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Preface

Probabilistic automata have been studied in the literature from different
(although related) points of views. An approach emerging from information
theory was initiated by Shannon and Weaver in their classical book as early as
1948. Later, in 1958, a (somewhat vague) definition of a probabilistic automata
was given by Ashby in a semipopular book. The theory began its real develop-
ment only in the early sixties when scientists from different parts of the world
introduced probabilistic automata as a natural generalization for deterministic
automata of different types.

Almost every book on automata theory published in the past few years con-
tains some parts devoted to probabilistic automata (see, e.g., Harrison, 1965;
Booth, 1967; Salomaa, 1969; Starke, 1969; Arbib, 1969; Carlyle, 1969). This
seems to prove that there is growing interest in this new and fast developing area
of research. This is a first attempt to devote a book to probabilistic automata
and related topics, an attempt based on the assumption that the theory consid-
ered is already mature enough to deserve a book of its own.

The book is intended to serve both as a monograph and as a textbook and,
as such, is augmented with a large collection of exercises distributed among the
various sections. Some exercises ate necessary for understanding the follow-
ing sections; others, which the author considers to be hard, are marked with
an asterisk. For the convenience of the reader, a section containing answers
and hints to selected exercises is given at the end of the book. A collection of
open problems as well as an exhaustive bibliography are included for the benefit
of those readers who may wish to continue research in the area.

The choice of topics presented and their extent is, of course, subjective, and
the author wishes to express his apologies to those who may feel that their work
has not been covered thoroughly enough (after all, a first book in a new area
is a first trial in a sequence of trials and errors).

The book emerged from a two-quarter course given during two consecutive
years at the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley. Some parts of the book have also been
presented in a course given at the Department of Mathematics, Technion,
Haifa, Israel. While the first chapter of the book is engineering oriented, the
other two chapters are mathematically oriented. The interdependency between
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X Preface

the two parts is weak, and they can be presented separately and independently.
Only some theorems in Section C of Chapter II depend on the first chapter.
The only prerequisites assumed for being able to follow the material in this
book are: finite automata theory, e.g., Harrison (1965), Booth (1967), Salomaa
(1969), Arbib (1969); linear algebra and matrices, e.g., MacDufee (1964), Thrall
and Tornheim (1957), Gantmacher (1959); elementary probability theory, e.g.,
Feller (1957), and some mathematical maturity.
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Preliminaries

A. NOTATIONS

The following notations are used throughout unless otherwise stated:

X or X denotes an input alphabet with individual elements (symbols) x and
o respectively. Sequences of symbols X or X are called words or tapes and are
denoted by u (when X is the alphabet) or x (when X is the alphabet). Y or A
denotes an output alphabet with individual elements y or o respectively. Words
(or tapes) over Y or A are denoted by » or y respectively. The set of all words
[including the empty word denoted by A or ¢] over X (or Z or Y or A) is de-
noted by X* (or * or Y* or A* respectively). Subsets of words over a given
alphabet are called events or languages and are denoted by U or V or E. If
x=0,+-+-0, and xX' =0, --- 0,/ are words then xx' is the word xx' =

o, 0,0, --- g, and the operation is called concatenation (xA = Ax = x);
k

x* denotes the word xx --- x. If U and U’ are languages, then UU' =
{xx':xe U,x' € U'}and U* = {x*:x € U}. @& denotes the empty language
{Uz = U = @]. Other set theoretic equations between languages are de-
noted as usual. /(u) denotes the length of the word u [the number of symbols
in the word u], (v, v) denotes a pair of words of the same length,u ¢ X*
and v € Y*; l(u, v) denotes the common length of ¥ and ». If S is a set,
then |S| denotes the number of elements in S. The brackets ( ) are used
generally for enclosing an ordered set, the brackets { } are used generally
for enclosing an unordered set. The notation [a,] is used for denoting a
matrix whose elements are a,,. &= () or & = (£,)) denotes a vector &
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xx Preliminaries

or £, whose elements are & or & respectively. The superscript T over a
vector or a matrix [T or A’] denotes the transpose of the vector or the
matrix. 7 denotes a column vector all the entries of which are equal to 1
and whose dimension will depend on the context. A vector is called sub-
stochastic if all its entries are nonnegative and the sum of its entries is <C1;
if the sum is =1, then the vector is called stochastic. The set of all n-dimen-
sional stochastic vectors is denoted by #,. A matrix is called substochastic or
stochastic if it is square and all its rows are substochastic or stochastic corre-
spondingly. A matrix is called constant if all its rows are equal one to the other.
The vector (0,...,1,...,0), where the | is in the ith place and the dimension
depends on the context, is called a degenerate stochastic vector and is denoted
by the notation §;. The usual notation Pr(A|B) is used to denote the conditional
probability of the event 4 given that B. If x,..., X, are point vectors, then
the combination Y A, X; is a convex combination of them if (1,) is a stochastic
vector. The notation conv(X,, ..., X,) stands for the convex closure of the set
{X,,...,X,}. The set of point vectors {x,,..., %]} is linearly independent if the
set of vectors {¥, — X,,..., X, — X,} is linearly independent. A simplex is a
set of points which can be represented as the convex closure of a set of linearly
independent point vectors. A set of points is convexly independent if no point
in the set is a convex combination of the other points in the set. A convex
polyhedron is a set of points which can be represented as the convex closure of
a finite set of convexly independent points. If ¥ is a convex polyhedron and
W < V [W is a subset of V], then W is a face of V if the linear closure of W
[notation: aff W] has no points in common with the convex closure of V' — W
[the set of points which are in ¥ but not in W]. The interior of a convex
polyhedron V [notation: int V] is the set of all points in ¥ except the points
on the faces of V which differ from V, the relative interior of V [notation:
relint V'] is the set of all points of V except its vertices. Two functions are
equal if they have the same domain and agree on it. The term machine is used
for devices which have both inputs and outputs, the term automaton is used for
devices with input only [the output is represented directly by the internal
states] and the term acceptor is used for automata, or machines which are used
for descriminating between words over a given alphabet. Superscripts are used
for descriminating between different machines (automata, acceptors) and are
omitted if context is clear.

B. SOME ANALYTICAL LEMMAS

The following analytical lemmas are assumed.

Lemma 2.1: Let {a,} and {b,} be nondecreasing sequences of real numbers such
that a, <~ b, for all i with lim; .. a, = a, lim, ... b; = b [including the case where
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a and/or b is equal to o). Then a < b. If a < b, then there is a natural
number N such that for all j > N and all  the inequality a; < b, holds.

Corollary 2.2: If q;, << M for some real number M and all i, then also a <{ M.
If a > M for some real number M, then there is a i, with @, > M for alli > i,.

Lemma 2.3: Let {a,,} be a double sequence, nondecreasing with regard to both
m and n. Then lim,_. lim,_. a,, = lim,_... lim,, ... @,,, [including the case
where the limit has infinite value].

Definition: Let (a;) be a set of real numbers, sup; (a;) is defined as the number
a such that @, << 4 for all i and for any € > 0 there is n such that a, > a — ¢;
inf, (@;) is the number a such that @ << g, for all i and for ail € > 0 there is n
such that a, < a + € [a or a can assume the values + oo or — oo also].

Lemma 2.4: If (a,) and (b,) are two sets of numbers such that a, < b, for all i,
then d <C b, a < b. Moreover if a, << M for some real number M and all i, then
a < M and similarly if a;, > M for all i, then a > M.

The notation ]2, a;, stands for the infinite product of a sequence of numbers
(a;) and is equal to lim, ... []%., a; [provided that the limit exists and including
the case where the limit equals oo].

The product [];2; a; converges if there is m with a, > 0 for i > m and
lim, ... []2.» a; exists and is finite.

Lemma 2.5: Let {a;} be a sequence of numbers a <<a, << L. If D2, a, di-

oo

verges, then [z, (1 — a;) converges to zero for any j.

Lemma 2.6: Let (@) be a sequence of numbers, 0 << g;. If 332, a; < oo, then
the product [z, (1 + ;) converges.

C. SOME ALGEBRAIC PRELIMINARIES

The notation A = B is used for implication (“statement 4 implies statement
B’]; A < B means that statement A is equivalent to statement B; a € A means
that a is an element of A and {a : A} stands for the set of all elements a satis-
fying the property 4. The Cartesian product of two sets 4 and B is defined as
AX B={(ab):ac 4,b e B}.

A (binary) relation between the sets 4 and B [including the case where
B = A] is a subset of 4 x B. If R denotes a relation and (a, b)) € R we shall
denote this also by the notation aRb. A relation R between A4 and A (“over
A?) is

1. Reflexive if aRa for every a € A.

2. Symmetric if aRb => bRa.

3. Transitive if aRb and bRc = aRc.
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A relation satisfying all the three properties above is called an equivalence
relation.

Any equivalence relation R over a set 4 induces a partition of the set A into
subsets 4, such that 4, N 4,7 @ if i =j, U A, = Aand aRb if and only if both
a and b are in the same subset 4, for some i. The subsets A4, as above are called
equivalence classes of R. If the number of different equivalence classes induced
by a relation R over a set A is finite, then the relation R is of finite index. Let
A be a set with an operation o : 4 X 4 — A4 and a relation R over 4.

1. R is right invariant if aRb implies that for any c, acc R bec.

2. R is left invariant if aRb implies that for any ¢, coa R cob.

3. R is a congruence relation if it is an equivalence relation and it is both
left and right invariant.

Let a, b, ¢ be integers then a = b mod ¢ [“a is congruent to b modulo ¢”]
means that ¢ is a factor of a — b. Congruence modulo an integer ¢ has the
following properties:

Lemma 3.1: Ifa=bmodc and &’ =b' mod c thena + a' =b + b’ mod ¢
and aad’ = bb’ mod c.

We conclude this section with two lemmas concerning operations between
infinite [countable] stochastic matrices.

Lemma 3.2: The set of countable stochastic matrices is closed under matrix
multiplication.

Lemma 3.3: Multiplication of countable stochastic matrices is associative.

D. PROBABLISTIC PRELIMINARIES

Consider a physical experiment such as tossing a coin, matching a deck of
cards, observing the life-span of radioactive atoms, etc. The set of all possible
outcomes of such an experiment is called a sample space. The elements of a
sample space are called sample points and aggregates of sample points or sub-
sets of the sample space are called events. In what follows we shall concern
ourselves only with finite or countable sample spaces [i.e., sample spaces con-
taining finitely many or at most a countable number of elements].

The set of all events over a sample space [including the empty set—to be
denoted by @ —and the whole space considered as an event—to be denoted by
Q] is closed under countable intersection and union, and under complementa-
tion with regard to Q. The set of all events as above with the operations of
union, intersection, and complementation is sometimes called a o-algebra [see
Feller (1966)].
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A probability measure p over a g-algebra of as defined above is a function
p from .7 into the interval [0, 1] of real numbers such that:

1. p(A) > 0 is defined for all 4 in./.

2. p(QQ) = 1.

3. If {4}, is a countable set of nonoverlapping or disjoint events in .27, then
p{U::l An} = ;T:l p(An)

It is easy to show that (1)-(3) above imply:

4. p()=0.
5. ( — A) =1 — p(Q).

A random variable is a function from the sample space into the real numbers.
Under the assumption that the sample space is at most countable, no restric-
tion is placed on such a function.

Example: The physical experiment: Tossing a coin 100 times. The sample
space: All 2'% possible outcomes. A sample point: The coin falls “heads” all
the 100 times. An event: The coin falls “tails” for 50 consecutive times. A
probability measure over Q: If w € Q is a sample point such that the coin
falls heads m times and it falls tails 100 — m times then p(w) = p™¢'® ™ where
0<p<1,0<g<1,p+ q=1, pand qare real numbers. If 4 is an event,
then p(4) = 3., p(®). A random variable over Q: Let x(w) be the func-
tion x(w) = the number of “heads” in the sample point ®, then x(w) is a
random variable.

Given a o-algebra, a probability measure, and a random variable over it, a
related distribution function from the real numbers to the interval [0, 1] is de-
fined as follows: Let A, be the event 4, = {w : x(w) < ¢}. Then the distribution
function is the function F(tf) = p(A4,). Sometimes the notation p(x(w) <) is
used for p(A,), and the notation p(x(w) = t) is used for p(B,) where B, is the
event {o : x(w) = t}.

Given a g-algebra and a probability measure over it, the conditional prob-
ability p(A|B) (read: the probability of 4 given that B where 4 and B are
events] is defined as p(A4|B) = p(A N B)/p(B). The intuitive meaning of the
above definition is as follows: If it is given that the event B occurred, then
the sample space reduces to the points in B, and the event 4 reduces to the
event 4 N B so that p(A|B) is the proportion of the weight of the event AN B
to the weight of the event B [usually p(A) is interpreted as the proportion of
the weight of A to the weight of the whole space © which is equal to 1].

Given two random variables x and y over a og-algebra and a probability
measure over it, one can define the following function

ey =y PX=t Ay=1u) N
px =ty =u) o =uw (x)
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where, x =t A\ y = u is the event {w: x(w) =t A y(@w) = u}. The random
variables are said to be independent if

px=tly=uw=px=1)

i.e., the information that y(w) = u does not change the probability of x(w) = 1.
It follows from formula () that if x and y are independent [or more generally,
if A and B are independent events, i.e., p(4|B) = p(A4)], then

px=t ANy=uwy=px=tly=u)p(y =u) = p(x =1)-p(y = u)
More generally, if 4 and B are independent events then
p(4 N B) = p(A)-p(B)
Let x, x,, . . . be a sequence of random variables such that for any m

p(xm = j[xo =Ny Xy = My o0 oy Xy = l) = p(xm :jixmfl = l)

i.e., the random variable x,, depends on the random variable x,,_, but not on
the previous ones. Such a system is called a Markov chain. We shall consider
only finite or countable Markov chains, i.e., Markov chains over a sample
space containing finitely many or a countable number of elements.

Any Markov chain can be represented in the following model: The sample
space is represented by a finite or a countable number of vertices: the random
variable x, represents the position of a moving point at time ¢ = i; p(x; = j)
is the probability that the point will be at the vertex »; at time f =i and
plx,, = jlx._, = i) is the probability that the point will be at vertex v; at time
t = m provided that it has been at vertex i at time t = m — 1.

As the process is assumed to be Markov we have that

p(xm = jlxm—l = i) = p(xm = jlxo =Ny ooy Xy = l)

and we shall use, for the above probability, the notation ,,p;;.

If ,.p;; = .p;; for any natural numbers m and n, then the Markov chain is
called homogeneous and it is called nonhomogeneous otherwise. As the values
«P:; are independent of m in the first case, we shall use the notation p;; for that
case. It is tacitly assumed throughout that the Markov chains considered are
discrete, i.e., the transitions from state to state occur at discrete intervals of
time.

The probabilities ,, p,;; can be arranged in a matrix form and such a matrix
is called stochastic or Markov. Clearly any Markov matrix [, p;;] has the
property that 0 << ,.p,; << 1 and }; p;; = 1 which stems from the fact that
system represented by the matrices [,, p;;] evolves in time and it must enter some
state at time ¢+ = m + 1 if it has been in state i at time m where the term
“state” is used for denoting a point in the sample space.
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Examples:

1. Sequential deterministic machine with possible errors.

2. A slot machine: the static position of the dials represent the states. In
this case the , p,; are generally independent of m.

3. Suppose some person is ill with probability p, [the probability of him
being healthy is g, = 1 — p,]. After swallowing a specific medicine he may
change state [there are two states, representing illness and healthiness] the
probability of the transition from state i to state j at time m being ,p;; de-
pending on the medicine swallowed at time m.

EXERCISES

1. Prove all tthe lemmas given without proof in the preceding sections.

2. Prove that the set of n X n stochastic matrices are a monoid under matrix
multiplication [i.e., the set of stochastic » X n matrices is closed under multi-
plication and the unit » X » matrix is stochastic].

3. Let P(m) = [,p;,] be the transition probabilities matrix at time m of a given
Markov chain. Denote []7-, P(i) = [p{7], prove that p{; is the probability that
the process will go to state j beginning from state i after # steps.

4. A stochastic matrix P is called constant if all its rows are equal. Prove: If
P is constant stochastic and Q is stochastic [of the same order], then PQ is
constant stochastic and QP = P. [Thus P? = P which means that stochastic
constant matrices are idempotent.]

5. Let P be a stochastic matrix such that there is an integer k, with P* con-
stant. Prove that in this case, for all m > k,, P™ = P*,

6. If m = (m,) is a vector such that > 7, = ¢ and P is a stochastic matrix [of
the same order], then the sum of the entries of the vector P is also equal to ¢.

7. Prove: If P and Q are finite stochastic matrices such that PQ = I, then
both P and Q are degenerate. [A stochastic matricx is degenerate if all its
entries are either 0 or 1.]

8. Prove, by an example, that Exercise 7 above is not true in the infinite case
unless it is required that both P and Q have nonzero elements only.



Chapter |

Stochastic
Sequential
Machines

INTRODUCTION

In this chapter we introduce various mathematical models of stochastic se-
quential machines (SSMs) and provide motivation for these models. Methods
for synthesizing SSMs from their mathematical models are given. Various con-
cepts of equivalence and coverings for SSMs are introduced and studied. Some
decision problems and minimization-of-states problems induced by the above
concepts are investigated and a procedure is formulated for constructing a mini-
mal state SSM equivalent to a given one. The last part of this chapter in de-
voted to stochastic input-output relations and their representatibility by SSMs.

A. THE MODEL

1. Definitions and Basic Relations

Definition 1.1: A stochastic sequential machine (SSM) is a quadruple M =
(S, X, Y, {A(y|x)}) where S, X, and Y are finite sets [the internal states, inputs,
and outputs respectively], and {4(y|x)} is a finite set containing |X| x |Y]
square matrices of order |S| such that a;,(y|x) > 0 for all i and j, and
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15}
yE‘;JZ)=1 a(ylx) =1  where A(y|x) = [a,(y|x)]

Interpretation: Let x be any |S|-dimensional vector. If the machine begins
with an initial distribution 7 over the state set S and is fed sequentially with a
word u = x,---X,, it prints the word » = y,---y, and moves on to the
next state. The transition is controlled by the matrices 4(y|x) where a,(y|x)
is the probability of the machine going to state s; and printing the symbol y,
given it had been in state s; and fed with the symbol x.

Examples:

a. Any deterministic sequential machine with faulty elements which may
cause errors in transition from state to state is an SSM.

b. Consider a psychological [or physical] experiment such that a sequence of
stimuli [inputs] is applied to an animal [or to a physical system]. The system,
assumed to have a finite number of possible internal states [which may or may
not be observable], responds with a sequence of outputs and undergoes succes-
sive changes of its internal state. Transition is generally not deterministic, nor
is the relationship between inputs and outputs.

c. A finite-state communication channel (Shannon, 1948) transmitting sym-
bols from a source alphabet X, the symbols received belonging to an output
alphabet Y. The channel may assume a finite number of states and is specified
by a conditional probability function p(y, s,|s;, x), interpreted as the probability
of the output symbol received being y and of the channel remaining in state
s;, given the channel is in state s; and the input symbol x is transmitted. Such
a communication channel is readily described by an SSM.

d. Consider a situation where a pursuer is following a moving object (Zadeh,
1963), with both capable of assuming a finite number of positions [states].
Assume also that the motion of the pursuer is characterized by a conditional
probability distribution p,,(x) (which denotes the probability of the pursuer
moving to state j from state i on application of x) where x is one of several
controls (inputs) available to the pursuer. As for the object, assume that it does
not seek to evade the pursuer [the alternative case can be dealt with in a similar
way] and that its motion is governed by a probability distribution g,; [which
denotes the probability of the object moving to state / from state k]. The com-
bined system can be described by an SSM with set of states S equal to that of all
pairs (i, k) with i referring to the pursuer and k to the object; the set of inputs
X is that of all controls available to the pursuer; the set of outputs is identified
here with that of states, and the transition function is given by

Ao, n(%) = Pif(X) qur

[It is tacitly assumed that the random variables controlling the pursuer and
the object are mutually independent.] In this setup the problem of the pursuer
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is to find a minimal sequence of inputs which takes the composite system from
its initial state to an “interception” state.

Let M be an SSM. Let A(v|u) be defined as
A(vlu) = [a,,(w[w)] = A(y:|x,) A(yalxs)- - - A(yilxi) (1)
It follows from the interpretation of the values a;,(y|x) that a;(v|u) is the
probability of the machine going to state s; and printing the word v, having
been in state s; and fed sequentially the word u. This assertion is clearly true
for I(v, u) = 1, since in this case (v, #) = (y, x) for some y and x. Assuming
now that the assertion is true for /(v, ) = k — 1, we have, by the notation (1)
above, that

a;(vylux) = ; a (v|w)a, (y]x) @)

and the right-hand side of (2) is, by elementary rules of probability, the prob-
ability of the machine going to state s, and printing the word vy, having been
in state s, and fed sequentially the word ux. The assertion is thus proved true
for any pair (v, ) with /(v, u) > 1 by induction. For I(v,u) = I(4,X) = 0, we
define 4(A|A) = I, the |S|-dimensional unity matrix, meaning that with proba-
bility 1 there is no change in the internal state of the machine and no output
emerges if no input is fed.

Notation: n denotes a column vector with all entries equal to 1, and with
dimension equal to the number of states of the machine to which it is related.

Definition 1.2: Given a machine M and an input-output pair of words (v, u),
the vector #(v]u) is defined as
n(olu) = Al (AA) =1n=1n) ©)
Interpretation: The ith entry in vector #(v|u) consists in summation of all
entries in the ith row of matrix A(v|u), and is therefore the probability of the
machine printing the word » [and moving to some state], having been in state
s, and fed the word .
It follows from (3) and (1) that
n(wylux) = A(wylux)n = A@w)A(y|x)n = A@n(ylx) )
Similarly,
n(yvlxu) = A(ylx) n(v|w) (%)

Definition 1.3: Let m be a [probabilistic] initial distribution vector over the
states of a given machine M, and let (v, u) be any input-output pair of words.
The vector n(v|u) and the function p,(v|u) are defined as

n(v|u) = mA(v|u) (m(A)A) = ol = n) (6)
pvlu) = an(vju) (= n(v|w)n) Q)
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It follows by elementary rules of probability and from the interpretation of
n(v|u) that p(v|u) is the probability of the machine printing the word v when
started with initial distribution 7 over its states and fed with the word ». Simi-
larly, m(v|u), the ith entry of the vector m(v|u), is the probability of the machine
printing the word » and moving to state s, when started with initial distribution
7 over its states and fed the word u. The following equalities are easily verified:

P(010:|u1) = 7o v:|u1) = mA(v, 0w u)n

= A |u,) A(v,|ur)n = m(v|u)n(v,)us) )]
Note that n(v|u) need not be a stochastic vector, as there may be several output
words v, with positive probability, corresponding to a given input word u. Let
(v, u) be the vector whose ith entry is the probability of the machine moving
to state s, given that the machine started with initial distribution 7 over its
states, the input has been u, and the output ». It follows that

ﬁi(v’ u) . p,,(’l)lll) = 7[,(’0'11) (9)
To prove this relation, we rewrite it in the form: Pr [final state s]joutput »,
input u, initial distribution z] - Pr [output »|input «, initial distribution 7] =
Pr [final state s,, output v|input u, initial distribution 7).

It follows from (9) that
_ _ [m@lw)/pol)  if pvju) %0
”f(v7 u) - .
undefined otherwise
If p(v|u) + 0, then 7(v, u) is a probabistic vector; moreover, in this case we
also have the relation
pz(vvlluul) = pn(vlu) pl(v,u)(vllul) (10)
since, using (8), (6), (7), and (9) we get
p(vvuuy) = n(vlun(v,|u;)
(v|u)
n(vfu)n
= n(v|u)n (v, u) N(vylu,)
= P(0|t)Prcy,uy(v1|t41)

as required. If p.(vju) = 0, we define p,(vv,/uu,) = 0 for any input—output pair
of words (vy, u,).

Example 1: Let M = (S, X, Y,{A(y|x)}) with X ={0,1}, Y ={a, b}, S =
{s1, 52}, and
o)

i

= n(v|u)n 7(v1[uy)

FST™

1
2.

0 1
A(a|l).—_[0 (’J A(bll)=|:

A(al0) = [i 0}, A(b[O):[

[T~ RN

(SO
ol
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and let # = (4 2) be an initial distribution for M. It is easily verified that

1

A(abl00) = A(a|0) A(b|0) = [‘1‘ ‘J

s s |(1\ _
7(ab|00) = A(ab|00) = L 0}(1) _(

7(abj00) = mABJ00) = (43 [‘1‘ g] — ()

p.(ab|00) = n(ab|00)n = }
fi(ab, 00) = n(ab|00)/p,(ab|00) =
Similarly,
2(a0) = 3 % pal0) = 4
#(a, 0) = (1 T) Pra0(b|0) = %
so that
P{@|0)Pre,0/(bI0) = } 3 = } = p,(ab|00)
in accordance with (10).

Note the difference between 7(ab|00) and 7(ab, 00). The first vector is not
probabilistic, and the values in it are the probabilities of the machine entering
the first (second) state and printing the output ab, given that the input is 00
and the initial distribution is 7. However, this input and initial distribution may

also have other outputs (ba or bb or aa) with positive probability, In the vector
#i(ab, 00), both the input and the output are assumed in advance.

EXERCISES

I. Let M be as in Example 1 and z = (0 1), an initial distribution for M.

a. Find: A(v|u), n(v|w), a(v|u), #(v, u), pv|u) with v = bb and u = 10.
b. The same with » = ab, u = 10; in this case, compute also the value
D.(aba|100). Discuss your results.

2. Show that every deterministic sequential machine of the Mealy type can be
represented as an SSM as given in Definition 1.1.

3. Give an algorithm for recursive construction of any vector of the form #(vju)
for a given machine.

4. For a given machine M and a given initial distribution 7z, prove that the
vector Y, m(v|u) is probabilistic for any given input # (summation over all

possible outputs v having the same length as u).
5. For the machine given in Example 1, find:

a. the value ¢(b|001, ab) = the probability of the next output being b, given
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that the input 00 resulted in the output ab and the input 1 was fed next,
b. the value ~(5|001) = the probability of the final output being b, after the
input 001 is fed.

6. Give three reasons why the following quadruple is not an SSM:
M= (S, X, Y, {A(y|x)}) with S = {5}, 5,}
X =101}, Y ={a, b}

10 [0
A(a|0)—[0 W A(bIO)—L

A(a]l):[o _ﬂ, A(b|1)=[l7‘f ¥

1 1 1
2 1 T 0

Reo

<

L

2. Moocre, Mealy, and Other Types of SSMs

In the preceding section, we described an SSM parallel to the Mealy-type de-
terministic sequential machine. The Moore-type machine also has a stochastic
version which will be described below.

Definition 2.1: A Moore-type SSM is a quadruple M = (S, X, Y, {A(x)}, A)
where S, X, and Y are as in Definition 1.1, {A(x)} is a finite set containing |X|
square stochastic matrices of order |S| and A a deterministic function from S
into Y.

Interpretation: In accordance with the interpretation following Definition
1.1, the value a;(x) [A(x) = [a;/(x)]] is the probability of the machine moving
from state s; to s; when fed the symbol x. When entering state s;, the machine
prints the symbol A(s;) € Y.

Let A(u) be defined as

A@w) = [a,()] = A(x) A(x;) - Ax) (A4 =I) (11)

It follows from the above interpretation that a,{(u) is the probability of the
machine moving from state s; to s, when fed the word u. [The proof of this
assertion, along the same lines as for the corresponding assertion in the preced-
ing section, is left to the reader.] The output word v depends on the sequence
of states through which the machine passed when scanning the input word u.
It is worth noting here that, as in the deterministic case, there is a basic differ-
ence (inplicit in the definitions) between Moore-type and Mealy-type machines.
For the latter, the output depends on the input and the current state, and is
intuitively associated with the transition; thus p(4|) = nln = an = 1, since
no output emerges when there is no input. By contrast, the output of a Moore-
type machine depends on the next state and is intuitively associated with a state;
thus p,(A]A) = 0 and there is a time difference of one stroke between the begin-
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ning of the output sequences of the two types. Disregarding the empty input-
output sequence, equivalence between the two types can be defined as follows:

Definition 2.2: Two machines M and M’ are state-equivalent if to every state
s; of M there corresponds a state s; of M’, and vice versa, such that p}(v|u) =
P (v|u) for every input-output pair (v, 1) with I(v, u) > 1.

Let M be an SSM of Moore-type M = (S, X, Y, {A(x)}, A). Define an SSM
M’ of Mealy-type as follows: M’ = (S, X, Y, {4 (y|x)}) where S, X, and Y are
as in M, but the entries of the matrices 4'(y|x) = [a],(y|x)] are defined by

ay(x), if y=A(s)
0, otherwise

dy(y1x) = {

It is left as an exercise to show that the machines M and M’ are state-equivalent.

Let M be a Mealy-type SSM, M = (S, X, Y, {A(y|x)}). Define an SSM M’
of the Moore type as follows: M’ = (5, X, Y, {4 (x)}, A) where X and Y are
asin M; S’ is the cartesian product S x Y; the (|S| - |Y|-dimensional) matrices
A'(x) are defined as

A(y|x) A(p,|x) - -+ A(yilx)

A(y|x) T A(yilx)
A(yi|x) T A(yi]x)
where y,, ..., . is the sequence of symbols in Y; finally, A is the function

A(s;, y) = y for all i. Tt is left to the reader to show that the machines M and
M’ are state-equivalent.

Inasmuch as every Moore-type SSM has a Mealy-type equivalent and vice
versa, either type will be used at convenience for proving properties of machines
in general. :

It is easy to see that the above definitions of Moore and Mealy types gener-
alize the corresponding definitions of deterministic machines. On the other
hand, since the stochastic machines are more elaborate in structure than deter-
ministic machines, further generalized definitions are possible. Consider, for
example, the following:

Definition 2.3: An output-independent SSM is one such that the matrices A(y|x)
can be written in the form A(y|x) = I(y|x) A(x) where the A(x) are stochastic,
and I(y|x) are diagonal matrices with Y, I(y|x) = I (= the |S|-dimensional
unit matrix).

The interpretation of this definition is as follows: Let &{(y|x) be the ith dia-
gonal entry in I(y|x), and a/;(x) the (i, j)th entry in A4(x); then a;,,(y|x) is given
by
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a,(ylx) = a(y|x)a(x) (12)
If a(y|x) is interpreted as the probability of the output being y if the input

4

is x and the current state i, and af(x) as the probability of next state being s,
if the current state is s; and the input x, then (12) means that the two random
variables are mutually independent, that is, the next state of the machine is in-
dependent of its output for a given current state and input.

It is clear that the output-independent machines as defined in Definition 2.3
provide another generalization of deterministic Mealy-type machines. On the
other hand, the two generalizations are not equivalent. We will show now that
although every output-independent machine is an SSM, the converse is not al-
ways true.

Lemma 2.1: If M is an output-independent machine, then for any degenerate
initial distribution 5, the value Py (yv|xu)/Ps(y|x) does not depend on y, pro-
vided Py (y|x) = 0.

Proof: Let dj(y|x) be the ith diagonal entry of I(y|x), then aj(y|x) =
5 I(ylx)n and
51(y|x) = a(y|x)s; = 51(ylx)n 5,
But
5 A(ylxn = 5 I(y|x) A(x)n = 5 I(ylx)n
A(x) is stochastic, so that A(x)y = 7. Combining these equalities, we have
psyvlxu) = 5; A(y|x) AQvlu)n
= 5, I(y1x) A(x) Al = 5, 1(y|x)n 5, Ax) Aol
= 5, A(y)n 5 A(x) Al = po(yIx) 5, AGx) Al

or

Py (yv|xu) _ .
Pyl 5; A(x) A(wlw)n

and the right-hand side does not depend on y.
Example 2: Let M be the SSM with S = {s,, 5.}, X = {a}, Y = {0, 1}, and
11 1 1
A(0|a) = {j ﬂ A(llg) = [’j T"‘]

% 3 3 )
Assume also that the initial distribution is §, = (1 0). Then

P.(0a) = (1 0)[’1‘ %']Ha%
iR

P,(00aa) = (1 0)[

o=

o= Bl
W o=
el
Pt
L
I
;Im
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-+

pulla) = (10) [’

o
o= o P

1 1 1 1
:(10jag) = (1 0) F M" ‘H } =1
i o3l
thus
P (00jaa) _ 3/16 _ 9
P.Ola) 5/12 20
and

Py(10laa) _ 1/4 _ 3
P(lla) _T/12° 7
The two values are not equal, hence the given machine is not output independent.
Another Mealy-type SSM can be defined by requiring that the entries in the
matrices I( y|x) be either 0 or 1, and another Moore-type SSM by assuming that
the function A in Definition 2.2 is probabilistic [see Exercises 6 and 7 at the
end of this section].

EXERCISES

1. Find a Moore-type machine which is equivalent to the machine in Exam-
ple 1.

2. Given the Moore-type machine M = (S, X, Y, {4(x)}, A) with S = {s,, 5;},
X=1{0,1}, Y ={a, b},

_ 1+ % _ 10
A(O)“[o 1]’ A(l)_[% ,J

and A(s,) = a, A(s;) = b, find an equivalent Mealy-type machine.

3. Prove that the interpretation of 4(x) and (11) implies that a,,(«) is the prob-
ability of the machine moving from state s, to s; when fed the word u.

4, Prove that every Mealy-type machine has an equivalent Moore-type machine
and vice versa, using the construction given in the text.

5. For the machine given in problem above, compute the following values:
a. ps(abbl010)
b. q(a|011, bb)
c. r(a|1101)

[For the definition of ¢ and r, see Exercise 5 in Section 1.]

6. Consider the following:

Definition: An SSM is of the Mealy-type with probabilistic output if the mat-
rices A(y|x) can be written in the form A(y|x) = A(x) I(y), A(x) being stochas-
tic and I(y) diagonal matrices with >, ., I(y) = L
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Show that, under proper interpretation, the output of such a machine is a
[probabilistic] function of the next state and independent of the transition im-
posed on the current state by the input.

7. Show that Example 2 can be represented as a Mealy-type SSM with proba-
listic output.

3. Synthesis of Stochastic Machines

In the two methods for synthesizing stochastic sequential machines presented
below, the machines are assumed to be of the Moore-type.

a. Method 1

Method 1 is illustrated in Figure 1. Let M = (S, X, Y, {4(x)}, A) be a ma-
chine, Z an auxiliary alphabet with |S| = n symbols, and p(s;, x) an indepen-
dent information source emitting the symbol z; € Z with probability a;,(x).

State
Source ) Z .
»! 1 logic box > O logic p|——»
box
(delays)

Qutput lines Y

Input lines X

Figure 1. Schematic representation of a network synthesizing an SSM.

The source box emits all sources p(s;, x), each of them through a separate line.
The box marked “I Logic” is a combinatorial network whose output is that
emitted by source p(s,, x) if the feedback input is s, and the X input is x. The
“state box” is a combination of delays (or flip-flops) representing the states of
the machine. If the input to this box is z,, the delays are set so as to represent
the state s,, the feedback being a signal representing the current state of the
machine. Finally, the “0 logic” box is a combinatorial gate simulating the
function A.
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It is clear that the above diagram synthes,iics the given machine. It follows
from the construction that prnext state s,|current state s, input x] = pr[I logic
output z;|current state s, input x] = pr[z,| the source emits p(s;, x)] = a;,(x)
as required.

The procedure above involves synthesis of combinatorial networks with or
without feedback, and construction of information sources with prescribed
probability distributions, for which the reader is referred to Harrison (1965),
Hartmanis and Stearns (1966), or McCluskey (1965), and to Gill (1962b, 1963),
Sheng (1965), Tsersvadze (1963), or Warfield (1965) respectively. It will now
be shown that the procedure can be simplified by means of the following lemma.

Lemma 3.1: Any m X nstochastic matrix A can be expressed in the form 4 =
3 .U, where p, > 0, 3 p, = 1, and U, are degenerate stochastic matrices (with
entries either zero or one), and the number of matrices U, in the expansion is
at most m(n — 1) + 1.

Proof: Let A = [a;], U, = [u;;] is a degenerate stochastic matrix such that
1 if a,;is the first maximal element in the ith row of 4
Uy = .
! 0 otherwise

Let p, be the value p, = min, max; a;; then clearly 4 — p,U, is a matrix with
nonnegative entries. Moreover, 4, = [1/(1 — p,)][4 — p,U,] is a stochastic
matrix (for the sum of entries in any row of 4 — p,U, equals 1 — p,) with
more zero entries than the original matrix 4, and 4 = p,U; + (1 — p,)4,. The
procedure is now repeated for 4, as the new A4, represented in the form 4, =
p,U, + (1 — p,)A4, with A, again stochastic with less zeros than 4,. In this
manner at most m(n — 1) steps yield a matrix A, in the form of a degenerate
stochastic matrix U,. The required expansion is thus found with at most

m(n — 1) + 1 matrices U,.

Example 3: Let A be the matrix

1 1 1

7 7T 1
A=|% 0 3%

1 1 1

4 4 72

then
1 0 0
U=(1 0 0}, p=4%

0 0 1

hence,
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0 4 3% 010
A =0 0 1|, U=|00 1|, p=4}
130 100
00 1
4,={0 0 1|=U,
010

And the resulting resolution is

A=3U, + %[‘%‘Uz + 43Ul =3U, + 11U, + 1U;
Note that although the above example is a square matrix, this requirement is
not essential and the procedure works for any stochastic matrix.

We now apply Lemma 3.1 to the procedure. To this end, let 4 be the
stochastic matrix whose rows are the probabilistic distribution vectors p(s;, x),
i.e., 4 has |S| x |X| rows and |S| columns, and can be expressed in the form
A = Y, p,U; according to the lemma. Let W = {w,,..., w] be an auxiliary
alphabet with ¢ symbols, one for each matrix U, in the expansion of 4, and let
p be a single information source over W emitting the symbol w; with probability

P

Combinatoriai
ts X |
Inpu_s_» logic z - Delays »{ O logic
(states)
Source p, W

Figure 2. Simplified network for an SSM.

The combinatorial logic is constructed so that its output is z; for input
(x;, W 8) if and only if the entry of matrix U,, in the row corresponding to
(sx, x;) and in the column corresponding to s; equals one (notation: u% ,, ; = 1);
the state box and the 0-logic are as in Figure 1. We have that pr(next state 5|
current state s,, input x;) = pr(W-input is w,, with u% ,, = 1) = >, p,, where
the summation is over all m with uf , ; = 1. This sum, however, equals the
corresponding entry in A which is p,(s,, x;) as required.

Example 4: Let M = (S, X, Y,{4(x)}, A) be an SSM with § ={0, 1} =
X =Y, Al0} =1,A(1) =0, and

L]

mm:[

N ol
Nfr of
| IS

B N
N AN
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then A = [p(ss, X1)]s, s, 535, x OF,

2= (S NEA SN
wim bl N

N
o

Applying the resolution of Lemma 3.1, we get

1 0 01 [0 1 01
A:%O 1 +%1 0+%0 1 +—][1_'20 1
1 o 01 1 0 01
1 0 0 1 1 0 1

thus W = {w,, w,, w;, w,} and p = (4, 1, %, £z)- Encoding the symbols in W as
00, 01, 10, 11 respectively we get the transition table, Table I. Now using the

Table I Transition Table for the machine in Example 4.

w x (current) 5 (next) Output
00 0 0 0 1
00 0 1 1 0
00 1 0 0 1
00 1 1 0 0
01 0 0 1 1
01 0 1 0 0
01 1 0 1 1
01 1 1 1 0
10 0 0 1 1
10 0 1 1 0
10 1 0 0 1
10 1 1 1 0
11 0 0 1 1
11 0 1 1 0
11 1 0 1 1
11 1 1 1 0

Karanaugh map method or other methods we obtain a network which synthe-
sizes the given SSM, as shown in Figure 3.

b. Method 2
Given the machine M = (S, X, Y, {4(x)}, A), expand all matrices A(x) in the

form A(x) = 3, p~U;* using Lemma 3.1. Assuming that the above expansions
all have the same matrix U in the ith place for all i [i.e., the values p;*, but not
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| W  p(w)
-

- )
X — 7 : [ ./ 00 1/2
o1 /4
N
. + 10 1/6
w a
- "2
- | I
S=7 | S
Y
*~—
2 P e 3
"And" gate “or" gate Inverter Unit delay

Figure 3. Realization of transition Table L.

the matrices U.*, depend on x], the restriction on p;* is weakened to p,* > 0.
[This is possible because there are only a finite number of different matrices of
the form U;* and some zero-valued p;* may be added if necessary to meet the
requirements.] Let Z be an auxiliary alphabet with ¢ symbols, where ¢ =
max, [there exists x € X such that p,* 7= 0 in the expansion of A(x)] < (n — 1)~

We define the deterministic Moore-type sequential machine .# as follows:
M =(S,Z, Y,0,A), where S, Y, and A are the same as in M, Z is the auxil-
iary alphabet as specified above, and 4 is the function defined by

0, z) =8, if ui=1 (13)

where U, = [uf] [by construction, U,* = U, does not depend on x.] Finally,
let p(x) be an independent information source over Z such that the probability
of z, being emitted by p(x) is p?. Consider now Figure 4. The source box here
emits all sources p(x), each of them through a separate line. The I-logic is a
combinatorial gate whose output is that emitted by source p(x) if the X input
is x.

It is easily seen that the above diagram is a realization of M (the states of M
being identified with those of .#), for if the current state of .4 is s,, then its
next state is s; only if the input is z, and d(s,, z;) = s; or uf; = 1 [see Eq. (13)].
But the probability of the input being z, is p,*, depending on the input symbol
x of M. Therefore, pr(next state of # s;|current state of A s,) = 3, pu”u;,* =
a;;(x) by the construction of the matrices U,.
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Source

box

I logic

Input lines X

Machine Qutput lines Y
—————
M

Figure 4. Schematic representation of a network synthesizing an SSM according to

second procedure.

As in the preceding procedure, the above construction can be further sim-
plified by using Lemma 3.1 again and resolving, accordingly, the stochastic
matrix 4 whose rows are the distributions p(x). The resulting diagram will be

as in Figure 5.

Inputs X
E—

Source p(W inputs)
—_—

Combinatorial

network

Deterministic Y (outputs)

machine ——_—

M

Figure 5. Simplification of network in Figure 4.

Since the simplification follows the same course as in the preceding case, the
details are left to the reader.

Example 5: Let M be the same SSM as in Example 4. The second procedure

will be used.

A0) = § L‘)

1 0 0 1
A(I)ZF[O 1:|+0[1 OJ‘F?[

O}F[o
1 *

Joold gefs )
0 10 0 1
1 0], [0 T
1 0}”{0 1}

Thus p(0) = (4 4, 0,4) and p(1) = (3,0, ). Let 4 = | 5D}, then

A=

Nl

I 000
0 010

0 00
+3

1 0 0 O

Joo
:

(1)
]
0 1
o1

[u—

0
0
0
0
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Let Z = {z,, 2,, 23, 2.}, W = {w,, w,, w;, w,} and assigning z, - 00 — w,, z, —
0l —wyz; > 10 —wy, 2, > 11 — w,.

Table I Transition table for the machine in Example 5.

s s
w X z z (current)  (next) y
00 0 00 00 0 0 1
00 1 10 00 1 1 0
01 0 01 01 0 1 1
01 1 11 01 1 0 0
10 0 11 10 0 0 1
10 1 00 10 1 0 0
11 0 11 11 0 1 1
11 1 1 11 1 1 0
Combinatorial network Machine #

The combinatorial network and the machine .# are given in the transition
tables, Table II. The synthesis of the machine M is given in the network in
Figure 6.

P T ".
|
: | 1 W p(W)
|
w {+ | | oo 12
X -‘L ! 174
1
B 27 | ©
| I | 10 1/6
l |
l v } IR
|
| s |
| | f Y |
e X J
Combinatorial Machine 47

network

Figure 6. Realization of Transition Table IL

c. Comparison of Methods

The methods given above are obviously not exhaustive. Another alternative
with the SSM in its Mealy-type form is as follows: The matrices 4(y|x) are
arranged in the form of a single matrix
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Ayilxy) - A(pelx)

A = .
A(yllxm) Tt A(yklxm)
where Y =y,,...,y,and X = x|, ..., x,,. Aisstochastic and can be resolved
according to Lemma 3.1, after which the process is continued along the same
lines as in the original procedure (details are left to the reader).

In the deterministic case the most common measure of complexity of a ma-
chine is the number of its states; it is evident, however, from the above consid-
erations that other factors (such as the number of gates in the resulting network
or its type), should also be taken into consideration.

For example, the degree of simplicity of the network is governed not only by
the realization method used, but also by the assignments prescribed for the state
variables and inputs (both original and auxiliary). Still another likely factor is
the number of symbols in the auxiliary alphabet W appearing in all the above
methods as a random source with prescribed probabilities for each symbol. It
is easily seen that from this viewpoint the first method is preferable, since by it.
Lemma 3.1 is applied to a matrix 4 with |X| x |S| rows and |S| columns, so
that |W] < (JS| — 1)(JX] x |S|) + I, whereas by the second method the lemma
is first applied to the matrices A(x); since there are at most (|S| — 1)'S! deter-
ministic stochastic matrices, the auxiliary alphabet Z has at most that many
symbols, and the resulting matrix A has |X| rows and at most ({S| — 1)'S! col-
umns. Resolution of the resulting matrix A yields

W] < (S| — D' — DIX| + 1
a much higher bound than in the first case, which proves our claim.

EXERCISES

1. Given the SSM, M = (S5, X, Y, {4(x)}, A) with S = {s,, 5, 53}, X = {0, 1},
Y = {a, b},

530 30 %
A0 =0 i 3, AD=|t % 0
30} t 1 ¢

and A(s,) = A(s,) = b, A(s;) = a, give a synthesis of M using the first method.
2. As above, using the second method.

3. Prove that if {4} is a set of stochastic matrices and (p;) is a probabilistic
vector of dimension equal to the number of matrices in the set, then Y, p, 4, is
a stochastic matrix.

