiency for the consumption of petroleum, coal,
natural gas, and fossil fuel along time, 〈ε̂m

t 〉 and (b) the mean between the countries of the technology
efficiency for the consumption of petroleum, coal, natural gas, and fossil fuel along time, ε̄m

t .

In Figure 11, we present the technology efficiency generalized entropy indexes for petroleum, coal,
natural gas, and fossil fuels. As a particular cases, we present the mean log deviation (α = 0) and the
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Theil (α = 1) indexes. It is interesting to notice how different the behavior of the obtained generalized
entropy indexes compared with the obtained Gini indices is. Gini indexes seem to be smoother,
and they do not clearly reflect our intuition coming from the observed percentiles in Figures 1–4.
For instance, the percentile band for petroleum consumption technology efficiency increases between
2005 and 2010. The increase in the percetile band indicates an increase in the global inquality of the
technology efficiency spread. In this case, it is possible to notice that the corresponding generalized
entropy indexes clearly indicate an increase in inequality between 2005 and 2010. For coal, the lower
percentile band shrinks between 1995 and 2000 while the upper percentile band starts to increase
between 2000 and 2005. It is important to notice that the corresponding Gini index shows a relatively
smooth behavior while the corresponding generalized entropy indices clearly indicates an asymmetry
in change of the global technology efficiency distribution.

(a) (b)
Figure 11. Technology efficiency generalized entropy indices for petroleum, coal, natural gas, and
fossil fuel using (a) α = 0 (mean log deviation index) and (b) α = 1 (Theil index).

In Figure 12, we present the technology efficiency Atkinson indexes for petroleum, coal, natural
gas, and fossil fuels. As particular cases, we present the Atkinson indices for ε = 0.5 and ε = 1.
It is possible to notice a similarity between Atkinson indexes and generalized entropy indexes.
Atkinson indexes for lower values of ε are quite similar to generalized entropy indexes for higher
values of α and vice-versa. Either generalized entropy or Atkinson indexes becomes more sensitive
to changes at the lower end of the technology efficiency distribution as, respectively, α approaches 0
and ε approaches 1. The same behavior is observed for the upper end of the technology efficiency
distribution as, respectively, α approaches 1 and ε approaches 0.

(a) (b)
Figure 12. Technology efficiency Atkinson indexes for petroleum, coal, natural gas, and fossil fuels
using (a) ε = 0.5 and (b) ε = 1.
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3.2. Non-Fossil Fuel Use Global Spread

This subsection focuses on global spreads in the use of non-fossil fuels. Figure 13 presents
non-fossil fuel use for the same selected group of countries used in the last subsection and the median,
5% percentile, and 95% percentile for the entire set of considered countries. It is interesting to notice
that the median value of use of non-fossil fuel increases comparing from 1980 to 2015. In addition,
the lower percentile of these quantities seems to be more stable while the upper percentile presents a
higher oscillation. The distance between the percentiles and the medians gives an intuitive idea of
the global spread of use of non-fossil fuels along time. In the following paragraphs, we present our
measures for global spread of use of non-fossils, based on Gini and generalized entropy indexes.

(a) (b)
Figure 13. Non-fossil fuel use for (a) a sample of countries and (b) the median, 5% percentile, and
95% percentile.

Non-fossil fuel Gini indexes are calculated from the corresponding Lorenz curves, as presented
in Figure 14, for 1980 and 2015. The non-fossil fuels Gini index along time is presented in Figure 15.
The technology efficiency Gini indexes for fossil fuels are close to zero, suggesting an almost
homogeneous spread of technology efficiency among the different countries. In contrast, the non-fossil
fuel Gini index is not close to zero, indicating a higher inequality of non-fossil fuel use between
different countries.

(a) (b)
Figure 14. Lorenz curve of non-fossil fuels use in (a) 1980 and (b) 2015.
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Figure 15. Non-fossil fuels Gini index.

In Figure 16, we present global non-fossil fuel use and its mean value among countries from 1980
to 2015. Notice that either global non-fossil fuel use or its mean value increases during the considered
time interval. Moreover, the non-fossil fuel use mean value among countries is higher than global
non-fossil fuel use during the considered time interval due to the existence of countries with lower
non-fossil fuel use with higher energy consumption.