4. Let M, and M, be machines over the same input alphabet X = {x,, x,} and
output alphabet Y = {0, 1} respectively. Let the transition matrices be
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0 % 2 0 0 0
0 & % ERA
4 & 3 0 0 0
M%) =45 & 2| Mllx) = |sbs §55 v
4 0 3 Lo 3 0
0 1 i % 0 0 0 O
0 &+ 0 4% 1 0 0 }
MOx)=| T 7L M) =|7 X
0 £ 0 % $ 350
0 4 0 5 1 0 4
0 4 & & 0 0 0 O
0 1 0 1 1L 0 1 1
MOx)=| 7 AU AES
0 4 & 0 P03 g
0 & 0 ERUEE

Transform M, and M, into Moore-type machines and find the random distribu-
tion over W according to the second method. Show that although |S$™| <
IS, [0 > W),

5. Prove that if some of the input lines of a deterministic sequential machine
are induced by a random independent source, the resulting machine is an SSM.

6. Work out in detail the construction of the network in Figure 6 according
to the second method.

7. As above using the method described in Subsection 3,d.

4. Bibliographic Notes

Subsections 1 and 2 of Section A are based on the work of Carlyle (1961)
with additions and examples suggested by Rabin (1963), Zadeh (1963b), Starke
(1965) and Salomaa (1968). Subsection 3 is based in part on the work of Nieh
and Carlyle (1968), Cleave (1962) and Davis (1961). Some additions in this
section are new and the synthesis procedure suggested in Subsection 3d is due
to Carlyle (private communication). Further reference: Booth (1964, 1965,
1967), Gill (1962-b, 1963), Harrison (1965) Hartmanis and Stearns (1966),
McCluskey (1965), Sheng (1965), Sklansky and Kaplan (1963), Tsertsvadze
(1963), and Warfield (1965).
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B. STATE THEORY AND EQUIVALENCE

1. Set K and Matrix H¥

From this section on the machines to be considered are of the Mealy type
unless otherwise specified.

Definition 1.1: Given a machine M, K™ denotes the ordered infinite set

KM = (q™(A[2) - - 1™(plx) - - - nM(vlw) - - )
such that all vectors of the form #*(v|u) for all pairs (v, 1) are in the set and
the order is induced by some fixed lexicographic order on the pairs (v, u).
K™(m) denotes the ordered subset of K™ such that #™(v|u) € K™(m) implies
that I(v, u) << m and the order in K™(m) is the same as in K™. [K*] denotes
the [infinite] matrix whose ith column is the ith element of K™.

Let %(m) be the linear space spanned by vectors in K(m) (# denotes the
space spanned by all vectors in K™.) Then rank (i) < rank #(j) if i <},
and rank (m) < n = |S| for m = 0, 1,.... Furthermore, it is readily seen
that if () = %(i + 1) for some i, then F(() = F (i + jHforj=12,....
To prove this assertion, we observe that

ne Li+2)>n=2Yanwluw) and v, u)<i+2

>0 =Y a A(yelxInw|lw) and (v, ) <i+1

> = ; a, A(yilxi) ; b, n(vili;)
and
Wpth)<i (for FE)=FG+ 1)
so that
n= Zk] ; b, a, Ayl xi (Wl l1te)) = ; ; b, a; vyl ;)
and I(v},, u},) <i + 1. Thus, 7 € L(i + 1) = &(i) and the assertion follows.
The above considerations show that there exists an integer m such that
I = rank #(0) < rank #(1) < --- < rank ¥ (m) = rank FS(m + 1)
=rank ¥(m +2)=--- =rank ¥ <n

also implying that m <n — 1.
It is thus possible to find a set of linearly independent vectors in K¥(n — 1)
such that any vector in K™ is a linear combination of these vectors.

Definition 1.2: Let#,,. .. ,n,, be a set of vectors having the following properties:
1. #, is the vector n(|A).
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2. 1y, ..., ", are the first vectors in K™(in order of the vectors in it) which are
linearly independent and span the whole set.
The matrix H™ is defined as

H™ =[N, . - . » 1) = [A], i=1,...,n, j=1,...,.m<n
Thus, H™ is such that h, = 1, fori =1,2,...,n;0<h; <1 forall i and
Jj; the vectors #, are elements of K and linearly independent, and any vector
of the form #(v|u) is a linear combination of them; finally, the rank of H™ is
m< n.

In the sequel, when referring to the rank of a machine M, we refer to that
of its H¥ matrix.

Example 6: If the matrices of a single-input two-output machine M are

+ 0 % 040
A(p)[0 0 Of,  AM(p)=|0 1 ©
£ 0% 0 ¢ 0

then its H* matrix is

(=2 L

1
HY =1
1

wjw

Straightforward computation shows that by multiplying any of the matrices
A(y,) or A(y,) by any of the column vectors of H™ [which are a subset of
K™(1)], we have a new vector linearly dependent on the columns of H™. It
follows that #(1) = £ (2) (= &), which proves that the given matrix HY
has all the required properties.

EXERCISES

1. Construct a step-by-step algorithm for finding a matrix H™ for a given
machine M.

2. Find an H™ matrix for the machine whose matrices are

0 4 0] + 00 3
2 0 4 0 L0 0 }
Apl) =7 00 ob A= T 0 0t
9 9 K} k)
4 0 % 0 5 0 0 4
0 L 0 ¥ 0 0 0 O
0 00O I T
A(y|x,) = 04 0 éa A(yalxy) = 11100
0 ¢ 0 & lfr 2 Pz O
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3. Given a matrix H¥ = [h,;] such that h,;; = 1 for all i,0 < A, < 1, and all
its columns are linearly independent vectors, show that a machine M can be
constructed effectively such that the given matrix H is its H* matrix.

4. Find a machine M whose H™ matrix is

1

1

1

3
5. Let M be a machine and =z an initial distribution for M. Define the ordered
set of row vectors G = (A, A), ..., 7y, x), ..., &v,u),...), such that
all vectors of the form 7(v, u) for all pairs (v, 1) are in the set [if for some pair
(v, u) the vector #(v, u) is not defined, then set (v, u) = (A, ) for this input-
output pair], and the order is induced by fixed lexicographic order on the pairs
(v, u). Show that a matrix G**® = [gX] can be found effectively such that its
first row is 7(4, 4), 0 < g,; < 1 for all i and j, all its rows are linearly indepen-

dent vector elements of G, and any vector of the form (v, ) is a linear
combination of the rows of G,

HM =

S = e
S = A

el

6. Construct a step-by-step algorithm for finding a matrix G for a given
machine and a given initial distribution z.

7. Find the matrix G for the machine whose matrices are as in Exercise 2,
with distribution 7 = (4, 4, 4, 0).

2. Equivalence and Minimization of States

Definition 2.1: Let 7 and p be two initial distributions for a given machine. =
and p are called k-equivalent distributions if the functions p(v|u) and p,(v|u)
[see (7)] have the same values for all pairs (», %) such that /(v, ¥) < k. mand p
are called equivalent distributions if the functions p(v|«) and p,(»}u) have the
same values for all pairs (v, u). We are now able to prove the following theorem:

Theorem 2.1: Two distributions 7 and p for a given machine are equivalent if
and only if they are (n — 1)-equivalent, where » is the number of states of the
machine.

Proof: The “only if” part of the theorem is trivial. Assume now that the
condition of the theorem holds, i.e., p(v|u) = p,(v[u) for all pairs (v, u) with
I(v,u) << n — 1. This implies that nn(vju) = pn(v|u) for all pairs (v, u) with
I(v, u) < n — 1, so that tH™ = pH™. [The columns of H™ are, by construc-
tion, of the form n(v|u) with I(v, ) << n — 1.] Let (v, u) be any input-output
pair, then n(»|u) = > a;n, where the #'s are the columns of H™. It follows
that
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pvlu) = an(v|u) = n Y an, = X amn,
=Y apn = pY an = pnolu) =p,@k |

Corollary 2.2: Two initial vectors # and p for a given machine M are equiva-
lent if and only if zZHM™ = pH™.

Remark: An interesting geometrical interpretation of the above theorem and
corollary derives from the following considerations.
Let

10
H*=|1 1
U

for some machine M, and consider Figure 7. The set of all possible distribution

Figure 7. Geometrical interpretation of distribution equivalence.

vectors for M is represented by the simplex &,. Any point X on the simplex
satisfies the equation %7, = 1, x; > 0. Any point ¥ also satisfying the equation
%1, = ¢ for some real number ¢, must lie on the intersection of the simplex
with the plane x#, = c. The equivalence classes of initial distributions are
therefore represented by parallel segments in the simplex, and their number is
infinite.

Let M be a machine and let £(y|x) be the ith row (assumed to be a nonzero
row) in the matrix 4(y|x). Let &’ be a substochastic vector with the property
E(y|x)H™ = & H™, and let M’ be a machine derived from M by replacing the
row &(y|x) of A(y|x) with the row ¢’. We have the following:
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Theorem 2.3: The machines M and M’ as above are state-equivalent.

Proof: It suffices to prove that the equality
nM(lu) = 7™ () (14)
holds for any pair (v, ). If the pair of symbols (y, x) does not appear in (v, w),
then (14) holds trivially, for nothing is changed in the matrix M'(v|u). Assume
now that the pair of symbols (y, x) apears only once in (v, u), ie., (v, u) =
(v,yv,, u, xu;) where y does not appear in v, or », and x does not appear in u,
or u,. Then

nM(vlu) = nM(v,yvoluy xuy) = AM(v o) AM(Y)x)M (v2|u)
By the definition of M’, we have that AM(y|x)H™ = AM(y|x)H™, so that
AM(y|x)pM(v,|u,) = AM (y|x)n™(v,)u,) as n™(v,)u,) is a linear combination of
the column of H™. It follows that
1 (vlu) = AM(v,fu)AM (y|x)n¥ (v u,)
= AM(v,ju ) A (Y™ (v,fu,) = 1™ (v]u)

The theorem follows since the above argument is readily extended by induc-
tion to the general case. |

Theorem 2.4: Let M be an n-state machine such that two rows of H™ are
identical. Then an (n — 1)-state machine M* can be effectively constructed
such that M and M* are state-equivalent (see Definition A.2.2).

Proof: Let £ be a row in a matrix A(y|x) of M. Assume that the rows j and
k of H™ are identical, then the coefficients of &, and £, in the summation
Y& h,q=1,2,..., marealso idenfical. Replace the vector ¢ in A(y|x) with
a new vector &, such that &' = 0, &/ =&, + &,, and &/ = £, otherwise. Then,

E frhtq = f1h1q + -+ (fj =+ ék)hjq + e+ Ohkq
+ ct + émhmq = E fﬁhiq

with g =1,2,...,m or €H = {'H. The resulting machine M’ is therefore
state-equivalent to the original machine M by the previous theorem, but the
kth columns in all matrices of M’ are zero columns. Let M* be the system
derived from M’ by deleting all kth rows and kth columns in the matrices of
M. M* is clearly an (n — 1)-state machine, for deletion of the zero columns
of the matrices of M’ does not affect the relations >;,., >, a¥'(y|x) = 1;
moreover, M* is state-equivalent to M’ by the correspondence

M — M W and s oM fork#iFA]j
This follows from the fact that

M (wlu) = 5,1 (vlu) = 5™ (v|w)

[the jth and kth entries in any column of H™ are identical, hence this holds
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also for any vector of the form #™'(v[u)], and pf'(v|u) = pi!'(v|u) by construc-
tion. The theorem follows by the transitivity of state equivalence. |

Definition 2.2: A machine M is in reduced form if no two rows of H are
identical [i.e., no two of its states are equivalent]. The following corollary is a
direct consequence of Definition 2.2 and Theorem 2.4.

Corollary 2.5: Every machine M has a reduced-form state-equivalent machine.

Definition 2.3: An initiated stochastic sequential machine (ISSM) is an SSM
combined with a fixed initial distribution.

Definition 2.4: Two ISSMs (M, n) and (M*, n*) are k-equivalent if p,M(vju) =
P (v|u) for all pairs (v, u) with I(v, u) << k. They are equivalent if the above
equality holds for all pairs (v, u).

Definition 2.5: A state s; of an ISSM (M, m), is accessible if there exists an in-
put-output pair (v, u) [the pair (4, A) included] such that 7,(v|u) 7 O.

Definition 2.6: An ISSM is connected if all its states are accessible.

Theorem 2.6: If s, is an accessible state of an ISSM (M, m), then there exists an
input—output pair (v, «) with I(v, u) < |S| — 1 such that m(v|u) # 0.

Proof: If s, is accessible by an input-output pair (v, #) such that /(v, u) = m,
then there exists a sequence of states of length m + 1, s, S5, . . ., Sm.y Such that
s, corresponds to a nonzero entry in 7, s,,., = §;, and there is a positive proba-
bility of transition by the corresponding input-output pair from one state in the
sequence to the next. If m > |S| — 1, then the graph connecting that sequence
of states contains a loop which can be reduced to yield a shorter input-output
pair (v/, ') by which s, is accessible. Proceeding in this way, an input-output
pair (v, #) with I(v, u) < |S| — 1 can be found by which s, is accessible.

Remark: Tt follows from the above theorem that the set of accessible states
of a given ISSM (M, 7) is the set of states corresponding to nonzero entries in
all vectors n(v|u) where I(v, u) < |S| — 1. A practical method for determining
the accessible states of (M, 7) is thus available.

Theorem 2.7: Every ISSM has an equivalent connected ISSM.

Proof: We first observe that if s, is not an accessible state, then the jth entry
in 7 is necessarily zero, so that the vector 7’ derived from = by deleting that
entry is a stochastic vector. We note next that if s; is not accessible and, for
some pair (y, x), a,(y|x) > 0, then s, is not accessible either. Given an ISSM,
(M, ), let (M', n’) be the initiated machine such that:

a. 7' is derived from 7 by deleting all entries corresponding to nonaccessible

states.
b. The matrices of (M, n') are derived from the matrices of (M, ) by delet-
ing all rows and columns corresponding to nonaccessible states. It is clear that
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(M',n) is the required ISSM because, by the previous remarks, if a deleted
column has nonzero entries, then all rows corresponding to these entries are also
deleted, so that the resulting matrices have the property that Y. ,., M'(y|x)
is a stochastic matrix, as required. |

Definition 2.7: Let 4 and B be two square matrices of order r and s respectively.

The matrix
. A4 0
A4+ B=
N [o BJ

of order r + s is called their direct sum, and has the following properties:

a. If A and B are stochastic matrices, then so is 4 + B.
b. (4, + B4, + B,) = A, 4, + B, B, (provided the pairs 4, and A4,, B,
and B,, are each of the same order).

These properties are readily verified.
Definition 2.8: Let M = (S, X, Y, {4(y|x)}) and M’ = (S, X', Y, {A'(y[x)}) be
two SSMs. The machine M+ M = (S U S, X, Y, {A(y|x) + A(y|x)}) is
called their direct sum.
Theorem 2.7: Two ISSMs (M, n) and (M', ') are equivalent if and only if
they are (|S] + |S'| — 1)-equivalent.

Proof: The “only if” part of the theorem is trivial. Assume now that the

condition of the theorem holds. Let M* be the direct sum M + M’ and let p
and p’ be the (|S] + |S'|)-dimensional vectors

p:(nl"--,nlsl’O,---,O)a P, :(O,...,O,ﬂll,...,ﬂlsrll)
where
T=",..., W) and = (n/,..., 7))

Then it is readily seen that p,(v|u) = P,”(v|u) and p, ™ (v|u) = P, (v|u).
Therefore, assuming that (M, n) and (M, #') are (|S| + |S’| — 1)-equivalent,
we have that p,*'(v|ju) = p.* (v|w) = p,M(v|u) = p,™ (v|u) for all pairs (v, u)
with J(v, u) < |S| + |S'| — 1. Thus p and p’ are (|S| + |S'| — 1)-equivalent
distributions for M*. The theorem now follows, using Theorem 2.1, and bear-
ing in mind that M* has |S| + |S’| states. |

Notation: For a given machine M, %™ denotes the set of all functions
FM={pM:necP)

Definition 2.9: Two machine M and M’ are equivalent if #¥ = %™, In other
words, for every distribution 7 there is a distribution #n’ and vice versa such
that (M, n) and (M’, ') are equivalent ISSMs.
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Remarks

1. It is readily seen that % is closed under convex combinations. To show
this, we observe that if p = (p,) € £,, then

; /’iPni(vlu) = Z Pi(nlﬂ(”lu)) = Z p: ; nji”j(vlu)
= Z 2 i (vlu) = E P/, w|w) = p,(v|u)

where p;/ = ] p,n; and therefore p’ = (p;) € £,

2. By p(vlu) = Y, m,ps(v|u), we have that the set F ™ is the convex closure
of the set of functions {py,, ps,, - . . » Ps,} = F M. [A function of the form p,, will
be called an extremal function.]

3. In terms of the sets # M, state equivalence of two machines M and M’
signifies that # M = % ™', hence [by the previous remarks] state equivalence
implies equivalence. The converse, however, is not true, for the elements of
F M [or of F4M] need not be convexly independent. [A set is convexly in-
dependent if no element of the set is a convex combination of the other
elements].

4. The following two conditions, are equivalent for two machines M and M':
Q) FH=FM
b) FMcFW and F M FM
The proof is left to the reader.
Theorem 2.8: Let M be an n-state machine such that some row of H™ is a con-
vex combination of the other rows. Then there exists an (n — 1)-state machine
M’ equivalent to M.

Proof: Let hy,...,h, be the rows of H™, and assume that &, = Y., a;h;
(a)) € #,and a, = 0. Thus, conv(h,. .., h,) =conv(hy, ..., by, by, ..., h)
Let £ be any nonzero row vector in any matrix of M, then £/3 &, is a vector
in?,,sothat 3 ,(&,/> EDh; econv(hy, ..., h,) =convihy, ..., by, Byrs e e oy
h,). It follows that there exists a vector p € #,and p;, = 0 with >3; (£;/32; E)h;
= Y, p;h;. Thus, EHM = (3 &)p HM, and replacing the vectors ¢ in the
matrices of M with the corresponding vectors (3 &,)p, we have a state-equiva-
lent machine M (see Theorem 2.3) such that the ith columns in all its matrices
are zero columns. M and M’ are therefore equivalent machines (see Remark 3
above). Let (M’, n) be an ISSM derived from M’'. By the same argument as
above, we find that there exists a vector 7’ € &, with &/ = 0 such that (M’, x)
is equivalent to (M’, #'). Now the state s, for (M, n) is not accessible, hence
there exists an equivalent ISSM, (M*, n*) with (n — 1) states only, by Theorem
2.7. The theorem follows by the transitivity of equivalence.

Definition 2.10: A machine M is in minimal-state form, if the set of row vec-
tors in H™ is convexly independent.
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Corollary 2.9: Every machine M has an equivalent minimal-state from machine
M.

Example: Let M be a machine with one input and two output symbols, de-
fined by the matrices.

1 0 0 % %OOOAI
0 0 0O 1 0 0O
A = y A x) =

(rilx) 100 3 (y:lx) 000 0
0 0 % %—OOOJ

1 3

HM=10

1 1

1 3

The first and last rows of H™ are identical, hence the machine can be reduced
to the state-equivalent machine M’ [which is in reduced form] as described in
the text, with

100 100
A(nlx)=10 0 01, A(plx)=|1 0 0
100 000

1 3

HY =|1 0

11

The first row of H™ is a convex combination of the other two, so that M’ is
state-equivalent to M"/, with

0 % % 0 13
A'(yilx) =10 0 0f, A"(yslx)={0 % 4| H" =H™
0 3 3% 0 0 0

Now let 7 = (n, , n;) be any distribution for M”, then
n* =0n, 4+ in, n; 4+ 37,
has the property zH™” = n* H™", so that = and #* are equivalent vectors. But

the first state is not accessible in (M"', n*), hence M’ is equivalent to M* [a
connected and minimal-state form machine] with

0 0 L1
M*(y|x) = [1 1} M*(y,|x) = [g (2)]

2 7z
Remark: Given a reduced machine M, in order to find its minimal-state form
equivalent machine M’ one must be able to find the (unique) set of convexly
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independent [external] vectors among the row vectors of H*. This problem can
be solved by linear programming methods [e.g., Vajda (1961)]. Clearly, a vec-
tor 4, is a convex combination of the other row vectors of H™ if there exists
a solution to the following linear programming problem: Find a vector x =
(x1,...,x,)such that > .., x, = 1,x, = 0,x, >0 for all j and xH” = h™.
Some of the extremal rows of H™ can, however, be found by simpler methods
[see Exercises 7, 8, and 9 below].

EXERCISES

1. Find the reduced form and minimal-state form machine equivalent to the
one defined by the matrices

P+ 10 00 § 3
1 L 1 0 0 0 1 1
Apley={° T T L A= e
'6"6"6‘0 OOIZ
o A O 00 3 3

for the above ma-

N’

Find a distribution 7z, equivalent to the distribution ({4 § %
chine and such that # = (#, 7, #; n,) and n, = 7, = 0.

2. Construct an algorithm for finding the set of all nonaccessible states of a
given ISSM.

3. Prove the relations (a) and (b) after Definition 2.7.
4. Prove the assertion in Remark 4.

5. Let f,, ..., f. be functions. Prove that f; € conv(f,...,f;) implies that
fi € conv(fi, ..., fi1s fir1s - - - » f), unless f; is an extremal function.

6. Prove that the relation conv(.% s) = conv(Z ;*’) for two given minimal-
state form machine implies that # ¢ = £ M, with the following consequences:
a. All minimal-state form equivalent machines are state-equivalent and have
the same number of states.
b. If M and M’ are equivalent machines and M is minimal-state form, then
NEqMNE
7. Prove that if a row in some H™ has an entry which is maximal or minimal
in the corresponding column, then that row is extremal (i.e., is not a convex
combination of other rows).

8. Let d, be the value d, = 3, (h,;™)* for a given row A ina matrix HM.
Prove that the rows corresponding to the maximal d, values are extremal.

9. Let 4™ be an extremal row in a matrix H™, and let d;; be the value d;; =
S (B — hy)* where h; is some other row of H™. Prove that the rows A, cor-
responding to maximal d;; values are extremal.
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10. Find a set of extremal column vectors in the matrix ((H)" denotes the
transpose of H™).

111111
HY)' =10 § 3 % 3 %
1 1 1 1 3 1
2 4 3 4 4 3

11*. Let L be a linear space over the real numbers and a an arbitrary fixed
element of L. The set of elements {y:y = x + 4, x € L} is called a translate
of L or a flat. Prove that

a. A set of points in n-dimensional space, which is closed under convex com-
bination of its points, is a flat.

b. Let Z, be the flat (hyperplane) #,- ={x = (n, ..., ®,): > &, = 1}, and
M an n-state SSM. Define an equivalence relation over £, induced by M which
is right-invariant and such that &, is decomposed by this equivalence relation
into a cartesian product of two flats, the elements of the first flat being the
equivalence classes of the defined equivalence.

3. Covering Relations

Definition 3 1: Let M and M* be two SSMs. The machine M covers the ma-
chine M*(M > M*) if F¥ o %M,

Theorem 3.1: The following four conditions are equivalent:

a M>M.

b. There exists a stochastic matrix B such that By™(v|u) = n™"(v|u) for all
pairs (v, u) (i.e., BIKM] = [K*']).

¢. There exists a stochastic matrix B such that

BAM(ylx)n™(vju) = 4™ (y|x)Bn™(v|u)

for all pairs (v, «) and all pairs (y, x).

d. There exists a stochastic matrix B such that

BAM(y|x)HY = AM"(y|x)BH

Proof: (a) & (b): Assume that (a) holds. Then

Let #™°(v|u) be a vector in K*°, then
[ P8 (v]w) p(olw)
™= . |=|

Lpil, (v]u) Pt (v|u)
AOol) | [
= =] W = By el
el | 2
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where p¥, is the function in F equal to p™" in F ™ and B the matrix
whose rows are the vectors 7). Thus (a) implies (b). Assume now that (b) holds
and let p" be any function in # ™" Let & be the distribution # = #* B; then,
for all pairs (v, 1), we have

pY(wlw) = an™(vju) = 7* BnM(vlu) = n* n™ (v|u) = pif (vluw)

Thus F# =2 FM" and (b) implies (a).
(b) & (c): Assume that (b) holds, and consider Figure 8. It follows directly

M

"% (v|u) yIx) ™ (y vix u)
»*

2 (v]u) M" (y]x) - %y v o)

Figure 8. Mapping B from M to M*,

from this diagram that (b) implies (¢). We now prove by induction on the
length of pairs (v, u), that (c) implies (b). For /(v, u) = O the implication is
trivial, as both #™(A, A) and #™"(A, 1) have all their entries equal to 1, and
therefore for any stochastic matrix B of suitable dimention By™(4, 1) =
n™M’(A, A). Assuming that the equality Bp™(v|u) = #*’(vju) holds for some
pair (v, ) with (v, ¥) = k and (c), we have that

Br™(yvlxu) = BA(y|x)n™(v|u) = A™'(y|x)Bn™(v|u)
= A (yln™ (vlw) = 7™ (yv|xu)

as necessary. The implication is thus proved.

(¢) © (d): That (c) implies (d) is trivial, as the columns of H* are vectors
of the form #*(v|u). The converse is also obvious as any vector of the form
nM(vlu) is a linear combination of the columns of H™. |

Definition 3.2: Given two machines M > M*, J¥' is the matrix whose columns
are vectors in K™" which are related to the same input-output pairs as the col-
umns in H™.
Theorem 3.2: Let M > M’ be two machines such that rank M = rank M’, then
there exists a stochastic matrix B such that BH™ = H™". Furthermore, if
M) = Xon, a,nM(the nMs being the columns of H™) is a vector in K™ and
M (vlu) = 3m, bnM’ the corresponding vector in K™, then a, = b, for i =
1,2,...,m.

Proof: Let B be the matrix in condition (b) of Theorem 3.1. Then J** =
BH™. Denote the columns of H¥ by 7,, . . . , #,, and the corresponding columns
of JM* by n,*,...,n,*. Finally, let #¥(v|u) be any vector in K. Then
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el = 3 an (1s)
this implies that
1™ (vlu) = Bp¥(vlw) = 3, a, B, = 3 an* (16)

Thus any vector in K** is a linear combination of the columns of J¥* and
therefore, since M and M* have a common rank, rank J¥* = rank H*" = rank
H™, Furthermore, the columns in H™* must be columns in J** (in the same
order). If this is not true, then let #*"(v,|u,) be the first column in A" which
is not a column in JM*. The corresponding vector #¥(w,|4,) in K™ is, by defini-
tion, not in H™, hence it is a linear combination of vectors in H preceding
the vector 7™ (volu,) in K. This would imply by (16) that #*"(v,|,), a column
of H™®, is a linear combination of other columns of H*®, contrary to the pro-
perties of H**. Thus the columns of H™" are a subset of those of J¥*. Now
this subset cannot be proper, for rank H¥ = number of columns in HY =
number of columns in J¥* = rank J¥" = rank H*" = number of columns in
H™*, The second part of the theorem is an immediate consequence of the first
part and of relations (15) and (16) above. |

Theorem 3.3: Let M and M* be two equivalent SSMs with n and #* states re-
spuctively. Then rank M = rank M*, conv(h,™,..., h, ) = conv(h™', ...,
h,M")(where ™ and A" are the ith rows in H* and H™" respectively), and
there are stochastic matrices B and B* such that H¥" = BH™ and H* =
B*HM,

Proof: M = M* implies that M > M* and M* >> M. By Theorem 3.1, there
exist stochastic matrices B and B* such that #™"(v|u) = By™(v|u) and n™(vju) =
B*nM*(v|u) for all pairs (v, u). This implies that rank M* > rank M > rank
M*, or rank M* = rank M. By Theorem 3.2, H¥" = BH and H™ = B* H™,
signifying that every row of H™ is a convex combination of rows of H¥" and
vice versa, or, conv(h™, ..., h*) = conv(h ™", ..., kM) |

Theorem 3.4: Let M and M* be two state-equivalent machines with » and n*
states respectively. Then {h/™. ... B} ={h™,..., hM}

Proof: The entries in the ith row of H* are values of an extremal function
P M € F M for some input-output pairs (4, ), (v, &), . . ., (Vp_1, Um_1). AsS
M is state-equivalent to M*, it follows from Remark 3 on p. 26 that # M =
F M so that there exists an extremal function p, " € F ™ equal to p; ™.
The entries in the ith row of H are therefore equal to those of the jth row of
the matrix J*  whose columns are (A1), N (v,juy), . . ., P Wi |ths-1).
Now, state-equivalence implies equivalence and therefore, by the previous
theorem, J¥" = H™" so that there exists a row in H¥", the jth row, identical
with the ith row in H™. The proof is completed by reversing the argument. |}
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Theorem 3.5: Let M and M* be two state-equivalent and reduced machines
with »# and n* states respectively, then n = n*; the rows of H* are a permuta-
tion of the rows of H™"; and, if A(y|x) and 4*"(y|x) are corresponding ma-
trices of M and M* respectively, then AM(y|x)H™ = AM"(y|x)H™" up to a
permutation of rows.

Proof: 1t follows by definition that no two rows of H* and no two rows of
H™" are identical (the machines are reduced). By the previous theorem
M, ..., hM ={h™, ..., kY Combining these facts, we have that n =
n* and the ordered set of rows of H¥ is a permutation of the ordered corre-
sponding set of rows of H™". If the states of M* are properly ordered, then the
equality H¥ = H™’ holds and, as the machines are state-equivalent and the
equivalence is one-to-one, we have that n™(v|u) = 7*"(v|u) for all pairs (v, u).
By (5), AM'(y|x)HM" = AM"(y|x)H™'. The theorem is thus proved. [

Theorem 3.6: Let M and M* be two equivalent minimal state form machines
with »# and n* states respectively, then

a. n=n*

b. M is state-equivalent to M*.

c. The corresponding matrices 4™(y|x) and A™'(y|x) satisfy the relation
AM(y|x)HM = AM'(y|x)H™" up to a permutation of rows.

d. There exist permutation matrices B and B* such that H¥ = B* H™" and
H™ = BH™.

Proof: By Theorem 3.3, since M and M* are equivalent, we have that conv
(h™, ..., h») = conv(h™",..., h,¥"). By definition, points A",..., h,M
are the vertices of the polyhedron conv{h™, ..., h™} and points h™',...,
h,M" those of conv{h, ™", ..., h™}. As the set of vertices of a polyhedron is
uniquely determined by the polyhedron, we have that {n,™,..., n"}=
(h™, ..., hs). Mand M* being minimal-state form, they are also reduced-
form, so that all points in either set on both sides of the above equality are
distinct. Thus n = n* and M is state-equivalent to M*. Properties (¢) and (d)
now follow from the previous theorem. 1

Corollary 3.7: Let M and M* be two equivalent machines such that M isa
minimal-state form machine. Then n < n*.

Proof: The set {h,™, ..., h,M} is the unique set of vertices of the polyhedron
conv(h,™, . .., kM) = conv(h,™", ..., ), and the number of vertices of a
polyhedron is the smallest number of points such that their convex closure spans
the whole polyhedron. |

Remark: Compare the above theorem and corollary with Exercise 6 in the
previous section.

We now consider the uniqueness problem for reduced-form and minimal-state
form machines.
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Definition 3.3: If H™ is a matrix related to a machine M and £ is a row sub-
stochastic nonzero vector of suitable dimension, then A™({) is the point
/3 EH)HM in conv(hy, . .., h,). The vector & is simplicial, if k() is a point
on a face of conv(h,, ..., h,) which is a simplex.

Definition 3.4: Two machines M and M’ are isomorphic if they are equal up to
a permutation of states.

Theorem 3.8: Let M be a reduced-form machine. There exists a reduced form
machine M* which is state-equivalent but not isomorphic to M if and only if
there exists a row &(y|x) in a matrix 4¥(y|x) which is not simplicial.

Proof: Assume first that all the rows in the matrices AM(y|x) are simplicial.
If M* is reduced and state-equivalent to M, then by Theorem 3.5, A*(y|x)H™ =
AM'(y|x)H™" for all pairs (y, x) up to a proper rearrangement of states. Since
the rows of AM(y|x) are simplicial, this is possible only if AM(y|x) = A*"(y|x),
for an interior point of a simplex has a unique representation as a combination
of its vertices. Thus M is isomorphic to M*. Assume now that there is a row
&(y|x) in a matrix 4*(y|x) which is not simplicial. This means that A(&(y|x)) =
> ok, where the A, corresponding to nonzero coefficients @, are not a simplex.
This implies, by a classical theorem on convex bodies (see Exercise 5 at the end
of this section), that there exists a set of coefficients (f§;) not identical to (),
such that the combination Y] .4, is convex and equals )] &,/4. Thus there
exists a substochastic vector p not identical to &(y|x) and such that E(y|x)H™ =
pH™. Let M* be a machine derived from M by replacing the vector &(y|x) in
A(y|x) with the vector p. By Theorem 2.3, M and M* are state-equivalent, but
M* is not isomorphic to M by construction. |

Assume now that two equivalent machines M and M* are in minimal-state
form. Then they are also in reduced form and state-equivalent [Theorem 3.6].
This observation leads to the following corollary.

Corollary 3.9: Let M be a minimal-state form machine. There exists a minimal
state form machine M* which is equivalent but not isomorphic to M if and
only if there exists a row &(y|x), in a matrix A(y|x) of M, which is not simplicial.

It follows from the above theorem and corollary that the uniqueness of the
reduced or minimal-state form of a machine M is conditional on the nature of
the points A(&(y|x)), where £(y|x) is a row in a matrix 4A¥(y|x). To find the
nature of these points, we must be able to extract from the set of points
(™, ...,h™) (denoted by ¥ throughout this subsection) all subsets W such
that conv(W) is a face of (V). This done, we have to decide whether the faces
conv( W) are simplexes or not. A decision procedure for these questions is based
on a theorem stated below. [The reader is referred to Grunbaum (1968) for
proof of the first part of the theorem.]

Let M and H™ be a machine and its corresponding H matrix, assumed to be
of dimension n x m. With H™ we associate a new matrix H™ such that the
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columns of A* form a basis for the null-space of the space spanned by the
columns of H™. Clearly A™ is an n x (n — m) matrix. Let ¥ be the set of
rows of H™ [considered as points in (n — m)-space]. Let N' = (i}, ..., i;) be
a subset of the set of integers N = (1, ..., n). V(N') denotes the set V(N') =
(hy ..., k) and similarly V(N') = (h,,..., k), where V = (h,,...,h,).
Finally, V' — W stands for the set V(N — N') where W = V(N').

Definition 3.5: The set of points conv(W) = conv(¥(N')) is a coface of conv
(V) if and only if conv(V — W) is a face of conv(V'). [We shall say, alterna-
tively, that W is a coface of V']

Theorem 3.9: W = V(N') is a coface of V if and only if either W = ¢ or 0 is
in the relative interior of ¥(N'). [The whole polyhedron is considered as a face
of itself.] A face V(N') = W of V is a simplex if and only if the set of its ver-
tices is linearly independent.

Remark: 1t is clear that the criteria used in this theorem are decidable and
effectively checkable by straightforward linear programming methods. Note
also that the second part of the theorem is a trivial consequence of the
definitions.

EXERCISES

1. Let M be a reduced machine such that all entries in its matrices are either
0 or 1 (i.e., M is deterministic). Prove that M is also in minimal-state form.

2. Prove: If M is a reduced deterministic SSM, then no SSM M* such that
M* > M has fewer states than M.

3. Prove: Let M and M* be two state-equivalent machines such that the map-
ping between the states of M and those of M* is one-to-one, then for every pair
(y, x), AM(y|x)HM = A (y|x)H™, and AM'(y|x)H™" = AM(y|x)H™" up to a
permutation of rows.

4. Prove: M* > M if and only if F M 2 F.

5. The following is Radon’s classical theorem on convex bodies:

Theorem: Each set of # + 2 or more points in n-dimensional space can be sub-
divided into two disjoint sets whose convex closures have a common point.

On the basis of this theorem, prove that for any row &(y|x) in a matrix
A(y|x) which is not simplicial, there exists a substochastic vector not identical
to &(y|x), with A(E(yx)) = h(p).

6. Prove: Let M be a machine. Construction of a reduced form by merging
equivalent states yields resultant machines which may be nonisomorphic only
if there exists two rows &(y|x) %= €,(y|x) in a matrix A(y|x) which are not
simplicial and such that A(&(y|x)) = A({(y|x)) and the states s; and s, are
equivalent.

7. Prove: Let M be a machine. Construction of a minimal-state form equiva-
lent machine yields resultant machines which may be nonisomorphic only if
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there are two rows &,(p|x) %= &,(y]x) in a matrix A(y|x) which are not simplicial
and such that A(&(y|x)) = A& (y]x)), the states s, and s, are equivalent and
h(= h;) is a vertex of conv(h,, ..., h,).

Note: Is “A, is a vertex of conv(h,, . .., h,)” a necessary condition? Explain.
8. Let H™ be the matrix

1 3 3 %
1 30 3
H*=|1 0 0 }
1 0 % 3
1 0 0 1
Find the faces of conv(h,, ..., hs) for the above matrix, and also which faces

are simplexes.
9. Consider the following:

Definition: A machine M is observer /state-calculable if there exists a function
f:S x X x Y — Ssuchthata,(y|x) = 0ifs; # f(s;, x, y). Accordingly, such
a machine has at most one nonzero element in each row of its matrices. What
corollaries derive from Theorem 3.8 and Corollary 3.9 when applied to it?

10. Prove that the vertices of a polyhedron are uniquely determined by the
polyhedron.

11. Prove that any machine of rank 2 has an equivalent two-state, minimal-
state form, machine.

12. Prove that the covering relation is transitive.

4. Decision Problems

Theorem 4.1: Let M > M* be two machines, and let B be any stochastic matrix
such that BH™ = J™*, Then Byp™(vlu) = n™ (vju) for all pairs (v, u).

Proof: By Theorem 3.1 (M > M*) there exists a stochastic matrix B’ such
that B'n™(vju) = n*"(v|u), in particular B’ H* = J™', Thus B H™ = J*" =
BHM, so that the rows of B considered as distributions for M are equivalent to
the corresponding rows of B'. It follows that Bn™(v|u) = B’ n™(v|lu) = n™ (v|u)
for all pairs (v, u), and the theorem is proved. |
Corollary 4.2: Let M and M* be machines. If for some stochastic matrix B,
such that BH™ = J*', the condition BAM(y|x)H™ = A™'(y|x)BH™ does not
hold for all pairs (y, x), then M = M’

Proof: Tt is implicit in the proof of Theorem 3.1 that the matrix B satisfying
the relation (b) satisfies also the relation (d). Using the previous theorem, we
conclude that if M > M* and BH™ = J¥', then B must satisfy the relation
(b) in Theorem 3.1. The corollary is thus proved. |
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Corollary 4.3: Let M and M* be machines. M > M* if and only if there exists
a stochastic matrix B satisfying the conditions BH™ = J*", and for any such
B the condition (d) of Theorem 3.1 is satisfied.

Corollary 4.4: Given two machines M and M*, it is decidable whether M >
M*,

Proof: There exist algorithms for finding the matrices H™ and J*". Using
the preceding corollary, we see that if a stochastic matrix B such that BHM =
JM* does not exist, then M 3> M, and this question can be answered with the
aid of linear programming methods. If such a B does exist, it is again obtainable
by linear programming methods. Finally, with B found, if and only if the rela-
tion (d) in Theorem 3.1 holds for it, then M > M*. The corollary is thus
proved. ]

Corollary 4.5: Given two machines M and M*, it is decidable whether M =
M*,
Proof: M = M* if and only if M > M* and M* > M. |

EXERCISES
1. Given two machines M and M*, formulate a decision procedure for finding
whether M > M* based on Theorem 2.7.

2. Given two machines M and M*, formulate a decision procedure for finding
whether M = M*, based on the fact that M = M* implies that rank M =
rank M*, on Theorem 3.2, and on Corollary 4.3.

3. Let M and M* be the machines whose defining matrices are

£ 1 0] o 1 0
A0 =& & 0| A1) =0 § O
L0 0 0] 0 1 0
(0 0 07 [+ 0 %
AMOID =10 & 5|, AU =|d&% 0 &
0 3 % L+ 0 %
(s & %] EREEE 1
A0 =% & % AM(110)=|0 0 O
L0 0 0] LT % 1l
0 0 07 1 0 37
A=+ & % A1) =10 0 O
l¢ s 15 Lz 0 %]
Check for M > M* and M* > M.
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5. Minimization of States by Covering, Problem I

In the preceding section, we have seen that any machine can be reduced to an
equivalent reduced-form or minimal-state-form machine. We now consider
further reduction of the number of states of a minimal-state-form machine.
The following problems are considered:

Problem I: Find an n*-state machineg M* such that M* > M and n* < n.

Problem II: Find an n*-state machine M* such that M > M* and n* < n.

Problem 11I: Let (M, 7) be an initiated machine; find an initiated machine
(M*, n*) such that (M, n) = (M*, n*) and n* < n.

A solution to Problem I yields a machine capable of realizing more functions
than the original and with fewer states, and a solution to Problem II a machine
less general than the original and again with fewer states. [The need for con-
sidering the latter problem is due to the fact that there are cases in which it
alone has a solution.] In Problem III we seek a minimal-state realization of a
particular function defined by a given machine.

We have proved in Section 3 [Theorem 3.1] that M* > M holds for two
machines M* and M, if and only if there exists a stochastic matrix B* such
that

B*n™*(vlu) = nM(vlu)  for all pairs (v, u) (17)
or, equivalently, such that
B* AM'(y|x)HM" = AM(y|x)B* HM" (18)

If M is given and an answer to Problem I sought for it without additional in-
formation on M*, (17) or (18) are of little use, as the matrix H™" is not known.
On the other hand, one may begin the search for a solution by assuming that
rank M* = rank M. If this is the case, then using Theorem 3.2, we know that
a matrix B* satisfying (17) must also satisfy B* HM" = H™. Since only H™ is
given, one may begin with any H¥" matrix such that

conv(h¥", ..., k¥) 2 (h™,...,h,¥) and n* <n (19)

[since B* is stochastic, (19) is necessary], and try to reconstruct M* according
to (18). The following algorithm ensues:

Step 1: Assume rank M = rank M*, and find any matrix H*" satisfying (19).
Step 2: Find a matrix B* satisfying
B*HM®' = H™ (20)

Step 3: Solve (18) for 4M*(y|x), subject to the condition that the matrices
AM’(y|x) be nonnegative.
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If all steps prove effective, the algorithm yields a solution to Problem I. In
some other cases it may provide a definite negative answer as to the existence
of a solution. Unfortunately, it has many shortcomings in the general case, and
these are considered in the following comments on its three steps.

Step 1: The equality rank M* = rank M has not been proved to be a neces-
sary assumption. In other words failure to find a solution to Problem I under
this assumption does not mean that no solution exists. On the other hand, no
counterexample has been found to-date for proving that the situation M* > M,
n* < n,rank M* > rank M, and no M* >> M with n* < nand such that rank
M* = rank M may occur, but here no method is available for finding a cover-
ing machine M*. There is, however, at least one case which necessitates the
above assumption, namely that of rank M = n — 1 [see Exercise 1 in this
section].

Still another shortcoming of the first step is that it involves another problem
to which no general solution is known (although solutions are available for some
particular cases), namely: Given a polyhedron within the positive unit cube,
find another polyhedron within the cube with fewer vertices and covering the
given polyhedron.

Step 2: With a matrix H™" assumed, there may exist an infinity of matrices
B* satisfying (20), obtainable by linear-algebra methods, but we need not check
all of them. To ascertain whether the assumed H™" actually leads to a covering
machine as required, it suffices to check a single B* satisfying (20), and if step
3 fails here, this signifies that the assumed H™" is unsuitable. This follows from
Corollary 4.2 and Theorem 3.2. [The reader is advised to attempt a detailed
proof.]

Step 3: Under the assumption that rank M = rank M*, the matrix B* found
in Step 2 is a transformation which perserves the rank of the row space of H*"
and thus has a (nonstochastic) left inverse B such that BB* H®" = H". Mul-
tiplying both sides of (18) by B, we have BB* A" (y|x)H™" = BAM(y|x)B*H™".
Thus one can write the matrix BB* in the form BB* = I 4+ N, where I is the
n*-dimensional unity matrix and NHM" = (. Let 5 be any column vector which
is a linear combination of the columns of H*", then Ny = 0. However, since
all columns of the matrix 4™°(y|x)H™" are linear combinations of the columns
of HY*, BB* AM*' H™' = (I + N)AM ' HM" = AM" H™" and the following equa-
tion results

AM (y|x)H™" = BAM(y|x)B* H"' (21

Solving Eq. (21) for A™"(y|x) [all other matrices are known], subject to the
restriction that AM'(y|x) are nonnegative matrices, provides the answer to our
problem. The system (21), subject to the above restriction is readily reduced
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to a set of linear programming problems. Failure to find a nonnegative solution
to (21) indicates that the chosen matrix H™" is unsuitable and a fresh start is
called for.

It is thus seen that the above three step procedure is not an algorithm in the
ordinary sense, for even in the case where the assumption that rank M = rank
M* is justified there still may be an infinity of H¥" matrices satisfying (19)
which may serve as starting point for Step 1.

Example 7: Let M be a five state machine {X = {0, 1}, Y = {0, 1, 2]]

0 L 0 0 0] [0 0 0 O O]
0 1 000 0 00 00
A0|0)=|0 0 0 0 0}, A1j0)y=|(0 1+ 0 1 O
00000 010 % O
(10 0 0 0 O] 10 0 0 0 0
0 0 0 1 O] L 0 0 0 0]
0 00 % O 0 0000
AR2I0)={0 0 0 1 O AQ1)=|0 0 0 0 O
000 %O 10 000
10 0 0 0 1] 10 0 0 0 0]
0 0 0 0 O] FO 0 L 0 07
1 01 00 00 L 00O
AQD) =)+ 0 1+ 0 Oy A2I1)=|0 0 3 0 O
000 00 00 4 00
10 0 0 0 O] (0 £ 0 0 3|
An H™ matrix for this machine is

1 3 3 3] A

1 30 3| A

HY=|1 0 0 L[| h

1 0 % 3| A

1 0 0 1] hs

As the first coordinate of the A;s is always 1, one may use a three-dimensional
subspace (again with first coordinate 1). The geometrical representation is given
in Figure 9.

Since rank M = 4 = n — 1, we have here that any covering machine M*
with fewer states has the same rank (see Exercise 1, Section 5) and four states.
The figure shows that the only possible choice, in this case, for H¥" is
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Figure 9. Geometrical interpretation of HM,
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and the matrix B* satisfying (20)

3
3
B*=|0
0
0

1 0 4] h*
0 0 1| h*
0 1 1| h*
0 0 1| h*
0 4 0
100
100
¥ 0
00 1

Let us now try to solve (18) for 4*°(1]0), replacing all other matrices in that
equation with the above ones. This yields (B* HM" = H™)

¥+ 0 30
1100
0 1 0 0|4 (1|0)H™ =
04 4+ 0
000 1

0000 O[1 &+ 4 4
0000 O[[I 2 0%
012041 0|1 00}
040 3% Off[1 0% %
0000 O0Jl1 001
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The first, second, and fifth rows on the right-hand side are zero rows. As for
the left-hand side, assuming that a nonnegative matrix 4*°(1}0) satisfying the
above equation exists, it is seen that the first and third rows of A°(1|0)H™"
are zero rows [contributing to formation of the first row on the right-hand side];
the first and second rows of 4™"(1|0)H™" must be zero rows [contributing to
the formation of the second row on the right-hand side]; finally the fourth row
of AM"(1|0)H™" is a zero row [being identical to the fifth row on the right-hand
side]. Thus all rows of A™°(1|0)H™" must be zero rows, but this is impossible
as there are nonzero rows on the right-hand side. The conclusion is that there
is no machine M* convering M with less than five states, although rank M =4.

Example 8: Let M be a four state machine [X = ¥ = {0, 1}],

110 0] T 0 1 0]
0 0 0O 1 0 1 0
A0 =, , o b A= T
T ¥ 13 B
4 1 0 0] 4 0 4 0]
0 0 0 0] M0 1 0 .47
0 0 &+ 1 0o L 0 4
A(0]1) = AL A= 7
00 % 1 01 0 %
10 0 & 3 0 ¢ 0 4]
and H™ matrix for this M is

1 § 07 A

HMZIO% h,

1 3 §| b

1 § 2| h

Asrank M = 3 = n — 1, a covering machine M* with fewer states must have
the same rank and three states. The geometrical representation of this H™ is
shown in Figure 10, and it is seen that the only possible choice for H*" is

1 £ 0
H¥ =|1 0 %
1 1 1
Using this H¥', two possible matrices B* and B are found as
1 00
01 0 1 0 00O
B* = i B=10 1 00
: 0 %
0 —1 0 2
0 7 %

Using these matrices and (21) the machine M* is found
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h3

hy = h; hy

h, = hy
Figuare 10. lustration to Example 8.

4 4 0] $ 0 4]
AMO0) =0 0 0], AM(0)=|2 0 %
4+ 1 0 0 0 0
0 0 0] 0 & 4
MO =3 & 1) AAD=)0 § }
+ & ] 10 0 0]

By construction, M* > M, and M* has only three states.

EXERCISES

1. Let M* > M be machines with »* and # states respectively, and such that
n* < n. Prove that rank M < rank M* < n, hence rank M = n — | implies
rank M = rank M*.
2. Let M* > M be as in Exercise 1, let m* and m be their respective ranks and
B* the matrix satisfying (17) for these machines. Prove that

a. m<<m*<<m-+ n* — rank B* << n* < n, hence if rank B* = n*, then
m* = m.

b. m <rank B* < m + n* — m < n*.
Hint: Use Sylvester’s inequalities and (17).
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OPEN PROBLEMS

a. Answer the following decision problem, or prove that it is not decidable:

Given a machine M, does there exist a machine M* with fewer states than
M and such that M* > M?

b. If the problem under (a) is decidable, then construct a finite algorithm for
finding a machine M* > M with [SM*| < |S¥|, whenever such a machine M*
exists.

c¢. Construct an algorithm for finding all solutions to the following problem:

Given two convex polyhedra ¥, and V, such that V, covers V; [i.e., the ver-
tices of ¥V, are convex combinations of those of V], find a third polyhedron V,
with a minimal number of vertices, which covers V, and is covered by V.

6. Minimization of States by Covering—Problem II

This section deals with the problem of finding a machine M* covered by a
given machine M and with fewer states.
Replacing M* with M in (18), we have

BAM(y|x)H™ = A™'(y|x)BH™ (22)

Since M is given and so are H™ and A*(y|x), Problem II appears to be simpler
in the sense that (22) can be used without any a priori assumption as to the
rank of M*. Thus one can assume any stochastic matrix B having fewer rows
than columns and try to solve (22) in terms of 4*’(y|x) [for all pairs (y, x)]
subject to the restriction that the matrices 4*"(y|x) be nonnegative.

If no solution exists for a given B, another is assumed and so on. The draw-
back here is that their number is infinite, and no means has been found to date
for solving the problem [or deciding that no solution exists] on the basis of a
finite number of checks.

Definition 6.1: If H™ is the matrix H associated with a machine M and A any
nonnegative matrix of suitable dimension, then A*(4) is the set of all nonzero
vectors of the form A™(A;), A; denoting the ith row of A4 [see Definition 3.3].
The following theorem is a geometrical interpretation of (22), enabling us to
check whether or not a chosen matrix B provides a solution to our problem.

Theorem 6.1: Let M be a machine. There exists a machine M* << M with
n* < n states if and only if there exists a stochastic n* X » matrix B such that

(U) hM(BAM(y|x)) = conv h™(B) (23)

A machine M* as above can be constructed effectively if a matrix B satisfying
(23) is given,
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Proof: Assume first that M > M* with n* < n. Then (22) is satisfied by
some n* X n stochastic matrix. Let & = (§,,...,¢,) be any nonzero row in
A (y|x) and { = ({,, . . . , {,) the corresponding row of BA¥(y|x) on the left-
hand side of (22). All entries in the first column of H are 1 and, since B isa
stochastic matrix, so are all entries in the first column of BH™, Thus {H™ =

¢BHY = Z {i= Z ¢ (C/Z §) H = (6/2 &) BH™.

Now &/ &, is a probabilistic vector, hence (£/3 &)BH™ is a convex com-
bination of the rows of BH™, or (¢{/> &,)BH™ < conv h(B). On the other
hand, (/3 {;) H= k() by definition, so that U, ,, ((BAY(y|x)) < conv h(B).

Assume now that there exists an n* X n stochastic matrix B satisfying (23);
then any row vector in the left-hand side of (23) is a convex combination of
the points'in #(B). Those vectors [on the left-hand side] are of the form af H™,
where & is a normalizing constant and { is a row in a matrix BAM(y|x) for some
pair (y, x). We thus have

alHM = gBH™ 24)
where 7 is a stochastic vector.

It is readily seen that (22) is satisfied if the matrices A™"(y|x) are defined as
follows:

a. If a row in BAM(y|x) is a zero row, then so is the corresponding row in
A (y|x).

b. Let { be a nonzero row in BAM(y|x), then the corresponding row in
AM'(y|x) is (1/a)m, where 7 and & are as in (24) the theorem is thus
proved. |

Corollary 6.2: Let M be an n-state machine of rank m. Let h/*,...,h,.* be a
set of n* < n points in m-dimensional space, such that

U AM(AM(y|x)) < conv(h*,. .., hs*) < conv(hy, ..., h,) (25)
(7, x)
then there exists an n*-state machine M* < M and M* can be effectively con-
structed if the points &,*, ..., h,* are given.
Proof: Let B be the stochastic n* X n matrix such that
h*
BH" =| -
h,*
Since conv(h,, ..., h,*) = conv(hy, ..., h,), B can be found effectively. For
any stochastic matrix B, it is true that
U BM(BAM(y|x)) = conv( S hM(A4M(y|x))
&, %) , X

so that, for the above B we have
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U AM(BA(y|x)) = conv( U AM(AM(y|x))
0, x) @, x)
< conv(h,*, ..., h,.*) = conv hM(B)

by the definition of B.

Equation (23) of Theorem 6.1 is thus verified for the above matrix B, and
the corollary follows.

A particular case of the above corollary would be when the points (#,*, . ..,
h,.*) are a subset of the points (%, . . ., 4,). In this case B would be a degen-
erate stochastic matrix. We therefore also have the following:

Corollary 6.3: Let M be an n-state machine. If there exists a subset (4,*,. ..,
h,.*) of the set of points (h,, ..., A,) such that

U) h™(AM(y|x)) = conv(h,*,. .., h,.*) (26)
x
then an n*-state machine M* < M can be constructed effectively.

The above corollaries may help in solving our problem in some particular
cases. On the other hand, the following remarks are in order:

1. The conditions specified in the corollaries are only sufficient conditions,
and a solution to the covering problem may exist even if the conditions do not
hold for a given machine (see Exercise 1 at the end of this section).

2. While the conditions of Corollary 6.3 are decidable (prove this fact), this
is not known to be true for those of Corollary 6.2. In fact the latter involve
the unsolved problem mentioned on p. 38.

Example 8 (continued)

We shall show, using a procedure based on Theorem 6.1, that there exists no
machine M* < M with n* < 4 states, where M is the machine in Example 8.
This will show that the second covering problem is nontrivial in the sense that
a solution is not always available.

We first arrange the set U, ,, #(AM(y|x)) in tabular form (Table III) where
81, . . ., 54 are the states of M, and 4,, ..., h, the rows of H™; if a row corre-

Table IIT Distribution of the set U, »y AM(AM(y|x)) according to states and matrices in

{AM(y|x)}
T hM(4M(0]0)) hM(AM(1]0)) hM(A4M)0]1)) hM(AM(1|1))
§y 3 + By Ay + h3) 0 NCREN!
5, 0 3y + hy) (s + By $(hy + hy)
53 3y + hy) Ay + hy) (s + k) Ay + hy)

Sy (B + ) 1(hy + hy) +(h; + hy) 1By + By
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sponding to s; in some matrix 4M(y|x) is a zero row, then the corresponding
entry in the table is zero. Let B be any stochastic matrix with m <{ 3 rows.
The table T, corresponding to the set U, ) #¥(BA¥(y|x)), has only m rows.
A nonzero entry in a column of 77 will be a convex combination of the nonzero
entries in the corresponding column of 7. [This follows from the definitions.]
Since all nonzero entries in a column of T are identical, any convex combina-
tion of them results in an entry having the same value as the combined entries.
We shall consider two cases:

a. The matrix B [which has m <C 3 rows] has nonzero entries in two, three,
or all of its columns. The entries in the rows of T' are, in this case, convex
combinations of the corresponding entries in at least two rows of T, hence, T’
has nonzero entries in all its columns, which are identical to the nonzero entries
in the corresponding columns of 7. This implies that

| U AM(BAM(y|x))| = number of different nonzero entries in T’
x)
== number of different nonzero entries in T

= | U BAM(31))

On the other hand, since B has m << 3 rows, we have that the set 2¥(B) has
at most three different points. It is seen in Figure 10, where the points in the

set U, ,, hM(AM(y|x)) are denoted by u;, . . ., u,, that (23) cannot be satisfied,
since the set u,, . . . , 4, cannot be covered by a convex closure of three points
only, inside conv(h,, ..., h,).

b. If the matrix B has nonzero entries in one column only, then the table
T’ has nonzero entries in at least three columns. In this case the set
U, B¥(BAM(y|x)) contains three of the four points u,, ..., u, at least. On
the other hand, the set Uy, ,, h¥(BA™(y|x)) contains only one point, since B
has only one nonzero column, and (23) cannot be satisfied in this case either.

Example 9: Let M be the four-state machine (X = ¥ = {0, 1})

s & & O] [0 & 1 0]
3 3 3 0 0 1 1 0
A0 = T 7F o A(10) = o b o
14 8 B 4 1
0 0 0 0] 0 + & 0]
0 0 0 0] L 0 0 47
0 1 1 1 1 0 0 1
A(O[1) = PPt aam =] :
0 % % % $§ 00 %
0 3§ & i Lt 0 0 %]

A matrix H™ for this machine is
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HY =

—_ = =

NI

N

0

oo N~ O

'

47

Figure 11 shows the sets (&,,..., k) and Uy, ,, AM(AM(y[x)) = (uy, . . ., uy).

h3 = hq

Figure 11. Illustration to Example 9.

The reader is advised to compute these points and verify that their position in
the figure is correct. It is seen that the choice h* = h,, i,* = u,, h,* = h,

satisfies the condition of Corollary 6.2.
The resulting matrix B is

&
I
O =
N O

0 0

(=]

o

0

0
0
1

and the resulting machine M* is [The reader is advised to verify the results by

actual computation. ]

AM(0[0) =

AM(0|1) =

)

0

A(1j0) = | 0
0
K

A1) = | £
| %

[ I S
(=]

© © O
.g[...ﬂmw]»-
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EXERCISES

Chapter 1. Stochastic Sequential Machines

1. Show that there exists a machine M* << M with n* = 4, where M is the
machine in Example 7. Hint: Use the matrix

B =

1
0

00
000

0 00
0
1

-0 O
[ = < |

0

Note: Show that the machine M in Example 7 with the matrix B above, does

not satisfy the condition of Corollary 6.2.

2. Is the configuration M* << M < M* with n* < n > n* possible? Hint:
Solve covering Problem I for the machine in Example 9.

3. Let M be the (deterministic) four-state machine [X = {0, 1,2}, Y = {0, 1}]

r1
1
4000 =1 |
L0
0
0
A1]0) =
(110) 0
1
1
0
A02) =
(012) 0
o

0

S O © O O © O O o ©

0

0

O O O ©C O O O o o O

0

0
0
0

S O O O O

[ e N

0

-

]

’

i

>

A(O[1) =

A1) =

A(2) =

1

0

O O O O O © O O O O

0

S © © O O O © o O o o

0

0

a. Find an H™ for this machine, and show that it is a reduced-form (and

minimal state form) machine.

b. Show that there exists an n*-state machine M* << M with n* < n states

[compare Exercise 2, Section 3].

4. Let M be a machine [X = {0, 1}, Y = {0, 1, 2}]

0

o=

A(0[0) =

S © o O
S O O -

S O O O O

0

S O O O

0

o O © O

i

A(1]0) =

O O O O O

S O O O ©

S O O © O

N O O

[T S

S O O O O
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0.0 0 0 3 + 0000
0000 } 00000
A2I0)=[0 0 0 0 4|, A©O1=|{0 0 0 0 O
0000 } £} 0000
4 0 4 0 0] 00000
[0 0 0 0 0]
0040
AD=1[0 0 & 0 O}  AQD) = 4J0)
00000
Loooooj

a. Find a matrix H™ for this machine and show that it is minimal-state form,
strongly connected, has equivalent strongly connected nonisomorphic ma-
chines, and its rank is smaller than its number of states.

b. Show that no machine M* exists with less than five states and such that
M* > Mor M* < M.

5. Consider the following.

Definition: A sequential pseudostochastic machine is a quadruple M =
(S, X, Y, {4(y|x)}) where all elements in the quadruple are as in Definition 1.1,
but the entries in the matrices 4(y|x) may be negative, positive, or zero.

a. Prove the following

Theorem: Let M be an n-state machine of rank m << n. There exists a pseudo-
stochastic sequential machine M* with m states such that M and M* are equiva-
lent, (equivalence being defined in the usual way).

b. Find the four-state pseudomachine equivalent to the one defined in
Exercise 4 above.

OPEN PROBLEM
a. Answer the following decision problem, or prove that it is not decidable:

Given a machine M, does there exist a machine M* with fewer states than
M and such that M* << M?

b. If the problem under (a) is decidable, then construct a finite algorithm
for finding a machine M* << M with |S™*| < |S*| whenever such a machine
M* exists.
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7. Minimization of States by Covering—Problem III

In this section, Problem III [i.e., that of finding an initiated machine (M*, *)
having 2 minimal number of states and equivalent to a given initiated machine
(M, n)] is reduced to the two problems considered in the previous sections.

Let (M, %) be a given initiated machine as in Exercise 5, Section 1, we can
construct a matrix G‘™® whose rows are of the form 7(v, 1) for some pairs
(v, u) and linearly independent, and any vector of the form (v, u) is a linear
combination of them. We shall now prove the following:

Theorem 7.1: Given an initiated machine (M, n) and a machine M*, there
exists a stochastic vector n* such that (M, n) = (M*, n*) if and only if there
exists a stochastic matrix B* such that
B¥*[KM'] = GM[KM] (27
Proof: Assume first that (27) is satisfied, and let z* be the first row in B*.
Then, since the first row of G™" is i, we have that the first entry in a column
of the form G™:"y™(v|u) on the right-hand side equals p,*(v|u). The corre-
sponding value on the left-hand side is the first entry in the column B*n™'(v[u)
which equals p,.M(v|u), so that (M, n) = (M*,n*). Assume now that there
exists a vector n* such that (M*, n*) = (M, n) then n*[K™"] = a[K™]. This
implies that * AM"(v|u)[K™ "] = nAM(v|u)[ K], since the columns of the matrix
AM(v|u)[K™] are a subset of the columns of K and those of A™'(v|u)[K™"] are
the corresponding columns in [K™*]. But any row vector 7 in G is of the
form amA™(v|u), where a is a normalizing constant, hence for any such vector
there exists a corresponding vector an* AM'(vju) = @* such that Z*[K™’] =
A[K™]. The matrix B* whose rows are the vectors 7* corresponding to % of
G™M:m satisfies (27), and the theorem is proved. |

Theorem 7.1 above reduces the third problem to one of finding a machine
M* having fewer states than the given initiated machine (M, x), and such that
the relation

B*[KM*] = [K™M2] (28)
holds for some stochastic matrix B*, where [K™:®] denotes the matrix
G™M»[KM]. For tackling this problem, a relation similar to (18), which is
equivalent to (28) can be derived.

Let H™.® be a matrix having the following properties:

1. The columns of H™™ are columns of [K‘*"].

2. The columns of H™-" are linearly independent, and any column in [K*7]
is a linear combination of them.

3. The columns of H™" are the first columns of [K™™] satisfying 1 and 2
above.
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Clearly, the columns of H™® can be chosen from those of the form
nMA(pju) = GM P p(vju) with (v, ) << n — 1. To prove this, we note that
any column in [K**™] has the form

GO (oly) = GHV T an = T a,GH o

where 7, are the columns of H™ and a, constants. It follows that the matrix
H™™ can be effectively constructed.

Denote by H*"(y|x) the matrix such that its ith column is #*7(yu|xv) if
the ith column of H™:™ is p'M:?(yly); likewise, K™ "(y|x) and [KM(y|x)]. We
seek a matrix A(y|x) such that

A(yx)[KMP] = [K*9(y|x)] (29)
But Eq. (29) is satisfied by any matrix A(y|x) satisfying also
G A(yx)HY = A(y[x)GH H (30)

for if A(y|x) satisfies (30), then
[K™M7(ylx)] = GMIKM(p|x)] = GM» A(y|x)[K™]
= AGIIGH K] = AX)KH]

by definition, and bearing in mind that the columns of [K™] are linear combi-
nations of the columns of H.

Now Eq. (30) has at least one solution [there may be more], being satisfied
by any matrix A(y|x) satisfying also

GO A(ylx) = A(yx)G (31)

Eq. (31) has a (unique) solution, for the rows of the matrix on its left-hand side
GM:m A(y|x) are by the definition of G linear combinations of the rows of
the latter, and these are linearly independent.

Using the above definitions and a method similar to that used in the proof
of Theorem 3.1, one can prove the following:

Theorem 7.2: Given an initiated machine (M, ) with n states, there exists an
initiated machine (M*, n*) with n* < nstates and such that (M, n) = (M*, z*)
if and only if there exists an n*-state machine M* and an n* X n* stochastic
matrix (n* < n) B* satisfying the relation

B* 4™ (yx)H™" = AM(p|x)B* HM" (32)

The proof of this theorem is left to the reader. Theorem 7.2 reduces the third
problem to the first covering problem [with H® replacing H*], so that all
considerations in Section 5 are valid here. Since no general procedure is availa-
ble for solving the first problem, the above theorem, together with Section 5,
yields solutions to the third problem only in particular cases.

We shall therefore also consider some additional approaches, based on Section
6.
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Theorem 7.3: Let M >"M* be two machines with B[K™] = [K™"], and 7 a
distribution for M such that #(x) € conv A™(B). Then, there exists a distribu-
tion n* for M* such that (M, n) = (M*, n*).

Proof: Since hM(n) € conv h¥(B), there exists n* such that zH = n* BH™.
Hence 7 and 7* B are equivalent vectors for the machine M, so that Zzn™(v|u) =
7* Bp™(v|u) for all pairs (v, u). It follows that

p¥(vlu) = an™(vlu) = 7* BpM(vjw) = n* ™ (vlu) = pt"(vlw)
for all pairs (v, #), and the theorem follows. [ |

Corollary 7.4: Let (M, ) be an initiated machine with n states. There exists
an initiated machine (M*, n*) with n* < n states and such that (M,rn) =
(M*, n*) if either condition 1, 2, or 3, as well as condition 4, holds:

1. There exists a stochastic n* X » matrix B such that
U hAM(BAM(y|x)) < conv AM(B)
,x)
2. There exists a set of n* points A*, ..., h,* in m-dimensional space (m =
rank H™) such that
U AM(AM(y|x)) < conv(h*, ..., h,*) < conv(hy,...,h,)
(¥, x)

3. There exists a subset A, *, . . ., h,.* of the set of points A, . . . , A, such that
U hM(AM(y|x)) < conv (h*, ..., h*)
,x)
4. Let B be as under condition (1) if that condition is satisfied, or otherwise
a matrix defined by
h*
BH™ =| .
ha*
if either condition (2) or (3) is satisfied. Then 2™(x) € conv A¥(B).
Proof: By Theorems 7.3 and 7.1 and Corollaries 6.2 and 6.3.
Example 10: Let (M, ) be an initiated machine [X = Y ={0,1}], 7z =
(3050

0 0 0 0] L 1 3 0]
1 100 0 0 0 O
A00) =% °® . A(1)0) =
140 0000
10 0 0 0] 3 1 3 0
0 0 0 O] 'L 0 0 4]
0 0 00 4 0 0 %
A0l = , A1) =
(|)%0%% am={= o o
3 0 4 %] 0 0 0 0
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A matrix H™ for this machine is

0
= 0
1
1

0
1
1
0

h—

The points in U, ,, #(A(y|x)) are (3, 0), (3, 3), (3, %), and (0, ) (first coor-
dinate omited), k() = (%, §).

The second and fourth conditions of Corollary 7.6 are satisfied if we choose
h* = (4,0), h* = (1,1) and A* = (0, §). [The reader is advised to draw an
illustrating sketch.]

The resulting matrix B is

i1 4 00
B=10 01 0
¥ 00 3
and the required initiated machine is found to be: 7* = (5 § #),
[+ 0 0] (L 1 O]
AM'(0j0)y={1 0 0}, AM(110y=(0 0 O
10 0 0] & 3 0]
0 0 0] 0 0 1]
AM'O)y=1{0 % 3| A*'(1j1y=(0 0 O
0 & %l L0 0 3]

The reader is advised to verify the results by actual computation.

EXERCISES

l.a. Find the matrices G'¥», HM™ and A™"(y|x) for all pairs (y, x) where
(M, m) is as in Example 10.

1.b. Find a three-state initiated machine (M*, z*) equivalent to (M, ) in Ex-
ample 10 and different from (M*, n*) there, using a procedure based on The-
orem 7.2.

l.c. Show that the third condition of Corollary 7.4 does not hold for Example
10.

2. Prove that if (M*, n*) ~ (M, 7), then the number of states of M* is not
smaller than rank H¥*?,

3. Give a proof of Theorem 7.2.
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4. Consider the following machine [X = Y ={0, 1};z = (11 1),
0 0 0 0] 0 0 0 0]
0 4 0 % 0 00
a00) =% 2 % o =|° O
+ 0 450 0§ % %
0 0 0 0 0 4 3 %
0 3 0 3 [0 % % %]
0000 111
M(110) = . M) = 0+ 4 =
0000 0000
4 0 3 0] 0 0 0 0

Show that the third and fourth conditions of Corollary 7.4 apply to this ma-
chine, and find a two-state initiated machine (M*, n*) equivalent to (M, x).

S. Same as 4, but 7 = (4, 0, 1, 1) and (M*, n*) has three states. Is further re-
duction of states possible in this case?

6. Consider the initiated machine (M, n) whose defining matrices are

10 0 0 0 0 0 0]
100 0 0000
AQ0) = AUy =
=150 0 0 =16 1 0 0
0 0 0 o] 01 0 0]
0 0 1 0] 0 0 0 0
0000 000 1
AQ|1) = A = 0
0010 0000
0 0 0 of 00 0 1]

and 7 = (1000).

Show that rank ™™ — 3_but there exists no initiated machine (M', n')
equivalent to (M, n) with fewer than four states.

OPEN PROBLEMS

a. Answer the following decision problem, or prove that it is not decidable:
Given an initiated machine (M, n), does there exist an initiated machine
(M*, n*) with fewer states than (M, ) and such that (M, n) ~ (M*, n*)?

b. If the problem under (a) is decidable, then construct a finite algorithm for

finding an initiated machine (M*, 7*) ~ (M, n) with |S™*

such an initiated machine (M*, *) exists.

< |S™| whenever
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C. INPUT-OUTPUT RELATIONS

1. Definitions and Basic Properties

Definition 1.1: A probabilistic input—output relation is a function p(v|u) whose
domain is the set of all pairs (v, #) of input-output sequences (of equal length)
over respective finite input and output alphabets X and Y, whose range is the
interval [0, 1], and subject to the restrictions:

1. p(AJA) =1

2. Y, p(vylux) = p(v|u) for all x € X, the summation is overally € Y~

Throughout this section the term “relation” refers to a probabilistic input—
output relation unless otherwise specified.

Remark: Note that (1) and (2) in Definition 1.1 imply that
3. ,p(y|x) =1forallx € X

Definition 1.2: An initial segment of length n of a relation p (denoted by [p],)
is the part of p which corresponds to input-output pairs of length not exceed-
ing n. Any relation p with [p], as its initial segment is a completion of [p],.

Notation: P(X, Y) denotes the class of all relations over the input and out-
put alphabets X and Y.

Definition 1.3: The left-hand derivate of a relation p € #(X, Y) with respect
to the pair (', v') [denoted by py, ] is the function

p(v'v|u'u) . .
p[u’,v’](vlu) - W’ if p(’U |u) >0

the zero function, otherwise
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Theorem 1.1: The class (X, Y) has the following properties:

1. If p is a finite convex combination of function in (X, Y) such that p =
St 2 A =1,4>0,i=1,2,...,n and (x,y) a pair such that
3 A:pylx) # 0, then py, ) = 3 WiPus,, Where g, = A,p(y|x)/ 22 Ap(y]x), s0
that 4, = land g, >0fori=1,2,...,n

2. If (x', ') and (x?, »*) are two pairs and p € (X, Y) is a relation such
that p(y'|x') 7 0 and p(y'y?|x'x?) 7 O, then (Ppa )i 5 = Pratstyyne

3. The class (X, Y) is closed under convex combinations of its elements.

4. If p e #(X,7Y), and (x, y) is a pair such that p(y|x) #= 0, then p,, , €
PX,Y).

Proof: (1): Under the given conditions, we have that

2, Ap(yvlxw) _ pyvlxu) _

D
p[x,y](vlu) Z lipr(y'x) E H; (ylx) E lulpx[x M
2. It follows from the definition that

Pra (V2 ]x2u)

x, 31 )2,y (DU — e
(P, .V’l( [u) = P PRLR)

_ Py y*olx! x*w)/p(y'|x")
p(y' yHx' x*) /p(y'|x")
2
= BT o)

Proof of properties (3) and (4) is left to the reader.
Relations induced by stochastic sequential machines are characterized by

Theorem 1.2: Let p,, . . ., p, be a finite set of functions in (X, Y). There exists
an n-state machine M such that p, = p; ™ if and only if for every i, and for every
pair (x, y) such that p,(y|x) % 0, the function p; , is a convex combination of
the functions p,.

Proof: The “only if” part is straightfoward and its proof is left to the reader.
Assume now that the conditions of the theorem hold. If there exists a machine
M such that p, = p,™, then p(y|x) = ps(y|x) = 54™(y|x)n and

_ puM(polxu) _ 5, 4Y(y|x)n™ (v]u)

e (7 R P L 55T
_ Ta,0l) - pi0ld) _ X a,0lp e
225 a(yix) 225 @i (y|x)

Thus the machine M must satisfy the equations
gl af(ylx) = pylx) (33)
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Pin(ol) = 2Ll (34
But we also have by the conditions of the theorem that
Prsn(®l) = 35 Ay ,(0l) (35)
Combining the three equations, we have
2 Ayp i) = 2 a,(yx)pel)/p(ylx) (36)
or
pylx) EJI Ayyp(vlu) = ZJ: a,(y|x)p,(v|u) (37
A possible but not necessarily unique solution to (37) is
a,(y|x) = p{y|x)A; (38)

Let M be the machine whose defining matrices are given by (38). We now
prove by induction that for this machine, p,™ = p, as required:

1. It follows by construction that p,™(y|x) = p(y|x),i = 1,2,...,n.

2. Assume that p¥(vlu) = p(v|u) for all i and all pairs (v, 1) with I(u, v) <
k, and let (u, v) be any such pair; then

Pl (yolxs) = X a (i) = T a,(x)pol)
and the latter by (37) and (35), equals

plyvlxu) _
py|x)

where I(xu, yv) = k + 1. Thus p¥ = p,, and the proof is complete.

PYIX)Ditxi(v])) = py]x) P yv|xu)

Corollary 1.3: Let p € (X, Y) be a relation. If the set of all nonzero deriv-
ates of p is finite and contains n different relations, then there exists an n-state
machine M such that p = p¥.

Proof: Let p, py s - - - » Pui,»n be the set of all nonzero different derivates
(including p itself which is the derivate with respect to the pair (4, 1)) of p.
Then, any other nonzero derivate of p is included in this set, hence the condi-
tions of Theorem 1.2 hold. ]

Remark: In Section B3, Exercise 9, we introduced the definition of an ob-
server/state-calculable machine. These machines have at most one nonzero
element in each row of their matrices. Now it is readily shown that if M is
such a machine and p}* is considered as a relation in #(X, Y) for the appro-
priate X and Y, then this relation has only a finite number of nonzero different
derivates. To prove this claim, we note first that
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p(yvlxu) _

pii(ylx)
by (10) (Section A,1), and therefore the number of different nonzero relations
of the form p{, ., equals that of nonzero vectors of the form §(u, v). If M is
an observer /state-calculable machine, then by the definitions any vector of the
form §{vlu) = §5.AM(v|u) has at most one nonzero entry. Thus any nonzero
vector of the form §i(u, v), which is 5,(v|«) multiplied by a normalizing constant,
is a stochastic degenerate vector and there exists only a finite number such vec-
tors. Furthermore, a closer look at Corollary 1.3 above and its proof shows that
the machine M in that corollary can be chosen to be observer/state-calculable,
for the states of M are identified with the derivates p, pyi , - - - 5 Prym,,my @nd
the transition between these states is deterministic. We thus have the following
characterizing:

Theorem 1.4: Let p € P(X, Y) be a relation. If and only if the set of nonzero
derivates of p is finite, then there exists an observer /state-calculable machine M
such that p = p¥.
Another corollary to Theorem 1.2 is:

Corollary 1.5: Let p € 2(X, Y) be a relation. There exists a machine M and
an initial vector z for M such that p = p if and only if there exists a finite set
of functions p,,. . ., p,in (X, Y) such that p € conv(p,, ..., p,), and for every
i, and every pair (x, y) such that p(y|x) == 0, also p,, ,, € conv(p,, ..., p,).

pé‘:{[x,y](vlu) = p():{(x,y))(vlu)

The proof if straightforward and is included in the exercises below.

EXERCISES
1. Prove properties (3) and (4) in Theorem 1.1.

2. Prove Corollary 1.5.
3. Prove the “only if” part of Theorem 1.2.

2. Compound Sequence Matrix

Definition 2.1: Let (i, v,), (t, 03), - - . » (U 0,), (', 01, (U, 05, . .., (w0, v,))
be a set of 2n pairs of sequences and p € #(X, Y) a relation. The matrix

P = [p(v,v,|uu))]
is then called a compound sequence matrix, and its determinant a compound
sequence determinant.
Definition 2.2: The rank r(p) of a relation p is the maximum among the ranks
of all compound sequence matrices which can be formed from p, or +oo if
no such maximum exists.
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Corollary 2.1: If p € (X, Y) is a relation such that p = p,™ for some ma-
chine M and some distribution #, then r(p) = rank (M, 7).

Proof: Let (M, n) be a compound sequence matrix for p,». Any entry in
oM, 7) has the form pM(v,v/|luu/y = n(v|u)n(v/|u/) so that the matrix
M, ) can bewritten in the form (M, n) = G'H, where G’ is the matrix
whose rows are the vectors 7(v,|u,) and H the matrix whose columns are the
vectors 77(v/[u/). Let G be the matrix whose rows are the vectors 7(y,|v,)v corre-
sponding to z(v,|¥;) in G'. Since the rows in G’ differ from those in G by a
multiplicative constant, obviously rank G’ = rank G, so that rank p®:» =
rank (GH). It follows that

rank p = rank p,¥ = max »(M, ) rank (M, ) = max rank (GH)
G.H

= rank (G™® H*) = rank H™" = rank (M, )
(See Section B.7 for the definitions). |

Lemma 2.2: Let p be a relation of finite rank n, and P a compound sequence
matrix for p of rank n. Another compound sequence matrix P', also of rank »n,
can be found such that the pairs (u,, ;) and (¢, v,") in the sequence defining
P’ satisfy
4, ) = (u, v) = (/, v,) (39)
Proof: Let (u, v,), ..., U, v,), @/, v)),..., @ v, be the sequence defin-
ing P, and (u, v), (', ¥') any two input-output pairs. The following determinant
then equals zero
plov'|u 1)
F 3 =0 (40)
P, |u,u')
pvv/luw)) ... p(vv,/luw))  plov'lud)
since P is a regular compound sequence matrix of maximal possible rank n.
Substituting ¥ = » = ¢/ = ¥ = 1 in (40) and expanding about the last column,
we obtain (p(4}d) = 1) that |P| + ), «|P| = 0 where the a, are numerical
constants and P, is derived from P by replacing the ith row with p(v,|u,’) - - -
p(v,/|u,). Thus one of the P, is a regular matrix and P in (40) can be replaced
with P, Using the same argument for the new determinant (40), expanding
this time about the last row, we find that there exists a regular matrix (P,)’
derived from P, by replacing its jth column with

p(vi|uy)

JCAUA
We thus have a regular matrix (P,) derived from P by replacing (u;, »,) and
(u/, v/) with the pair (4, 1). Appropriate reordering of rows and columns yields
a compound sequence matrix with the required properties. |
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EXERCISES
1. Prove that any relation p of rank 1 has the property

p(v' ) = p(vlu)p(v'[u).
2. Prove that the set of relations of finite rank << n is closed under convex
combinations of its elements.

3. Prove that the set of relations of finite rank < n is closed under left
derivation.

4. Show that Theorem 1.2 can be refined as follows.

Theorem: Let p,, . .., p, be a finite set of relations in Z(X, Y). There exists an
n-state machine M such that p, = p¥ if and only if for every i rank p, << n,
and for every i and every pair (x,y) such that p(y|x) = 0, the segment
[ Pitx y1)20-1 1S @ convex combination of the segments [P],,-;.

5. Refine Corollary 1.5 using Exercise 4 above.

3. Representability of Relations by Machines

Expanding the determinant in (40) about its last column, we obtain
plov'lun’) = i a(v|wp(v;v,'|uw') (41)
i=1
where the a/v|u) are functions of the entries of matrix P and of the values
p(vw,/|uu/'). Replacement of v, o', u, ' with »,v, v'v,, w,u, w'u; respectively in
(41) yields

n
p(v,vv’ ’l)jllu‘ ui'u)') = kZl a,(v,v|uu)p(vy v vil luptd u)) (42)

or, in matrix form,
P(ov'|luu'y = A(v|u)P(v'|u') (43)
where
P(|u) = [P(v,ov)|uuu)]  and  A(v|u) = [a,(v;0|u,u)] (44)
(P(A|A) = P and A(A|4) = I = the identity matrix.) In particular, we have
P(v|u) = A(v|u)P (45)
and
P(ylx) = A(yIx)P  or  A(y|x) = P(y|x)P™! (46)
Thus if P (which is regular) and P(y|x) are given, A(y|x) is obtainable from

(46). Substitution of (45) on both sides of (43), with the common (regular)
matrix P cancelled out, yields
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A(vv'|lun') = A(jw)('|u) “7n
The above formulas lead to the following

Theorem 3.1: Given a compound sequence regular matrix P of maximal rank
n for a relation p. A pseudostochastic sequential machine M with n states (see
Exercise 5, Section B,6) and an initial distribution 7 can be found effectively,
such that p = p, ™.

Proof: Using Lemma 2.2, construct another compound sequence matrix P’
satisfying (39). Compute the matrices 4(y{x), using (46). [It is assumed that
the matrices P'(y|x) are available.] Let Q be any regular matrix of order »n such
that Qn equals the first column of P and the first row of Q is nonnegative [which
implies that it is a probabilistic vector, as the 1, 1 entry in P is 1]. Define

AM(ylx) = Q71 A(yIx)Q (48)
and © = the first row of Q.
Let M be the pseudomachine whose matrices are A¥(y|x) with initial distri-
bution 7. Then by (47) we have that

AM(lu) = Q™' AWlW)Q

hence, P,¥(v|u) = nA™(vjwyn = nQ~' A(v|u)Qn = 5, A(vlu)P,, with P, denoting
the first column of P[rQ~!' =5 = (10 ... 0), as xn is the first row of Q by
construction]. But 4(v|u)P = P(v|u) by (45), hence A(v|u)P, is the first column
of P(v|u), so that P,”(v|u) = §, A(v|u) P, = §, P,(v|u) = the 1, 1 entry in P(v|u) =
D(v|u) as required. |

Theorem 3.2: Let p be a relation of finite rank <C » such that the values p(vju)
are recursively computable. [In other words, p(v|u) with I(», u) = k is obtain-
able effectively from the values p(v'|t) with I(v', #’) < k — 1.] Then a regular
compound sequence matrix of order n can be formed from a segment {pl.,,
of p.

Proof: If p is a relation of finite rank <C n then by definition there exists a
regular compound sequence matrix of maximal rank <C n for P. By Theorem
3.1 there exists a pseudomachine M with < n states and a distribution z such
that p = p,™. Recalling the construction of matrices H [Section B,1] and
G™® [Exercise 5, Section B.1] we see that it is not affected by the fact that M
is a pseudomachine. Thus H™ and G exist for a pseudomachine M such
that the values p; ™ (v|u) in the former and p,(v|u) in the latter correspond to
pairs of length << n — 1, and rank G™» H™ = rank H'™» < n. But the entries
in H'*" are of the form

v, wn™('|w’) = an(lun™(@'|w') = ap™(vv'luu’)

where a is a normalizing constant depending only on the row (v, u) of G*-®
and I(vv'|luu’) << 2n — 2. The required matrix P can thus be derived from the
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above H'™®, which is regular for pseudomachines [prove this fact!], by division
of its rows by an appropriate constant. |

Corollary 3.3: Let p be a relation satisfying the conditions of Theorem 3.2. A
pseudostochastic machine M with <(n states and an initial distribution can then
be found effectively such that p = p,™.

Proof: By Theorem 3.1 and 3.2. |

Corollary 3.4: Let p be a relation satisfying the conditions of Theorem 3.2.
Then its segment [ p],,_, uniquely determines the whole relation.

Proof: The initiated pseudomachine (M, x) such that p = p,™ is determined
by [ plz.-1, as the required compound sequence determinant P is obtainable from
[pl_z and the matrices A(y|x) [see (46)] depend on P and P(y|x), which can
be derived from [ p],,-, by (44).

Corollary 3.5: Let p be a relation of finite rank » satisfying the conditions of
Theorem 3.2. If there exists a true initiated machine (M, z) with » states and
p = p,M, then there exist also a compound sequence determinant P of rank n
for p and a nonsingular matrix Q such that AM(y|x) = Q™' A(y|x)Q where
A(y|x) is defined as in (46).

Proof: Under the assumptions, P may be chosen as the matrix P defined
in the proof of Corollary 2.1. Thus P = P™® = G™» HM, [See definitions
in the proof of Corollary 2.1] and

A(Y|x)G' ™MD HY = A(y|x)P = P(ylx) = G"™™ AM(y|x)H™

As M has n states and p,™ is of rank n, ¥ has n independent columns and
n rows. Thus H™® together with G and H™ are regular matrices, imply-
ing that (G'™™)~! A(y|x)G'™™ = AM(y|x) as required. |

Example 11: Consider the relation (assumed to be of rank 2) in the follow-
ing table (X is a single-symbol alphabet and is omitted):

» A 0 1 00 Ol 10 11 000 001 010 Oll
pO) 1 & & % v dv o v a5 A v

Setting u, = A, u, = 0,u,’ = A, u,) = 1, we have

[1 Tlo-:\
P =

3 1

10 20

which is a regular matrix of rank 2. Proceeding as in Theorem 3.1 we have

o & —f —%
o[ 4 <[ e[ ]
8 4

1
1 40 20 40
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A(0)=P(O)P“:|:O 1], A(l):P(l)P“z[T% %]
0 37 T8

There are many possible alternatives for matrix Q. One such choice is
% %
0 10
3
-1 —
0= |f
2z

;0
AM(0)=Q“A(0)Q=B ]

—1
2

so that

|
w A
!

and finally

1
44(1) = 0 A()Q = [f OJ
30
= (4,4 and (M, n) = P. Verification is left to the reader.

Let p be a relation. If there exists an initiated (pseudo-) machine (M, ) such
that p = p,™, then (M, x) is said to represent p and p to be representable by a
{pseudo-) ISSM.

We are now able to sum up the situation as to the representability of relations.

a. The following theorem is readily proved for the general case:

Theorem 3.6: A given relation p is representable by a pseudo-ISSM if and only
if p is of finite rank.

The “if” part is meaningless unless it is specified how the relation is “given.”
It is therefore assumed that it is given such that the values p(v|u) are recursively
computable [as in Theorem 3.2].

b. If a relation is given as above and known to be of finite rank, then it is
also known to be representable. Still, so long as no bound is set on that rank,
the latter cannot be computed, nor can a representation be found for it [see
Exercise 5 at the end of this section].

c. If a relation is given and a bound set on its rank, then using Corollary
3.3, a representation can be effectively found for it, but the result is, in general,
an initiated pseudomachine (with number of states equal to the rank of the
relation).

d. Given a relation p which is known to be of finite rank < n, no effective
answer is known as to whether p is representable by a frue ISSM. This last
problem can be further subdivided as follows:
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Given a relation p of rank n, is p representable by a true ISSM (M, 7) such
that rank M = n = the number of states of M?

(d-1). If it is, formulate an effective procedure for constructing the represent-
ing machine.

(d-2). If case (d-1) does not apply, then is p representable by a true ISSM
(M, ) such that rank M = n but the number of states of M exceeds n? If it
is, then formulate an effective procedure for constructing (M, 7).

(d-3). If neither (d-1) nor (d-2) apply, then is p representable by a true ISSM
(M, m) such that rank M > n? [Note that rank (M, 1) = rank p may not equal
rank M.] If it is, then formulate an effective procedure for constructing (M, ).

It is readily seen from examples that case (d-1) is not empty. It can also be
shown that case (d-2) is not empty either [see Exercise 8 at the end of this sec-
tion]. The author is not aware of any example proving that (d-3) is feasible,
but there is no reason why it should not be.

EXERCISES

1. Prove that any relation of rank 1 is representable by a true ISSM.

2. Discuss the implications of Exercises 2-5 in Section 2 with regard to the
decision whether a given relation is representable by a true ISSM.

3. Consider the relation given in the following table [X is a single-symbol al-
phabet and is omitted.] Assume that the relation is of rank 2 and find a true
representation for it.

v A 0 1 00 Ol 10 11 000 001 010 OI1l

3 T 1 r 7 17 5 1 1 1
p(v)lﬁﬂTﬂWWﬂﬂWZ‘o’

Compare with Example 11.

4, Consider the following initiated pseudomachine (M, ) [X = {0} and is
omitted. ¥ = {0, 1}]

1 0 0 1000
AMO) =0 —1i 0|, AMI)=[4 0 0 0
0 0 —3 5000

7= (35 7o)
a. Show that rank (M, ) = 3.
b. Show that 0 < p,M(») < 1 forallv € Y*

¢. Show that there exists a three state true initiated machine (M*, z*) such
that p,™ = p,™".
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5.a. Show that for every relation p of rank » there exists another relation p’
such that p # p’ but [pln-1 = [PJes-1-

5.b. What can be said about rank p’ apart from the problem of deciding
representability?

6. Prove: A relation p is representable by a pseudo-ISSM if and only if p is of
finite rank.

7. Find a relation p of rank n, representable by a true n-state ISSM (n chosen
at convenience).

8. Consider the following ISSM: X ={0,1} Y ={0,1; S =1{1,2,3,4n =
(100 0), with the transitions from state to state deterministic as follows

Present state Input Output Next state
1, 2 0 0 2
3, 4 0 1 3
1, 3 1 0 1
2, 4 1 1 4

]

Prove that the above ISSM represents a relation of rank 3, but no true ISSM
with less than four states can represent it.

9. Let p be a relation known to be of finite rank. Let (k) denote the maximal
rank of all compound sequence matrices P(k) for p with P(k) = [p(v,v,'|u;u;)]
where (v, u), (v, u)) < k.

Prove: If r(k) = r(k + 1) = r(k + j) = m, then either rank p = m or rank
p=m-+ 2

10. Give the most efficient algorithm possible for finding rank p < n for a given
relation p.

OPEN PROBLEMS

1. Given a recursively computable relation p, formulate a decision procedure
for ascertaining whether p is of finite rank, or prove that the problem is not
decidable.

2. Given a pseudo-ISSM (M, z), does there exist a true ISSM (M*, z*) such
that (M*, n*) = (M, n), rank M * = rank M, and the number of states of M
equals that of M*?