Figure 16. Global non-fossil fuel use and mean value among countries.

In Figure 17, we present the non-fossil fuel generalized entropy indexes for particular cases:
the mean log deviation (α = 0) and the Theil index (α = 1). Notice the difference in behavior between
generalized entropy indexes vs. Gini index. Intuitively, the generalized entropy indexes seem to better
capture the percentiles behavior. For instance, in Figure 13b, between 1985 and 1995, there is a decrease
in the 95% percetile. By inspection, it is also possible to notice a decrease in the same time period of
the generalized entropy indexes in Figure 17. However, in Figure 15, the Gini index seems to increase
in the same time period. Finally, in Figure 17, it is possible to notice that the mean log deviation
index increases between 1980 and 2015, while the Theil index decreases. Consequently, inequality
increases during the considered time period at the lower end of the non-fossil fuel use distribution.
In contrast, inequality decreases during the considered time period at the upper end of the non-fossil
fuel use distribution.

In Figure 18, we present non-fossil fuel Atkinson indexes for ε = 0.5 and ε = 1.0.
Notice the similarity between the Atkinson indexes and generalized entropy indexes from Figure 17.
Atkinson indices for lower values of ε are quite similar to the generalized entropy indexes for higher
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values of α and vice-versa. Either Atkinson or generalized entropy indexes for non-fossil fuels use
confirms that, during 1980 and 2015, inequality increases at the lower end of the non-fossil fuel
distribution and decreases at its upper end. In other words, the countries with higher non-fossil fuel use
are getting more equally distributed in terms of non-fossil fuel participation in total energy consumption.
In contrast, countries with lower non-fossil fuel use are getting more unequally distributed.

Figure 17. Non-fossil fuel use generalized entropy indices: mean log deviation index (α = 0) and Theil
index (α = 1).

Figure 18. Non-fossil fuels use Atkinson indexes for ε = 0.5 (right axis) and ε = 1.0 (left axis).

Either technology efficiency and non-fossil fuels use are related to CO2 emissions, and they are
influenced by government policies and other possible common factors. Consequently, we investigate
the relationship between changes in the global spread of technology efficiency and changes in the
global spread of non-fossil fuels use using the following linear regression models

Gεfossil fuel
t

− Gεfossil fuel
t−1

= aG
(
Gρt − Gρt−1

)
+ bG, (27)

Eα
εfossil fuel

t
− Eα

εfossil fuel
t−1

= aα
E

(
Eα

ρt − Eα
ρt−1

)
+ bα

E (28)

and
Aε

εfossil fuel
t

− Aε
εfossil fuel

t−1
= aε

A

(
Aε

ρt − Aε
ρt−1

)
+ bε

A, (29)

where aG, bG, aα
E, bα

E, aε
A, and bε

A are coefficients to be estimated. In Table 1, we present the
estimated coefficients using ordinary least squares with the corresponding p-values, standard errors
and t-statistics. In Table 2, we present some statistics of the estimated linear regression models:
R2, adjusted R2, p-value, F-statistic, and root mean squared error. Notice that the estimated values
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for aG, aα
E, and aε

A are all positive despite the fact that the significance of the results depends on
each case. Consequently, we can attest to a positive relationship between changes in global spreads
of the technology efficiency and changes in global spreads of non-fossil fuels use for the major part
of the cases. In this respect, from Table 2, it is also possible to notice that model (28) with α = 0.0
indicates a stronger positive relation than model (28) with α = 1.0. In other words, the first model has
a higher R2, higher adjusted R2, higher F-statistic, lower p-value, and lower root mean squared error.
Analogously, model (29) with ε = 1.0 indicates a stronger positive relation than model (29) with
ε = 0.5, because the first model has a higher R2, higher adjusted R2, higher F-statistic, and lower
p-value. Since either generalized entropy or Atkinson indexes become more sensitive to changes at
the lower end of technology efficiency and non-fossil fuels use distributions as α approaches 0 and
ε approaches 1, we conclude that an attested positive relation between changes in global spreads of
technology efficiency and changes in global spreads of non-fossil fuels use is higher at the lower end
of the distributions.

Table 1. Estimation of coefficients for the linear regression models (27)–(29).