Formulate a decision procedure for this problem, or prove that it is not

decidable. If a decision procedure exists, give an algorithm for constructing
(M*, n*) whenever possible

3. Same as 2, except the number of states of M* is not required to equal that
of M.
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4. Same as 3, except that it is not required that rank M = rank M*,

5. Formulate a decision procedure for the following problem, or prove that it
is not decidable: Given any pseudo ISSM (M, ) are all the values p,™(v|u)
nonnegative?

4. Bibliographical Notes

Input-output relations and sequential functions were studied, in the determinis-
tic case by Elgot and Mezei (1965), Gill (1966), Gray and Harrison (1966),
Raney (1958), Tal (1966), and others. Derivates were introduced by Brzozow-
ski (1964) for the deterministic case. The first subsection here is based on the
work of Arbib (1967) with additions from Carlyle (1967), and the second and
third subsections on the work of Carlyle (1963a, b, 1965, 1969). The above re-
ferences also served as a source for some of the exercises. Additional references:
Blackwell and Koopmans (1957), Booth (1965, 1966, 1967), Dharmadhikari
(1963a, b, 1965, 1967), Fox (1959), Gilbert (1959) Page (1966). Recently, a
connection between the theory of categories and that of input-output proba-
bilistic relations was established by Heller (1965, 1967) and Depeyrot (1968).
See also Depeyrot (1969a, b).



Chapter I

Markov
Chains

INTRODUCTION

This chapter 1s devoted to the theory of nonhomogeneous Markov chains and
related topics. Nonhomogeneous Markov chains and systems are studied from
a mathematical point of view, with regard to asymptotic behavior, compositon
(direct sum and product), and decomposition. The last part of this chapter
investigates “word functions” induced by Markov chains and valued Markov
systems. These functions are studied with regard to characterization, equiva-
lence, and representability by an underlying Markov chain or system. The
reader is refered to the Preliminary Section in this book for an introduction
and for the basic definitions used (see also the bibliographical remarks at the
end of the chapter).

A. NONHOMOGENEOUS MARKOV CHAINS AND SYSTEMS

1. Functionals over Stochastic Matrices

The matrices to be considered in this subsection are countably infinite unless
otherwise specified.
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Definition 1.1: Given a stochastic matrix P = [p,,] and an arbitrary vector 7 =
(n,) we define

d(P) = supsup |py — pu. dm) = sup fm, — |

O(P) = supsup 5. (pu; — Pu)

iz {0’} je

where {n'} denotes a subsequence of the sequence of natural numbers (to be
denoted by {n}). If P is a finite matrix, then “sup” is to be replaced by “max”
and “inf” by “min.”

Notation: If a is a real number then a* = max(a, 0) and - = min(a, 0).

Proposition 1.1: 6(P) = sup,,,, 22 (Pi; — Pus)”
The proof is left as an exercise.

Proposition 1.2: 0 < d(P) < d(P) < 1.
Proof: It is a trivial consequence of the definition that 0 <C d(P). For any
fixed j, i;, and i, it is clear that
(P — Pu)” < S(:{erz(;',}(l’nk — Pux) = 22 (Bux — Pui)”

But sup,, ,, | Pn; — Pl = supy,.(Pu; — P,y)* since the indexes i, and i, are in-
terchangeable so that

SUp | pu; — Pl = SUp (Pr; — Pup)* < SUP sup E (Pnk Diy)

f1,62 i, iy {n'} keln

for any fixed j and therefore d(P) = sup, sup,, ,|p.; — Pu;l < 6(P). Finally, for
fixed i, and i, we have that

Z (pt'xj - pi:])+ g Eph] - jgn’]pi’j g 1

and using Proposition 1.1 we get that 6(P) < 1. i

Proposition 1.3: If P = [p,;] and Q = [g.,] are stochastic matrices then o(PQ)
<(P) &(Q).
Proof: Fix i, and i,, We show first that

; (phk—pl'zk)+ + ;(phk_phk)— = kZ (phk - .pl':k) = ;Phk = Pux = 1—-1= 0
and, therefore

kE (Pox — Pu)* = _Zk (Puk — Pur)” n

Denoting by 3’ summation over a subset of the set of natural numbers we
have
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JZ QC (Poak — Poi)de))" = ;’ ; (Pik — D )e; = ; (Pik — Dir) ;' Gr;
< ; (Pux — Piu)” SUP ;’ 9i;
+ ; (Duk — D)™ h’}f g)’ Gi;
= 3 (Pux — Pu)*(up X' q; — inf 37 gqip)
k k J k J
where the indices involved in the summation Y}’ may depend on i; and #,. But
sup >/q,; — inf 37g,; = sup X' (qu,; — Grsy)
Kk j k kvks J
<sup ;} Gxs — 9™ = Q)
which is independent on i, and i,.
Thus, 33 (Pux — Pu)de))t < 2Pk — Pix)* 6(Q) s0 that
d(PQ) = sup [; (X (Pix — P 1 < 8up [0 (P — Pia)” 6(Q)]
< Q) sup 3 (Pux — Pu)” = P 1

Definition 1.2: If & = () is an arbitrary vector and P an arbitrary matrix, then
€| = sup, (&, |P| = sup,; [p,; |1l = 20 1&| provided that 3] |¢,| < oo and
||€]] = oo otherwise; ||P|| = sup, 3_,|p,;| provided that },|p,| < oo for all i,
and ||P|| = oo otherwise.

Proposition 1.4: Let P = (p,;) be a stochastic matrix and let ¢ be a nonzero
vector of the same dimension as P such that ||¢]| <co and Y} & = 0 [§ = ()]
then ||CP|| < ||| 6(P).

Proof: Define the vectors {' = ({;') and {* = ({?) as

1 &t N
G2y and OO= 2
Then using an argument similar to the one used in proving formula (1) we have
that both {! and {? are stochastic vectors and {' — {2 = 2(&/||€]D.
Let O be a matrix such that its first row is {! all the other rows being equal
to {%. Then

20(QP) =2 12 (; &' — LA = ; I :‘: €' — CApyl

again using the formula (1).
By the definition of {* and {* we have that

SIE @ = Ol = 25| Tpl
_2 _ 1Pl
=1iEn 3 1 32 kol = 27
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Thus, ||EP||/||€]] = &(QP) < d(Q) 6(P) << d(P) by Propositions 1.2 and 1.3, so
that ||[EP)| < |[€loP).

Corollary 1.5: If P is a matrix such that all its rows have the properties of the
vector £ in Proposition 1.4 and Q is a stochastic matrix then
[1PQII < |IP]| 6(Q)

Corollary 1.6: If P and Q are stochastic matrices, then ||PQ — Q|| < 26(Q). In
particular if z is a stochastic vector and p is row of Q, then ||zQ — p|| <

20(Q).

Proof: ||PQ — Q|| = [I(P — DQ|| < ||P ~ 1]|6(Q) < (| P|| + [H]))6(Q) =
26(Q). [See Exercise 8 at the end of this section.] |
Definition 1.3: Given a stochasic matrix P = [p,,;], y(P) is defined as

‘})(P) = inf Z min(pilﬁ Piu’)

iz j=1
Proposition 1.7: Let P be a stochastic matrix, then 6(P) = 1 — p(P).
Proof: Denote

Vor(P) = 20 min(p,,;, Puy) and 6,.(P) = ZJJ (Pus — Pu))”
then
91(P) = 2 (Puy = Pi)” = 22 (P — min(ps, Pry))
=1- ; min(p, j, Pr;) = 1 — V1l P)
Therefore, 6(P) > 6,,(P) = 1 — 7,,(P), which implies that 6(P) > 1 — p(P).

Similarly, 8, (P) = 1 — 9, (P) < 1 — p(P) which implies that 6(P) <1 —
y(P). Combining the two inequalities we have that 6(P) = 1 — y(P). |

Proposition 1.8: If P and Q are stochastic matrices and # a column vector
such that |5,| << 1 for all i, then d(PQ) < 6(P)d(Q) and d(P1) < d(P)d(1).

Proof: 1t suffices to prove the second inequality. Let i, and i, be two arbi-
trary rows in P. Since 3;|p;,; — pi.;] < 2, we can find for any given € a number
k, such that

> | — Pijl <€

J=ko+1

Let 7, = min,_, #; and assume that Y, p,;#1; = 2. P15 then
0 g szilini - ;pi:i”i - |12 Py — szl‘z}'nil

and replacing p,;, by 1 — 3.,.;,p,; and p,,;, by 1 — 2 isnDuy We get
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;Pnﬂh — 2Pty = 25 Puftl; — M) — }; Pulfl; — 1)

J*Je

= ;; (Puj — Pu)); — M)

ko
< 15-':—1 (Pa; — Pup; — M) + 2€

By the definition of #,, all the terms of the form #, — #,, are nonnegative in
the above sum so that by omitting the terms such that p,; < p,,; the sum is
increased. Also (n; — 7,) << d(n) with the result that

|; PujM; — ;pizj”jl < le (P — Puy)t d(n) + 26 < O(P)d(n) + 2

Since € > 0 is arbitrarily small and i, i, are arbitrary, the proposition fol-
lows. |

Proposition 1.9: If P and Q are stochastic matrices and 7 is a vector as in
Proposition 1.8, then |Pn — n| < d(n) and |PQ — Q| < d(Q).

Proof: The same method used in the proof of the previous proposition can
be used here beginning with the inequality 0 << ¥,p,;%;, — > €.,;1; where
€, is equal to 0 except for a unique, but arbitrary, entry which is equal to I,
and continuing the same way as in the previous proof. The details are left to
the reader. |
Example: Let P be the matrix

(=]
o
[X(N]

o=

[CENN
o b

0

then ||P|| =1 [this is true for any stochastic matrix]; |P| = %; d(P) = the
maximal distance between two elements in the same column = [ = |p;; —

pull, 6(P) = 3 [ = 2241 (py; — p3p)*] and p(P) = § (= 22, min(py, py))-
The inequalities proved in this section are easily verified.

EXERCISES

1. Prove Proposition 1.1.

2. Prove Proposition 1.9.

3. lllustrate by examples all the inequalities proved in this section.
4, If P is a finite stochastic matrix of order n, then

a. d(P) > 1/nd(P).
b. It is possible that d(P) < 1 and &(P) = 1.
¢. d(P) = 0 if and only if 6(P) = 0.

If P is an infinite stochastic matrix, then
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d. For any ¢, there is P such that d(P) < € but §(P) = 1.
¢. d(P) = 0 if and only if (P) = 0.

5. Prove: If p(P) # 0 for a stochastic matrix P, then p(P) is not smaller than
the minimal nonzero entry in P and is not smaller than the sum of the mini-
mal elements in the columns of P.

6. Prove that every stochastic matrix P can be expressed in the form P = E
Q where E is a stochastic constant matrix and ||Q|| < 26(P)

7. Prove: If P is a constant stochastic matrix, then 6(P) = d(P) = 0 [p(P) = 1];
if P is a degenerate nonconstant stochastic matrix, then 6(P) = d(P) = 1 [y(P)
=0].

8. Prove that the functionals “|| ||” and | |” have the following properties:
For any matrices P, Q and real number « it is true that ||P|| >0, ||P + Q| <
IRl + ll@ll, IPI| = 0 if and only if P =0, ||aP|| = |a ||P}| [defining 0-co =
o], and similarly for «| |”.

9. Let P be a Markov matrix representing a given Markov process. Let 7;; be
the probability that the process will transite from both states i and j to some
common consequent state in the first step. Prove that ¢, > 0, for any two
states i and j, if and only if y(P) >0.

10. Prove that for arbitrary matrices 4 and B,
[|4B|| < |4l |18l

11. Let 4,,..., A,and 4,,..., A, be two sets of n matrices such that ||4, —
Al <€ fori=1,2,...,then ||[]7, 4, — T, A)f] < ne.

12. Let P be a Markov matrix and let P, be the Markov matrix such that all
its rows are equal to the i, row of P. Prove that 6(P) > }||P — P,|| but for
every € there is an index i, such that 6(P) << i|| P — P, || + %e.

13. A double stochastic matrix is a stochastic matrix P = [p,,] such that both
Ypy=1,i=12,...and Yp; = 1,j=1,2..., ie., the sum of the en-
tries in any column is also equal to 1. Prove:

a. If Pis double stochastic and é(P) = 0, then P is of finite order, say n,
and all the entries of P are equal to 1/a.

b. The set of doubly stochastic matrices is closed under multiplication [since
I is double stochastic this implies that the set of doubly stochastic matrices is
a monoid.]

c. If P is a double stochastic matrix of finite order »n such that 6(P) < 1, and
E is a matrix all the entries of which are equal to 1/n, then

lim|[P™ — El| =0 (lim P™ = E]

m—soo m—oo

d. If P is a countable double stochastic matrix, then d(P) = 1
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14. Consider the following Markov matrix

1 —
P=[ P P ] p+qg>0, pg=0
q l—g¢q

Prove that

9 _P
limpr = |? T4 PT4
" g _»p

p+q ptgq

15. Prove that sup (||EP|/||£||) = O(P) where £ ranges over vectors such that
[l€]] < oo and Y€, = 0.

16. Prove that any vector £ such that ||| < oo and Y & = 0 can be express-
ed in the form & = Y2, {; where the {, = ({,;) vectors have only two non-
zero entries, ||| < o0, 35,{,; = 0, and [I€]| = 3 [ICill-

2. Nonhomogeneous Markov Chains

The different functionals 4, d, y introduced in the previous section provide,
in a certain sense, a measure of the “distance” between two arbitrary rows of
a given stochastic matrix. Thus if the matrix P is constant, then &(P) = d(P)
= 0 and y(P) = 1 [see Exercise 7 in the previous section]. These functionals
will be used subsequently for studying the long-range behavior of Markov
chains. As mentioned before, a nonhomogeneous Markov chain can be repre-
sented by an infinite sequence of Markov matrices {P}, such that the matrix
P, represents the transition probabilities of the system from state to state at
time ¢ = i. Let H,, be defined as the matrix

Hmn: f[ Pi

i=m+1

then the ij entry in H,, is the probability that the system will enter the state
jat time ¢ = n if it was at state / at time # = m. We shall now distinguish
between two cases for the long-range behavior of a given Markov chain.

Case 1: lim, ..6(H,,) =0, m=20,1,2....In this case the chain is called
weakly ergodic.

Case 2: For any given m there exists a constant stochastic matrix Q such
that lim, ...||H,,, — Q|| = 0 in this case the chain is called strongly ergodic.

In addition to the two above distinctions, there may be other distinctions as
well (e.g., the matrix Q in the second case may not be constant, or the limit—in
both cases—may exist only for some m, but not for all m, etc.) but because of
their restrictive nature those distinctions will not be considered here. We shall
give now some characterizations of the above defined properties.
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Theorem 2.1: A Markov chain is weakly ergodic if and only if there exists a
subdivision of the chain into blocks of matrices {H,,, } such that > 7., y(H,,,,)
diverges, [i, = 0].

Proof: The condition is sufficient, since Y 5., y(H,,,,,) diverges implies that
for any j,, lim,... [[%-,, (1 — y(H,,,)) = 0 and using Propositions 1.3, 1.2,
and 1.7, we have that

5(1];;l Pl) S 5( i];[m Hlﬂm) S i];[ﬂ 5(Hi1im) = ign (l - y(Hi:im))

where i, > m means that the product begins with the first index i; > m.
Taking limits on both sides, we get that

tim ([T P) < lim 6( [ H,,,) =0
i=m N—oo i

B ii>m

with N=m + n. If lim,_.. 6(J[%n P) =0, m=1,2,..., then by Proposi-
tion 1.7,
lim (] P) = lim (1 — 6 T B)) = (1 — lim &[] P)) = 1
=m n—oo i=m n—oo i=m

Let 0 < € < 1 be a small constant, then if follows from the above inequalties
that a sequence of blocks H,,,,, can be found such that y(H,, ) > € so that
Z;;l 'J)(I{i}i,m) diVergeS. I

Theorem 2.2: A given Markov chain is weakly ergodic if and only if for each
m there is a sequence of constant Markov matrices E,,, such that

lim||H,, — E,.|l =0

n—oo

Proof of sufficiency: Let € > 0 be an arbitrary small number and let i,, i,
be two arbitrary indices. Let H,,, = [a,;], E,.. = [e,;] and suppose that n is so
big that ||H,, — E,.|| < €. Then by (1)

Z (@, —a,)" =% ; la,; — anl < % ; lai; — ey + ey — auyl
J

< %(; |, — ey + ; @, — en;]) <3(€ +€) =€

[Cleary e,, = e,, for E,, is a constant matrix.] Since i, and i, are arbitrary,
we have also that
5(Hmn) == Sup ; (al‘:l - aizj)+ S €

iz

Proof of necessity: Under the same notations as above, let n be so big
that 6(H,,) < €/2. Let E,,, be a matrix such that all its rows are equal to
some row, say the i th, of H,,. Then

‘j/._: la,; — el = ;lai:] —a,l =23 (ay; —a,)* < 20(H,,,) <2(e/2) =€

Since i,, i, and € are arbitrary we have that
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|How — Enall = sups, 22)la,,; — e5] < € |
Theorem 2.3: Let {P} he a given Markov chain and let P, = E, + R, with E,
a constant stochastic matrix. Then the given Markov chain is weakly ergodic
if and only if lim,_.. [|JI%* R|| = 0.

Proof: 1t follows from Exercise 4 in the preliminary section that P, E, = E,
and EP, is constant. Thus (P, — E,)(P, — P,) = P,P, — E, P, and by induc-
ion
(Pt_' Ex) = ,IJP‘_ Emi=1;[+1P1
where the second term on the right-hand side is constant. It thus follows that
the condition of Theorem 2.3 implies the condition of Theorem 2.2 which
implies weak ergodicity. On the other hand

P.— E» 11 P

i=m+1

m+tn

fie—£. I 2| = |

by Corollary 1.5 and, therefore, weak ergodicity implies the condition of
Theorem 2.3. ]

|<lipw — ElI6 TT P

Examples:
1. Let {P} be a chain such there is € > 0 with p(P) > € > 0 for all ; [this
condition will hold, for example, if all the entries in all the matrices P, are >
€, or even if in every matrix P, there is a column such that all the entries in
that column are > €], then the chain is weakly ergodic by Theorem 2.1.

2. Let P, be a chain such that

+ 4+ 3 0 01
PZn—1= % % 0’ P2n: % % O
0 01 T o1

one finds by straightforward computation that p(H,,_,,,) = Y(Py,_1 P,) = 3
[check the computation] the condition of the Theorem 2.1 holds true and the
chain is weakly ergodic.

3. In the definition of weakly, ergodic chains it is required that lim, ., 6(H,,,)
=0form=0,1,2...,that is, d(H,,) — 0 independently of m. This require-
ment is intended to exclude cases in which the ergodicity of the chain is
induced by finitely many matrices in the chain. Consider, e.g., the chain {P},
with
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Clearly H,, = P, for all n and y(H,,) = 1. But lim,...0(H,,) does not exist
for m>1.

Theorems 2.1-2.3 characterize weak ergodicity of chains. The following
theorem gives a characterization of strong ergodicity. It also confirms the
intuitive feeling that strong ergodicity implies weak ergodicity.

Theorem 2.4: A Markov chain {P} is strongly ergodic if and only if for every
m there is a sequence of constant stochastic matrices {E,,} and a sequence of
stochastic constant matrices {E,]} such that (1) lim,...||H, — E,.|| =0 and
(2) limn—mHEmn - Em” = 0

Proof: If (1) and (2) hold true, then

hm ”Hmn - Em“ S lim (”Hmn - Emn” + ”Emn - Em“) =0.

But if (1) and (2) hold true then E,, is independent on m. To prove this we
note that P, H,,, = H,_,, and P, E, = E, [see Exercise 4 in the preliminary
section] so that,
”Em—l - Em“ g ”Em—l - m—l,n” + ”PmHmn - PmEm” + ”PmEm - Em“
= ”Em—l - Hm—l,n” + “Pm(Hmn - Em)”
S ”Em—l - Hm-—l,n“ + ”Hmn - Em“

by Exercise 1.10 [and ||P,|| = 1]. Taking limits in both sides we get

”Em—l - Em” = lin'1n~>°<>”E‘m—l - Em”
= limn—-'w(”Em—l - m—l,n“ + HHmn - Em”) =0.

Thus (1) and (2) imply that the chain is strongly ergodic. Conversely, if the
chain is strongly ergodic, then setting Q = E,,, = E,, for all m and n we have
that (1) and (2) hold true. |

Corollary 2.5: A strongly ergodic chain is also weakly ergodic. A weakly
ergodic chain which satisfies (2) is strongly ergodic.

Proof: Strong ergodicity implies the condition (1) in Theorem 2.4, which, by
Theorem 2.2 implies weak ergodicity, Conversely, by Theorem 2.2 weak
ergodicity implies (1) which together with (2) implies strong ergodicity by
Theorem 2.4. |

Corollary 2.6: Conditions (1) and (2) in Theorem 2.4 and Corollary 2.5 can
be replaced by the condition (2) lim,_...||H ., — E.l| = 0.

Proof.' HHmn - m” S HHmn - Emn” + ”Emn - EmH—) 0. ConVersely (2’)
implies (1) and (2) with E,,, = E,, for all m and n. |
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Corollary 2.7: Condition (2) in Theorem 2.4 and Corollary 2.5 can be replaced
by the condition: there is a constant stochastic matrix E such that (2) lim, ...
|EH,,, — E|| = 0.
PI’OOf.' HEHmn - EHSHEHmn - Hmn“ + ”Hmn - E”£25(Hmn) + ”H

E|| by Corollary 1.6. Condition (1) of Theorem 2.4 implies that 6(H,,,) — 0
and condition (2) in that theorem implies that ||H,,, — E,|| = ||H,., — E||—0
[E. is independent on m as proved in the proof of that theorem]. Thus condi-
tion (2"') holds with E = E,. Conversely if (1) and (2”) hold true, then let
E, = E. Tt follows that

1B — Enll < 11Es — Holl + |1Ho — EH o] + |EH,., — EJ| 0
by (1), (2”), and the fact that 6(H,,,) — 0. |

Theorem 2.8: Let {P} and {P} be two Markov chains such that Z,HP, — B
< oo then, for any € > 0, there i is an integer m, such that ||H,,, — H,.|| <&,
for all m > m, and all n > m, [H,, is the product of Ps correspondlng to
H,,].

Proof: Let P, — P, = E, with ||E|| = e, then H,,, = [[(P, + E)=H,, +
R, where R,,, contains all possible products of P, and E, matrices. Using the
facts that ||E/|| = e, is finite for all 4, ||P]| = 1 for all i [P, is stochastic] and
[|4B]| < ||4]| ||B]| for any two matrices 4 and B [see Exercise 1.10] we have
that

IRmal| < 22 e + ge,-e,—}— 2;‘ eee, + - +[Hlet =, 11;1 (1+e)—1
LA L, =m+ =m

Note that the e;s are nonnegative. Now as Y] e, < oo, the product [[,..,

(1 + e;) converges and, therefore, for any €, there is m with ||R,..|| < €. The

theorem is thus proved. |

Corollary 2.9: Let {P} and {P} be two Markov chains satisfying the conditions
of Theorem 2.8. If one of the chains is weakly ergodic, then so is the other.

Proof: Assume that lim,_...0(H,,) =0, m =0, 1... . Let C,, be a matrix
all the rows of which are equal to some row say i, of H,,, and Let C,, be a
matrix all the rows of which are equal to the corresponding i, row of H,,,.

“ﬁmn - C-‘mnH < ”Hmn - Hmn” + ”Hmn - Cmn” + “Cmn - Cmn”

and for any iy, ||Cp, — Cpal| < ||H,., — H,,||, since the rows of C,,, are equal
to the i, row of H,, and the rows of C,, are equal to the i, row of H,, by
definition. Moreover, by Exercise 1.12 ||H,, — C,.|| < 26(H,,) and by
Theorem 2.8 one can choose an m such that ||H,, — H,,|| is as small as
wanted. Let us now combine the above arguments together. Given €, choose
i to be an integer such that &(H,,) < }||H,,, — C,.|| + €/2, this is possible
by Exercise 1.12. Choose m, so that | Hoow — H,oall < €/3. For any m > m,
there is n such that 6(H,,,) < €/6 thus, for the fixed i, and for any m > m,
there is » such that
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7 5 € 2€ €
”Hmn—'Cmn“<'—3—+—6‘+-3——E
and
S < 1Bl — Coall + 5 < €

Finally, for i < m,, we have that 8(H,) < &H,,,..) 6(H,,) < 6H,,)so that
lim, .. 6(,) =0. |

EXERCISES

1. Prove that a Markov chain {P;} such that ) yp(P,) diverges is weakly
ergodic.

2. Prove that if a Markov chain {P;} is weakly ergodic then every convergent
subsequence of the sequence H,,, (for fixed m) converges to a constant matrix.
[A; converges to A means that ||4, — A4|| — 0.]

3. Let {P;} be a Markov chain. Prove: If there exists a vector m such that
lim,_..||nH,,, — #|| = O, then also lim,_...|[zP, — ]| = 0.

4. Let {P;} be 2 Markov chain such that there is € > 0 with y(P,) > € for all
i, and let {P} be an arbitrary Markov chain. Prove that there is a constant
stochastic matrix S such that

lim||P,P,B, P, ,---P,P, — || = 0

n—oo

Generalize this result.

The following exercises (5-11) deal with the distinction between finite and
countable Markov chains.

5. Prove by an example that for any € there is a countable Markov matrix P,
such that d(P.,) < € but 8(P,) = 1.

6. Prove that a finite Markov chain is weakly ergodic if and only if lim,_..
d(H,, = 0. Is the above statement true for countable Markov chains?
Explain.

7. Prove that a finite Markov chain is strongly ergodic if and only if there is
a constant stochastic matrix Q such that lim,_..|H,, — Q] = 0. Is the above
statement true for the countable case? Explain.

8. Prove that if the Markov chain in Theorem 2.2 is finite, then the condition
of that theorem can replaced by the condition: lim,_..|H,, — E,..| = 0. Discuss
the countable case.

9. Same as Exercise 8 but for Theorem 2.3 with the condition replaced by the
condition that lim,_..|[['* R| = 0.
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10. Same as Exercise 8 but for Theorem 2.4 with the conditions replaced by
the conditions
(1) Ym|H,,—E,,|=0

) lim|E,, — E,| =0

11. Prove that all the other theorems in this section can be replaced by similar
theorems with the norm *| |” replacing the norm || [|” whenever it occurs
and discuss the countable case.

12. Markov chains in general can be classified according to the following four

types:

Type |Hpw — Ol — 0 0(H,,) — 0
Strongly ergodic Yes Yes
Weakly ergodic No Yes
Convergent Yes No
Oscillating No No

where [|H,,, — Q.|| — 0 means that for any m, there is a matrix Q,, (not neces-
sarily constant) such that lim,, ..||H,., — Q.|| = 0. In Corollary 2.9 it is proved
that if two chains satisfy the conditions of Theorem 2.8 and one of them is
weakly ergodic then so is the other. Prove that the same is true for all the
other three types of chains above.

13. Prove that if all the matrices in the Markov chain are equal one to the
other (the chain is homogeneous), then weak ergodicity implies strong ergo-
dicity.

14. Prove that if all the matrices in a Markov chain are doubly stochastic, then
weak ergodicity implies that the matrices are of finite order and implies strong
ergodicity.

3. Nonhomogeneous Markov Systems

The difference between Markov systems, to be introduced in this section,
and Markov chains, discussed in the previous section, is that in the Markov
system model one studies the set of all possible products of Markov matrices
taken from a (finite) given set of such matrices, while in the Markov chain
model one investigates a specific given infinite product of Markov matrices
and its possible subproducts. The approach in this section is closer to the auto-
maton concept where the set of all words over a given alphabet is studied with
regard to the transitions induced on the states of the automaton by the different
words.
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The words correspond here to products of Morkov matrices which induce a
probabilistic transition between the states of the automaton.

It is to be noted, however, that a homogeneous Markov chain is a particular
case of both a nonhomogeneous Markov chain and a Markov system—the case
where only one Markov matrix and its powers is considered.

Definition 3.1: A Markov system over a [finite] alphabet X is a pair (S, {4(9)})
where S is a [at most countable] set of states and {A(c)} is a set of Markov
matrices [representing the transitions between the states] such that the matrix
A(o) is associated to the symbol ¢ € Z.

Notation: If x is a word in X* (the set of all words over X including the
empty word denoted by A) such that x = g, - - - g, then A(x) = A(0,)A(0,)
-+ A(o,); A(x) = [a,(x)] and q,(x) is the transition probability from state i
to state j associated with the word x.

It will be assumed that the alphabet X is finite. We shall, however, mention
later some of the implications induced by the assumption that X is infinite.
When two systems are compared it is always assumed that they are over the
same .

Definition 3.2: A Markov system (S, {4(0)}) is weakly ergodic if for any
€ > 0, there is an integer n = n(€) such that d(A(x)) < € for all words x such
that /(x) > n(€) where /(x) denotes the length of the word x.

Remark: 1f a Markov system is weakly ergodic, then 6(A(x)) — 0 uniformly,
the magnitude of .§(A4(x)) depending only on the length of x and not on the
specific symbols contained in x. Such a requirement of uniformity will be too
restrictive for the strong ergodicity and therefore strong ergodicity will not be
dealt with for Markov systems.

Note that A(xy) = A(x)A(y) so that d(A(xy)) < 6(A(x))(A(y)) < (A(x))
and therefore if and only if 8(A(x)) <<€ for all x with /(x) = n(€), then
O(A(x)) < € for all x with I(x) > n(e).

Theorem 3.1: A Markov system is weakly ergodic if and only if there is an
integer k such that d(4(x)) < 1 for all x with I(x) = k.

Proof: Necessity follows directly from the definition. To prove sufficiency
set & = max,,_, 6(A(x)) < 1. [there are only finitely many words x with
i(x) = k because X is finite.] Let n, be an integer such that 8™ < € for a given
€ > 0. Let x be a word such that /(x) > kn,, then x =y, --- y, y where
I(y)) = -+ = Uy,) = k and I(y) > 0. Thus, 6(4(x)) < 6(A(y) - - - (A(y.,))
< 0™ < €. Tt follows that the system is weakly ergodic. |

Remark: The theorem will remain true even if the alphabet X is infinite

provided the requirement that d(4(x)) < 1 is replaced by the requirement that
there is a real number ¢ < 1 such that d(A(x)) < d for all x with I(x) > k.

Theorem 3.2: Let (S, {A(0)}) and (S, {4(0)}) be two systems such that the first
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is weakly ergodic and the second is arbitrary. There is € > 0 such that if
||A(g) — A(0)]| < € for all o € X, then the second system is also weakly
ergodic.

Proof- Using Theorem 3.1, we must prove that there is € such that if
||4(g) — A(a)]| < € for all ¢ € Z, then there is n such that 8(4(x)) < 1 for
all x with I(x) > n. Let A4,(x) be the matrix such that all its rows are equal to
the i, row of A(x), then ||A(x) — A4,(x)|| < 26(A4(x)) by Exercise 1.12. As the
first system is weakly ergodic, there is n, such that §(4(x)) < 4 for all x with
I(x) > ny, ie., ||(x) — A,(x)|| < 4 for all such x and any i,. Let X be a fixed
but arbitrary word with /(X) = n, and choose i, so that d(4(X)) < }||4(%) —
A,(%)|| + % Such an i, exists by Exercise 1.12. Finally, let € be a number
0 < € < 1/(3my), and let ||A(6) — A(0)|| < € for all ¢ € E. Then, by Exercise
1.11, we have that ||A(X) — A(%)|| < 4 (for I(X) = n,). Thus,

H(A®) < § + HAF) — 4, ()]

<4 + $(IAE) — ADI + (14 — A + (|45 — AF)]
<EHIGHE+P =1
since {4, (%) — :47,.0()?)” < ||A(x) — A(%)|| < . But % is arbitrary and therefore
we have that §(A(x)) < 1 for all x with I(x) = n, provided that ||4(c) — A(o)||
< 1/(3n,) for all g € Z, where n, is an integer such that §(4(x)) < % for all x
with /(x) > n. To complete the proof we note that if 6(A(x)) < 1 for all x

with /(x) = n,, then this is true also for all x with /(x) > n,, as mentioned
before. 1

Theorem 3.3: Let (S, {A(0)}) and (S, {A(c)}) be two systems such that the first
system is weakly ergodic. For any & > 0, there is € > 0 such that if ||A(o) —
A(o)|| <€ for all 0 € I then ||A(x) — A(x)|| < 0 for all x € T*,

Proof: By the previous theorem, there is €, such that ||4(c) — A(0)|| < €,
for all 6 € Z, implies that both systems are weakly ergodic. Thus there is €,
such that there is n, with both d(4(x)) < §/6 and 8(A(x)) < /6 for all x with
I(x) > n,y and the given d provided that ||4(¢) — A(o)|| < €,. For the number
n, above, there is €, such that if |[4(6) — 4(0)|| < €, then ||A(x) — A(x)]| <
6/3 for all x with I(x) < n, [this follows from Exercise 1.11]. Let € =
min (€,, ;). Then for all x with I(x) < n,, ||A(x) — AX)|| <6/3 < 6. If
x = yz with I(z) = n, and I(y) > O i.e., if I(x) > n, then, using Corollary 1.6
we have that

[4(x) — A)|| = ||A(yz) — A(pz)||
<l AW A(z) — AN + [A(0A(z) — AQ)|| + ||A(z) — AC2)|
< 20(A(2)) + 26(A(2)) + ||A(z) — A(2)||

6 5,08
<T+5+5=0 1
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Remarks: Theorem 3.3 provides an interesting application: Assume that a
system (S, {A(0)}) is given together with an initial distribution & over the states,
and it is required to compute the values of the vector zA(x) for some word
x = 0, -+ 0. If the number of states in countably infinite, then it will be
impossible to compute the exact values of the entries of 7A4(x). If the system is
weakly ergodic, then using Theorem 3.3 one can change the vector z into a
new vector 7% such that ||z — 7|| < € and & has only finitely many nonzero
entries. The rows of 4(c;) corresponding to zero values in # can be replaced
by zero rows and one can choose finitely many columns in the remaining rows
so that by replacing the other columns by zero columns one gets a matrix 4(c,)
such that ||A(g,) — A(a,)|| < € and A(c,) has only finitely many nonzero
entries. The process is repeated for A(g,) - - - A(o,). As ||x — 7|| < € and
|| 4(e) — A(o)]| <€, ||[mA(x) — RA(x)|| < & with € a function of . An infinite
computation can thus be replaced by a finite computation and the resulting
error can be kept under control. Theorem 3.3 may also be used for rounding
off the entries in the individual matrices A(¢) [in order to simplify the com-
putation, or to make computation possible when the entries are irrational] and
keeping the resulting error in long computations under control.

Because of the importance of Theorem 3.3, one is induced to ask whether
the condition of that theorem is best [i.e., whether it is also a necessary con-
dition for the theorem to hold true]. That this is not the case is shown by
Exercise 3.4. On the other hand it is clear that the theorem is not true in
general, e.g., let I be the unit matrix of order n and let P be any double
stochastic matrix such that ||P — I|| < € and such that 6(P) < 1, then, inde-
pendently on € we have that lim,,_.. P” = E where E is a matrix such that all
its entries are equal to 1/n [see Exercise 1.13c]. Thus, for large enough m and
n>2,

— 2
T — Pl > (IT = El| — |E— Pl = 1 + "= — ||E— P"l| > 1

independently of €.

One additional question with regard to Theorem 3.3 to be considered here
is the following: Assume that we drop the requirement that the first system is
ergodic and require instead that 4(c) has zero entries in the same places where
A(o) has zero entries [i.c., no new transitions are added in the approximation].
Is this new condition necessary or sufficient, or both, for the theorem to hold
true? It is clear that this new condition is not necessary, since a weakly
ergodic system may have zero entries in its 4(c) matrices and the theorem does
not impose any restrictions on the corresponding entries in the matrices A(o).
The following example will show that the above condition is not sufficient
either.
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Example: Let

p 1—p O 0 1—p 0 P 0

A 0 1 o0 0 Ao 0 0 0
g,) = 5 T,) =

YTlo 0 g 1—¢q 2 g 0 1—q 0

0o 0 0 1 0 0 1 o0

then, by straightforward computation one finds that

[ 1 —p O 0
0 1 0 0
Alo,") = 0 0 7 =g

o o 0 1

"1 _ pn+1 0 pn+l 0

1 0 0 0

A(GI"GZ) = qn+l 0 1 —_ qn+1 O

|0 0 1 0

Denote 6,"g, by x,. It is easily seen that if words of the form x, only are
considered, then the subsystem consisting of the first and third states is inde-
pendent of the other two states, i.e., if A'(x,) denotes the submatrix of A(x,)
corresponding to the first and third state

1 — pntl n+ 1
A’(x") = [ qnﬁ 1 iqnﬂ:‘
then A'(x,x,) = A'(x,)A'(x,). Let now p = q = 1. In this case
1— 1 L
4n+1 4n+1
Ax,) =
) 1 1L
4n+l 4n+1

A'(x,) being doubly stochastic, we have that [see Exercise 1.13c]
T 3%

lim 4(x,") = [ }
m=veo 7 3z

But if p = { and ¢ = § — € with 0 < € < 1, then the matrix 4'(x,) will have
the form
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1 1
1— i 1
1 n+1 1 nt+l
F-9" 1-(z-9
So that [see Exercise 1.14]
- l ntl 1 _‘
(_Z - E) 4n+l
n+1 n
(79 +7 G- +a
lim 4'(x,™) = 4 4 4
L 1 n+l 1
(T - 6) gr+i
1 a+1 1 1 n+1 1
79 e G

And for any € > 0 and J > 0, there is n with

1 n+1
(z-¢)
l- n+l 1

(G- +an
(let the reader prove this fact). Let B(o,) be the matrix A(o,) when p = ¢q = %
and let B(o,) be the matrix A4(c;) when p=fandg=¢—€0<e<i
Then {|B(g;) — B(o,)|| < 2¢, but for any such €, there is a word of the form
x,™ such that the 1, 1 entry of B(x,™) is bigger than § and the corresponding
entry in B(x,™) is smaller than { so that ||B(x,™) — B(x,™)|| > 4 which shows
that the consequence of Theorem 3.3 is not true for this example although
B(0,) has nonzero entries in the same places as B(a,).

<9

EXERCISES

1. Discuss Theorems 3.2 and 3.3, in the case where X is infinite.

2. Show that if all the Markov systems considered are finite then all the
theorems of this section are true with the norm “|| ||” replaced by the norm
“ [|” and & replaced by d.

3. Prove that any system (S, {(¢)}) such that |S| = 2 is weakly ergodic if and

only if the matrices [(1) (1)] and [(1) (1)] are not included in the set {A(0)}.

4*. Prove the following proposition: Let (S, {4(¢)}) and (S, {A(c)}) be two
systems such that |S| = 2. For any d > 0, there is € > 0 such that if
1. ||4(e) — A(0)|| < € for all 6 € T with

10 0 1
A(o) # [0 J and A(o) #= [l OJ
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1}, then A() = A(0).

1 0 0
2. I, A(o) = [O J or A(o) = [1 0

Then ||A(x) — A(x)]| < 6.

5. Prove that a weakly ergodic system such that all its matrices are double
stochastic, has only finitely many states, is strongly ergodic and the limiting
matrix is such that all its entries are equal. [A system is strongly ergodic if
lim,,, ... ||A(x) — Q|| = O for some constant stochastic matrix Q.]

4. Graph Properties and Decision Problems

Up to this section no restriction was assumed with regard to the finiteness or
infiniteness of the Markov chains or systems considered. In this section, how-
ever, we shall assume that the chains or systems have only finitely many states.
This restriction will enable us to simplify the classification of the states of a
chain. In addition we shall be able to prove some decidability theorems under
the finiteness restriction although it is not known whether these theorems are
true in the infinite case. Some of the difficulties encountered in this case will
be illustrated in the exercises following this section. For more information on
infinite homogeneous Markov chains, the reader is referred to the books by
Kemeny, Snell, and Knapp (1966), and Feller (1958).

Given a Markov matrix P = [p,;] with state set S, the graph associated with
Pis a pair (S,I") where T" is a binary relation on S (I' = S x S) such that
(i,j) € Sifand only if p,; > 0. If i € S, then iT" denotes the set of states

I'={j:Gj) eI}

A sequence of states (iy, iy, . . . , I,) is a path of length n if every pair of adjacent
states in the sequence is in I". Then state j is a consequent of length n of i if
there is a path of length n beginning with i and ending with j. A pair of states
have a common consequent (of order n) if there is an integer » such that
il N jI'" = ¢ where I'" means the composition of I’ with iiself »# times
[(#, /) € T? if and only if there is & such that (i, k) € T and (k, j) € T.] The
graph is strongly connected if there is a path connecting any pair of states.

We are now able to classify the states of a given graph (S,I’). A state is
called transient if it has a consequent of which it is not itself a consequent. A
state which is not transient is nontransient.

Remarks
1. It is decidable whether a given state is transient or not [see Exercise 4.1].

2. There must be nontransient states in any graph. Otherwise, one can con-
struct an infinite sequence of states iy, i,, ... i, ... such that for k > j, i, isa
consequent of i; and i, is not a consequent of i, (the relation of consequence is
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transitive). All the states in the sequence must therefore differ one from the
other, and, as the chain is finite, this is impossible.

3. If i is a nontransient state and j is a consequent of 7, then j is also non-
transient. For let k be any consequent of j, then k is a consequent of i which
implies that i is a consequent of k [i is nontransient] which implies that j is a
consequent of k [since j is a consequent of {].

The set of nontransient states is divided into ergodic classes, where an ergodic
class is a maximal strongly connected set of states and two states belong to the
same ergodic class if and only if they are consequents of each other. In order
to be able to proceed with the classification we need now the following:

Lemma: A set of positive integers that is closed under addition contains all
sufficiently large multiples of its greatest common divisor.

Proof: Let d be the gcd of the given set of numbers, then there is a finite
set of these numbers, say n,, m,, . . . , 1, such that d is their ged [Let n, be the
first number in the set. If n, = d, we are done, if n, > d, then there is an n,
such that the ged of (n, n,) = d, is >d. If d, = d, we are done. If d, * d,
we continue the process getting a sequence of numbers n,, n, 15, . . . which
must terminate as the d’s are decreasing.] By a well-known theorem of
arithmetic, there are integers [negative or positive] a;, a,, ..., a, such that
an, + -+ + ayn, = d. Let m be the positive part and let # be the absolute
value of the negative part in the left-hand side of the above equation. Then m
and n are numbers in the given set [for the set is closed under addition].

Let g be any number, then g can be written in the form ¢ = an + b with
b < n — 1. Multiplying by d we get dg = dan + db. But d = m — n so that
db = (m — n)b and dq = dan + (m — n)b = (da — b)n -+ bm. Thus for any
g such that a > (n — 1)/d the value da — b will be nonnegative with the result
that dg is in the set. The lemma is thus proved. ]

Let E be an ergodic class of states, let i and j be two states in E and let N,
be the set of integers n;; such that there is a path of length n; connecting the
two states i and j. The sets N;, are not empty by the definition of E. Consider
now the two sets of integers N, and N;; and let d; and d; be their gcd respec-
tively. By the previous lemma we have that for sufficiently large &, kd; € N,
[since the sets N, are clearly closed under addition]. Let @ € N, and ¢ € N
be two integers, then for sufficiently large k,a + kd;, + ¢ € N,. It follows
that d, divides a -+ kd, + c, and, since d, also divides (a + ¢) € N, we have
that d, also divides kd, for all sufficiently large k. But this is possible only if d,
divides d,. Similarly d, divides d, or d, = d,. The consequence is that all the
sets N, have the same ged to be denoted by d. Let a and b be integers in N;
and let ¢ bein N;. Then a + ¢ € N, and b+ ce N,sothat a+ c=
0(mod d) and b + ¢ = 0(mod d) or a = b(mod d). It follows that all the
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integers in N,; are congruent to each other (mod d) and in particular to the
smallest integer in N,;, to be denoted by ¢,;. [If i # j, thent,; % 0 and if i = j
we may define ¢, = 0, for any integer in N, is congruent to 0 (mod d).]

We are now able to divide any ergodic class E into periodic subclasses as
follows: Two states i and j in E are in the same periodic class if and only if
j € il'"and n = 0 (mod d). It is easy to see that the relation of being in the
same periodic class is an equivalence relation (see Exercise 4.3), and any ergodic
class is thus subdivided into exactly d periodic subclasses [d is the gcd of the
sets N;] C,,C,,...,C, where any path connecting a state in C, to a state in
C,i<jhaslengthnwithn=j—i(modd)and j — i =1,

Example: Consider the graph in Figure 12. The states 1, 2, 3 are transient.
The set of states {6, 7, 10} is an ergodic class and the sets {6}, {7}, {10} are its
periodic subclasses with d = 3. The set of states {4, 5, 8, 9} is another ergodic

10

Figure 12. Schematic representation of a transition graph.

class and the sets {4, 8} and {5, 9} are its periodic subclasses with d = 2. Note
that, by a proper rearrangement of the states, the matrix whose graph is as
above can be written in the form shown in Figure 13 (nonzero entries are rep-
resented by a x sign). Thus every ergodic (E,, E,) class is represented in a
square main diagonal submatrix with all the entries in the remaining parts of
the corresponding rows being zero. The periodic subclasses are represented in
[not necessarily] square submatrices filling the intersection of a set of rows
corresponding to one periodic class with a set of columns corresponding to
another periodic class in the same ergodic class. All the other entries in the
corresponding rows are zero.

The rearrangement of states, illustrated above, is possible in general and any
stochastic matrix can be rearranged so as to have the above form.

Definition 4.1: A matrix is SIA (stochastic, indecomposable, and aperiodic) if
it is stochastic and its graph has only one ergodic class with period d = 1 [i.e,,
there are no periodic subclasses].
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: 4 8 5 9 6 7 10 { 2 3
4 0 X X
8 X X

E2 4 0
5] x
0

u9 X

P6 x

UO X
1 X X X X X
2 X X
3 X X

Figure 13. Canonical representation of stochastic matrix.

Definition 4.2: A stochastic matrix satisfies the condition H, if every pair of
states in the associated graph has a common consequent.

Lemma 4.1: A stochastic matrix is SIA if and only if it satisfies the condition
Hl'

Proof: Let P be an SIA matrix of order n, and let i and j be two of its
states. There is m (<Cn — 1) such that both i and j have consequent states i’
and j’ of order m and #', j/ are nontransient. Since there is only one ergodic set
which is not periodic, there is an m, such that m, € N, and m, € N, so that
i’ is a common consequent of order m 4 m, of both i and j.

Assume now that P satisfies H, and that there are several ergodic classes in
the graph G,, G,,...,G,. Leti, € G,and i, € G, be a pair of vertices in dif-
ferent classes, then i, and i, have a common consequent k which is nontransient
(k is a consequent of nontransient states). Hence i; and i, are consequents of &
which implies that k € G, and k € G, or G, = G,. It follows that there is a
single ergodic class in the graph. Assume that the ergodic class is divisible into
several periodic subclasses Ci, . .., C, and let i, and i; be a pair of vertices in
different classes C; and C; respectively. Then i, and i, have a common con-
sequent k which is nontransient and belongs, therefore, to a periodic class C,.
Then k is a consequent of order & — 1 (mod d) of i, and a consequent of order
k — j (mod d) of i, and [since k is a common consequent of both i, and i;]
k—1=k—j(modd) or 1 =j(modd) or C,=C,. Thus there is no
periodic subdivision of the ergodic class and the proof is complete. 1
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Lemma 4.2: Let (S,I') be a graph with n states. If a pair of states / and
Jj.i,j € S, has a common consequent, then it has a common consequent of
order v where v << n(n — 1)/2.

Proof: If states i and j have a common consequent, then there exists a se-
quence of (unordered) pairs of states [with i = i;, j = j,]

(i0i0)3 (ilil)a ey (lplll)

such that (1) i, = j,,k=0,1,2,...,u~ 1;(2)i, €il* j. e T*(3)i,=j,.

If the sequence contains two equal pairs, then omit the part of the sequence
between these pairs, including the second of the equal pairs. Repeat this pro-
cedure until a reduced sequence is obtained

(ioio)a (illjll)s crey (ik,jkl)s cery (iv’jv,)
such that (1) i,/ #j/ . k=0,1,...,v—1; (2) i’ € il'*,j' € jT*; (3)
(ikljkl) ¢ (i!’jjl)a k ;t.], k’.] = 0, 1’ 2, ey V. (4l) iv’ = jv,-
Now by (2') and (4'), i, = j,’ is a common consequent of order v of the
states i and j, while by (1’) and (3'), v is at most n(n — 1)/2. |

Remark: 1t is not known whether the bound given in Lemma 4.2 is sharp.
It can be shown however that the difference between the above bound and any
sharper bound is of the order of magnitude n/2 where n = |S| [see Exercise
4.4].

Definition 4.3: A stochastic matrix is called scrambling if every pair of states
in the associated graph has a common consequent of order 1.

Lemma 4.3: Let P be a finite stochastic matrix, y(P) > 0 if and only if P is
scrambling.

Proof: min, ;, 3, min (p,;, p,;) > 0 if and only if for any i, and i,, there
is a j with both p,; and p,;, > 0.

Theorem 4.4: Let P be a finite stochastic matrix. P satisfies H, if and only if
there is an integer k << n(n — 1)/2 such that y(P*) > 0.

Proof: If P satisfies H, then, by Lemma 4.2 thereisa k < n(n — 1)/2 such
that P* is scrambling [the common consequent property is hereditary, i.e., if
two states have a common consequent of order n then they have a common
consequent of order >#] so that by Lemma 4.3 y(P*) > 0. If there is & with
y(P*) > 0, then P* is scrambling, i.e., P satisfies H,. |

Corollary 4.5: It is decidable whether a finite homogeneous Markov chain is
ergodic or not.

Definition 4.4: A stochastic system (S, {4(0)}) satisfies condition H, (of order
k) if there is an integer k& such that all the matrices A(x) with I(x) > k are
scrambling.
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Corollary 4.6: A stochastic system is weakly ergodic if and only if it satisfies
condition H,.

Proof: By Lemma 4.3, Proposition 1.7, Theorem 3.1, and Definition 4.4. |}

Remarks:

a. If all the matrices A(o) are equal one to the other (the homogeneous case)
then the condition H, reduces to the condition H,.

b. It suffices that the matrices A(x) with /(x) = k be scrambling for the
condition H, to be satisfied [see Exercise 4.6].

Theorem 4.7: If a stochastic system (S, {A(0)}) satisfies the H, condition, then
it satisfies this condition of order k with

k S %(311 o 2n+1 + 1)
where n = |S].
Proof: Assume that there is a matrix 4(x) with I(x) > (3" — 2**! 4+ 1) and
A(x) is not scrambling. Then there are two states i, and i, which do not have

a common consequent by A(x). Let x = o, - - - 0, and consider the following
sequence of unordered pairs of sets of states
(&}, o), (), ), . . ., (&, &2
where &' = i;, 0> = i, and
01, 074
are the consequents of the states in &', &, respectively by the matrix A(c)).

By the definition of the matrix A(x) and of the as, we have that all as are
nonvoid sets and every pair of as is a disjoint pair of sets. Let a, denote the
set of states in S which are not in a,! U &2 There are 3" different partitions of
S into 3 disjoint subsets &}, &2, &2, but 2"*! — 1 of these have &' or a;> or both
empty. [There are 2" partitions of S into two sets &,' and &’ or o and o, but
the partition with § = & is counted in both cases.] Thus there are 3* — 2"*!
+ 1 ordered partitions (&, &2 &7) of S such that both &' and & are not
empty. If the order between ' and &2 is not taken into account then the
number of such partitions reduces to (3" — 2"*! + 1). This argument implies
that there are two equal pairs in the above sequence say (&', ;%) = (%', &%),
j < k < n. It follows that any matrix of the form

Aoy -+ 0;)A(0; -+ - Ox-1), r=12,...
is not scrambling and the condition H, is not satisfied. |

Corollary 4.8: It is decidable whether a given stochastic system satisfies the H,
condition.

Proof: By Lemma 4.3, Theorem 4.7, and Definition 4.4. |
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Remark: To decide that a given system does not satisfy H, one must check
all matrices A(x) with I(x) < (3" — 2"*' 4+ 1) which will make the procedure
difficult and for large n, even impracticable. One may facilitate the computa-
tion by disregarding any matrix A(x).which has a scrambling matrix as a factor,
for any such matrix is a priori scrambling [see Exercise 4.6]. On the other hand
it is shown in the following example that the bound of Theorem 4.7 is sharp
and cannot be improved in general.

Theorem 4.9: The bound in Theorem 4.7 is sharp.

Proof: Fix n, let K be a set of n states and let the following sequence by any
enumeration of all different unordered pairs, of nonvoid disjoint sets of states
from K:

(“ols “oz)s (a111 alz)s L) (akl9 akz) (2)

such that the number of states in any set of the form &, = «,! U o, is not
smaller than in the set «,_, for i = 1,2,..., k. As stated before k + 1 =
1i_(3n — Ontl + 1)

If ¢ is a set of states and A(x) is a matrix in a system, denote by A(x, @) the
set of states which are consequents of those in ¢ by A(x). Let (K, {4(o)}) be a
system such that |X| = k and the matrices 4(a,), ..., 4(0;) satisfy the follow-
ing property:

K if opN[K—a_4]+#* g
ot if p<al,

(1
A(ab ¢) = a,?' lf ¢ = a,z_l

3

o, otherwise

Note that the number of states in A(o,, ) can be smaller than in ¢ only in the
second or third case in (3). This follows from the definition of sequence (2),
and we shall refer to this property as the conditional monotone property. Note
also that if (3) is satisfied for one-element sets, it is satisfied for any sets.

We will show now that the stochastic system as defined above satisfies the
H, condition, but there is a word x € X* with I(x) = k such that A(x) is not

scrambling.

The second assertion follows from the fact that the matrix A(x) =
A(oy, 0, ...,0;) is not scrambling by the definition of the sequence (2) and
by (3).

To prove the first assertion, assume that there is a matrix A(x) =
A(o,, - - - g,) which is not scrambling and such that /(x) = ¢ > k. Thus there
are two states i, and i, not having a common consequent by A(x). Set i, = S,
i, = B4 B} = Ao, B_)) and B = Ao, f3_,) and consider the following
sequence

(ﬂl)l’ ﬂoz), MR ] (ﬂr19 ﬂrz) (4)
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This is a sequence of unordered pairs of nonvoid disjoint [by assumption] sets
of states, and as ¢t > k + 1, the sequence contains at least two equal pairs, say

(ﬂpls ﬁpz) = (ﬂql, ﬂqz)’ p < q (5)
Consider the following subsequence of (4)
(ﬂpls ﬂpz)s vy (ﬂ:—l, E—-l)a (ﬂrl’ ﬂrz)’ Pee (ﬁq‘9 ﬂqz) (6)

As before, we shall denote by B, the set §, = B! U B2

The matrix 4(o,) transforms the sets (f!_,, f2_,) into the sets (8, f,), but
A(o,) is one of the A(o;)s say A(0,) = A(o,). The following cases must be
considered :

(a) P N (K=o ) #* O or NEK—o0 )= o

This is impossible, for this would imply that 8,' N f,%> = & by (3), contrary
to the assumption that these sets are disjoint.

(b) Bvcaw, or  pca,
which is also impossible, as in this case we get that
B! = Ao, B;-1) = &' (or &%) = A(o,,, Bi-)) = B
contrary, by (3), to our assumption that 8,! N 2+ &.
', Noal, %~ &, together with B!_, N el # &, or

(© .
LN E T, together with fi , Na}_, # &

which is also impossible, as in this case we get, by (3), that ,! N f,2 = &.

@ L, together with f2_, < af_,, or

LSk, together with f,_, < o},
and the inclusion is proper 1n at least one part of the conditions, which is also
impossible, since by the conditional monotone property and by the impossibility
of case (b) [applying the same argument to all pairs in sequence (6)], we get
that the number of states in f§, is larger than that in 8, contrary to (5).
(@) =0, together with ., = a?_,, or
s

L =ai, together with %, = a}_,

In this case we get that sequence (6) is a middle part of sequence (3), which
is impossible since all the sets in (2) are different, contrary to (5).

All possible cases are covered by (a)-(e), and the proof is complete. Note
that the bound in Theorem 4.7, although sharp, is independent of the number
of letters in the alphabet T. On the other hand the number of letters in the
counterexamples of Theorem 4.9 grows with . It would be therefore interest-
ing to find out whether the bound in Theorem 4.7 can be improved under the



A. Nonhomogeneous Markov Chains and Systems 93

condition that the number of letters in X is kept fixed or small [say 2 letters].
No answer to this question is presently available. I

Definition 4.5: A stochastic system (S, {4(0)}) is definite [of order k] if there
is an integer & such that all the matrices A(x) with I(x) > k are constant and
this property does not hold true for all words x with I(x) < k.

Corollary 4.10: If (S, {A(g)}) is a definite stochastic system of order k and
y = ux is a word such that I(x) = k, (u) > 0 [I(y) > k] then A(y) = A(x).

Proof: A(y) = A(u)A(x) = A(x), by Exercise 1.4 in the preliminary section
since A(x) is constant.

A final problem to be discussed in this section is the decision problem for
definite stochastic systems. This problem is solved by the following.

Theorem 4.11: If a stochastic system (S, {A()}) such that |S| = n is definite
of order k, then k <n — 1.

Proof: Denote by V the set of all n-dimensional vectors & = (vy,..., ;)
such that 3 », = 0; denote by H' the set  of matrices H' = {A4(x): l(x) = i}
and denote by VH' the linear closure of the set of vectors of the form §.A4(x),
ve V,Ax) € H, ie,

VH = {3 5,4(x); 5, € V, Ax) € H,r=0,1,..}
i=1

Then (2) V is a linear space, (b) VH' is a linear space VH' = V.

To prove (b) we note that any vector of the form #A4(x) is in ¥, which is
closed under addition; the set VH' is closed under vector addition by definition,
and is closed under multiplication by a constant because the set ¥ is closed
under such multiplication [i.e., ¢ 3 75, A4(x) = 3 (¢d)A(x) = Y 5/ A(x)].

(¢c) VH**' < VH'. This follows from the fact that VH < V and VH*! =
(VH)H' < VH'.

(d) If for some i, VH' = VH'*!, then VH' = VH"*/, j=1,2,.... This
follows from the fact that VH*** = (VH'*")H.

(e) If the system is definite of order k then VH* is the space containing the
zero vector as its single element [i.e., dim VH* == 0], but this is not true for
VH, i < k.

This follows from the fact that if and only if A(x) is constant then 74(x) = 0
forall 5 € V.

Consider now the sequence of linear spaces

W=VH Y2 VH=2VH'=2 ... 2 VH - ..
Because of property (d) this sequence must have the form
VH* > VH > VH'> ... o VH? = VH?*' = VHP*? = ..

[the sequence cannot descrease indefinitely because dim V' = n — 1]. Thus, if
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the svstem is definite of order k, then necessarily VH? = VH* = {0} by property
(e) so that n— 1 = dim VH® > dim VH' > ... > dim VH* = 0. Hence,
k<n-—1. [ |

Corollary 4.12: If P is a stochastic matrix of order n such that P* is constant
but P*~! is not, then k << n — 1.

Corollary 4.13: It is decidable whether a given stochastic system is definite.

Example: Consider the following set of 3 X 3 matrices

1 1 1 1 1 1
T 7 7 14 7 7
Ao) =2 3+ 8} Ale)=[% 3 %
1 1 1 1 1 1
T z 7 T 7 7
Straightforward computation shows that
5 1 7
74 7 724
A(o,0) = A(0,0,) = | 3 211)
5 1 ki
24 2 Z4
and
3 1 5
16 2 716
A(o,0,) = Alo10) = |4 + &
3 1 5
16 7 716

This system is therefore definite of order 2.

EXERCISES

1. Prove that the property of being a nontransient state is decidable and find
an optimal algorithm for deciding it. [A property is decidable if there is an
algorithm with the aid of which one can decide, after finitely many steps,
whether an element of a certain class has or has not the property.]

2. Prove that the relation of being in the same ergodic class is an equivalence
relation.

3. Prove that the relation of being in the same periodic class is an equivalence
relation.

4. Find a graph (S, I') such that |S] = n, it satisfies the H, property, but there
is a pair of states /, j € S which do not have a common consequent of order m
[m is a function of n] where m is as close as possible to the bound of Lemma
4.2

5. Provide a full proof for Corollary 4.5.

6. Let P and Q be stochastic finite matrices. Prove that the product PQ is
scrambling if one of the matrices P or Q [or both] is scrambling.
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7. On the basis of Theorem 4.7 and Exercise 4.6 above, give an algorithm for
deciding whether a given stochastic system satisfies H,.

8. Consider the following condition: A stochastic matrix P satisfies condition
H, of order k if there is an integer k and a state j such that j is a consequent
of order k of all the states (including j). Prove: If P has finite order, then the
conditions H, and H, are equivalent.

9. Let f be a 1-1 function from the set of all disjoint unordered pairs of
integers into the set of intergers. Let P = [p,;] be an infinite stochastic matrix
such that p,; # 0 if and only if there is a k£ with f(i, k) = j. Show that P has
the H, property, but it does not have the H; property.

10. Find an infinite stochastic matrix P which satisfies the H; property of order
1 but y(P) = 0. [Compare with Lemma 4.3.]

11. Find an infinite stochastic matrix P such that lim,_.. d(P") =0 but
lim,_., (P") = 1.

In the following exercises it is assumed that the matrices are of finite order.
12. Let P be a stochastic matrix, Prove that there is a stochastic matrix Q
such that

.1 &
lim=-Y P"=¢Q

n—oo B m=1
13. The matrix Q in Exercise 12 is constant if and only if there is a single
ergodic class in the graph associated with the given matrix.

14. If, and only if, there are no periodic subclasses in any ergodic class of P,
then

lim% 3 Pm = lim P" = Q

n—oo m=1 n—oo

and Q is constant.

15. Show that in any of the Exercises 12-14 the matrix Q satisfies the equation
QP = PQ = Q or Q[I — P] = 0, providing a means for computing it.

16. Prove that if the graph associated with a matrix P contains a single ergodic
class, then there is a unique solution to the system of # + 1 equations

(x,...,x)I—P]=0

X 4+ x,=1
17. Let P, be the (n — 1)-dimensional matrix obtained from P by substracting
the rth row from all its rows and then deleting the rth row and column. Let

X, be the vector obtained from the vector x by deleting its rth entry. Prove:
a. If, and only if, there is a single ergodic class in the graph of P, then
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detd — P)#0  forany r

b. Let &, be the rth row of P, then the solution to the system of equations
in Exercise 16 [given that there is a single ergodic set in the graph of P] is

(xb L sxr—l’ xr+l1 ey xn) = é-rr(l - Pr)_l
x,=1-—Y x
I#r
18. If
1 1 1
2 7T 7
P=|} 0 }
1 1 1
T 7 7

compute lim, .. P".

19. Let P(o) be a set of stochastic matrices, let P,(¢) be defined as in Exercise
17 and let &,,(0) be the rth row of P(o) with the rth entry deleted. Let x =
o, -+ 0, a. Prove by induction that

§,.(x) = &, (0)P (o, o) + &, (0)P(05 - a) + -+
+ £,(04-)P.(0,) + &,.(00)
b. Show that with the aid of the above formula one can compute the entries
of a 2-dimensional matrix P(x) directly from the values of the 2-dimensional
matrices P(o) as follows:

Py(x) = Py(oy) + "‘;—: P,\(o) =1f[ (Pi(a;) — Py(o))

J=i+1

Py(x) = Py(oy) + 21 Pyy(0) IkI (Py(g,) — Py(o)))

jsi
Pi(x) = 1 — Py(x); Pp(x) = 1 — Py(x)
20. Show that if P = [P;] is a 2-dimensional matrix, then det P = Py, — Py,

—

21. Let P be an SIA matrix of order » and let #,* denote the rth column of
P*. Show that the set of vectors {n,*} are all contained in an (n — 1)-dimen-
sional subspace of the n-dimensional Euclidean space.

22. Show by examples that it is possible to have two finite stochastic matrices
A and B such that

a. p(4%) = 0 = y(B*) for all integers k, but there is an integer k such that
((4B)*) > 0.

b. There is an integer k such that y(4*) > 0 < p(B*) but for all integers
k y(4B)*) = 0.
23. Two stochastic matrices P and Q are called similar (P ~ Q) if they have
the same associated graph. Prove that if Q is an SIA matrix and PQ ~ P, then
P is scrambling.
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24. Let (S, {A(0)}) be a stochastic system. Prove that all the matrices A(x) are
SIA if and only if the system is weakly ergodic. Let ¢ be the number of all the
different graphs associated with |S|-dimensional SIA matrices. Prove that if
the given system has the property that all the matrices of the form A(x) are
SIA, then all the matrices A(x) with /(x) > ¢ + 1 are scrambling [use Exercise
23].

25. Let (S, {4(0)}) be a weakly ergodic Markov system. Prove that
li)m [|4(yx) — lim A(x")|| = 0
H(x)—o0 n—oo
for any word y.

26. Let (S, {A(0)}) be a stochastic system such that |S| = n and having the
following property: For any ¢ € Z, if & and B are two disjoint subsets of S
and also A(g, f) and A(o, &) are disjoint then |A(a, &) U A(a, B)| > |a U Bi.
Prove that any such system satisfies the condition H, of order n — 1 and prove
that the bound n — 1 above is sharp for such systems.

27. Let (S, {A(0)}) be a system such that all the matrices 4(¢) have the same
graph which satisfies H,. Then the system is weakly ergodic.

28. Find a sequence of infinite stochastic matrices P, such that for every
integer k, P.* is scrambling but P! is not.

29. Find a sequence of infinite state systems of stochastic matrices S, = {4 (x)}
such that S, satisfies H, of order k but S, does not satisfy H, of smaller order.

30. Find a sequence of stochastic infinite matrices P, such that P,* satisfies H,
but P4 does not satisfy H,.

31. Show that there exists an infinite stochastic matrix P such that P satisfies
Hybut y(P*y=0fork =1,2,....

OPEN PROBLEMS

1. Let P be an infinite stochastic matrix and assume that there is an integer k
such that p(P*) > 0. Does this imply that P satisfies H,?

2. Is the condition “p(P*) > € > 0 for some € and some integer k” decidable
for infinite stochastic matrices P?

3. Is the condition that lim,_. d(P") — O implied by H, or H; for infinite
stochastic matrices?

4. Find a sharp bound for Lemma 4.2 or show that the given bound is sharp.

5. Improve the bound of Theorem 4.7 under the assumption that the alphabet
is bounded [e.g., 2 letters] or show that it is impossible to improve the bound.
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5. Eigenvalues of Stochastic Matrices and Particular Cases

We shall list here for future reference the properties of the eigenvalues of
stochastic matrices without going into details. A detailed account on these
properties, as well as their proofs, can be found in the book of Frechet (1938).
See also Feller (1957), Frazer, Duncan, and Collar (1938), Turnbull and Aitken
(1932), Turakainen (1968) and Yasui and Yajima (1969).

Let A4 be a stochastic matrix 4 = [a,,] and let 2,,..., A, be the distinct
eigenvalues of 4 [r << n = the order of A4]. Then

L A<l fori=12,...,r

2. There is an index i such that A, = 1.

3. If and only if the eigenvalue A, = 1 is simple, there is a single ergodic
class in the graph of 4.

4. Let A™ = [a{7"], then for m > n the following identity holds

T
af'}") = kzl A’kmwljk(m)

where @,;,(m) is a polynomial in m of smaller order than the multiplicity of
Age

5. There are periodic classes in the graph of A if and only if there are eigen-
values A, such that 4, = 1 but |A,| = 1, in which case all these 4, are roots of
unity, and the subsum corresponding to these eigenvalues in the formula in 4
above is not identically equal to zero.

6. If the eigenvalues of A are all simple then the formula in 4 reduces to

n n
— - k.
dp = 3, 13 501 Ky 1y

where x{*) and y{® are the ith entries in the column or row eigenvector, corre-
spondingly, of the eigenvalue 4,.

7. If the eigenvalues of 4 are all simple, then A can be written in the form
A=Y7r 1A, where 4, = 1, and the A4s are square matrices such that
A A, = 0if i~ j, A = A4, and 4, = lim,,_... 4™, if the limit exists.

8. If 4 and B are two stochastic matrices which commute and have simple
cigenvalues, then they both have the same 4, [i.c., they both have the same
limiting matrix, if it exists] and the same 4, { > 1, will appear in the expan-
sion in 7.

9. Let the formula in (4) be written in the form

1:21 A, (m) = @, (m) + €,(m)

where w;(m) is the subsum corresponding to the eigenvalues A, such that
|A«] = 1 and €,(m) is the remaining subsum. Then w,(m) is a periodic func-
tion of m [over the integers] having finitely many values and €,,(m) is a func-
tion of m such that lim,, ... [€,,(m)| = 0.
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Some of the properties listed above will be used in subsequent sections. Some
others should be used in the proofs of the following exercises; the rest of them
are given for the sake of completeness. Unfortunately the properties of the
eigenvalues of individual matrices A, have very little to do, in general, with the
properties of the eigenvalues of their products of the form [] 4. Therefore
the main use of the properties of eigenvalues is for the homogeneous case [see,
however, the above-cited works of Turakainen (1968) and Yasui and Yajima
(1969)]. In that case (the homogeneous) there is a strong connection between
the properties of the eigenvalues and the classification of states given in the
previous section. This is shown by properties 3, 5, and 9.

EXERCISES

1. Let (s, {A(0)}) be a finite state system such that all the eigenvalues of the
‘matrices A(c) are simple, 4(c,)A(a,) = A(c,)A(o,) for all i and j, and the
products of “corresponding” eigenvalues other than -1 tend to zero. Then
the system is strongly ergodic. [By corresponding eigenvalues we mean eigen-
values corresponding to the same matrix 4, in the expansion of A4(c), property
7. Because of property 8 all the matrices A(o) have the same matrices 4, in
their expansion.]

2. Show by an example that there are stochastic matrices having the same limit
but which do not commute [AB = BA but lim A" = lim B" = Q].

3. Prove that 2-state stochastic matrices which have the same limit commute.

In the following exercises the matrices are assumed to be of order 2 and the
eigenvalue which differs from +1 (if there is such an eigenvalue) of a matrix
A will be denoted by 14,

4. Prove that if 4 = [a,;] is a two state stochastic matrix then A4 = det 4 =
ayy — ay.

5. If A=[a,;] and B = [b,;] and AB = C = [c,;] then
€12 = A7 + by € = @y A% + by,

extend this formula by induction to longer products of 2-state stochastic
matrices.

6. Let T =1{0,1,...,d — 1} and define

1 —

+ &_l ~.
—

1

+ af~

AG) =

1_i

d

a

Prove that
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ay(X) = 0404y -+ * O,
where x = 04,...,0, € Y., * and .6,0,_, - - - 0, isan ordinary d-ary fraction.
7. Let (S, {4(0)}) be a system such that the ratio a,,(g)/a,(0) is independent
of ¢ and 14 < 1 for all ¢ then the system is strongly ergodic [find the limit-
ing matrix].
8. Let (S, (P)) be a two state Markov chain. If ], A™ tends to some limit
which can be calculated and the ratio between the 1, 2 element and the 2, 1

element of P, is independent on i then the limit H,,, can be calculated [find the
formula}.

9. Find H,, where

[— 2m 2n,
P41 P41
P, =
2n, 1 — 2n,
L P41 BP+1

where n, n, > 0 and n, + n, = 1. Hint: [, [(F — 1)/ + 1] = 2.

10. Let (S, {A(0)}) be an n-state stochastic system such that all the eigenvalues
of A(c) are simple for all o all the eigenvalues of A(o) different from + 1 have
modulus <1 and such that lim, ... A(g,") = lim, ... A(¢;") for all i and j [the
limit exists necessarily by the above required properties] then the system is
strongly ergodic.

11. Formulate and prove a theorem which parallels the theorem in Exercise 10
for n-state Markov-chains.

12.* Prove: For any integer », there exist a finite set of stochastic matrices
such that any probabilistic vector of order » having finite binary expansion, can
be realized as a row in a finite product of these matrices [compare with
Exercise 6 above].

6. Bibliographical Notes

Most of the material and exercises of Sections 1 and 2 are based on the work
of Dobrushin (1956), Hajnal (1958), Kozniewska (1962), Paz and Reichaw
(1967) and Paz (1968b). While Section 3 is based mostly on Paz (1968b,
1970d), a particular case of Theorem 3.3 was first proved by Rabin (1963) and
the example in that section is due to Kesten (private communication).

Section 4 and some of its exercises are based on the work of Paz (1965) and
Wolfowitz (1963). A (very) particular case of Corollary 4.12 was proved by
Blogovescensky (1960) but the method of proof of that corollary here is due
to Youval [see Perles et al. (1963)]. Exercise 25 at the end of Section 4 is from
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Larisse and Schiitzenberger (1966) and Exercise 26 from Sarymsakov (1958)
References for Section S are given at the beginning of that section. Additional
references for the whole part A: Sirazdinov (1950), Sarymsakov (1952, 1956,
1958), Sarymsakov and Mustafin (1957), Sapogov (1949, 1950, 1967), Rosen-
blatt (1957), Bernstein (1936, 1944, 1946), Dynkin (1954), Doob (1953),
Frechet (1938), Kalman (1968), Kalman et al. (1969), Kemeny and Snell
(1960), Kemeny et al. (1966), Kolmogorov (1958), Linnik (1948, 1969a, b),
Lovell (1969), Marik and Ptak (1960), Markov (1913, 1951), Mott (1957),
Mott and Schneider (1957), and Paz (1963).

B. OPERATION ON MARKOV SYSTEMS

1. The Direct Sum and Product

Definition 1.1: Let 4 and B be two square matrices, 4 or order r and B of

order s. The matrix
41B A OJ
T5=lo B

of order r + s is called their direct sum. It is easily verified that

(4, + Bl)(AZ + B)) = 4,4, + BB, @)
provided that the right-hand side of the equation is defined. Trivially, the
direct sum of two stochastic matrices is stochastic.

Definition 1.2: Let 4 = [g;;] and B = [b,,] be two matrices [not necessarily
stochastic] of order m X n and p X g respectively [thus the matrices are not
necessarily square]. Then A4 (X) B denotes the Kronecker [or direct] product of
A and B where

AR B = C = [cy 5] = laybi]

The double indices ik, jl of the elements of C are ordered lexicographically
ik=11,12,...,1p,...,ml, ... 6 mp;
jl=11,...,1q,...,nl,...,ng

Note that the elements in the ikth row of C are products of elements in the

kth row of B, and similarly for the jl1th column of C. C can thus be written in
the form

a“B A a,,,B
c=| :
a.B---a,,B
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Lemma 1.1: Let 4 = [a,;], B = [b,], 4 = [a;;] and B’ = [b],] be matrices
such that the [ordinary] products 4B and A'B’ are defined. Then
(AB) ® (AB) = (ARQ ANB R B') 8
Proof: The ijentry in AB is 3, a,b,;. The kl entry in A'B'is Y, a;, b,
Therefore the ik, jl entry in (AB) ® (A'B') is 3., a,b,; 3., di, b, The ik, mn
entry in A X A' IS a,,a,. The mn, jl entry in B(X) B’ is b,,;b,,. Therefore the
ik, jl entry in (A Q) A¥B X B') is

E aim a;mbm] b:: = Z almbml Z a;cu :ll
as required.

Lemma 1.2: If 4 and B are stochastic matrices, then so is 4 %) B.
The proof is straightforward and is left to the reader.

Definition 1.3: If (S, {4(¢)}) and (S, {4'(0)}) are two stochastic systems over
the same alphabet , then their direct sum is defined as (S U S/, {4(0) + 4'(0)})
and their direct product as (S x 5, {4(¢) ® 4'(6)}). It follows from (7) and
(8) that the matrix related to a word x € X* is A(x) + A'(x) in the sum
system and A(x) &) A'(x) in the product system.

Lemma 1.3: Let 4 = [a,]] and B = [b,;] be two scrambling [see Definition
A.4.3] matrices, then C = [¢;;] = A B is also a scrambling matrix.

Proof: Let ik, and i,k, be any two rows in C. A being scrambling, there is
Jji such that a,;,a,,, > 0, similarly there is /, such that b, ,, b,,, > 0; this
implies that ¢;,;;, > 0 and c¢,,;4, > 0 and therefore the states labeled ik,
and i,k, have a common consequent in the graph of C.

Corollary 1.4: Let (S, {A(a)}) and (S, {4'(6)}) be two quasidefinite stochastic
systems, then (S x 5, {A(6) X A'(0)}) is a quasidefinite system.

Proof: The proof is straightforward and is left to the reader.

Definition 1.4: Let 4 = [a,;] be a Markov matrix and let {B(g)} = {[b,,(¢)]} be
a set of Markov matrices, one matrix for every state g of 4. The cascade
product of A and {B(q)} is the matrix C = [c; ;] = [a:;bwD)]-

Definition 1.4 above can easily be extended to Markov systems but property
(8) in Lemma 1.1 does not apply here, and there is no simple relation between
an entry in a matrix corresponding to a word in a cascade product and the
entries in the components of the system corresponding to the same word. Once
a cascade product is formed it can be further combined in cascade product
with another set of matrices, and so forth.

The reader who is familiar with deterministic automata theory will recognize
that Definition 1.4 above is an extension of the parallel definition in the deter-
ministic case. The graphical representation of a cascade product is given below
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in Figure 14. The two systems A and B are assumed to be Markovian. The
next state of 4 depends on the present state of 4 and on the present input (line
represented by X). The next state of B depends on the present state of both A
(line represented by Y), and B and on the present input. The state of the
system C is represented by a pair of states, one state from 4 and one from B
(lines Y and Z). The system may further be generalized by introducing a
combinatorial gate between line Y and box B, and another combinatorial gate
between the lines Y and Z, and the actual output of the system.

r——/——— T 1
| !
| |
‘T_" L——> !
X l A - B _—}_> P4
I I
Y
| I
| |
S —
C

Figure 14. Graphical representation of a cascade product of Markov matrices.

Note that if the system B is independent on the input line Y, then the cascade
product reduces to the previously defined Kronecker product and the connec-
tion between the two systems is a parallel connection.

In addition to the direct sum, Kronecker product, and cascade product de-
fined above, one can define other forms of connections or combinations of
connections. The basic problem is, however, to find conditions under which a
given Markovian system can be decomposed into simpler parts, using these
interconnections. This topic will be dealt with in the next section.

EXERCISES

. Prove the relation (7).
. Prove Lemma 1.2,

1

2

3. Prove Corollary 1.4.

4. Prove Corollary 1.4 for definite systems [see Definition A.4.5].
5.

Prove that Corollary 1.4 holds true when one of the systems is quasidefinite
and the other is definite.

6. Prove that the box C in Figure 14 represents a Markovian system [i.e., its
next state depends on its present state and present input only] provided that
the systems A4 and B are such.



104 Chapter II. Markov Chains
2. Decomposition

Definition 2.1: A set S’ of states of a Markov system A4 is a persistent sub-
system of A if and only if the set of states which are accessible from §' are in
S’

Note that it follows from Definition 2.1 above that the submatrices of the
matrices of A corresponding to states in S’ are Markov matrices.

Definition 2.2: A Markov system (S, C(0)) is decomposable if and only if it is
isomorphic to a persistent subsystem of a cascade product of two (or more)
Markov systems such that the number of states of every component in the
product is smaller than the number of states of 4.

Let C = (S, {C(0)}) be a Markov system and assume that it is decomposable.
Then C(o) is a submatrix of the matrix [c; ;(0)] [the row and column indices
have been written as double indices to facilitate the exposition], and {see
Definition 1.4] after a proper assignment of indices,

[cik, 1(0)] = [a,;(0)- bi (i, 0)] 9
where 4 = (8, {4(6)}) and B = (S", {B(i,0)}) are Markov systems with
|S'| < |S| and |S”'| < |S|. There may be entries ¢, ;(¢) in (9) which do not be-
long to C(a), since it is required only that § < S§' x S” [C is a persistent sub-
machine of the cascade product], in which case the Eq. (9) contains “don’t care”
conditions.

Summing up both sides of Eq. (9) over / and noting that B(i, &) are stochas-
tic for every i and o, we have that for fixed i, k, and j

; i, 1(0) = a;,(0) (10

The right-hand side of (10) does not depend on k and therefore also the left-
hand side must have this property.

Summing up now both sides of Eq. (9) for j and noting that A(o) is stochas-
tic we have that for fixed i, k, and /

; Cu, 1(0) = by(i, o) (1

Combining (9), (10), and (11) we have that for every i, j, k,/ the following
equation must hold true

Z ik, 1i(0) ; g () R () (12)

We are now able to formulate two necessary conditions for decomposability.
Definition 2.3: A partition on the state set S of a system is a collection of sub-
sets of .S such that each state in S belongs to one and only one such subset.
Fach subset as above will be called a block of the partition. If the number of
blocks is bigger than one and smaller than the number of states, then the
partition is nontrivial.
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Let C = (S, {C(c)}) be a Markovian system which is decomposable. It
follows from Eq. (10) above and the remark after that the system must satisfy
the following:

Lumpability condition: There exists a nontrivial partition on the state set S
such that for any &, the sum of the columns of the matrix C(o) corresponding
to any block of the partition, is a column having equal values in entries corre-
sponding to the same block of the partition.

Remark: One sees easily that the partition in the lumpability condition above
is represented in Eq. (10) by the first part of the row [or column] double index,
ie., two states are in the same block if they have the same i in their row-ik
index (or the same j in their column-jl index). Thus, summing up all ¢, (o)
for fixed j [i.e., in a given block] results in a value which depends on i [i.e., on
the corresponding block] but not on %.

It follows now from (12) that if the system (S, {C(0)}) is decomposable, one
must also have the following:

Condition of Separability: There exist two nontrivial partitions on the state
set, = with blocks #; and 7 with blocks 7; such that: (1) [x; N 7,|] <1 forall
Jjand l; (2) if m;, N 7, = ji, then for all ik and all ¢

; (o)) Zj] €, 1(0) = Cie, j(0)

Remark: The partitions 7 and 7 in the separability condition are represented
in Eq. (12) by the first and second part of the column [or row] index corre-
spondingly. Thus two states are in the same block of x if they have the same
Jj and they are in the same block of 7 if they have the same / in their ji-column
index.

The previous considerations suggest the following:

Theorem 2.1: A Markov system (S, {C(0)}) is decomposable if and only if it
satisfies the conditions of lumpability and separability with the same 7 partition
in both conditions.

Proof: Necessity has been proved already. It is easy to show that the con-
ditions are also sufficient, for if a system (S, {C(0)}) satisfies the two conditions,
then, by a proper reindexing of the entries of the matrices C(¢) into double
indices: C(6) = [c, ;{0)] with i, j ranging over the blocks of z and %, / rang-
ing over the blocks of 7, one can define the matrices A(¢) and B(i, o) by way of
the Eqgs. (10) and (11). [If for some / and k, m; N 7, = & then this represents
a “dno’t care” condition and the corresponding entries in the B(i, ) matrices
can be chosen at will.] [ |

The decomposition procedure will be illustrated in the following example.

Example 13: Let C = (S, {C(0)}) be a Markov system such that S =
{1, 2, 3, 4, 5} [for the sake of simplicity the states are identified with their index
if no ambiguity results], £ = {q, b}, and
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0 503 1 0000
+ 0 3 0 3 11000
C@=|+ + $§ =0, CBH=|0 3+ 0 3 O
0 $0 30 P s 35 0
00 3 % 0 ¥ 03 03

Consider the partitions n = (7, @, m3) = ({1,2},{3,4}, {5} and 7 = (7, 7,) =
({1, 3, 53, {2, 4}). It is easy to verify that 7 satisfies the lumpability condition
and # and 7 satisfy the separability condition. Using Eq. (10) we have
Yen €H0) = ay(0), i € mis k,1=1,2,3, 0r

PN 100
A@=|3 1+ 0}, AB)=|} $+ 0
010 P54

Using Eq. (11) now we have Y,.. ¢,(0) = b,(m,0), if k € T, "\ ®,, & &;
m=1,2,3:il=12 Ifm=3andi = 2,thent,N 71, = &, and the values
b,(m, @) can be chosen for this case in an arbitrary way subject to the condition
that the B(i, 0) matrices are stochastic. Choosing b,,(3, 0) = by(3, 0) = } for
o = g, b we have

B(1,a) = B g}, B(2,a) = [(%) ﬂ, B(3,a) = E ﬂ
T 7

10 0 1 10
3(1,1,)=L J, B(2,b)=[2 1]’ B(3,b)=[1 %]
3 3 ¥

and the decomposition is completely defined.

Corollary 2.2: Let (S, {C(6)}) be a Markov system such that there are two
nontrivial partitions z and 7 on its state set satisfying the following properties:

1. Both 7 and 7 satisfy the lumpability condition.
2. 7 and 7 satisfy the separability condition.

Then the system is decomposable into a Kronecker product of two systems.

Proof: Consider again Eq. (11) and let by, 0), b.(j, 0) be two different
elements in its right-hand side with fixed k, [, 0. b,(i, o) is the sum of the ele-
ments corresponding to the block 7, of T in a row corresponding to the block
7, of  in the matrix C(o) [to be more specific, the index of the row is 7; N T
Similarly, b,,(j, 0) is the sum of the elements in the row with index 7; N 7
corresponding to the block 7; of 7 in ¢(o). It follows from the fact that 7
satisfies the lumpability condition that b,,(j, o) = by(i, 0), the summation
being over entries in the same block of 7(z;) and the rows belonging to the
same block of 7(z,). Thus B(i, 0) = B(j, o) for all pairs i, j so that the B
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system can be represented in the form (S”, {B(¢)}) and is independent on the
state of the system A, which proves the corollary. 1

Remarks:

a. Given a Markov system (S, {C(g)}) which satisfies the lumpability con-
dition above one can still use Eq. (10) to define a new system (S, {4(0)}) with
{S’| < |S| and such that the original system is homomorphic to the new one
[ie., there is a mapping ¢ from S to S’ such that a,(x) = X ;e 4 Crr(X),
k € ¢7'(i)) for all x € I*; the states in S’ will be the blocks of z and if
m € m, then ¢(m) = n]. The new system is, however, not isomorphic to the
original one which cannot be recovered back from it. Some of the information
on the transition probabilities from a particular state to another is lost in the
lumping process and only the information about the transition probabilities
from a block of states to another block is retained. [see Exercises 1, 2 at the
end of this section.] ’

b. The set of all partitions over a set of states, including the trivial parti-
tions have a lattice structure. One can define a partial order < over partitions,
where 7 << 7 means that each block of 7 is the union of one or more blocks
of m. Thus if $={1,2,3,4}, n = ({1, 2}, 3}, 4) = = ({1, 2, 3}, {4]), then
n< T

Let 1 be the partition with all the states in a single block and 0 the partition
with each state in a separate block and, using the partial order defined above,
define 7 + 7 to be lub(zm, 7) and zn-7 to be glb(xm, 7). Clearly 0 <#n <1 for
any partition 7 and, as the lattice of partitions over a finite set in finite, z7 + 7
and n-7 always exist. Thus ({1, 2}, {3}, {4, 5, 6D + ({1}, {2, 3} {4, 5}, {6}). =
{1, 2, 3}4, 5, 6})) and ({13, {23, (3}, {4, 5}, {6]) is the product of the above two
partitions. In addition to the above properties, one can also prove the following:

Theorem 2.3: If 7 and 7 are two partitions over the set of states S of a Markov
system (S, {C()}) such that both partitions satisfy the lumpability condition and
in addition

2 cyo)= [j;n ¢ (o)l jEZn ¢1/(0)] (13)

Jemonry
then 7.7 is a partition satisfying the lumpability condition.

Proof: Because of the lumpability condition for both # and 7 the sum Y, .,,
¢,,(0) has the same value for all i € n; and the sum Y. c,;(0) has the same
value for all i € 7, where n; and 7, are arbitrary blocks in 7 and 7 respective-
ly. It follows that the sum Y ,.,,..c;;(0) has the same value for all i € n,N7,.
But n; N 7, and @, M 7, are arbitrary blocks of z-7 and all the blocks of #- 7
have this form, which proves the theorem. | |

Using the algebra of partitions and the theorem above one can find all pos-
sible pairs of partitions satisfying the necessary conditions for decomposition.
It is to be mentioned, however, that, in contrast to the deterministic case, there
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exist no clear-cut theory of decomposition for Markov systems. The conditions
of lumpability and separability are restrictive and cannot be both satisfied in
general.

¢. Generalizations of the results in this section can be achieved through in-
troducing combinatorial gates between the various parts in an interconnection
of systems or through combinations of various types of decomposition. In ad-
dition a decomposition can be carried through several steps leading to more
than two component subsystems. Those possibilities have been mentioned before.
There may be also decompositions based on interconnections more general than
the cascade type as will be shown later. [See exercises 9-12 at the end of this
section.] Still another possibility is the possibility of state splitting. This will
be illustrated now by the following:

Example 14: Let (S,{C(c)}) be the 3-state system over X = {a, b} with

_0 L 2 1 1 ]
7 5 T 2 B
J— 2 — 2 2
Co=|% § %) Ch={% § %
2 1 1 1 1

§F 30 § T 3

An easy check will show that the above system is not decomposable. One can
try, however, to split some state into two, to get another 4-state system which
will be decomposable into two 2-state components. Supposc some state say s,
is split into two (or more) states s, and s, i.e., the ith row in each matrix is
duplicated and then the ith column is divided into two columns whose sum is
equal to the original one. Trivially, the new system satisfies the lumpability
condition for the partition which will merge the states s, and s, into a single
block and leaving all the other states alone. The new system is therefore
equivalent to the old one provided that the states s, and s, are merged at
its output, and a decomposition of the new system provides us, therefore, with
a decomposition of a system which is externally equivalent to the original one.
In our example one may try to split the second state so as to have a 4-state
system with matrices

2 1 1
0 a, as % ¥ b by %
2 2 2 p_ b 2
s G Gy 3 9 22 23 5
Cl(a) = , C'(b) =
2 2 2 p. b 2
g 4 Qs 3 § 0 033 3
1 1
3 ap ay O & by by 3}

and the a;; and b,; will be determined by a series of equations requiring that:
(1) The sum of the two a columns and the two b columns equal to the cor-
responding columns in the original matrices C(a) and C(b); (2) there is a parti-
tion 7z say = = {{s;8,}, {s;5,)} which satisfies the lumpability condition; and (3)
there is a partition 7 say T = {{s,s;}, {s,5.}}, such that = and 7 satisfy the
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separability condition. Formulation of these equations is an easy matter to do
and is left as an exercise. The resulting matrices are

1 2 1 1 1 1
0'3’0'3' 3T 3 8§ ®
s % % F 54 %

i/ — Ib=
C(a) 2 4 1 2°P C() 2 1 4 2
5 9% 9o 9 9 9 9 9
2 1 1 1 1 1
'3'0'3'0 ) I T

A decomposition of the system is now obtained in the same way as in Example
13. The resulting decomposition (for 7 and 7 as specified above) is

3 & (3 ¥
A@y=|2 3|, AB)=1° °
L3 3 L3 3

0 17 34
B(a,l)= 2 1) B(b’l)= 12
e - L3 3
B@2)=| | B(b,2) = s 3

d. In deterministic machine theory, it has been proved that, by properly
splitting the states of an »-state machine one can always decompose an external-
ly equivalent machine, in a cascade form, into two component machines, one
of them having a set of transition matrices which are either permutation or reset
matrices and the other having only n-1 states. This fact has served as a basis
for the classical theorem of Krohn and Rhodes (1963) showing that every de-
terministic machine can be “embedded” into a cascade interconnection of a
sequence of machines of a certain simple and cannonical form. Unifortunately,
it seems reasonable to assume that the Krohn-Rhodes theorem does not carry
over, in its original form, to the stochastic case. One of the reasons for this is
that even if state splitting is allowed the conditions for cascade decomposability
seem to be restrictive for stochastic systems and cannot always be met. Note,
however, that a cascade interconnection of a sequence of systems 4,, 4,, ...,
A, has the property that the next state of a system 4, in the interconnection
depends on the present input, on its present state and on the present state of
all other systems A; with j < i, but does not depend on the present state of
any system A, with j > i. This means that the interconnectivity in the decom-
position is not maximal a fact which has some advantage from the realiza-
tion point of view. We will show now that if the interconnectivity is allowed
to be maximal, then any n-state Markov system can be decomposed into a
sequence of 2-state Markov systems.