Coefficient Estimate p-Value Standard Error t-Statistic

aG 0.155 0.017 0.062 2.513
bG 0.001 0.033 0.001 2.230

aα=0.0
E 0.084 0.002 0.025 3.408

bα=0.0
E −0.000 0.782 0.000 −0.279

aα=1.0
E 0.077 0.207 0.059 1.288

bα=1.0
E 0.000 0.853 0.001 0.186

aε=0.5
A 0.118 0.027 0.051 2.316

bε=0.5
A 0.000 0.933 0.000 0.085

aε=1.0
A 0.126 0.002 0.037 3.400

bε=1.0
A −0.000 0.777 0.000 −0.286

Table 2. Statistics for the linear regression models (27)–(29).

Equation R2 Adjusted R2 p-Value F-Statistic Root Mean Squared Error

(27) 0.161 0.135 0.017 6.320 0.003
(28) with α = 0.0 0.260 0.238 0.002 11.600 0.003
(28) with α = 1.0 0.048 0.019 0.207 1.660 0.004
(29) with ε = 0.5 0.140 0.114 0.027 5.360 0.002
(29) with ε = 1.0 0.259 0.237 0.002 11.600 0.003

4. Conclusions

Our main contribution in this paper is the introduction of novel index measures for global spread
in primary energy consumption technology efficiency and non-fossil fuel use; these index measures
are based on the Gini index and on generalized entropy indexes. In the empirical studies conducted
in this paper, our novel index measures were able to capture interesting correlations or associations
between several quantities of interest and their global spreads. Careful analysis of these and similar
relations should prove important for strategic planning and allocation of capital and other resources
by state entities, investment and energy firms, and other interested parties. For instance, in a global
carbon credit context, such measures could help to verify the effectiveness of the policies for the regions
buying or selling carbon credits in terms of decreasing the global spread of technology efficiency and
non-fossil fuel use over time.

The Lorenz curves and the Gini indices for the technology efficiency of petroleum, coal, natural gas,
and fossil fuel show the relative equality in their global spread along time. Empirically, we observe that
the Gini indices are smoother than the generalized entropy indices, and the generalized entropy indices
seem to reflect better the intuition that comes from the observed percentiles of the data. Compared with
the Gini indices, the generalized entropy indices satisfy the additive decomposability and they have
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a parameter to adjust the metric to be more sensitive to the lower or upper ends of the technology
efficiency distribution. In particular, we also present the Atkinson indices for technology efficiency.
The Atkinson indices are particular cases of the generalized entropy indices.

Compared with the technology efficiency case, the Lorentz curves and the Gini indices
for non-fossil fuel use indicate higher inequality between the different countries along time.
Empirically, we observe that generalized entropy indices capture better the percentiles behavior of
the data compared with the Gini index. The generalized entropy indices indicate that the inequality
increases during the considered time period at the lower end of non-fossil fuel use distribution
while inequality decreases during the considered time period at the upper end of non-fossil fuel
use distribution. In other words, countries with higher non-fossil fuel use are getting more equally
distributed in terms of non-fossil fuel participation in the total energy consumption. On the other
hand, countries with lower non-fossil fuel use are getting more unequally distributed.

Technology efficiency and non-fossil fuel use are related to CO2 emissions, and they are influenced
by government policies and other possible common factors. In this paper, we identify a positive
relationship between the changes in the global spread of technology efficiency and the changes in the
global spread of non-fossil fuel use. Actually, the positive relationship between changes in the global
spread of technology efficiency and changes in the global spread of non-fossil fuel use is higher at
the lower end of the distributions. In other words, the identified positive relationship is higher for
countries with lower technology efficiency and lower non-fossil fuel use.

The empirical studies in this paper were conducted paying special attention to global spreads of
technology efficiency and non-fossil fuels use. As application guidelines, the generalized entropy and
Atkinson-based measures are better suited than Gini index-based measure when aiming for greater
sensitivity at the lower or upper ends of the distributions of interest, like technology efficiency or
non-fossil fuel use. Nevertheless, the methodology developed in this paper could also be applied to
different studies, for example, comparing the development of different regions in a single country.
Furthermore, studies of global spreads of fuel use could be extended to other primary energy sources
and could be used in the context of non-primary energy consumption. In future works, we plan to
pursue these lines of research, always aiming for a cleaner and more sustainable world.
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