Definition 2.6: Let
4= (S, (4(0,0),) and  B=(T.(B0,5),ep)
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be two Markov systems. The system (S X T, {C(6)},.5) is the maximal inter-
connection of 4 and B if

C(O') = [Cst,s’t/(a)] and C:t,s’t’(a) = ass’(a’ t)btr’(a’ S) (14)

([a.(, 1)] = A0, #); [buA0, 5)] = B(a, ).

Thus, in a maximal interconnection, the next state of each system depends
on the present state of both systems and on the present input.

It is easily proved that a maximal interconnection of two Markov systems is
a Markov system. A maximal interconnection reduces to a cascade intercon-
nection if all the matrices of one of the two component systems corresponding
to the.same input, o, are equal. Once the maximal interconnection of two
systems is formed the resulting system can be further maximally interconnected
with a third system and so on. The resulting system will be called a maximal
interconnection of the sequence of systems involved. Definition 2.6 is illustrated
in Figure 15.

- "}
|
| —— A i s
| |
— |
| |
{ B 1 '
| |
oo |
C

Figure 15. Graphical representation of a maximal interconnection of
Markov systems.

We are now able to state the following:

Theorem 2.4: For each n-state Markov system A = (S, {A(o)}) there exist two
systems B, with state set T, containing two states and B, with state set T, con-
taining n-1 states and a partition p on the state set T, X T, = T of their
maximal interconnection C = (T, {C(c)}) such that if states of C belonging to
the same block of p are merged, then the resulting system is equivalent to the
original given system A.

Proof: Given the system 4 with state set S = {s; - - s,}, split the state s,
into n — 1 states s,! - - - s""%, i.., let A’ be a new system having state set §' =
{8, <+ Sp-1, S," -+ 82~} and matrices A'(0) = {a;,(0)}.

Define the following two partitions over S’

= ({sl ot Sn—l}a {snl e S:_‘})a T= ({slsnl}’ {S;_S,,Z}, T {Sn—ls:—l})
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We shall define the matrices 4'(g) in a way such that the above two partitions
will enable us to express the system A’ as a maximal interconnection of two
systems, a two state system B = (z, {B(0, 7,)}) whose states are the blocks of =,
and an (n — 1)-state system B’ = (7, {B'(0, n,)}) whose states are the blocks of
7, In addition we will require that the partition {{s,},. .., {s,-,}, {8,' -~ &'}
satisfy the lumpability condition for 4’ so that after the states s,' - - - s7~! are
merged, the resulting system is equivalent to the original system A. In order
to satisfy all the above conditions one must have that, for any fixed row in
A'(o), say the ith, the following equations hold

(a) > difo) X, ai(0) = ai(a) with S =M. NT
Con a;,(0) if i<n
®) 2 a0)= {a,,,,(a) if i>n

a,(0) if ,j<n-—1
a, (o) if i>n j<n—1

Equations (b) and (c) are necessary and sufficient for the lumpability re-
quirement while Eq. (a) is equivalent to property (14). This follows from the
fact that Y,.c, - (0) = a,,(0,t) in (14) is equivalent to 3, a, here and
> Coe(0) = b,(0, 5) in (14) is equivalent to Y,,.., /(o) here. Combining
these two equations one gets from (14) that

; c.\'t,:’t'(a) ‘E c.rt,s’t'(a) = Csr,:'t’(a)
which is equivalent to the Eq. (a) here. Now Eq. (a), (b), and (c) above

uniquely determine the matrix 4'(g) given the matrix A(c). Indeed for i < n,
k < n — 1 we have by (a) that

( j;u a;j(a))(afk(o) + d1,k+,,_1(0')) = di,k+n-—1(a) (15)

Using (b) and (c) we change this equation into the following equation, where
@ y+n-1(0) is unknown and all the other values are known,

© )= |

4;,(0)(ai(0) + @ 41n-1(0)) = @ 41n—1(0) (16)
or, by transposing the second left summand to the right-hand side we have
ain(a)aik(a) = a;,k+n—-1(o‘) [1 - ain(a)] (17)
thus
_ a,(0)
aﬁ,k+n—l(a) - ain(a)l — ai”(a.) (18)

Since 1 — a,,(6) = X,.,4,/(0) > a,(c), both sides of the equation are non-
negative. If a,,(¢) = 0, then 4;,.,-,(0) = O and if 4,(0) = 1, then a},.,_,(0)
can be arbitrarily chosen provided that 332} a;.,_.(6) = 1 and all the
summands are nonnegative. It follows if the values @] . ,-,(0), i<n, k <n —



112 Chapter II. Markov Chains

1 are chosen according to (18) then the requirements (a), (b), and (c) are
satisfied, since the derivation of (18) is reversible and (15) implies also the fol-
lowing

(£ dfONG0) + typrni@) = (1 = T di@)En0) + dhirn-1(0)

= d(0) + @ 41n-1(0)
— (X a{(0)a@(0) + @, i1n-1(0))

= a4,,(0) + @ 410-1(0) — @ 4ini(0) = a,(o)

as required. As for the case i > n, it follows from (c) that the first n — 1
entries in each such row must be equal to the corresponding entry in the nth
row and therefore by (18) this must be true for the full rows, i.e., the nth row
in A'(0) as determined by (c) and (18) must be duplicated » — 1 times. It
thus follows from the construction that the system 4 = (S, {4'(0)}) can be rep-
resented as a maximal interconnection of the two systems B = (T, B(o, 1)}
and B’ = (T, {B'(0, n,)}) where the elements of T, and T, are the blocks of
and 7 respectively and the matrices B(o, 7)) = [by(0,7)] and B'(0, 7)) =
[b(o, 7;)] are defined by

by(o, 1) = Y, d,,(0), S =T NA, k1=12i=12.-n—1
pPER

and
b(o, ) =3, a,,(0) =7, NT kI=12...,n—1j=12

PET:

One sees easily from the construction that if p is the partition p = ({s,}, - - -
{s,_1), {5.'8,2 - - - 527'}) then the system A’ is equivalent to 4 when all states in
a block of A’ are merged into a single state. 1

Corollary 2.5: For each n-state Markov system A = (S, {A(0)}) there exist
n — 1, 2-state systems B, with state sets T, respectively and a partition p on
the state set T =T, x T, X -+ x T,_, of their maximal interconnection
C = (T, {C(0)}) such that if states of C belonging to the same block of p are
merged, then the resulting system is equivalent to the original given system A.

Proof: By Theorem 2.4 and induction. |
Example 15: Let A = (S, {A(0)}) be the 3-state system over Y, = {a, b} with

PR 0 0 1
Ad =% + 3, 4B =]t 0 }
010 0o i 3

Using (b), (c), and (18) we construct the system A’ = (', {A'(0))) with
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3 I+ & 0 010
1 1 1 1 1010
A’(a)= 3 3T %6 [:3 , A/(b): z 2 \
010 0 010 3
010 0 010 3

so that p = ({s,}, {s,{ls;' 5:*}), and A4’ is equivalent to A if states s,' and s,% are
merged. Let 7 = (m,, 1) = ({855}, {s;'ss”]) and 7 = (7,7) = (fs:5,), {5.5:%)).
Using these partitions and the method outlined in the proof of Theorem 2.4,
the systems B = (T \{B(0, n,)}) and B’ = (T {B'(0, 7,)}) are derived where

B(a’ 1!) = l:? i]’ B(a9 1"2) = l:-i_ éil

o

0 1 i %
Bt =, .| Blow=| "
T 1 i 1
and
2 1 0 1
pam=[1 Y mam=[p |]
T 7
B'(b bo B'(b 0 IJ
(:nl)“‘ 1 Os (,ﬂz)—— 0 1
EXERCISES

1. Let A = (S, {4(0)}) be an n-state Markov system and let # = (z, 7, - - - @)
be a partition over .S satisfying the lumpability condition. Let U be a stochastic
k X n matrix such that U = [y,] and u,, = 0 only if s; € x, [note that U is
not unique]. Finally, let ¥ be an n X k stochastic matrix such that ¥ = [v,)]
and v, = 1 if and only if 5, € =,.

a. Prove that the system A = (z, {UA(0)V}) is k-state Markov system where
the matrices UA(g)V represent the transition probabilities between the blocks
of m, ie., A is the system derived from A if the states belonging to the same
block of m are merged into a single state.

b. Prove that for exery ¢ € Z, VUA(o)V = A(o)V.

c. Prove that for all x € Z*UA(x)V = A(x) where by definition A(c) =
UA(o)V and A(x) = A(6,) --- A(o) if x =0, - - 0,

d. Let Tt = (1, - - - 7,) be any partition on S. Let U be a Markov matrix
U = [w;], u; # 0 if and only if s; € 7, and all nonzero entries in a row of U
are equal. Let V' be a matrix defined as above for 7. If for every o € X,
VUA(o)V = A(o)V, then 7 satisfies the lumpability condition.

€. Let p = (p, - - - pi) any partition on § such that there exists a Markov
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matrix U = [u;J withu,; = 0 only if s; € p, satisfying UA(o)VU = UA(0)
for all ¢ € T (V is defined as before, for the partition p). Then for all
x € T*, UA(x)V = A(x) where A(c) = UA(c)V and A(x) = A(g,) - - - A(oy),
fx=0 -0,

2. Let (S, {A(0)}) be the following 4-state system over Z = {a, b}

02 03 03 02 025 0.15 04 02
04 01 0 05 02 02 01 05
A(a) = , A=
0.1 02 04 03 03 045 01 0.15
03 0 02 05 045 03 0.15 0.1

and let 7 be the partition 7 = ({s,5,}, [s;5,}). Prove that z satisfies the lump-
ability condition; find corresponding U and V matrices and define the system
(m, {UA()V).

3. Let 4 = (S, {A(0)}) be the following 4-state Markov system over X =
{a, b}

02 02 03 03 0.3 0 07 0
0 04 0 o 0 . .
Ad) = 6 L AG) = 0.3 0 07
04 01 04 01 008 0.12 032 048
025 025 025 0.25 0.06 0.14 024 0.56

and let 7 = ({s,83}, {8384), T = ({5153}, {s,5,}) be two partitions on S. Prove that
7 satisfies the lumpability condition and that z and p satisfy the separability
condition. Decompose the A system accordingly in a cascade form.

4. Let A = (S, {A(0)}) be the following three-state system over T = {a, b})

02 05 03 03 07 0
A(@ =103 055 0.15}, A(b) =10.06 0.38 0.56
045 045 0.1 0.14 062 024

Split the second state into two states so as to get a new system 4’ which can be
decomposed into a cascade product of two 2-state Markov systems.

5. Prove that the maximal interconnection of two Markov systems is a Markov
system, i.e., the next state of the interconnection depends on its present state
but not on its previous history.

6. Let A = (S, [A(0)}) be the following 4-state Markov system over L =
{a, b}

$ 4 10 1 000
1 1 1 0111
A(a)z's‘o'a"a', A(b)= T 4T 1
0 + L+ 0 P ¥ & 3

A
Al
Sl
Al
o=
e
Bl
Bl
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Apply Corollary 2.5 to this system find the three corresponding 2-state systems
and find the three corresponding 2-state systems B,, B,, and B;.

7. Let T, in Corollary 2.5 be T, = {t,,, t,,}. Prove that the partition p in that
corollary can be written in the following form: p = (p, - -+ p,) with p, =
{(t tyy -ttt T e Ty, ., e T, Jif j<n—1 and
Pooi={ttats -+ s a1 b P = {11 -+« 5 tasr )}

8. Consider the following:

Definition: Two partitions # and 7 for a system A4 = (S, {A(0)}) are a partition
pair if for each pair of blocks 7, and 7,, 3);c.,a:(0) = X .., ax(0) for all
i, k € m; N 1, for each ! such that 7, N 17, # & and for each o € X.

a. Prove that if and only if 7 satisfies the lumpability condition then (7, 7) is
a partition pair.

b. Prove that for any partition 7, (0, 7) is a partition pair.
9. Prove that if a Markov system A is deterministic [its matrices are de-
generate] and 7 and 7 are two partitions over S such that z-7 = 0, then these
partitions satisfy the separability condition.

10. Prove the following:

Theorem: A Markov system with state set S is decomposable in a cascade
form if there exist partitions 7z, 07, and 7 on S such that

a. 7 satisfies the lumpability condition and 0" > =;

b. & and 7 satisfy the separability condition;

c. (07 - 7, 1) is a partition pair [see Exercise 8 for the definition of a parti-
tion pair].

Remark: The above theorem is a generalization of the “if” part of Theorem
2.1 taking care of the possibility of having a combinatorial gate [represented
by the partition 0] between the output [i.e., the state] of the first component
in the decomposition and the second component. Note that if 07 = n then
0*-7 = 0 and (0, ) is a partition pair [see Exercise 8] so that the third con-
dition of the theorem is superfluous.

11. Prove that if condition (c) in the theorem of Exercise 10 is deleted and the
requirement that also the partition 7 satisfy the lumpability condition is added
then the system satisfying the changed conditions can be decomposed into a
Kronecker product of two systems.

12, Formulate and prove a theorem generalizing the theorem in Exercise 10
so as to include the possibility of decomposing a given system into a cascade
product of more than two smaller [i.e., with fewer states] systems.

OPEN PROBLEM

Can every n-state Markov system be “embedded” in a nontrivial way into a
cascade type interconnection of systems which have a specific simple form?
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In other words, is there any theorem which can be proved for Markov
systems and which parallels in some way the Krohn-Rhodes theorem for the
deterministic case?

3. Bibliographical Notes

Operations such as “Kronecker product” or direct sum for matrices can be
found in any standard textbook, e.g., Mac Dufee (1964). Section 1 here is based
on Paz (1966) and Bacon (1964). Decomposition of deterministic machines has
been dealt with by many authors. An exposition of that theory (including the
Krohn and Rhodes (1963) theory) can be found in Hartmanis and Stearns
and Ginzburg (1968). Lumpability for homogeneous Markov chains has been
dealt with in the book of Kemeny and Snell (1960). Decomposition of
stochastic automata was first studied by Bacon (1964). The possibility of state
splitting for stochastic machines was considered first by Fujimoto and Fukao
(1966).

Theorem 2.4 and Corollary 2.5 here are based on Paz (1970b). Finally,
Heller (1967) considered some aspects of decomposition theory for stochastic
automata from the point of view of the theory of categories and a similar ap-
proach was undertaken by Depeyrot (1968) who studied various types of
decompositions, including some interesting particular cases. Additional ref-
erences: Gelenbe (1969a), Kuich and Walk (1966a), Kuich (1966).

C. WORD-FUNCTIONS

Let f be a function

f:Z*>R (19)
where I is a given alphabet and R is the set of real numbers. Functions of the
form (19) will be called word functions. There are at least three ways to relate
word functions to Markov chains. First, [see Definition 1.1 in Section I, C] if
an input-output relation [induced by an SSM] is restricted in a way such that
the input alphabet X contains a single letter and ¥ = X, then the resulting
function is a word function.

If f is induced by the SSM A = (S, 7, {A(»)},<r, 1), then f(v) = a(A(v)n
with v € Y* = X*, and the matrices 4(y) have the property that >, A(y) is
stochastic. This case has been dealt with in Section I, C, 1. In the next two
sections we shall consider two additional ways of relating word functions to
Markov chains.
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1. Functions of Markov Chains

a. Preliminaries

Let (z, S, A) be a [homogeneous] Markov chain with [finite] state set S initial
distribution 7z and transition matrix 4. Let X be a partition on S. We shall use
the following notations: the elements of S [states] are denoted by s, indexed if
necessary; sequences of states are denoted by u, indexed if necessary; elements
of X [blocks of the partition] are denoted by o, indexed if necessary; finally,
sequences of blocks of X are denoted by v, indexed if necessary.

The chain being discrete, s(¢) and o(¢) denote the state of the chain and its

corresponding block at time 7 and, foru = s, - - 5;,and v = o, - - - 6y, p(u) and
p(v) denote the probability that s(1) =s,...,8(j) = s, and &(1) € 7y,...,
s(k) € o, respectively. Let u,u,, v,v, be sequences of states and symbols in S
and X respectively, u, =5, --- s, u, =8/ 8/, 0, =0, O, 0, =06, - -

o/. Then p(u,S"u,) and p(v,X?,) denote the probabilities that s(1) = s,,
eSO =ssG+r+D=s/,...,8(6+r+j)=s/ and s(1) € 7y,...,
sk) e 64,5k +q+ 1) e a/,...,stk+ q + t) € 6/ respectively. A Mar-
kov chain and a function p(v) as above are stationary if p(S u) = p(uS") = p(u)
and p(Z'v) = p(vX') = p(v) respectively, ie., if the probability of being in a
specific state at time ¢ is independent of time. Any function p(») as above with
domain X* [p(A) = 1, by definition] and range in the interval [0, 1] is called a
Sfunction of a Markov chain and the elements of I are its states. Trivially, a
Markov chain is stationary if and only if 74 = = [if this is the case, then 7 is
called a stationary distribution for 4] and a function of a stationary Markov
chain is stationary. [The converse is, however, not necessarily true.] If B is any
square matrix of the same order as A4, then B,,,, denotes the submatrix of B with
rows in @, and columns in ;. If { and # are |S|-dimensional row and column
vectors respectively, then £, and #,, denote the subvectors corresponding to the
elements in 7, and o, respectively. The symbol # will denote as before an |s|-di-
mensional column vector all the entries of which are equal to one.

We shall prove now some simple properties of functions of Markov chains.
If (n, S, A) is a Markov chain and p is a function of it with state set X, then

1. p(v,Z*v,) = Ev=a.---mp(7)1'vvz)-
2. If in particular », is A, then

p(v, ) = Z p(v,v) = p(v,)

v=geoy

3. Ifv=a0,--- g, then
p(v) = nlﬂAﬂxG: T Aﬂl-lﬂt”ﬁl (20)
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4. Denote A,,,, Aoy ** Aoyioe = Agoa, [thUS 4, ,,, = A, ,A4,,,) and 7, A4,
= Ts005 Aovorllor = Novorr Them,

p(alvl 0'1)20'2) = na;AalvloAavznﬂaa - nawlaﬂavwe (21)
5. If for some », p(v) = 0, then for any v/, p(vv') = 0.
Proofs are trivial and left to the reader

Remark: 1t follows from formula (20) above that there is a time lag between
a function p(v) when considered as an input-output relation with single input
letter [Section I,C] and same function when considered as a function of a Markov
chain, e.g., p(6,6;) = nA(6,)A(6,)n in the first case and p(0,0,) = 7, 4,,,.1.,
in the second case. This difference is made clear when single symbols are
considered, for p(g,) = nA(o)n in the first case is the probability of having
output o, after the process was started and moved into a next state while
p(e) = n, 1, in the second case is the probability of having output o, to
begin with, even before the process moved into a new state. This time lag is
responsible for the differences between the results in the next section and the
parallel results in Section I,C,1.

b. The Rank of a Function of a Markov Chain

Definition 1.1: Let p be a function of a Markov chain with state set [of p] Z.
let €20, v,v v € Z* Then P(v,--- v v ) is the
k x I matrix [to be called a compound sequence matrix for /] whose ij element
is p(v,ov/) and H(P,(v, -+ - v v, - -+ ) is its rank.

Definition 1.2: Let p and X be as in Definition 1.1. Then, for ¢ € Z, the rank
of o [to be denoted by r(0)] is defined as

r(a)zsup{k:’(Pa(vl‘ c Uy A "l)j’);j:—l, 2, iV, ,’l)_,,’l)ll, - ,’U_,'EZ*}
k

Thus r(o) is the maximal rank of a matrix of the form P, (v, - -+ v 9, - - - /)
if such a maximal rank exists; the rank of p [to be denoted by r(p)] is defined
as the sum of the ranks of its states.

In the following theorems we shall use some arguments very similar to the
arguments used in Section I, C. Some results, parallel to results proved in that
section, will be taken as granted here. The reader is refered to that section for
details.

Theorem 1.1: Let p and I be as in Definition 1.1. For ¢ € Z, r(g) < |o| with
the consequence that 7(p) < |S|; where |o] is the number of states in S belong-
ing to the block o when X is considered as a partition on the state set S of the
underlying Markov chain.

Proof- Any compound sequence matrix P,(v, - -+ o5 v/ - -+ v,') is the
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product of two matrices: a left factor matrix G, whose rows are the vectors
m,. and a right factor matrix H, whose columns are the vectors #,v," [see
(2D)]. But the x,, are |o|-dimensional vectors for any v, and similarly the 7,,,
are |o|-dimensional vectors. Thus

r(P(v; - - w30, - v)) = NG, H,) < min(r(G,), r(H,)) < |o]
and r(p) = 3,5 1(0) < |S|.
Corollary 1.2: If ¢ € X is a state of p such that |o| = 1 and r(6)%0[r(c) =0
implies that p(vev’) = 0 for any » and »' which means that the state can be

discarded], then r(c) = 1.
We shall need also the following:

Proposition 1.3: If o is a state of p such that r(¢) = 1, then for any v, 2’ € Z*
p(vov')p(o) = p(vo)p(ov') (22)

Proof: Since r(¢) = 1, we have that r(P,(A, v; A, v")) < 1 or

p(o) plov)

p(ve) plvov')

from which (22) follows immediately. |

Remark: A function p of a Markov chain is called regular if r(p) = |S]|. It
follows from Proposition 1.3 above that in the degenerate case where § = X
[the partition on S is trivial], i.e., if a Markov chain itself is considered as a
function of a Markov chain, this function is regular provided that all its states
are accessible [r(s) 7= 0 for all s € S).

¢. Probabilistic Sequential Functions over T*

In this section we shall consider probabilistic word functions over X* given
in some arbitrary way [i.e., not necessarily induced by Markov chains]. By
“probabilistic sequential functions™ we mean word functions f with domain *
satisfying the following conditions:

fd) =1 (23)
;2 f(vo) = flv), v € X* 29)
0< i<, veX* (25)

If property (25) is not satisfied but properties (23) and (24) are, then the
function is called sequential. By “given” functions we mean functions such
that the values f{») can be computed effectively [there exists an algorithm for
computing them] for every » € T*,

The rank of a (probabilistic) sequential function is defined as in Definition
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1.2 in Section b above, that definition being independent on the existence of
an underlying Markov chain for the given function. The following lemma
parallels Lemma 2.2 in Section I, C. The proof which is similar to the proof
of that lemma is omitted.

Lemma 1.4. Let f be a sequential function of finite rank and let P(v; -« - v,;
v, ++- ;') be a given compound sequence matrix of maximal rank for f and
o € X. Another compound sequence matrix of the same rank can be derived
from the given one having the form P (A, &, - - - G5 A, T, -+« &),

Definition 1.3. A [finite] pseudo Markov chain is a system (z, S, A, i) where
7, S, and A are as in a Markov chain but # and A are not necessarily stochastic
and 7 is an |S|-dimensional arbitrary column vector satisfyiug the equation
g = 1.

Foru=g, - 8 € S* the values p(x) induced by a pseudo Markov chain
are defined as p(A) =#7 = 1 and p(s, - - - 8,) = W, 4,5, - -+ A, 0015, Where
7, 71, are the s, and s, entries in x and 7 respectively and 4, ,, is the s;s, entry in
A [ p(u) will be sometimes called a pseudoprobability.]

If T is a partition on the state set of a pseudo Markov chain, then a function
f over T* with state set X defined by f{A) = land flo, -+~ 6,) =7, Ay, -+
A, 011, is called a function of a pseudo Markov chain.

We are now able to prove the following:

Theorem 1.5: Any [probabilistic] sequential function of finite rank is a function
of a pseudo Markov chain.

Proof: By the finite rank assumption and by Lemma 1.4, there exist, for
each o € X, regular matrices P (A, v,, * * Vo1 4 Vs, * - * V(o) With k(@)=r(0).
We shall denote those fixed matrices by P,, and use also the following additional
notations for 0,6 € Tand v € X*

Py®) = P,(A U2« + s Voo Vs Wiz - + - » Wik(a))s P A) =P, (26)

P, (v) = P,(v) (27

[Note that P,(A) = P, as defined above.]
Pi(v) = Py(A 0ozy - - - s Vorior ¥)s P, (A) = P, (28)
Pos(v) = P (A 0, W, . . - s W) Pos(d) = Piys (29)

Thus P,,(v) and P,_4(v) are the first column and row of P,4(v) respectively.
Using a procedure similar to the one used in Section I,C,3, one can prove

the following relations
P, (vov'a’) = A4;,,P,s(v'0") (30
To prove this we consider an arbitrary column, the jth one, in the relation
(30) which, by (28), has the form
P (vo0'0'vy)) = Asyy Poy(v'0'v5 ) 31
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the ith element in (31) has the form
f(ws0v0v'a'v ) = 3] a,(6v0) f(v,,00'0'v},)) (32)
and (32) follows from the fact that
flov'a'vy))
f(v,200'0"Vy))

P, 0 (33)

f‘(v,k(,)av,a,’l)‘lyj)
Sf(w5600) f(vs,0007,;) - - - fvs,6v00'0'vy))
Since |P,| = 0, and one can develop the above determinant (33) according to
its last column and represent the last element in the column as a combination
of the others. Note that the coefficients of the combination depend on the three
variables d, v, and ¢ only [for fixed i and j] so that they can be denoted by
a,/(6vo). Equation 30 is therefore proved with 4,,, = [a,,(dvo)].
Consider again Eq. (30) with » = ¢/, ¢/ = 4, and ¢’ = . The resulting equa-
tion will be

P&a’(a) = A&ana' = AﬁaPa or A&a = PJU(G)P;I (34)

Equation (34) can now be used for computing the matrices 4,,. If we set
in (30) ¢’ = o, v'a’ = A, we get the equation

Pda(vo.) = ‘46cho (35)
Replacing ¢’ = ¢’ in (30) results in
P&a'(vavla’) = Aﬁva Paa’(v,al) (36)

Using (35) in both sides of (36) gives
Advav’a’Pa’ = AJvo'Adv’a'Pa' or Advav'u’ = AévuAav'a" (37)

Equation (37) can now be used for computing the matrices 4,, |v] > 2 from
the matrices A4,;.
Finally, the first column in (35) has the form

Py (vo) = A,,, P, (38)

Note that the first entry in P;,(vo) is f(dvo).

Let =, be a k(o)-dimensional row vector of the form n, = (10...). Let n
be the r( f)-dimensional row vector n = (#,,%,,...n,) where ,...0, is
the sequence of elements of X ordered in some arbitrary but fixed order. Let
A be the r(f) X r(f) matrix formed from the matrices 4,;

A A

o101 10k

A=| -
A

oro)

A

okOk
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Let # be the r( f)-dimensional column vector § = (P}, ..., P},)", then, by
(38)

M5 Aspofl, = (10 <+ - 0) A5, P,y = (10 - - - 0) Pyy(vo) = f(6vo)

and nif = ¥, flo) = 1, so that fis a function of the pseudo Markov chain
(z, S, A, ) above with |S]| = r(f). |

Corollary 1.6: Let (r, S, 4, #) be a psuedo Markov chain as derived in Theorem
1.5 for a given function f of finite rank. Then A#f = #j and if f is stationary
[ie., 3, flov) = f(v)] then 74 = m. Let G, and H, be the matrices whose
rows and columns, respectively, are , , and flov Then G, and H, are non-
singular having the same rank as P, (P, = G, H,).

Proof: By (34), A;, = P;,(0) P;', so that by (29) 7;4;, = P,s,(0)P," and
S swsAse = (35 Pis,(0)) P,'. But if fis stationary then

2sPis.(0) = Za(f(aa), foov,y), ... , J(00Y )
= (ﬂa)9 ﬂavﬁﬂ)’ L ’f(avlak(a))) = P/hro'
Thus Y ,;7;4;5, = Pi,,P,' = ®, and this implies that 7d == proving the

second part of the corollary. For the first part we have by (38) that P;(0)
= A;, P,, = A;s,#,. Therefore,

Do Asolle = Y. Ps(0) = 2. (f(d0), f(vsdo), . .. s f(@si500)"
= (f(0), f(529), - . . s [War))" = Tl
This implies that A% = #. To prove the last part of the corollary, we remark
that the rows of G, and the columns of H, are r(g)-dimensional and, since
P,=G,H, and P, is a nonsingular r(¢) X r(¢) matrix, G, cannot have more
than r(¢) rows and H, cannot have more than r(¢) columns and both matrices
must be nonsingular. This completes the proof.

Consider again Theorem 1.1. It is clear that the theorem remains true if f
is a function of a pseudo Markov chain. Combining Theorem 1.1 with Theorem
1.5 results in the following:

Theorem 1.7: A sequential function f over T* is a function of a pseudo Markov
chain if and only if it is of finite rank.

d. Construction of the Underlying Pseudo Markov Chain

In order to be 'able to construct the underlying pseudo Markov chain for a
given function of finite rank f; one can use Theorem 1.5 provided that that the
matrices P, can be found for each ¢ € X and provided that the values of the
function f can be computed effectively for the arguments contained in the
matrices P, and P;,(0) (see (34)). In fact the function f is uniquely determined
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by its values contained in the matrices P; and P,,(c) only. We shall show in
this section that the matrices P, [and therefore also P, ()] can be determined
effectively if a bound is given on the rank of f. If it is only known that fis of
finite rank but no bound is given for its rank, then the actual rank of f cannot
be determined and the matrices P, cannot be found in general. [See the remarks
at the end of Section I,C,3.] The matrices P, for the bounded case can be
found by using the following:

Theorem 1.8: Let f be a sequential function of rank k and let ¢ € X be one
of its states whose rank is k(¢). A nonsingular matrix P, = [ f(v,0v,’)] can be
found such that I(v,0v,) < 2(k — |Z|) + L.

Proof: By Theorem 1.5, f can be represented as a function of a pseudo
Markov chain (z, S, 4, %) with |S| = k. Consider the set of all vectors of the
form =,, [see (21)]. Those vectors are r(o)-dimensional row vectors and there-
fore, using a procedure similar to the one used in Section I,B,1 [see Exercise
5 at the end of that section], one can find a basis for those vectors, 7,,,, . - - ,
Ttoy(oye Such that I(v,0) < r(6),i = 1,2,..., k(o). Let the matrix whose rows
are denoted by x,,, be denoted by G, and r(G,) = r(o). Using the same argu-
ment for vectors of the form #,,, which are r(o)-dimensional column vectors
one can find a matrix H, such that »(H,) = r(o), its columns are a basis for
all the vectors of the form #,, [thus there are 7(g) columns in H,] and any of
its columns #,,. has the property that [(gv') < r(¢). Consider the matrix G H,.
It is an r(6) X r(o) square matrix of rank r(o) [since H(G,) = r(H,) = r(0)]
and therefore nonsingular. Its entries are of the form =z, ,1,, = p(v,0v/).
Thus, G,H, is a matrix satisfying the requirements of a P, matrix and its
elements p(v,0v,") have the property that I(v,ov,") = l(v) + l(v,) + lo) <
2r(o) — 1. But r(0) < r(f) — |Z| + 1 [since r(f) = X, s 7(0) = r(0) + |Z|
— 1} and therefore I(vov,) < 2(r(f) — 2|+ D) —1=2(() — ZD+ 1. )}
Corollary 1.9: If fis a sequential function of rank k and state set X, then the
values f(v) with I(v) = 2(k — |X| + 1) uniquely determine the function.

Proof: The matrices P, can be found using only values f(v) with I(v) << 2(k
— |Z[) 4 1 and the matrices P;,(0) have entries of the form p(v,;dav],,) with
l(vs) and I(v;) smaller or equal to r(J) and r(o) respectively. Thus /(v d0v,))
< r(0) + r(d) + 2 < 2(k — |Z| + 1). But the matrices P, and P;,(¢) unique-
ly determine the function f [see Theorem 1.5] and this completes the
proof. | |

e. Equivalent Functions

Definition 1.4: Let # = (n, S, 4, 7)) and A’ = (%', S, 4, ) be two pseudo
Markov chains and let X and X’ be two partitions on S and S respectively such
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that |Z] = |2'|. A and .#' are equivalent with respect to Z and X’ if there isa
one-to-one mapping ¢ : £ — X' such that f(v) = f'(v') for all » € T*, o' € T'*,
Where f and f* are the functions with state sets X and X’ respectively induced
by #and #';ifv=0, - G, thenv' =g, --- ¢,/ and§(o) = ¢/;if v =
A, then v’ = A,

Theorem 1.10: Let .#, #', Z, X be as in Definition 1.4. Let H be a matrix
the columns of which are a basis for the set of all vectors of the form #,, and
let H be the matrix [ = {0, ...0.}]

Hal

0 H,
then .# and #' are equivalent with respect to X and X’ if there exists an
|S’] x |S| matrix X and a one to one mapping ¢: £ — ' such that:

(1) X,, # 0 only if ' = ¢(o) where X ., is the submatrix of X with rows
corresponding to the block ¢’ € X' and columns corresponding to the block
oceX Qn XH=nH, 3) XAH = AXH, (4) ' = X7].

Proof: (1) and (2) imply that

(5) 'y XyoH, =7, H,
(1) and (3) imply that

6) X, AsH; = A .5 X55sH,;
(1) and (4) imply that

M fls = Xosls

Now f(6,...0%) = Roflooe = By Agrar = * Agyroillo,- Using (5) and ob-
serving that #,,...,, is a linear combination of the columns of H,, we have
nﬂlﬁﬂ‘l"'ﬂlc = ﬂ;l'Xﬂl’ﬂl ﬁar--ak - n/UlXUl,UlAUIOZﬁUQ'“O'k
Using (6) and observing that #,,...,, is a linear combination of the columns of
H,, and repeating as many times as necessary we have
f(al e ak) = n,n'A/m'vg' o A:!Ik~1d)¢' Xak'atﬁak
= Roy e e - ag’”:n - fl(al’ e o-k,)

by (7). The proof is complete.

Remark: Theorem 1.10 provides us with a sufficient condition for equivalence
of two functions of different pseudo Markov chains. In fact, one can prove
[see Theorem 1.12 below] that the conditions of the above theorem are also
necessary if the chain .# with partition T over its state set resulted from a
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construction as in the proof of Theorem 1.5. If the matrix H in the conditions
(2) and (3) of Theorem 1.10 is ignored, then a weaker set of sufficient con-
ditions for equivalence results. These weaker conditions are summarized in
the following:

Corollary 1.11: Let ., #',Z,Y' be as in Definition 1.4. .# and .#' are
equivalent with respect to X and X’ if there exists an |S’| X |S| matrix and a
one-to-one mapping ¢: X — X’ such that: (1) X,., 7= 0 only if ¢’ = ¢(0); (2)
X =m; (3) XA=AX; 4)# = X7.

Consider the following problem: Given a probabilistic sequential function f
of finite rank k, is this function representable as a function of a [true] Markov
chain? If yes, then find an underlying Markov chain.

Using Theorem 1.5 we can find an underlying pseudo Markov chain such
that f is a function of it over some state set. We can try now to use Theorem
1.10 or Corollary 1.11 replacing .# or .#’ by the psuedo Markov chain above
and trying to find another true Markov chain which will satisfy the require-
ments of the theorem or its corollary.

Let conditions (1)—(4) of Theorem 1.10 be considered as equations, with .4’
replaced by the pseudo Markov chain found by using Theorem 1.5, and .#,
X, and ¢ variables. If the given function is a function of a true Markov
chain, then a solution to those equations must exists with A, z stochastic and #
having all its entries equal to one. This follows from the following:

Theorem 1.12: Let /#, . #', X, X be as in Definition 1.4. If .# and .#' are
equivalent with respect to  and X' and .#’ is a pseudo Markov chain derived
as in Theorem 1.5, then .# and .#' satisfy the conditions (1)-(4) of Theorem
1.10 for some matrix X.

Proof: By (34) [see proof of Theorem 1.5] P,,(6) = A;, P, where A;,’ are
submatrices of the matrix 4’. As .# and .#’ are equivalent we have also that
P, = [flv,ov,)] = [ f(v,.00,)] = P, [ fand f’ denote the functions corre-
sponding to .# and .#’ respectively] so that P, = G,H, where G, and H,
are as in Corollary 1.6 and P;.(0) = G;4,,H,. Thus G;A4,,H, = P, (0) =

5o Py = A5, G, H,. Let H be a matrix as in the formulation of Theorem 1.10
and let G be a matrix constructed in the same way from the matrices G,. Then
the above equation implies that GAH = A'GH and this is condition (3) in
Theorem 1.10 with G replacing X and satisfying (1) in that theorem.

Now

naHa = ﬂ"(”""'al et ”uv’m(a)) = (f(av:rl) e f(av;k(a)))
By the construction of #’ in Theorem 1.5, #,’ is a vector with first entry equal
to one, all the other entries being equal to zero. Therefore, n,/G,'H,' ==, P,’
= (f'(0V,,). .. (OV,k)). Since f = f',nH = a'GH verifying (2) of Theorem
1.10.



126 Chapter II. Markov Chains

Finally, 77,/ = (f(0) . . . f'(¥,x(0)" by the definition of #,” and

nﬂ'

Gotto=| o= (f10)  fWose0))'
T

Yak(a)?

and this completes the proof for f = f. |

It follows from Theorem 1.12 that if no solution exists to the conditions of
Theorem 1.10 considered as equations, with .#’ the pseudo Markov chain
derived as in Theorem 1.5 for the given function and .# a variable true
Markov chain, then the given function is not a function of a true Markov
chain. Conversely, any solution to the above four equations with the given
restrictions provides an underlying Markov chain for the given function. Un-
fortunately the use of Theorem 1.10 with its conditions considered as equations,
as above, is not practical in general for there are too many free parameters
involved [the rank of .#', the matrix X, the partition X, the matrix H, etc.].
On the other hand if the roles of .# and .#' are interchanged, i.e., the con-
ditions of Theorem 1.10 are considered as equations; with .# known and
derived as in Theorem 1.5 and .#' an unknown Markov chain then The-
orem 1.10 is equivalent to its Corollary 1.11. This follows from the fact that
in this case H is a nonsingular matrix for every ¢ € I [see Corollary 1.6] so
that H is nonsingular and can therefore be deleted from both sides of conditions
(2) and (3) in that theorem. These considerations together with Corollary 1.11
and Theorem 1.12 lead also to the following:

Theorem 1.13: Let f be a probabilistic sequential function of rank k. Let A
be the pseudo Markov chain with partition T over its states such that f is its
function as found in Theorem 1.5. fis a function of a true Markov chain with
k states if and only if the conditions of Corollary 1.11, when considered as
equations with .# = .# or .#' = M the other chain involved being variable,
admit a solution such that the matrix X is nonsingular.

Proof is left to the reader.

Jf. Examples

We conclude this subsection with some examples in which we shall make use
of Corollary 1.11 to solve some particular cases.

Example 16: Let f be a probabilistic sequantial function of rank k and let
M = (m, S, A, ) be some underlying pseudo Markov chain with partition X
over S, as derived in Theorem 1.5. If all entries in 4 are nonnegative, then f
is a function of a true Markov chain with & states.
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Proof: We remark first that all the entries in # are positive, for they have
the form f(v,;6) and if for some i and o, f(v,,6) = O then P, has its ith row
equal to zero [the entries in the ith row of P are of the form f(v,,;6v.,)] which
is impossible since P, is nonsingular. Let now X, be a square diagonal matrix
with ith diagonal entry equal to (f(v,,0))"' and let X be the [nonsingular]
matrix

X

oy

0
X = .

0 X,,
Then X7 = #, #’ is a vector all the entries of which are equal to one. Let 4’
be the matrix 4’ = XAX ! and let #/ = zX~'. Then all the entries in z’ and
A’ are nonnegative; since, by construction, X and X~! are diagonal and non-
negative, m is nonnegative and so is 4 by assumption. Furthermore, n'n’
=n'Xfi=nf =1 [ng =1 by the definition in Theorem 1.5] and A'%’
= A' X = XAf = Xij = o' [Aff = #} by Corollary 1.6] and therefore n’ and
A’ are Markov matrices [since #’ is a vector all the entries of which are equal
to one]. It follows from Corollary 1.11 that the pseudo Markov chain # with
partition X is equivalent to the true Markov chain 4’ = (7, S, 4, ') with
same partition X, |

Example 17: Let f, #, and X be as in Example 16. Let 5#, be the set of
all vectors of the form #,,. and let 5#,* be the set of all r(o)-dimensional row
vectors n° such that z°#,,. > 0 for any #,, € #,. If, for every o0 € Z, #,*
contains a finite set of vectors 7, - - - @7, such that every very vector in #,*
can be expressed as a nonnegative combination of them, then fis a function of
a true Markov chain.

Proof: We remark first that if #,%, . . ., %, is a set of vectors satisfying the
condition stated above then also the set k7,7, . . ., k,,) 7, satisfies that con-
dition with k4, .. ., k,,, an arbitrary sequence of positive constants.

Let X, be the #(¢) X (o) matrix with ith row equal to k,;m,° where the
ks are positive constants chosen so as to have k,,n,°n, = 1. To prove that
such a choice is possible, we must prove that 7,°n, > 0. Indeed, z,°5, > 0 by
assumption and if #°n, = 0, then 0 = #,°n, = =" ;1,5 which would imply
that n,°n,5; = 0 [for n,°n,;,>>0] and by induction 7,°7,, = O for any element
1,,. We would have in particular that z,° H, = 0 where H, is the nonsingular
matrix as defined in Corollary 1.6 this implying that 7 = 0. It follows that
a matrix X, as above can be constructed and X ,#, = 5, where #,’ is a column
vector with all its entries equal to one. Consider now a vector of the form
k,n A,s. This vector belongs to S+, for k" A,sMsy = KoiTi" Nosy = 0,
and can therefore be expressed as a nonnegative combination of the vectors
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4

ksm?. One can thus construct a matrix 4., such that X, 4,, = 4,,X, where
the ith row of A4, is the vector of the coefficients of the nonnegative com-
bination of the rows of X, corresponding to the row k,,7,° A, in the left-hand
side of the equation. Finally, x, is in 5#,* [for #,#,, > 0] and therefore can
be expressed as a nonnegative combination of the rows of X, in the form
n, = n,’ X, with #,’ nonnegative.

Let X be the matrix with diagonal blocks X, the other entries being zero;
let A' be the matrix whose o0 blocks are A,;; let #’ = (n},...#),) and
=) - ) with X = {o,...0,}. It follows from Corollary 1.11 that
the resulting chain is equivalent to the given one with respect to X. But the
resulting chain is Markovian since #’ has alread the required properties (all its
entries are equal to one), @', and A’ are nonnegative with 7'y’ = 7n'Xn = 7y
and A’y = A'Xn = XAn = Xn = 7’ so that 7 and 4’ are stochastic. |

Example 18: Let # = (n, S, A, n7) be the pseudo Markov chain with

05 O 0 0 0.5
0 —04 0 0 1.4
A=10 0 0.5 0 0.5
0 0 0 —0.3 1.3

0.25 0.084 0.25 —0.078 0.494

S ={s;,8...,85 n=(025003 025 —0.03 0.5)and 7 =(1 1 1 1 1)~
Let T be the partition T = {{s,s,}, {154}, [ss]} = {&, B, y} over S. We show first
that the resulting function f is a function of a true Markov chain. To prove
this fact we use Corollary 1.11 and the argument used in the previous example.
Let X be the (regular) matrix

0.7 03 O 0 0
155 —055 0 0 O
X=1]0 0 0.7 03 0
0 0 1.5 —05 1
0 0 0 0 1

Then X5 = n and one verifies easily that the equations 7 = 7'X and X4 = 4'X
can be solved for #n’ and 4 with nonnegative entries [the reader is urged to
complete the computations]. It follows that the chain .#' = (', S, 4, i) is
Markovian [the same argument used in the previous example will prove this].
If the partition X is as before [for the given .# chain], then the resulting func-
tion f’ [identical to the given one] is a function of a true Markov chain.
Consider now the partition £ = {{5,5,5:5}, {s5]} = {0, ¥} over S. The induced
function f is again a function of a true Markov chain the .#' chain: for the
blocks of T can be constructed by merging blocks of X. [This implies that
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Corollary 1.11 can be used for the partition T with same matrix X and the
resulting underlying chain .#’ will be the same as before.] To compute the
actual values of f one can use a 4-state pseudo Markov chain # = (%, S, 4, #)
instead of the given one .# with .# derived from .# by merging the state s,
and s;, ie., 7 = (0.5 0.03 —0.03 0.5),

0.5 0 0 0.5
- 0 -04 0 1.4
A=

0 0 —-03 1.3

0.5 0.084 —0.078 0.4%4

S ={5555),71=(111)" and the partition ¥’ will be ¥’ = {(§, 55}, (5.}
= {9, 7). The function f induced by M with partition Z is equal to the function
induced by .# with partition X’ because the states s, and s, have the same
distribution in .# [the pseudo probability of a sequence of states is not changed
if the state s, is replaced by state s; or vice versa in the sequence], and they
are both in the same block of .

We find now r(f). Clearly, r(f) = 1) + r(y) = r() + 1 for y is a single
state block [see Corollary 1.2], and by Theorem 1.1, 7(6) < |§| = 3. To find
the actual value of r(6) we compute the values f(6”) forn = 1,2,...5:

(05 0 0 1
£(&) = (0.5 0.03 —0.03)| 0 (—0.4)-1 0 1
0 0 (—0.3)1] | 1

= 0.5(0.5)"! + 0.03(—0.4)"! — 0.03(—0.3)!
= 0.5(0.5)"! 4+ 0.3((—0.4)"' — (—0.3)'")
resulting in
f(6) = 0.5, 0.247, 0.1271, 0.6139 and 0.031775
respectively for i = 1,2...5. Let P, be the compound sequence matrix based
on the sequences v, = v, = A, v, = v,/ = d v; = v,/ = 0%, then
0.5 0.247 0.1271
P, =10.247 0.1271  0.06139
0.1271 0.06139 0.031775
which can easily shown to be nonsingular. Thus, #(d) = 3 and r(f) = 4.

We shall complete this example by showing that £, although a function of a
5-state true Markov chain is not a function of a true 4-state markov chain. To
prove this, we use Theorem 1.13. If £ is a function of a true 4-state Markov
chain, then by Theorem 1.13 [r(f) = 4 as proved above and .# is a four state

pseudo Markov chain] we would have that X4 = A4'X for some stochastic A4’
and X nonsingular of the form
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iy

0 X,
Thus, X, ds; = A3 X5 or X; A5 X;' = Ay Ays and A;; being similar matrices,
theif traces must be equal. But the trace of A,; is negative by the definition
of A and the trace of 4;; cannot be negative for A4’ is assumed to be stochastic.

Thus f cannot be a function of a 4-state Markov chain and the proof is
complete.

Remark: Example 18 shows that functions of true Markov chains may exist
such that the number of states of the underlying Markov chain is strictly bigger
than the rank of the corresponding function. One may ask now whether there
exist functions of finite rank which are not representable as a function of a true
Markov chain. Fox (1967) and Dharmadhikari (1967) [see also Heller (1965)]
showed, by examples, that the answer to the above question is positive. The
examples of Fox and Dharmardhikari are too involved to be reproduced
here, moreover, their proofs seem to be incomplete. For additional aspects of
functions of Markov chains, the reader is referred to the following exercises
and the bibliographical notes which follow.

EXERCISES

1. Prove the properties (1)~(5) of a function of a Markov chain given in Sub-
section 1, a.
2. Prove Lemma 1.4.

3.Let 0<a, <a, -+ <a,r <1 be a sequence of numbers and define
the n X n matrix M = [m,;] as follows

=0 if1<i,j<n—k+1andi=#j
=a fl1<i,j<n—k+landi=j
= —a)/k—1 fl<j<n—k+l<i<n
(¥
| = —a)/k— 1) fl<i<n—k4+l<j<n
— QU—D)—n+ 3 k=1 i n—k+1<ij<n
i=1

Let # = (S, n, M) be a Markov chain with |S| = n,7 an n-dimensional
vector all the entries of which are equal to 4 and M is as above. Finally, let
T be the partition T = {{s; ... S, 1} sk - - - » {SJ}. Prove that the function
f of the Markov chain .# with partition X over S is such that r( f)=mnand
compute the value of the determinant of P,(v, ... Vp—g+1; v ... V_i+1), Where
v, =9 = A v, =v' =0c ! fori>1and o is the first block in X, for f.

4. Let f be a function of a Markov chain with state set = {o.). Let f be the
function f(v) = f(#) where for any v = 0,0, -+ - 0,; ¥ = 0, - -+ 0,. Prove
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that if the underlying Markov chain for fis stationary and its initial distribu-
tion has only positive values, then f is a function of a Markov chain.

5. Let f be a function of a pseudo Markov chain of finite rank, with state set
X = {o, 0} such that #(d) = 1. Then 4 compound sequence matrix P, [see (27)]
of maximal rank for f can be chosen such that all the entries in P, have one
of the forms, f(dc*d), f(dc*), f(6*9), or f(6¥).

6. Let f be a function of a true Markov chain of finite rank with state set
X ={o}. Prove that any matrix P, [see (27)] of maximal rank for f can be
expressed as a finite sum of nonnegative matrices of rank 1.

7. Let f be a sequential function of finite rank and let # = (#, S, 4,7) be a
pseudo Markov chain as derived in Theorem 1.5 for f. Prove that another
pseudo Markov chain .#’ for f can be found such that #' = (7, S, 4, ')
with 7' = (1, 1,..., )5, A% =# and 7'#’ = 1 [ie.,, the vector ' and the
matrix A’ are “pseudo stochastic” with row sums equal to one].

8. Let A, #', X, T be as in Definition 1.4 and assume that .# and .#' are
equivalent with respect to X and X’. In addition assume that |S| = rank f
where f is the function induced by .# (or .#’) with partition 2. Prove that
there exist two matrices B, C such that B is |S| x |$'|Cis |§'| x |S,B-C=1T
where I is the |S] X |S| unit matrix and 4 = BA'C.

9. Let f be a probabilistic sequential function over the state set X = {a}
such that r(¢,) << 2 for every g, € . Then f is a function of a true Markov
chain.

10*. Let f be a function of the Markov chain .# = (=, S, A4, 1) with state set
I ={o}

Prove the following relations:

a. Pm),(xko—lanzkl—l v ,a-i"an—laI"H) = (Ako)o'w“(Akl)mlm,' 0T (Ak"_l)m
{See (28) and other definitions in Section 1,a]

b. fGZ10, T - 0, T8718) = 1,(4),,, - -+ (45),, 51,

c. f(vZv') converges as n — oo for every » and ¥’ if and only if f(v,,6Z"dv}))
converges as n — oo for every ¢,0 € X, and every i and j.

d. f(pX"v') — f(v)f(v') as n — oo for every v and ¢’ if and only if f(v,,6X"*dv},;)
— f(v,,0)f(0v};) for every o, 6, i, and j

e. A" converges as n — oo if and only if f{vX"»') converges as n — oo for
every v and v’

Tl That

11*. A sequential probabilistic function f, f: Z* — [0, 1], is termed “mixing”
if f(wZry') — fw)f(v') as n — oo for every v and v'. Prove the following:
Theorem: Let f be a sequential probabilistic function of finite rank and mix-
ing. Let g,, be the function derived from f by the definition
gn(oy, - -+ 0,) = flo, X"0,Z" - - - 0, Z")
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Then there exists an integer m* such that g,, is a function of a true Markov
chain for any m > m*. 1

11. Let f, #, and X be as in Example 16. Prove that f is a function of a
true Markov chain if the following condition holds true. For any ¢ € X, a
finite set of r(¢)-dimensional row vectors 7,” - - - #Z,, can be found such that

1. n7n, >0, i=1,2,...,k(0),0 € X

2. n° A,; can be expressed as a nonnegative combination of the vectors 7’
for every 6 and 6 € X.

3. &, can be expressed as a nonnegative combination of the vectors z,° for
every ¢ € Z.

12. Find the true Markov chain equivalent to the pseudo Markov chain in Ex-
ample 18 with the partition T and the matrix X as given in that example.

OPEN PROBLEMS

1. Find an algorithm for ascertaining whether a given probabilistic sequential
function of rank k is a function of a true Markov chain.

2. Find an algorithm for ascertaining whether a given function of a true
Markov chain of rank & has an underlying true Markov chain with only &k
states.

3. Provided that the conditions given in Example 17 or in Exercise 11 above
are known to hold true for a given function f {e.g., this would be the case if
r(o) < 2 for any state o of /—see Exercise 9 above] give an algorithm for find-
ing the actual underlying true Markov chain.

Bibliographical Notes

Functions of Markov chains where first studied by Blackwell and Koopmans
(1957). [See also the work of Harris (1955) who considered a related problem.]
Gilbert (1959) proved some of their basic properties The subject has been in-
vestigated afterwards by several authors: Fox (1959); Fox and Rubin (1965,
1967), who were able to use the theory for estimating the temporal be-
havior of cloud cover (based on statistical data taken in the Boston area they
proved that the stochastic process involved can be represented as a function of
a Markov chain but not as a Markov chain); Dharmadhikari (1963a, b,
1965, 1967) considered various aspects of the problem and gave some suffici-
ent conditions for a sequential function to be a function of a Markov chain;
Carlyle (1967) considered a special case. Finally some new additions to the
theory have been achieved by Heller (1965) and Depeyrot (1968). The section
presented here is based mainly on the work of Gilbert (1959) with additions
and some of the exercises based on the subsequent work. Thus Gilbert is to be
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credited for the basic ideas underlying the theorems and corollaries 1.1-to 1.9,
with some clarifications by Dharmadhikari who is to be credited also with the
Examples 17,18 and Exercises 9 and 10. Theorem 1.10 and its corollary 1.11
is new. Theorems 1.12 and 1.13 are a generalization of a theorem of Gilbert
who is to be credited also with Exercise 3. Exercises 5 and 6 are due to Fox.
Finally Exercise 11 is similar to a theorem of Heller. Additional reference:
Burke and Rosenblatt (1958).

2, Function Induced by Valued Markov Systems

A theory of input-output relations was developed in Section I, C. In the light
of that theory, functions of Markov chains can be considered as output rela-
tions, since, if f() is such a function, then the value f(v) can be interpreted as
the probability that the word v is the output of a given Markov chain. In this
section we shall develop a theory of word functions which can be considered
as input relations derived from nonhomogeneous Markov chains.

a. Valued Markov Systems

Definition 2.1: A valued Markov system is a 4-tuple (%, S, {4(0)}, {1}, z) where
(S, {4(0)}) is a Markov system, z is a probabilistic vector of dimension S| and
{n} is a finite set of |S|-dimensional arbitrary column vectors [the entries in #,
are arbitrary real numbers]. With every i € Z the function f; over £*, induced
by the valued Markov system is defined as f;(u) = nA(w)n, withu = o, - - - 0,
€ X* and A(u) = A(o,) - - - A(o)). f(A) = @n, by definition. The functions
f(w) will be called input (word) functions.

The values of the input functions fi(x) can be interpreted as expectations or
costs, since, denoting by 7,; the jth entry in 7, we have that fi(u) = Zn,(u)1,,
and 7 ,(u) is a probability [the probability that the Markov system when started
with distribution z will end scanning the word « in state j]. If the values #,;
are either 0 or 1 the f(u) can be interpreted as a probability [the probability
that the system when started with distribution z will end scanning the word u
in one of the states s, such that n,, = 1].

Input functions fi(u) induced by valued Markov system differ from the func-
tions considered in the previous section in that they do not satisfy necessarily
the relations (23) and (24). In addition, although input functions can be in-
duced by input-output relations, the correspondence is not always one to one.
Thus, let 4 be an SSM, given in the Moore form, 4 = (S, X, Y, {A(X)}, A)
[see Definition 2.1 in Chapter I] with initial distribution n. Define the valued
Markov system (S, @, {A(x)}, {#,},cy) With X =X, Z = Y and #,, = 1 if and
only if A(s;) = y. It is easily seen that the input functions f, induced by the
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valued Markov system can be defined in terms of the input-output relation in-
duced by the SSM with

fy(u) = 2 Pn(’UJ/lu), Iw) > 1.

Hv)=Hu)—1

On the other hand, it may happen that two nonequivalent input output rela-
tions induce the same input function. This is shown by the following.

Example 19: Let A= (S, X, Y,{A(x)}, A) and 4’ = (S, X, Y, {4 (%)}, A)
be two SSM [with common S, X, Y, and A] such that X = {0, 1}, Y = {a, b},
S — {sh 825 835 S4}, A(sl) = A(sl) =a, A(sfl) = A(S4) = b,

¥+ 00 3

AQ)=40)=|3 0 0 3

¥+ 00 3

+ 00 3
100 3 1000
AD=|0 3 4+ 0, Am=|0 0 0 1
L 00 & 1000
04 40 0001

and some initial distribution z = (4 0 0 }). The two resulting input-output re-
lations are not equivalent, e.g., p4ab|11) = %, but p*(ab|11) = 0. On the other
hand, for any v, y, and u one finds easily that

Evl pvylu) = nA@wn, = = nd' (W, = ;p,’(vylu)

so that the resulting input function is the same.

The above considerations show that input-word functions cannot generally
be reduced, in a unique way, to other type of word functions discussed before
and therefore a specific theory will be developed for them. On the other hand
many of the properties of input functions are similar to properties of the other
types of functions, and so are many proofs to related theorems. In all such cases
we shall omit those proofs, leaving them to the reader.

b. Generalized Events and Their Rank

In deterministic automata theory an event E is understood to be a subset of
the set of all words over a given alphabet. Such an event can be represented
by its characteristic function f[fz(u) = 1 if u € E and fy(u) = O otherwise].
We shall agree to term such an event as a 0-1-event the term being a name for
both the event and its characteristic function with values either zero or one.
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Extending this terminology, any word function will be called an event and a
set of word functions will be called a generalized event.

Definition 2.2: Let E, = {f,},., be a generalized event, and let u,,...,u,
w'...,uf € T%n,...,meZ ThenP(u, ..., u,; W', n),...,u n))isthe
k x I matrix {to be called a compound sequence matrix] whose ij element is
(f,(u:u,)) and its rank is denoted by r(P(uy, ..., u. (u'ny), ..., ' n))).

Definition 2.3: Let E, be as in Definition 2.2, then #(E,) (the rank of the gen-
eralized event E,) is defined as

r(Eg) = SlIl‘p {k = r(P(ula ceey uj; (ullnl), sy (uiln})))};

J=12 . uy...,u,u,...,u) € T n,...,n € X}

[Thus r(E,) is the maximal rank of matrix of the form P(u,, ..., u; (@ 1n), ...,
(u,'n))) if such a maximal rank exists.]

Theorem 2.1: Let E, be a generalized event induced by a valued (pseudo)
Markov system with |S] states. Then r(E,) <{ |S|. [As before the prefix “psendo”
means that the vector m and the matrices A(c) are not required to be
stochastic.]

Proof: Under the conditions of the theorem, every matrix of the form

P(uy,...,u;W'n),. .., n))can be expressed as a product of two matrices:
a left factor matrix G whose rows are |S| dimensional vectors of the form m(x,)
and a right factor H whose columns are |S|-dimensional vectors of the form
ﬂm(ujl)'
Lemma 2.2: Let E, be a generalized event of finite rank and let P(u,, ..., u;
(u/n), ..., (u,/n;)) be a given compound sequence matrix of maximal rank
for it. Another compound sequence matrix of the same rank can be derived
from the given one and having the form

P, d,,..., iy w'ny), ..., (u'ny))

Proof: Same as the proof of Lemma 2.2 in Section I, C and left to the
reader.

Theorem 2. 3: Let E, be a generalized event of finite rank. Then there exists
a valued pseudo Markov system A such that E, is identical with the set of in-
put functions induced by A.

Proof: [Some of the details in the proof, being similar to the corresponding
parts in the proof of Theorem 1.5, will be omitted.] Let P(4,u,, ..., u,;
(u,'n), ..., (u'n,)) be a compound sequence matrix of maximal rank for E,
[such a matrix exists by the finite rank assumption and by Lemma 2.2]. We
shall denote this matrix by P. Consider the following determinant
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@)
P I =0
I
WACYS) (39)

SoQuuy) - fo(ua) | f,(uu')

The determinant being of order k + 1 is equal to zero for any variables u, u’
€ Z*¥and n € X {all the other factors appearing in the determinant i.e.,
Uy oo U, ), .., my, ..., n, being constant and u; = A.]

Developing the determinant according to its last column and dividing by |P]
we have

k
folaw') = 33 ), () (40)
where the values a,(u) are the resulting coefficients depending on u only. Re-
placing u by w,u, u’ by w'u,’ and n by n, [u, ¢, and n are variables in (40)] we
have

Souudu)) = z‘i‘ a(uw)f, (wu'u') (41)
or in matrix form
P(uu') = A(w)P(u') (42)
where we have used the definitions
P(A)=P and Pw) = P, ..., u; (uu/n), ..., @', n)

and A(u) being the matrix of corresponding coefficients. Thus,

P(o) = A(o)P or A(o) = P(o)P! (43)
and combining (42) and (43) we have
A(oa’) = A(0)A(a'), AA) =1 (44)
Consider again (40) and replace u by w,u and n by j. We have
fiwud'y = ; au) f;(uu) (45)

Let #,(u) be the column vector defined by #,(u) = (f;(u;u), . . . , f,(u,u))", then
comparing (45) with (41), we can write (45) in the following matrix form

n,;(uu') = AQ@n, '), uu € X* icZ (46)
But u;, = A so that #,(4) = (f;(4), . . ., f;(w,))" and by (46), we have that
n,(w) = A@wn,(A) = (W), . . ., f;(ww)* 47

Define now the valued pseudo Markov system 4 = (z, S, {A(0)}, {1.}) where
|S| = k; A(o) are the matrices as defined in (43); 7 is the k-dimensional vector
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7= (10---0)and n are the k-dimensional column vectors defined by (47)
with u = A
We have, for u = g, - - - 7,, (using (44) and (47)) that

nA(@,), ..., Al = (100 ---0)A4(g,) -+ AG)n = (10 --- 0)A(u)n,
=10 On@)=fiw) |

Combining Theorems 2.1 and 2.3 we have the following:

Theorem 2.4: An event E, can be represented as the set of input functions in-
duced by a valued pseudo Markov system A if and only if E, bas finite rank.

The proofs of the following corollaries and theorems are similar to corre-
sponding proofs in the previous Section 1 and are left to the reader.

Corollary 2.5: Let 4 be a valued pseudo Markov system as constructed in the
proof of Theorem 2.3 for a given generalized event E, of finite rank. Let G be
the matrix whose rows are n(x;) and let H be the matrix whose columns are the
vectors #,,(u,) with P = GH. Then G and H are nonsingular. [The words
u, u; and the n, are the fixed words in the proof with P(u;, . .., u:; (4,'n,),
..., (u;' n)) nonsingular.]

Theorem 2.6: Let E, be a generalized event of rank k. Then a nonsingular P
matrix as in the proof of Theorem 2.3 can be found such that P = [f, (u,u,’)]
and luu/) <2k —2,i,j=1,2,...,k

Corollary 2.7: Let E, be a generalized event of rank k, then the values f;(u)
with J(4) << 2k — 1 uniquely determine the whole event.

It follows from Theorem 2.6 and its Corollary 2.7 that if, and only if, a given
generalized event is known to be of finite rank and a bound is given for its rank,
then an underlying valued pseudo Markov system can be constructed effec-
tively.

c. A Necessary Condition for Representability

The following theorem provides a useful necessary condition for a given gen-
eralized event to be representable as a set of output functions of a valued
(pseudo) Markov system.

Theorem 2.8. Let E, = {f}},., be a generalized event such that it can be rep-
resented as a set of input functions of a valued pseudo Markov system. Then

for every i € Z and u € I*, there exists a set of numbers ¢, ..., c,_; such
that for every ', "’ € X* the following equality holds
[y =, i) + - + oo fi(W W) (48)

If an underlying valued system can be found such that it is true Markov then
o+t toag,=1 (49)
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Proof: Let A= (m, S, {A(0)}, {n}) be an underlying system for E, The
matrix A(u) satisfies its minimal polynomial so that there exists numbers
by, ..., b, such that b I + --- + b, [A(w)]* = 0. But [4(w)]* = A(*) so that
the equation above can be put in the following form [after dividing by b, and
transferring the last term to the right-hand side].

col + -+ + o AW*™Y) = A¥)

Multiplying each term in the equation by zA(x') to the left and by A(u'")y; to
the right we have

cofi@u") + -+ + ey iU ) = f(uF)
If the system A is true Markov, then A(x) is a Markov matrix so that one of its

eigenvalues is equal to one. Inserting this eigenvalue into the minimal poly-
nomial we have

b+ -+ + by = —by or G+ -+, =1 |

d. Equivalent Valued Mqrkov Systems

Definition 2.4: Let 4 = (n, S, {A(6)}, {n}i.z) and 4" = (7', S, {4' ()},
{#}i< z2) be two valued (pseudo) Markov systems over the same alphabet Z. 4
is equivalent to A’ if there is a one to one mapping ¢: Z — Z' such that f*(u)
= f#, (1) for every u & L*.

Given a valued [pseudo] Markov system A one can construct effectively [us-
ing a procedure similar to the one used in Section [I, B, 1], two matrices G and
H such that G has linearly independent rows of the form n(u) = nA(u), and
any row vector of the form 7z(u) is a linear combination of the rows of G; H
has linearly independent columns of form #,(u) = A(u)n,, and any column vec-
tor of the form #,(x) is a linear combination of the columns of H.

Using the above notations we can prove now the following:

Theorem 2.9: Two valued pseudo Markov systems 4 and 4’ as in Definition
2.4 are equivalent if there exists a matrix X of due dimensions and a mapping
¢: Z — Z' such that (1) n'XH = nH; (2) XA(o)H = A'(6)XH forevery o € Z;
(3) #yy = Xn, for every i € Z.

Proof: The proof is left to the reader. [The method used in the proof of
Theorem 1.10, with due changes to meet the different definitions, will do.] |

Corollary 2.10: Two valued pseudo Markov systems 4 and A’ as in Definition
2.4 are equivalent if there exist a matrix X of due dimensions and a mapping
¢: Z — Z' such that (1) o' X = n; (2) XA(0) = A'(6)X for every o € Z; (3)
Newy = X, for every i € Z.

Definition 2.5: A valued pseudo Markov system A is minimal if the rank of its
induced generalized event equals the number of its states.
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Lemma 2.11: Let A be a minimal valued pseudo Markov system. Then any
G* and H“ matrix for 4 are nonsingular.

Proof: G*H“ is a compound sequence matrix for 4 of maximal rank because
any other compound sequence matrix fer 4 can be written in the form G'H’
where the rows of G’ and the columns of H' are linear combinations of the
rows of G4 and the columns of H4 correspondingly. If follows that min(+(G*),
r(H4%) > r(G*H*) = |S]. But G* has |S| columns and H“ has |S| rows and
therefore r(G4) < |S|, r(H*) < |S|. Thus, r(G*) = r(H*) = |S| and both
matrices are nonsingular. |

Theorem 2.12: Let A be a valued pseudo Markov system with E,* the corre-
sponding generalized event. Let 4’ be the minimal valued pseudo Markov sys-
tem as constructed in Theorem 2.3 for the given E,* [by definition 4 and A
are equivalent]. Then a matrix X exists such that (1) zH4 = 7' XH4 (2)
XA(o)H* = A'(0)XH* (3) n/ = Xn..

The proof which is similar to the proof of Theorem 1.12 [with due changes
to meet the different definitions] is left to the reader.

Corollary 2.13: If the system A in Theorem 2.12 is minimal, then there exist a
nonsingular matrix X such that the necessary conditions of Theorem 2.12 can
be replaced by the following; (1) & = 7' X; (2) XA(o) = A'(6)X; 3)n/ = Xn,.

Proof: If A is minimal, then H“ is nonsingular {see Lemma 2.11] and can be
reduced in the conditions of Theorem 2.12. Furthermore, one can assume that
the matrix X in the proof of Theorem 2.12 is a G matrix for 4 [see the proof
of Theorem 1.12] which by Lemma 2.11 is nonsingular in this case. |

Corollary 2.14: Let 4 and A” be two equivalent valued pseudo Markov systems
such that A" is minimal, then there exist a matrix X and a one to one mapping
¢: Z —> Z" such that: (1) nH* = n" XH*, (2) XA(o)H* = A" (0)XH*; (3)
Now = X1,

Proof: Let A and A’ be as in Theorem 2.12, and let A” and A’ be as in
Corollary 2.13 [with 4 replaced by A"']. Then nH* = n’ X' H for some matrix
X and n' =xn"X"' [X is Corollary 2.13 is nonsingular] so that zH4 =
n" XX’ H4. Similarly, X' A(c)H* = A'(6)X' H* and A'(6) = XA"(6)X ! so
that X' A(0)H* = XA"(0)X'X'H*or X' X' A(6)H* = A" X' X' H“. Finally,
n' = X'n,and X~ 'n/ = " so that " = X' X'#,. Where the elements of Z'
and Z' are rearranged if necessary so that the #,. and #,.. vectors corresponding
to the same 7, vector have the same index (n' = n'’ = n). |

As in the previous section Theorem 2.9 and its Corollary 2.10 can be used
for finding a valued true Markov system equivalent to a given valued pseudo
Markov system. For this purpose, the conditions of that theorem [or corollary]
will be considered as equations with one of the systems known the other being
required to satisfy the Markovian properties.
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The possibility of transforming valued pseudo Markov systems into valued
true Markov systems has practical significance, since the later systems can be
constructed in practice using relays, transistors, or other electrical devices [see
Chapter I, Section 3].

If the A’ system in Theorem 2.9 is assumed to be known, then one can as-
sume that A’ is also minimal, this additional assumption being justified by the
fact that the construction in the proof of Theorem 2.3 provides a minimal
equivalent system to any given system. In this case we have that the conditions
of Theorem 2.9 are not only sufficient but also necessary [see Corollary 2.14
above]. On the other hand the unknown system 4 has too many free param-
eters making the use of the theorem impracticable.

If the A system in Theorem 2.9 is assumed to be known, then the additional
assumption that A is minimal [bearing on Theorem 2.3 as before] will make the
conditions of Theorem 2.9 equivalent to the conditions of its Corollary 2.10,
for in this case H4 is a nonsingular matrix. On the other hand, the conditions
of Corollary 2.10 are only sufficient conditions a fact which must be remem-
bered when one proves that they cannot be satisfied in some cases.

We shall give now a useful geometrical interpretation to the conditions of
Corollary 2.10 when considered as equations. Assume that the 4 system in
Corollary 2.10 is given and consider the conditions in the corollary as equations
to be solved for an unknown system A’ subject to the restriction that A’ is true
Markovian. As there is no restriction on the vectors #, in the definition of a
valued Markov system the third equation can be taken as a definition of the
vectors 7,/ once the other two equations are solved. If 4 is a matrix, denote by
C(A) the convex set of vectors generated by the rows of 4. Then the equation
XA(o) = A'(6)X can be solved for a Markovian matrix A'(o) and given X if
and only if C(X4(¢)) = C(X) for in this and only in this case each row of
X A(o) can be expressed as a convex combination of the rows of X and the prob-
abilistic vector whose entries are the combination coefficients will be the cor-
responding row of A'(¢). Similarly the first equation is equivalent to the
condition that # € C(X). We have thus proved the following:

Theorem 2.15: The conditions of the Corollary 2.10 when considered as equa-
tions with the system A4 given can be solved by a valued frue Markov system
if and only if there exist a matrix X such that (1) # € C(X); (2) C(XA(0)) =
C(X) for every 6 € X.

We shall use now Theorem 2.15 to prove two additional theorems.

Theorem 2. 16: Let A = (%, S, {A(0)}, {#:}) be a valued pseudo Markov system
such that ¥ [r;| < 1 where # = (x,) and if {#(0) = (£#(0)) is the ith row in
A(o)then 3, [€,;(0)| < 1 fori=1,2,...,|S|. Then A4 is equivalent toa valued
true Markov system A’ with state set S and |S’| = 2|S|.

Proof: Let X be the |S| X 2|S| matrix
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1 0 0]
0 1 0
0 0 1
X =
-1 0 0
0 —1 0
.0 0 ...—1]

Let XA(o) = B(o) with rows £2(0) = (££(0)). Then {F(0) = +¢,4(0) for
some jso that ¥, |£2(a)| < 1. This implies that C(B(g)) < C(X)and 3] |n,| <1
implies that also # € C(X) and the conditions of Theorem 2.15 are satisfied.
The number of states of the resulting valued Markov system will be equal to
the number of rows of X which is equal to 2|S]. |

Theorem 2.17: Let E, = {f}},., be a generalized event of rank k. There exist
another generalized event E,' = {f/},.; over the same alphabet Z and a con-
stant ¢ such that E,’ is induced by a valued true Markov system with 2k states
and for any u € X* and any i € Z, (1) = f; (u).

Proof: Let A = (n, S, {A(0)}, {n.}) be the valued pseudo Markov system con-
structed as in the proof of Theorem 2.3, for E,. Note that |S| = k and x is the
k-dimensional vector 7 = (10 - - - 0). Let A4, be a valued pseudo Markov chain
derived from A and defined as 4, = (z, S, {4(0)}, {1}) with A(6) = cA(0). If
{f} are the functions induced by 4., then clearly f(u) = ¢*“f,(u) forany i € Z
and any u € £*. Now choose the constant ¢ so that A, will satisfy the condi-
tions of Theorem 2.16 [the vector # = (1 0 - - - 0) already satisfies these con-
ditions] which is of course possible. By Theorem 2.16, there exists a valued
true Markov system A4’ with 2|S| states and functions {f;'} such that f; (1) =
fi(w) = ¢ f(u) for every i € Z and u € I*. |

Remark: Note that the scaling factor ¢ depends on the length of the word
u but not on the word itself. On the other hand it is easy to see that the Theo-
rem 2.17 would not be true in general if the scaling factor is removed because
the values f(1), being induced by a valued pseudo Markov chain, may grow, in
some particular cases, beyond any bound when /() increases while the corre-
sponding values f;'(#) being induced by a valued zrue Markov system, are
bounded.

EXERCISES

1. Prove that any function of a finite (pseudo) Markov chain can be represented
also as an input function of a valued pseudo Markov system.



142 Chapter II. Markov Chains

. Prove Lemma 2.2.

2

3. Prove Corollary 2.5.
4. Prove Theorem 2.6.
5

. Prove Corollary 2.7.

6. Let A, A', A” be valued pseudo Markov systems such that 4 and A4’ satisfy
the conditions of Theorem 2.9 while A" and A" satisfy the conditions of Corol-
lary 2.10 [with 4 and A’ in the corollary replaced by 4’ and 4'/]. Then A and
A" satisfy the conditions of Theorem 2.9 [with A’ in that theorem replaced by
A”].

7. Let A and A’ be two equivalent valued pseudo Markov systems. Prove the
following properties:

a. If A’ is minimal then the number of states of A is greater than or equal
to the number of states of A4'.

b. If both 4 and A’ are minimal, then they both have the same number of
states.

c. If both 4 and A4’ are minimal, then the corresponding matrices A(¢) and
A'(0) of A and 4’ have the same set of distinct eigenvalues.

8. Let E, be a generalized event and let r([E,],) be the maximal rank of any
compound sequence matrix for E, such that the values f,(u) making the entries
of these matrices have the property that /(u) << k. Assume that for a given E,
we have that for some integer &, r([E)) = r([Ejlis1) = -+ = r([EJis)) = 1.
Then either r(E,) =t or (E,) >t + 2j.

9. Based upon Exercise 8 give an algorithm for finding r(E,) when a given

generalized event is known to be of finite rank and a2 bound is given on its
rank.

10. Let A = (=, S, {A(o)}, {n.}) be a valued pseudo Markov system such that
=), n>0 Y n<1 and for any row {,(0) = ({,;(0)) in any matrix
A(0), £,(6) > 0and 3 ,£,(6) < 1. Then there exists a valued true Markov
system A’ with |S| + 1 states and equivalent to A.

11. Let A = (=, S, {A(06)}, {n,)} be a valued pseudo Markov system such that
n = (%), 0 < m, < | and all matrices A(¢) = [a;;(c)] have nonnegative entries
and 3}!8! a,;(6) < 1. Then there exists a valued true Markov system A’ with
2151 states and equivalent to A.

12. If A and A’ are two valued pseudo Markov system satisfying the conditions
of Corollary 2.10, with X = 0, then corresponding matrices A(c) and A'(o)
have at least one common eigenvalue.

13. Let A = (=, S, {A(06)}, {n.}) be a valued pseudo Markov system such that
% = (r,), 0 << m; < 1 and the maximal eigenvalue, in absolute value, of any
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matrix 4(0)A™(0) is less or equal than 1/|S]. Then there exists a valued true
Markov system A’ with 25! states which is equivalent to A.

14. Prove. that in Theorem 2.17 the valued true Markov system A’ underlying
the generalized event E,' may be assumed to have the additional property that
all the entries #;; in all the vectors #,” of A’ have the property: 0 <7, < 1 but
in this case the relation between the functions will be

fiw) = ad“f(u) + b
for any u € £* and i € Z where a, b, ¢ are constants.
15. Consider the following:

Definition: A word vector function is a function ¢ with domain Z* and values
in the set of all n-dimensional real valued vectors, where X* is the set of all
words over a given alphabet . A word vector function ¢ is realizable by a PA
[probabilistic automaton] if there exists a PA 4 = (z, S, {4(0)}, #¥) such that
for every x € X*, §(x) = n(x) [4" is a single vector having only 0-1 entries].
Prove the following:

Theorem: A word vector function ¢ is realizable by a PA if and only if the
following two conditions hold true.

1. For any x € Z* and 0 € 2 if ¢(x) = 3 &, ¢d(x,), then ¢(x0) = 3 a,¢(x,0)
where x, - - - x;, € T* and &, are constants.

2. Let ¢(x,) - - - §(x;) be any set of linearly independent vectors and let o € X.
There exist a stochastic matrix 4(¢) such that ¢(x,)4(0) = é(x;0).

OPEN PROBLEMS

1. Find an algorithm for ascertaining whether a given generalized event E, of
rank k can be represented as a set of input functions of a valued true Markov
system.

2. Find an algorithm for ascertaining whether a given generalized event E, of
rank k can be represented as a set of input functions of a valued true Markov
system with k states.

3. Define, in a meaningful way, and study “output functions” induced by non-
homogeneous Markov systems with more than one letter in the alphabet Z.

Bibliographical Notes
The exposition of Section 2 above is based mainly on the work of Carlyle and

Paz (1970), except for Theorem 2.8 which is a straightforward generalization
of a Theorem of Nasu and Honda (1968). It is to be mentioned also that a
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particular case of valued Markov system was introduced first by Page (1966)
and a restricted variant of Theorem 2.17 (see also Exercise 14 above) was
proved first by Turakainen (1968). Word vector functions (exercise 15 above)
were considered by Bukharaev (1965) Salomaa (1966) and Turakainen (1968).



Chapter Il

Events,
Languages,
and Acceptors

INTRODUCTION

This chapter is devoted to probabilistic languages and events. The closure
properties of those languages and events and their relation to regular events
are studied. Some particular cases such as definite, quasidefinite, and exclusive
events are investigated and the problem of approximating probabilistic events
by nonprobabilistic ones is considered.

A. EVENTS

Although the abstract models to be considered in this chapter are particular
cases of models discussed in the previous chapter, the problems to be investi-
gated are different and motivated by the approach of the mathematical logic
discipline to parallel problems encountered in the deterministic case. The
following notations will be used: An event is a single word function f over an
alphabet Z[ f: =* — real numbers] with the following subcases: an event f
is pseudo probabilistic if it can be represented as the function induced by a
valued pseudo Markov system with a single vector in the set {,}; A pseudo
probabilistic event is an expectation event if the underlying system is a valued
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true Markov system; an expectation event is a probabilistic event if the under-
lying system has the additional property that all the entries of the (single)
column vector are equal to 1 or 0. We shall write ¥ instead of # with F C S
and the ith entry of 57 equal to 1 if and only if s, € F. Such a system will be
called a probabilistic automaton.

A probabilistic event f'is a regular event if the underlying probabilistic auto-
maton is deterministic and the function f can assume only the values 0 or 1.
The term regular event will be used both for the function f as above and for
the set of words u such that f{x) = 1. [This abuse of language is made in order
to simplify the notations and no confusion will arise as long as context is clear.]

An event f is called constant if flu) = ¢ for all ¥ € X* and ¢ is a constant
[real number]. The following operations on events are defined [any two events,
when combined, are assumed to be defined over the same alphabet X]:

1. (f + g)w) = flu) + g(u) for any u € T*.

. (fe)() = flw)g(u) for any u € Z*.

. ()W) = a( f(w)) for any u € Z* and o a real number.
4. (fV g)(u) = max( f(u), g(u)) for any u € L*.

5. (fA 2)(w) = min(f(u), g(v)) for any u € T*.

6. f(u) =1 — f(u) for any u € Z*.

7. f(w) = f@i) whereu =6, --- 0, ifu =0, --- 6, € T*.

w N

Some additional operations will be considered later and defined in due
place.

1. Probabilistic Events

By definition, the class of PEs [probabilistic events] contains, as a proper subclass,
the class of regular events. In addition it also contains the constant events as
proved in the following:

Proposition 1.1. The constant functions f(x) = ¢ with 0 << ¢ < | are PEs.

Proof: Let f be the function f(u) = c forallu € £* and 0 <c¢ < I. Let
A = (m, S, {A(0)}, n¥) be an automaton over any alphabet X such that S =
{L2}; x=1(c 1 —¢);n" =(5) and

A(a):[c 1—1 forall o e X
¢c 1—c¢
Then

1 —crl
p(1) = rA@Wn" = (c l—c)[c ][}:c
¢c 1 —cllo
since A(a) are constant matrices and, therefore, A(u) = A(0), for any u € ¥,
[For the definition of constant matrices see the Preliminary Section.] |
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Proposition 1.2: If fis a PE, then so is f.

Proof: Let A = (m, S, {A(0)}, 17) be the underlying probabilistic automaton
(PA) for f. Let 5 be a column vector all the entries of which are equal to 1.
Let #¥ be the vector such that #¥ 4 ¥ = n. For any u € I*, we have that
nA(u)(n* + n¥) = a(u)n = 1, since n(u) is a probabilistic vector. Therefore,
fuw) = 7" = 1 — n(u)n*. Thus, 4 = (n, S, {A(6)}, #7) defines the function
VA
Proposition 1.3: If fand g are PEs, then also fg is a PE.

Proof: Let A= (zm, S, {A(0)}, n7) and 4’ = (n', S{A'(0)}, n”’) be the respective
underlying PA4s for fand g. Define AR 4' =z X ', S x 5, {A(g) ® 4A'(6)},
n* & n*") where ) denotes the Kronecker product [see Definition 1.2 and
Lemma 1.1 in Section II,B,1]. Then

[R4(w) = (x Q@ n')(A(0)) ® 4'(0)) - - - (A(o2) ® A'(0))n" @ n™)
= (mA(6) - - - Ao "Y' A'(0,) - - - A6 IN™)
= flwg(u) where u—=o0, .- 0,
Since A Q) A’ is a PA, the proposition is proved. ]

Corollary 1.4: If fis a PE and c is a number 0 <{ ¢ < 1, then ¢fis a PE.
Proof: Let g in Proposition 1.3 be g: g(u) = ¢ and use Proposition 1.1.

Proposition 1.5: Let f, g, h be PEs. Then the function fk -+ gh is a PE.

Proof: Let A = (7,5, {A(0)}, ") and A" = (n", S",{A"(0)}, """} be the
underlying PAs. Define the PA B as

B=E xS x 8 aQan",{d4(6) X 4(6)R® 4"(c)},
"0 " +1° Q0" @n")

Note that if an entry in one of the two products of # vectors is equal to 1, then
the corresponding entry in the second vector is equal to O [since 7" has a zero
entry if and only if the corresponding entry in #*’ is equal to one] and there-

fore the sum of the two vectors has only zero or one entries.
Now, [#° is an |S|-dimensional vector with all its entries equal to 1]

) =@ Qn") AW ® 4w) @ 4" W)n" Q1% ® 1)
+ @R Q1N AW) ® 4w Q@ A" @)1 @ 1" @ 1™
= (@A) Q (7' A Wn*) @ (&' 4" (™)
+ (AWn°) Q (@' A'(Wn™) ® (" 4" (wn™")
= f(u)h(u) + g(w)h(u)
as required. | |
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Corollary 1.6: Let f, ... fi, h, ... h, be two sets of PEs such that Y., h, = 1,
where 1, denotes the constant function with all its values equal to 1. Then
> fih is a PE.

Proof: The proof is a trivial extension of the proof of Proposition 1.5 and
is left to the reader.

Corollary 1.7: Let f, ... f, beasetof PEsandlet g, . .. a, be a set of numbers
0<gand X a, = 1. Then > aq, f is a PE.

Proof: Replace the fuuctions A, in Corollary 1.6 by the constant functions
h = a, |

Theorem 1.8. Let f be a PE, then f is also a PE.

Proof: Let f be defined by the PA 4 = (m, S, {4(0)}, #7), then f is defined
by the pseudo probabilistic automaton (SPA) A7 = ((n*)", S, {47(06)}, n7). To
prove this let u = g, . .. g,, then

W) = )*4%a,) - - - A"
= (@A(oy) - -+ AGIN")
= nAd(o,) -+ - Alc )" = f(#)

We must prove that A has an equivalent PA. To thisend, let X bea 2'S' x |§]
matrix whose rows are all |S|-dimensional vectors with entries zero or one. Then
(#F)" is a row of X. In addition C(XA"(6)) C C(X) [C(A) denotes the convex
set of vectors gengrated by the rows of A4). This follows from the fact that
multiplying a row of X by A"(¢’) amounts to the summing up of some of the rows
of A(o) [the rows of X have only zero and one entries]. But the rows of 4'(c)
are columns of A(g) which is stochastic so that the resulting vector has all its
entries between zero and one and therofore belongs to C(X). The conditions
of Theorem 2.15 in Section II, C are thus satisfied and therefore there exists
an SPA 4’ = (w, §', {4'(0)}n’) such that A" is equivalent to 4, |S'| = 25, @,
and the matrices A'(¢) are stochastic, and #' = X#" [by the construction in
Corollary 2.10 of Section II, C]. Let X® be the ith column of X, let 7 = (%)
and define the following PAs derived from A': 4; = (@', §', (4'(0)}, X*) Each
A, is a PA because the vectors X @ have only zero and one entries. Let f* be
the PE induced by A4, Then,

L mfiw) = a4 @x)
=n'AWw) Y 1, X = 4wXn*
= WA = @) = 1w =Jw
But the fs are PEs and therefore, by Corollary 1.7 also f isa PE. |
Proposition 1.9: Let f and g be PEs and let 4 be the function defined as
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h(uw) = 1 if fu) > g() and h(u) = 0 if f(u) < g(u). If h is a regular event,
then f\/ g and f A g are PEs.

Proof: One verifies easily that max(f, g) = f# + gh and min(f, g) = fh + gh
so that this proposition is a particular case of Proposition 1.5. |

Theorem 1.10: The class of PEs is not closed in general under the operations
V and A.

Proof: Let A = (m, S, {A(0)}, n") be the automaton such that: = = {a, b},
§=(1,2,34)F={1,4,n=(}040)and,

L 100 1000
1 00 0100

a@) =|° . A(b) =
0010 00 4 %
000 1 0001

Let n,(x) and n,(u) be the number of occurences of a and b respectively in the
word u. It is easily verified that

fA = 11,_ + %(2—»«(::) — 2—»»(::))
Thus

=3 if n(x) = n(x)

A =4>3 if n(x) <nx)

<% if n(x) > m(x)
Let g(u) be the constant event g(u) = 4 for all u € Z*. Then f4u) V g(w)
and f“4(u) A\ g(u) are not probabilistic events. In fact we shall prove that the
above events are not even pseudo probabilistic [a class which includes the class

of PEs]. Assume the contrary, then there exists a pseudo Markov system B
whose input function is f4 \/ g so that for any integer k£ we have that

fB(akbk+l) — max(fA(akbk+1), _5_) — fA(akbk+1) > %_
and for i < k
fHa* b)) = max(f4a*b), ) = ¢
By Theorem 2.8 in Section II, C with ' = a*, u = b and u'’ = A, there are
constants ¢, . . ., ¢, such that

FA@V) = e fA@V) + -+ + e f*a<D) + cofHa)
implying that § < 4 X %, ¢, while if &' = a**'u = b and «"’ = A we have, for
the same set of constants depending on u only, that
fB(ak+1bk+1) — cka(ak+1bk) + oo+ cof"(a"“)

or y =} X%, ¢, which is impossible. f4\/ g is thus proved not to be a pseudo
probabilistic event and the proof for f4 A g is similar. |
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Corollary 1.11: The class of pseudo probabilistic events (and therefore also
the class of probabilistic events) is a proper subclass of the class of events.

2. Pseudo Probabilistic Events

The class of SPEs [pseudo probabilistic events] includes, as a proper subclass,
the class of PEs since the values of a PE f are bounded while the values of an
SPE may increase beyond and bound. On the other hand, not every event is
an SPE, this has been proved by Corollary 1.11. One can prove now in the
same way as in the previous section that:

1. The SPEs include all constant functions f = ¢ where ¢ is any real number.
2. If fis an SPE, then so are f, f, and af where o is any real number.
3. If fand g are SPEs, thenso is f- g.

The SPEs have also the following properties:
Proposition 2.1: If f and g are SPEs then so is f + g.

Proof: Let f be defined by 4 = (m, S, {A(6)}, ) and g by A’ =@, §,
{A'(0)}, 11'). Let A" be thesystem A" = (n", S”,{A"(0)}, n"’) with §"” = SUS’,
7tll — (n ﬂ,) ﬂll — (”T ﬂVT)T
and

A'(0) = [A(a) 0 ]
0 Ao)
one verifies easily that f4" = f4 4 f#, |
Proposition 2.2: Let f and g be SPEs and let 4 be the event
it flu) < g()
0 if flu) <g)
If A is regular, then the events f \/ g and f A g are SPEs.

() = {

Proof: Similar to the proof of Proposition 1.9.

Proposition 2.3: The class SPE is not closed in general under the operations
V and A.

Proof: The proof is included in the proof of Theorem 1.10 for the functions
f and g used in the proof are PEs and therefore also SPEs while '\ g and
f N g where proved not to be SPEs. |

Theorem 2.4: Let f be an SPE, there exists a PE g and constant numbers b, ¢, d
with d > 0 and 0 << ¢ <{ 1 such that dg(u) — b = ™ f(u) for any u € X*.

Proof: Let A = (n, S,{A(6)}, 1) be the underlying system for f. We have
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proved already [Theorem 2.17 in Section II, C] that there exists a system
A = (#', S, {A'(6)}, n') such that the vector 7 and the matrices A(c) are sto-
chastic, and f'(u) = ¢®f(u) for some constant ¢ and any u € X*. Two
additional transformations are needed in order to change ' so as to fit the
definitions of a PA. Let 4" be the system derived from A’ defined as 4" =
(', S', {A'(0)}, a(n’ + b)) where b is a column vector all the entries of which
are equal to b, a and b being two numbers chosen in a way such that all the
entries of the vector a(n’ + b) are between zero and one. As a(y' -+ b) has
entries between zero and one, it can be expressed as a convex combination of
a set of vectors {11} such that the entries in any vector #, are either zero or one.
Thus, a(n’ + b) = Y, a,n, with ,>0, 3, &, = 1, , = (n,;) and either ,;, = 1
or n,;, =0 for all i. Let A4, be the PA A, = (#', §', {4'(6)}, n1,), then for any
u € X* we have that

200 f4(w) = 3 am' A'Gun) = a'A'(u) 2 o,

= n'AWaln' + b)] = a(@' AWy’ + o' A'w)b)

= af'(u) + ab
[since ' A'(u) is a stochastic vector and all the entries in b are equal to b]. Let
g be the event defined as g(u) = Y a,f“(u). It follows from Corollary 1.7 [the
f% are PEs] that g is a PE. But g(u) = af"(¥) + ab = ac™f(u) + ab. Thus
a'gu) — b= d“f(u) for any u € £* Setting a' = d will complete the
proof. It follows from the proof that @ >> 0 and therefore also d > 0, while
the constant ¢ is 0 << ¢ < 1. [ |

EXERCISES

1. Let f and g be PEs. Find a PE & such that A(u) > 1 if f(u) > g(u) and
hw) < 3 if flu) < g(u).

2. Let f be a PE. Prove that the sets {u: f(u) = 0}, {u: flu) > 0}, {u: f(u) = 1}
are regular events.

3. Let A=(m, S, {A(0)}, n*) and 4 = (7', §', {4'(0)}, n*) be PAs with
SNS =¢, and let 4" = (n", S”, {4"(6)}, #*"") be the PA defined by
7' = (an fr), o0, f>0and a+ f=1; ' =S U S, 1" = (Y (" V)*
and

s A(o) 0
A@_[OAWJ

Show that f4'(u) = f4(u) + f4(u) for all u € T*,

4. Prove Corollary 1.7 using the construction in Exercise 3 above, and show
that the resulting automaton is more economical [as to the number of its states]
when the construction in Exercise 3 is used.
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5. Let 4 = (=, S, {4(0)}, n¥) be a PA, Find an equivalent system 4’ = (@, ',
{4'(6)}, 1) such that 7’ has the formz’' = (1 0 --- 0), |S'| = |S} + 1, the ma-
trices A'(o) are stochastic, the vector # = (#,') has the property that 0<{n, <1
for all i.

6. Use the construction in Exercise 5 above in the proof of Theorem 1.8 to
replace the use of Corollary 1.7 and show that the resulting PA for f is more
economical [as to the number of its states] if the construction in Exercise 5 is
used [even if the construction in Exercise 3 is used for proving Corollary 1.7].

7. Prove that any finite dimensional vector & = (£,)7-, such that 0 << &, < |
can be expressed in the form & = Y7, a,& where & are vectors all the entries
of which are 0 or 1 and @, > 0, 3} a4, = 1. Provide an explicit construction
for the above decomposition.

8. Prove: If f is a PE, then the functions g,(#) = f(u'u) and h*(u) = fluu')
for a fixed ¥’ € X* and all v € Z* are PEs.

9. Prove that there are SPE f and g such that | f — g| is not an SPE.

10. Prove that if fis an SPE such that the matrices in the underlying system
are doubly stochastic then a corresponding system defining f can be found with
doubly stochastic matrices.

OPEN PROBLEM

Find a class of events, properly including the regular events and included
[properly] in the class of PEs which is closed under union intersection and
complementation.

3. Bibliographical Notes

Most of the material presented in this section appeared in the literature under
various names and with variations. Thus Proposition 1.1 and Exercise 2 are
due to Starke (1966b, c), Propositions 1.2 and 1.3 are due to Paz (1966),
Proposition 1.4 and Exercise 8 should be credited to Bukharaev (1967), Pro-
positions 1.5-1.9 and Exercises 1 and 5 are from Nasu and Honda (1968),
while Theorems 1.10 and 1.11 were given in a restricted form in Nasu and
Honda (1968).

Pseudo probabilistic events were studied by Turakainen (1968) who is to be
credited for Propositions 2.1, 2.4, and Exercise 3. Many of the proofs are
however new and some propositions are given here in a stronger version than
the original. Zadeh (1965) introduced the concept of fuzzy sets generalizing
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the classical set concept. The events as introduced here are in fact fuzzy sets
with the “universal” set being the set of all words over a given alphabet.
Other related papers: Paz (1967c), Carlyle and Paz (1970).

B. CUT-POINT EVENTS

1. Closure Properties

Definition 1.1: Let f be an SPE and A a real number. The set of words T( f, 1)
is defined as
T(f, A ={u:flwy> A
and is called a general cut-point event (GCE). If f is a PE defined by the
automaton A and 0 << A < 1, then T(f, A) to be denoted also by T(4, 1) is
called a probabilistic cut-point event [PCE].
Using the theorems of the previous section, we shall now study the closure

properties of PCEs and their relation to GCEs. In fact the first proposition
shows that the two classes of events are identical.

Proposition 1.1: The class of PCEs is identical to the class of GCEs

Proof: The class of PCEs is clearly a subclass of GCEs. To prove the con-
verse, let E = {u : f(u) > A} be an event such that f is SPE. By Proposition
A, 2.1 the function ' = f— A is also an SPE and has the property that f'(z) > 0
if and only if f(u) > A. By Theorem A, 2.4 there is 2 PE g and numbers
0<c<1, 0<d and arbitrary b such that ¢®f'(u) = dg(u) — b for all
u € £* If b = 0, then clearly the set {u : f/(v) > 0} is equal to T* or to @
and these events are PCEs as will be shown subsequently. If £ 0, then
E={u:fuy>A={u:f'(u)>0}=1{u:gu) > b/d} where g(u) is a PE.
Thus F is a PCE and the proposition is proved. |

Proposition 1.2: The class of regular events is a subset of the class of PCEs.

Proof: If E is a regular event, then its characteristic function can be rep-
resented in a degenerate PA [see Section A, 1]. Thus there is a PE f such
that £ = T(f, 0). |
Proposition 1.3: The class of PCE:s is not changed if the defining pseudo prob-
abilistic automata are restricted to have only degenerate initial distributions.

Proof: By Exercise 5, Section A, 2. |

Proposition 1.4: Let 7(f, 1) be a PCE and let x be a number 0 < u < 1.
There is a PE g such that 7(f, ) = T(g, u).
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Proof: If u < A, then g = al with 0 << a < 1 and, using Corollary A, 1.4,
we may use the PE g = af. Clearly f(u) > A if and only if g(x) > u. If 1 < 4,
then let g be defined as

e N
e=1—1/t1=2

By Corollary A, 1.7 g is a PE and f(x) > A if and only if

(A=A  p—4_

as required. |

Remark: The requirement that 0 <C 4 is necessary since any PCE of the
form T( f, 0) defines a regular event [see Exercise 2, Section A, 2] and the class
of PCEs properly contains the regular events. This fact will be proved later.

Proposition 1.5: If E is a PCE and R is a regular event then EU R, EN R
and E — R (meaning the set of words in E but not in R) are PCEs.

Proof: Let E = T(f, A) and R = T(g, 0) where g(u) is either 0 or 1 for all
u € X*. Then fg is a PE by Proposition A, 1.3. It is easily verified that
E N R =T(fg, A) for fg(u) > A if and only if f(u) > 4 and g(u) = 1. Con-
sider now the function fg + g. By Proposition A, 1.5 this function is a PE
[the function £ in that proposition is the function g here and the function g
is the constant function with value 1 here]. If g(u) > 0, then (/g + g)u)
=1> A If gu) =0, then (fg + g)(w) > A, if and only if flu) > 4. It
follows that T(fg + g,4) = E U R. To complete the proof we note that
E — R= EN Rand R is a regular event. |

The reverse of an event E, to be denoted by E, is defined in the usual way,
i.e, £ contains all the words o, - - - 6 such that o, --- o, are in E. We are
now able to prove the following:

Proposition 1.6: The class of PCEs is closed under the reverse operation.

Proof: Let E be the PCE E = T(f, A). Then E=T(f, 1) because £ ={u : u
=0, 0,0, -0 €El=uiu=0,---0 flo,---0)>A={u:u
=0, 6,,J(0, - -+ 6,) > A} and by Theorem A, 1.8 fisaPE. |
Proposition 1.7: Let E = T(f, 1) be a PCE such that the set {u: flu) = 4} is
regular, then £ = X* — Eis a PCE.

Proof: E = T(f, ) = {u : flu) > A}; therefore, £ = {u : flu) <A} = {u : flw)
>S1—=fu:fW>1-JUfu:fa)=1—-A=Wu:ft)>1—-4V
u:fay=12 1
To complete the proof we use Propositions A, 1.2 and B, 1.5.

Remark: In the proof of Theorem A,1.10 a PE fis given such that all three
sets {x : f(x) > A}, {x : fix) < A} and {x : f(x) = A} are nonregular for A=41
Thus the condition of Proposition 1.7 does not hold true in all cases.
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Proposition 1.8: The class of PCEs is closed under the operation of finite de-
rivation. [The derivate of an event E with respect to the word u is the event
D(E) ={ :uu' € E].

Proof: Let E be the PE induced by the PA A = (S, &, {4(0)}, #"). Let A4,
be the PA A, = (S, n(w), {A(0)}, n¥) where 7m(u) = mA(w), then T(f*, 1)
= {w : () Awn" > A} = {w : wAuw)n® > A} = {w :uw € E}. It follows that
D/(E) is a PCE. |

Proposition 1.9: Let E be an event and assume that all the events of the from
D,(E) for l(u) = k, k an arbitrary fixed integer, are PCEs. Then E is a PCE.

Proof: We shall prove the proposition for k& = 1; the proof in the general
case is similar. We remark first that E = (U,.s D,(E)) U F where F is empty
or contains the word e only,t and is therefore a regular event. Since PCEs are
closed under union with regular events it suffices to prove that E' = U, . D (E)
is a PCE. Our second remark is concerned with the possibility of inducing a
“delay” into a PA. Let 4 = (S, n,{4(0)}, n¥) be a PA defining the event
T(A, 2). Define the PA A’ = (S, o/, {A'(0)}, n7) as follows: §' =S U s*,
s* ¢ S; o’ is the degenerate probabilistic vector having a 1 in its first entry
only, the other entries being 0; F' = F and, finally, 4'(o) is the matrix

o)
0 A(o)
It is easily verified that for any word u =&, --- 0, € ¥, l(u) > 1,

p(6,0;, - - 0,) =pUo,---0,), P¥o)=ple),p*(e) =0

Let £, be the characteristic function of the event o,Z*; as the g,X* are regular
events f,, are PEs by Proposition 1.2. and Y_,..s f,, = fi = the constant func-
tion fi(u) = 1 if I(u) > 1. Assume that D,(E) = T(4,, A); one may assume
the same A for all o; because of Proposition 1.4. Finally, let 4, be the PA
derived from the A4, as above, ie., p*(o, - - - 6;) = p*(ag, - - - 6,). We claim
that E' = T(A, 1), where f4 =3, .s f.. f* [which is a PE by the Corollary
A, 1.6]. To prove our claim we remark that for any word u with J(u) > 1 if
u = o,w, then f, (u) = 1, f,(u) = 0 for j +# i, and f4' (1) = f*(w). Thus, for
u=o,w, fAu)= f4w) with the result that ¥ € T(4, 4) if and only if
we D, (E)or T(4,2) = U,,.50,D{E). This completes the proof. |

Theorem 1.10: There are events which are not CPE.

0
4'(0) [

Proof: We define an event E over a single letter alphabet £ = {¢} which is
not a PE. Let u,, u,...be a lexicographical enumeration of all nonempty
words over a two letter alphabet A = {g, b}. Let x be the infinite sequence of

1The empty word will be denoted by e instead of 4 whenever necessary in order to
aviod confusion with the cut-point A.



156 Chapter III. Events, Languages, and Acceptors

letters from A resulting from the concatenation of the words u,, u,, . . . in their
proper order [e.g., v, = a, u, = b, u; = aa, u, = ab, etc., and x = abaaab - - -}.
Let x(n) denote the nth letter in the sequence x and define the event over

E = {o" : x(n) = a}

then E is not a CPE. To prove this, assume the contrary. Thus E = T(f, 1)
for some PE f and some cut point A. This means that f(¢”) > A for x(n) = a
and f(o") < A for x(n) = b. By Theorem 2.8 in Section II, C, there exists a
set of constants ¢, . . ., ¢,_; such that for any integer k

flo*")y = e f6") + c Ad**') + - - + ¢t flo*"T) )

Lete, .- €,,0, - 0, be two words in A* defined as follows: if ¢, > 0, then
€, =band d, =aq; if ¢, <0, then ¢, = a and &, = b; €, = a,d, = b. By the
construction of the sequence x, there are integers k, and k&, such that
x(k)x(k, + 1) -« - x(ky + n) = € - - -€, and x(k))x(k, + 1) - - - x(k, + n) =
d, - -+ 9,. It follows from that if ¢, > 0, then x(k, + i) = b and fle**) << A,
and also x(k, 4 i) = a and f(e***)) > A. If ¢, <0, then x(k, + i) = a and
fle**) > A and also x(k, + i) = b and flo**)) << A. x(k, + n) = a so that
fle¥*) > A, and x(k, + n) = b so that f(c***") <L 1. We evaluate now the
formula (*) first for k = k,. We have

n—1 n—1 n-1
A< flor™y =3 e fle"*)y <A ¥ ¢, or Yeo>1
i=0 i=0 i=0

The inequality on the right follows from the fact that the values f{g**') cor-
responding to positive coefficients ¢, are not decreased while the values f(g*'*")
corresponding to negative coefficients ¢, [if there exist such coefficients] are
decreased. On the other hand, evaluating the formula (*) for £ = k, we have

A fev) =S afie = A3 o el
i=0 i= i=0

since in this case the values f(o****) corresponding to positive coefficients [if
there are such] are decreased and values f(o***") corresponding to negative
coefficients are not decreased. Thus, 1 < > 7=} ¢; < 1 which is impossible, and
therefore the event E is not a CPE. |

Remark: The reader familiar with the theory of abstract languages will find
it easy to show that the event E defined above is context sensitive. It could
not be context free, for any context free event over a single letter is also
regular [this is a well-known fact] and regular events are CPEs. On the other
hand, the only property of the sequence used in the proof of Theorem 1.10 is
that any word of A* be a subsequence of x. Thus, by defining the sequence x
in a more complicated way, but still having that property, it would be possible
to find an event which is recursive, not context sensitive and not a CPE.
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EXERCISES
1. Let A be a given PA. Prove that the sets of words {u : p#(u) = 0}, {u : p*(u)
> 0}, {u : pA(w) = 1} and {u : p(v) < 1} are all regular sets.

2. Let A be a PA such that S contains two elements only and £ contains one
element only. Prove that T'(4, A) is a regular set forany 4,0 << 1 < 1.

3. Consider the following PA: 4 = (S, 7, {A(0)}, #*) over = {7, 0,}, where
S=1{5,8,-..,5; t=000---0);n" = (n)is defined by the requirement
that

1 if i=4
0 otherwise
and A(e,) = [a,,(6,)] is defined by the relations:
a,(0,) = ax3(0,) = au(0,) = ass(0,) = an(o))
= ay(0)) = a15(0;) = ay(02) = aes(0,) = an(0,) = aw(0,) =1
a(0,) = an(0,) = €, a5(0) = ano) =1 — €,
a(0,) = a(0,) = a5(0,) = asy(0,) = 4,
a;(0;) = 6, aw(d;) =1 — 9, and a;(o,) =0
in all other cases with 0 <€ < 1,0 <J < 1. Let A1 be the number defined

as A = d/2. Describe explicitly the sets of words {u : f4(u) > A}, {u : f4(u) = A}
{u : f4u) > A} and show that these sets are hot regular.

”rF =

4. Same as previous exercise with 4 = 4 and the PA 4 = (S, =, {4(0)}, n*)
defined es follows: {0}, 0.}, S = {s,...,5, =10 ---0),nFf = 1ifi = 5,
and 7 = 0 otherwise,
a,(0,) = a(0,) = ass(0,) = ae(0))
= a5(0;) = a4s(0,;) = as(0,) = ag(0;) = 1
ay(01) = a;,(0,) = a(0,) = a;s(a,)
= () = a,5(0,) = a3(0,) = a(0,) = }
a,/(0,) = 0 in all other cases.

5. Let 4 and B be two PAs prove that the set of words {u : f4(u) > f2(u)} is
a PCE.

6*. Consider the following PA: A = (S, @, {A(0)}, n¥) over the alphabet
2 ={o, - - 0;} where S = {s,, s,} @ and 5" are arbitrary and the matrices A(c,)

are defined as
A) [1 —a; a _i
W= b 1—b,]

and are such that for all i and j, a, + b, # 0, a,b, 1 and a,b;, = a,b,. Prove
that T(A, A) is a regular set, for any cut-point A.
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7. Let M be an SSM [see Definition 1.1, Section I, A]. Let (u, v) be a pair of
words of same length over the input and output alphabets X and Y respectively
of M. Let y be a symbol in the output alphabet Y and let 0 <C 4 < 1 be a real
number. Let A(u) be the matrix A(u) = ), A(v|u) [summation is over all v
with (1) —= I(v)] and let p*(p|u) denote the probability that the machine M will
have y as its last output when the word u is fed into it. a. Prove that if the
set of different matrices A(u), u € X* is finite then the set of words

T(M, A, y) = fu: p(yluw) > 4}
is a regular set for any 4 and y as above.

b. Assuming that the set {A(u) : ¥ € X*} contains at most m different elements,
find the number of states of a minimal automaton defining T(M, 4, y).

8. Prove that if in Exercise 7 the matrices A(x), x € X are degenerate stoch-
astic [i.e., deterministic], then the set of words {u: p™(y|u) > A} is regular for
any y and 2 as in that exercise.

OPEN PROBLEMS

1. Are PCEs closed under union, intersection, and complementation?

2. Give a decision precedure for ascertaining whether a set of matrices {A(0)}
generates only finitely many different matrices in the set A(u), u € I*.

2. Regular Events and Probabilistic Cut-Point Events

The following theorem, due to Nerode, is very useful and we shall have the
occasion to use it many times. It serves as a characterization of regular events.
[In order to comply with the common notation, we shall denote, from here
and on, by x, ¥, z, ..., words over an alphabet X.]

Theorem 2.1: Let U be a set of words the following three conditions are
equivalent:

1. U is a regular set.

2. U is the union of some of the equivalence classes of a right invariant
equivalence relation over Z* of finite index.

3. The explicit right invariant equivalence relation E defined by the con-
dition that for all x, y in T*, xEy if and only if for all z € Z*, whenever xz
isin U, yz is in U and conversely, is a relation of finite index. The index of
the relation is the least number of internal states of any automaton defining U.
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The reader is referred to Rabin and Scott (1959) for the proof of this well-
know theorem.

We shall need also the following combinatorial lemma due to Rabin [Rabin
(1963)].

Lemma 2.2: Let &, be the set of all n-dimensional probabilistic vectors [i.e.,
P, = =(&),&E>03r, & = 1] and let U, be a subset of 2, such that for
any pair of vectors £ and 7 in U, the inequality 337, |£, — #,| = € [€ is a given
positive real number] holds true. Then U, is a finite set containing at most
k(€) elements where k() = (1 + 2/€)""1.

Proof: Let & = (£) be a point in U, and define the set of points v, in n-
dimensional space as v, = {{ = ({) : &, < (i, 2 — &) = €/2}. Ttis easy to
see that each v, is a translate of the set v = {{ = ({,):{, >0, > {, = €/2}.

Since £ is a probabilistic vector and &, < {, for all i we have also that v, is
a subset of the set of points ¥V, ={{ = () :{,> 0,3 ¢, =1+ €/2}. A point
{ is an interior point in a set v, [relative to the V, set] if and only if {, > ¢,
for all i. Figure 16 exhibits the different sets defined above for » = 3. & and
n are two points in U,. It follows from the definitions that two different sets
v, and v, cannot have a common interior point. Assuming the contrary, if {
is an interior point of both v, and v,, then {, > ¢, and {, > #; for all { and,
therefore, |, — | < |{; — 7| + |{; — &, for all i. This would imply that

Ve

"

Figure 16. Geometrical representation of the sets v; for n = 3.
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Zléi-”l’l<ZICi'—”1'+Z|Ci—¢il='g_+—§_=€

which is impossible by the definition of the set U..

It is thus seen that the number of points in U, cannot be larger that the
number of simplices », which can be packed into the symplex V.. To get an
estimate of this number let S(v;) be the volume of the symplex v,, then
S(ve) = c(€/2)"~* where ¢ is a constant not depending on €. Similarly, s(V.)
= ¢(1 + €/2)**. Therefore, if k simplices v, can be packed into V. then
ke(€/2y' < (1 + (€/2))"~. Thus k < (1 + (2/€))*"* and this completes the
proof. |

Remarks: One may prove that the set U, is finite in a much easier way by
using the Bolzano-Weierstrass theorem, since the set U, can be shown to be
bounded with no accumulation point under the measure Y, |£,|. On the other
hand, the proof given here provides also a bound on the number of elements
in U.. This brings up an open problem. The bound of the lemma is clearly
not sharp and a sharper bound can be proved provided one can get an estimate
for the “covering ratio” of the packing problem involved in the proof. In a
more explicit way, consider the following problem: Let ¥ be a simplex of side
length @ and let v, be simplices of side length b < a and having the same linear
dimension. Let k be the maximal number of simplices », which can be packed
into ¥ and such that all the »,s are in a relative translated position one to the
other [no rotation is allowed]. Provide an estimate to the ratio kS(v,)/S(V),
where S denotes the volume of the respective simplices. A solution to this
problem will lower the bound of the lemma by the above ratio [which may
depend on the dimension # of the involved simplices]. The next definition and
theorem will provide a sufficient condition for a PCE to be a regular event.

Definition 2.1: Let 4 be a PA. The cutpoint A is €-isolated with respect to 4
if |P4(x) — A| > € for all x € X*, for some € > 0.

Theorem 2.3: If 1 is an e-isolated cutpoint for a PA A, then there exists a
deterministic automaton B such that T(4, A) = T(B). If A4 has n states, then
B can be chosen to have m states where

me(1+5)"

Proof: Translating the equivalence E in Nerode’s theorem [third condition]
into probabilistic terms we have that x, y € I* are nonequivalent words if
there is a word z such that p(xz) > 4 and p(yz) < i or vice versa. This
means that n(x)y7(z) > A and n(y)n(z) < A or vice versa. It follows that
[n(x) — n(y)n7(z) = 2e, since A is isolated. Writing this inequality explicitly
we have
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2 (@(x) — mydn’ = 2€ *)
but
2 (m(x) — mlyn” < X ((x) — n(y))* max 7,5(z)
+ X (ndx)) — m(y))” min 7,7(2)
= 2.(#@(x) — n(y))* (max 1,7(z) — min 7,7(2))
< 2mdx) — ny)t = 3 2 [mlx) — m(y)|

by using repeatedly an argument similar to that used in the proof of Proposition
A, 1.3 in Chapter II and by the fact that 0 <C 5,7(z) << 1 for all 4.

Combining this with the previous inequality (*) we have that, for non-
equivalent words x and y, the following inequality holds

26 < § X md(x) — =) or 2 nx) — ny)| = 4¢€

Thus the set of all vectors of the form 7(x) such that every two vectors in the
set are nonequivalent is a set of the form U,, in Lemma 2.2 and this implies
that this set is finite with

= i+4)”

elements. Nerode’s equivalence is thus shown to be of index <k, which
exceedes the minimal number of states of a deterministic automaton defining
the given PCE. |

Remark: The above theorem, due to Rabin (1963), is clearly one of the most
interesting theorems in the theory of PCEs. The following is a quotation from
Rabin’s original paper and it shows its motivation for introducing the concept
of an isolated cutpoint.

“Let A be a PA and 0 << A < 1. Given a tape x € X*, we devise the
following probabilistic experiment E to test whether x € T(4, A). We run x
through A a large number N of times, and count the number m(E) of times
that 4 ended in a state in F. If << m(E)/N, we accept x; otherwise we reject
it. Because of the probabilistic nature of the experiment, it is of course possible
that we sometimes accept x even though x ¢ T(4, A), or reject it even though
x € T(4, 2). By the law of large numbers, however, there exist for each x such
that p(x) = 4 and each 0 < € a number N(x, €) such that

Pr (EM < N—”ch%é—)x < T(A,l)) >1—¢
In other words, the probability of obtaining the correct answer by the experi-
ment E (consisting of running x through 4 N(x, €) times and counting successes)
is greater than 1 — €.

To perform the above stochastic experiment we must know N(x, €), which
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depends on |p(x) — A]. Thus we actually have to know p(x) in advance if we
want to ascertain whether x € T(4, A) with probability greater than 1 — € of
being correct. Once we know p(x), however, the whole experiment E is super-
fluous.

The way out is to consider values A such that |p(x) — A| is bounded from
below for all x € X*.

It is readily seen that there exists an integral valued function N(J, €) such
that for an isolated A and any x € X*,

Pr (E|l<1%—’l—%<—>x c T(A,,l)) >1—¢

Thus the proposed stochastic experiment for determining whether x € 7(4, 1)
can be performed without any a priori knowledge of p(x). This fact makes it
natural to consider isolated cut-points.”

It is to be noticed here that in Rabin’s argument above the testing procedure
requires that the number N(x, €) be determined before the experiment begins.
If this requirement is removed, then we do not have to know P(x) in advance
for ascertaining whether x € T(4, A) with given probability. This fact follows
from the following theorem due to Darling and Robins (1968).

Theorem: Let x,, x,, . . . be a sequence of independent variables with Py(x, = 1)
= (14 8)/2, Px, = —1) = (1 — J)/2, —1 < J < 1, so that Ef(x,) =0 [E
denotes here expectation]. Let H* be the hypothesis that § > 0, and H~ the
hypothesis that § << 0. For an arbitrary given 0 < € < 1, there is a test of
H* versus H- such that if T denotes the sample size of the test, then

I. P(T < o0) =1, all d #0.
2. Py(accept H") < €, all § > 0; Py(accept H*) <€, all § < 0.
3. E(T) < oo, all & # 0.

Since one may always assume that A = { [see Proposition 1.4], the above
theorem shows that there is a testing procedure for a word x to ascertain
whether p(x) > 4 [H*: x, = 1 if x is accepted at the ith trial and x, = —1 if
x is rejected at the ith trial]. The testing procedure is finite with probability
1 {(1) in Darling and Robins theorem] and does not depend on d(=|p(x) — 4))
but only on the required degree of reliability €. The only assumption still
necessary is that P(x) # A.

It is also worth mentioning that to decide whether a given cut-points 4 is
isolated or not is an open problem which seems to be as difficult as the problem
of deciding whether a given PCE is regular. Moreover the condition of Theorem
2.3 is only a sufficient condition for the PCE to be regular. This last fact will
be proved latter [see Corollary 3.4].
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EXERCISES

1. A cut-point A is weakly isolated for a PA A if [p(x) — A| > € or p(x) = 4
for all x € T*. Prove that if 4 is a weakly isolated point for 4, then the event
T(A, ) is regular.

2. Two PAs A and B are mutually isolated if |p4(x) — p®(x)| > 4 for all
x € X* Prove that if 4 and B are mutually isolated, then the event E =
{x : pA(x) > p®(x)} is a regular event.

3. Let E = (E) be a partition of X*, E is called regular if there are only
finitely many blocks E, in E and all Es are regular events. Prove: Any regular
partition E = (E,) of T* can be represented in the form E, = T(4, 1,) where
Ais a PA. Conversely, if A is a PA such that the set of values [p#(x) : x € Z*}
is finite, then the set of events {x : p%(x) = k,;} form a regular partition of X*,
where k, ..., k, is the set of all different possible values p*(x).

4. Prove that the bound of Lemma 2.2 can be improved for n = 2 so that
- 2 1
k(e) < 3 + 3¢

in this case.

4. Prove Theorem 2.3 for the following case: The automata A are allowed to
have nonrestricted final vectors #7 = (n,F) [i.e., #7 may assume any real value
and is no longer restricted to the values 0 and 1], and in addition, the cut-point
A is also allowed to assume any real value, all the rest of the components of A
remaining as in the original definition. Prove that for this case the bound of
Theorem 2.3 is k(€) = (1 + (d/2€))*~' where d = max, 1, — min, #,".

5. A cut-point A is semiisolated for a PA A4 if p*(x) — A > € for all x such
that p#(x) > A or else A — p4(x) > € for all x such that p#(x) < A. Prove
Theorem 2.3 with the term “isolated” replaced by the term “‘semiisolated” and
give a new bound for this case.

OPEN PROBLEMS

1. Give a decision procedure for ascertaining whether a cut-point A is isolated
for a given PA.

2. Give an algorithm for finding all isolated cut-points of a given PA.
3. Give a sharp bound for Theorem 2.3.

3. The Cardinality of PCEs and Saving of States

Theorem 3.1: The class of PCEs is nondenumerable.
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Proof: Let T = {0, 1} and define A4 to be the PA A = ({s,, s}, 7, {A(0)}, #")
where 7 = (1 0); 7" = (9);

o R
A(°)=L J’ A(l)’[o 1}

It is easy to prove that for x = o, - - - 0, p(x) = .0, - - 0, wWhere .0, - -+ 0,
is an ordinary binary fraction [see Exercise A, 5.6 in Chapter II] and p* is the
function induced by A. Thus the set of numbers {p(x) : x € Z*} is dense in the
open interval (0, 1) for the given PA 4. Let A, and 4, be two cut-points
0 < A, <A, < 1, then T(4, A;) # T(4, A,) for there is a word x such that
p(x) > A, and p*(x) < A,. This follows from the density of the values p*(x).
Thus the set of different T(A4, A)s coincides with the set of different As which is
not countable [the As are real numbers in the interval (0, 1)]. This completes the
proof, since the class of PCE contains the events of the form T(4, A) above. |i

Remark: It follows from the above theorem that there must be nonregular
events representable in finite state machines [context free, context sensitive,
etc.] which are representable in PAs. On the other hand, the proof of Theorem
3.1 is existential. We shall however exhibit in the following examples explicit
nonregular events, some of them context free, which are represented in a PA.

Theorem 3.2: Let A be the PA defined in the proof of Theorem 3.1. The event
T(A, 2) is regular if and onlf if 4 is a rational number.

Proof: The class of PCEs is closed under the reverse operation [Proposition
1.6] and so is the cl/a_ss\oﬂregular events. It suffices therefore to prove that an
event of the form T(4, A) is regular if and only 4 is a rational number, where
T(A, A) is the reverse of T(4,4) = {x = 6, - 04: .0,---0,>A} or T(4, 1) =
{x =00, .6, -6, > A}. Assume first A to be a rational number, ie.,
A=2A - AArsy -+ Arsn Wwhere A,., - -+ A4, is the recurring period in
the expansion of A. [One may always assume that the expansion of a rational
number has a recurring period: for one can add the recurring period / to a
finite binary expansion.] A finite automaton B defining T(4, 4) in this case can
be defined as B = (S, 5o, M, F) where S ={s...8cimsih = =101}, F=
{St+m+1} and the function M is the function

"‘“} if =4, for{
Ok-1

i<k+m-—2
i=k+m—1

i) = a+m if .:Oili
M. j) * 7 } for i<k-+m—1
J=0,1 |Fx+m+1 if j=1=4,
ag; if j=1,2 for i>k+m

It is easily verified that the above automaton defines the event T(4, ) as
required [the reader is urged to draw a state graph for the automaton B],
proving that T(4, A) is a regular event for rational 4. Assume now that 4 is
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an irrational number 4 = .A4,4, - -- A, 4;,, - - -. Consider the infinte sequence
of symbols 4,4, --- 4, --- 4, .-- where the As are the consecutive digits ap-
pearing in the expansion of A. No two different suffixes of the above sequence
of the form A4, ---,4,4,,, ---i < j can be equal, since otherwise the
sequence of digits 4,4, - - - 4,_, would recur periodically in the expansion of
A, a contradiction to the fact that A is not a rational number. Let then k be the
smallest integer such that 4,,, = 4,,, for given i < j. Let z,;, be the word
defined as
2, = {AHI e li+k if A'H—k > )']+k
! A’j+1 Ry J+k if A’j+k >Al+k

Theneither .4, -+ 4, A -+ 4> Aand A, - 44,4, - - - 4, <<A in the first
case (Ayp > Ajui)or Ay Ay Ay >Aand A A A, -0 4, < Adin
the second case. Thus the word z,; distinguishes between the words x, = 4,- - - 4,
and x, = 4, --- 4, for any i and j # i. It follows that Nerode’s equivalence
is of infinite index for the event T(4, ) and the event is therefore not a regular
event. This completes the proof. |

Corollary 3.3: For any integer n there are regular events requiring at least an
n-state deterministic machine for their realization but can be represented in a
two-state PA.

Proof: The set of deterministic automata with n-states or less is finite but
the set of events T(4, ) as defined in Theorem 3.2 with 4 a rational number
is infinite and any two such events are different [this fact is included in the
proof of Theorem 3.1]. Thus, there must be events of the form 7(4, ), 1
rational requiring more than n-states for their deterministic realization.

Corollary 3.4: There are regular events fepresentable in PAs with a nonisolated
cut-point A.

Proof: As mentioned before the set of values p#(x) for the automaton A
defined in Theorem 3.1 is dense in the interval (0, 1). The events T(4, 1), A
rational, are therefore regular although the cut-point 2 is not isolated. 1

Remark: Theorem 3.2 provides a class of explicit nonregular events rep-
resentable in PAs Corollary 3.3 shows that it is sometime possible to save
states [in exchange for precision] by representing a regular event in a PA.
Corollary 3.4 shows that the condition of Theorem 2.3 is a sufficient but not
necessary condition for regularity. In connection with Corollary 3.3 it will be
interesting to find out what is the exact price [in time and/or precision] one
has to pay in exchange for the saving of states.

Remarks on Equivalence and Reduction of States:t It is easy to see that
most of the state theory developed in part 1 of the book for SSMs goes over
to PAs after some small changes are introduced in the basic definitions and

$This section assumes knowledge of Chapter I of the book.
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statements [e.g, the first column in H“ will be #* and not #, etc.] Thus one
can define reduced and minimal PAs, covering of PAs’ accessible states, con-
nected PAs, equivalent distribution for PAs etc, and prove practically all of
the theorems proved for SSMs with regard to these notions. In addition a new
notion of equivalence can be introduced for PAs. Consider the following two
definitions:

Definition 3.1: Two distributions 7 and p are equivalent for a PA A if
ant(x) = pnf(x) for all x € Z*.

Definition 3.2: Two distributions 7 and p are A-equivalent of order & for a PA
A if an™(x) > A < pn* (x) > A for all x € T* with I(x)<k. m and p are A-equi-
valent if the relation above is true for all x € X*.

Two distributions which are equivalent are ipso facto A-equivalent [of order
k] in other words equivalence is a [proper] refinement of A-equivalence. It
follows therefore from Theorem 3.2 that both types of equivalence may be of
infinite index.

There are gedanken experiments for deciding whether two distributions
and p are equivalent [see Theorem B, 2.1 Chapter I for SSMs]. This is however
not true for PAs as the following theorem shows.

Theorem 3.5: There is 2 PA and a number 4 such that for any integer k there
are at least two A-equivalent distributions of order k£ which are not A-equivalent.

Proof: Let E be the event over L ={0,1}, E={x =0, -+- 0, .0, -+ 0y
> 1, A = .10100100001 - - -}, i.e., the binary expansion of 4 consists of all the
terms of the form 01,k =0, 1, ..., ordered according to the magnitude of
k. Then E is representable in a PA as in Theorem 3.2 and therefore E is also
a [nonregular, since 4 is irrational] PCE. Consider the two words

x, =101 ... 100 -.- 01 and y,=101---10--- 010
— —
As proved in Theorem 3.2, these two words are not equivalent, but one sees
easily that the shortest z such that either x,z € E and y,z ¢ E [or vice versa]
is
z=0-.-01l

——

k

Thus x, and y, are A-equivalent of order k and this proves our theorems. [

We come now to the problem of merging of states. If two degenerate dis-
tributions [or states] are equivalent for a PA A, then the two states can be
merged to get a new equivalent PA with fewer states [see Theorem B, 2.4 in
Chapter I]. Is there any parallel procedure for A-equivalence? In other words, if
by some means we would be able to find out that two degenerate distributions
are A-equivalent [as mentioned before this question is not decidable by gedan-
ken experiments], would this enable us to get another PA with fewer states
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which is A-equivalent to the original one [meaning that for any initial distri-
bution of the original PA there is a A-equivalent distribution for the second
PA and vice versa]? The answer to this problem is negative in general and is
explained in the following argument.

Consider again the set of vectors 24 = {n(x): x € X*} considered now as
points in n-dimensional space. These points are included in the n-dimensional
simplex #(n) = {x : @ is an n-dimensional probabilistic vector.} The hyperplane
containing all the points z(x)n* = A divides 24 into two subsets 2,4 = {n(x):
n(xm" > 1), P_A = {a(x): a(x)y* < A} so that n(x) € #,* if and only if
x € T(A, A). The merging of two extremal points in Z(n) means geometrically
a projection, along the line connecting those two points, of the n-dimensional
simplex Z(n) into the (n — 1)-dimensional simplex 2(n — 1). Unless the line
connecting the two merging points is parallel to the hyperplane {7 : 7 #* = 4}
it may happen that a point in £,4 will have its projection in the set #_4 of
the (» — 1)-dimensional space. A situation like that in Figure 17 may occur
where both words x, and x, are accepted, but if the states §, and §, are merged
then the resulting automaton A’ will accept x, and reject x,.

7 (X,)

m(X)nF =X

P(n-1)

Figure 17. Geometricol interpretation of merging of states for
PAs with cutpoint.

We conclude this section by an example showing that PAs over an alphabet
X containing a single letter may still induce a nonregular PCE.

Theorem 3.6: There exists a 3-state PA A over an alphabet £ = {g} containing
a single letter and a cut-point A such that T(4, 1) is a nonregular event.

Proof: Consider the PA defined as follows: S = {s,8,85}, # = (00 1), " =
oonr

2 0 1
K 3
Ao)= 1§ %+ % with A= &

o
A
.
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The eigenvalues of A4(g) are 1, (3 + if5~/7), (4 — iv%~/7), each having
multiplicity 1. [The reader is urged to verify the computations.] Determining
the corresponding row and column eigenvectors and using formula (4) in
Section II, A, 5, we find that

d(o) = 1+ w4 (1)

wheret
S V5 RN G |
u=mtigge Y=g tinY7?
and #, 7 are the conjugates of u and v respectively. Writing formula (1) in a
trigonometric form we get

d(@) — 1 = epmsin (10 + 7) @

where ¢ = |u|, p = |v|, y = arg(u), and @ = arg(v). Thus, if and only if
—7/2 < m + a < n/2, then aiP(¢) > 4/11 or 6™ € T(A, A). We shall need
here

Lemma 3.7: If 0 is rational in degrees [i.e., @ = 2ar where r is a rational
number], then the only rational values of cos @ are 0, +1, 4-1. If 8 is irrational
in degrees, then any subinterval of (0, 27) contains values of the form méf
(mod 27).

The proof of this lemma, involving algebraic number theory, is omitted here
and can be found in Niven (1956).

Checking our @ for the condition of the above lemma we find that cos 6
= Re A/|A| = § which implies that @ is irrational in degrees. Let 6™ and o™
be two words in T(4, ) such that m0 +y=a,m0 +y=f, —n/2 < a,
B < m/2 and assume that & < 8. Then there is m, such that n/2 <y + (m,
+m)0 < m/2 + (B —a)/2 by the second statement of Lemma 3.7. It
follows that y + (m, + my) 0 < /2 — (B — &)/2. Thus o™*™ ¢ T(4, A)
while 6™+m™ e T(A, A). We have proved that any two words in T(4, 4) [this
set is infinite by the second statement in Lemma 3.7] are nonequivalent accord-
ing to Nerode’s equivalence [Theorem 2.1] and Nerode’s equivalence is there-
fore of infinite index. This completes the proof.

Remarks

1. Note that the cut-point A used in Theorem 3.6 is a rational number.
Thus the regularity or irregularity of events of the form T(4, A) is not connected
to the rationality or irrationality of A as one may guess from Theorem 3.2.

+We use here the notation v for eigenvalues in order to avoid confusion with the cut-
point notation 4.
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2. Theorem 3.6 provides an example of a PA over a single letter alphabet
inducing a nonregular event. This is, however, not true in general; in other
words there are many cases where such a PA defines a regular event. See Ex-
ercises 10-13 after this section for more details on PA over a single letter
alphabet.

3. The example in Theorem 3.6 also provides an explicit case of a non-
context-free event representable in a PA. This follows from the fact that:all
context-free events over a one letter alphabet are regular and the event in
Theorem 3.6 is not regular and therefore not context free.

EXERCISES

1. An “m-adic two state PA” is a 2-state PA 4 = (S, &, {A(0)}, nF) over the
alphabet £ = {0, 1,..., m — 1} where

m—i i
» m .
A@) = m—i—1 i+1F} i=01....,m—1
m m
0
n = (10) ﬂ’=[1:l

Prove that if x =0, - 0, € L*, then pAx) = .6, --- 0,, this being an
ordinary m-adic fraction.
2. Prove that if the symbol 1 is removed from the alphabet of the 3-adic PA,

then the set of values {p%(x):x € T*, X = (0,2}} is a nowhere dense set
[Cantor’s discotinuum].

3. Prove that Theorem 3.2 is true for m-adic automata.

4. A number u is called accessible by a PA A if there is a word x € Z* such
that p“(x) = u. Prove that if 1 is a rational number which is not accessible
for the PA A in Exercise 2, then T(4, 2) is a nonregular set for that 4.

5. Let A be the 3-state PAover £ = {0, 1,..., m — 1} such that # = (100)

0 1 m—i—1 i

. ) m m m
=0 and A = 0 1 0
! 0 0 1

Prove that T(4, A) is the event {x = &, - - - 6, .6, - -+ 0, > A}.

6. Let ¢ be a real valued function over T* such that ¢(e) = O [e is the empty
word] and for all x, 0 € X*,
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$(ox) = a(o)p(x) + b(o)
where a(o) + b(6) < 1. Prove that any event of the form {x : ¢(x) > 4} can
be represented by a 3-state PA with cut-point A.

7. Same as Exercise 6, but ¢(xo) = a(o)d(x) + b(o) and the PA has 2 states.

8. Let  be a a mapping from symbols in X to words in £* and extend y to
Z* by the requirements

ye)=e  y(xo)= y(x)y(o)
Let £ =1{0,1,..., m — 1} and denote by .y(x) the m-adic expansion where

the symbols in y(x) are considered as digits [.y(e) = 0]. Prove that the event
{x :.w(x) > 1} can be represented in a 3-state automata with cut-point 4.

9. Prove that if in Exercise 8 the function y has the property that w(i) = x,
with /(x;) = k for a fixed number k£ > 1 and all i € X, then the event {x:.y(x)
> A} is not regular if and only if A is an irrational number of the form
n=wyloy) -y -

10. Prove that a 3-state PA A = (S, n, A(0), #7) over a single letter alphabet
defines an irregular event if and only if (1) nA(¢) = 7, (2) A(c) has an imagi-
nary eigenvalue with argument irrational in degrees, and (3) the cut-point A is
equal to lim, .. af? [which “lim” always exists if (2) is satisfied and is in-
dependent on i] if F={s}, and is equal to lim,.. a&? + lim, .. a® if
F={s;, 8}

11. Prove that the number of nonregular events of the form T'(4, A) where A
is a given n-state PA over a single letter alphabet is < n.

12. Prove the following theorem:

Theorem: Let A be a PA over a single letter alphabet. Let v, ..., v, be the
eigenvalues of A(o) such that |v|=--- =|v| =1 and let v, ---, v,,, be
the eigenvalues of 4 with maximum absolute value such that |v,| = ... =
[V,+o <1 and such that 3229 vFw,;(m) = O for all m > m,, where m, is
some integer and @, is as in formula (4) in Section I, A, 5 [4, in that formula
is replaced by v, here]. If argv, argv,,,, - - -, argv,,, are all rational in
degree then T(4, 2) is a regular event for any 2.

13. Prove the following corollary to the theorem in Exercise 12: If a PA A as
in Exercise 12 has all its eigenvalues with rational arguments then T(4, 4) is
regular for any A.

14. Prove that if a PA A over a one letter alphabet has only real eigenvalues,
then T(4, A) is regular for any A.

15. Prove that any 2-states PA 4 over a one letter alphabet defines a regular
event T(4, ).
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OPEN PROBLEMS

1. Find a decision procedure for checking whether any two given distributions
for a PA are A-equivalent for a given A or prove that the problem is not decid-
able.

2. Provide a procedure with the aid of which one will be able to find a PA B
with a minimal number of states such that the event T(B, 1) for some A equals
a given event T(4, u).

4. Particular Cases

a. Exclusive PCEs

The class of events to be dealt with in this section is properly included in
the class of PCEs and properly includes regular events. In addition they have
most of the closure properties regular events have.

Definition 4.1: An event of the form {x: x € X*, p%(x) = A} where 4 isa PA
and A is a real number 0 << 1 << 1 is an exclusive PCE and is denoted by
the notation T',(4, A).

Propesition 4.1: The regular events are properly included in the class of ex-
clusive PCEs.

Proof: It is clear that any regular event can be represented in the form
T.(A,0) where A is a deterministic automaton [see the proof of Proposition
1.2]. On the other hand, for the PA given in Exercise 1.4, we have that
T.(A4,}) is the complement of the event E = {x:x € X*, x = o,""'0,0,",
m > 0} which is not a regular event. Regular events being closed under com-
plimentation we have that T.(4, 1) is not regular and this completes the
proof.

Proposition 4.2: The class of exclusive PCEs is properly included in the class
of PCEs.

Proof: Let T.(A, 1) be an exclusive PCE. By Proposition A, 2.1 there is an
SPE p? such that for all words x € X*, p¥(x) = pA(x) — A so that T.(4, 1)
= T.(B,0). Let C be the pseudo probabilistic automaton C = B(X) B (see
definition in the proof of Proposition A,1.3). As in the proof of Proposition
A,1.3, pP(x) = pP(x)p*(x) for all xe Z*. Thus T.(B, 0)= T(C, 0). Now using
Proposition 1.1 we have that there is a PA D and a cut-point g such that T(C, 0)
= T(D, p). This proves that any exclusive PCE is a PCE, since T(D, x)
= T.(4, ). To prove that inclusion is proper, let 4 be the PA defined in
in Exercise 1.4. Then T(4, }) = {6,"06,6,": m < n} so that the event E =
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[o/m0,0,": < n} is a PCE. We will show that this event is, however, not an
exclusive PCE. Assume the contrary, then there is a PA B such that E =
T.(B, }) [by Proposition 1.4 1 may always be assumed to be equal to 4]. Using
Theorem 2.8 in Section II, C with ¥ = g, we have that there is a sequence of
numbers ¢, ¢y, . .., c,_, such that Y 7-!¢, = 1 and for the words ¥’ = 0,0,
and «'' = e [the empty word] the following equality holds true:

P(0,"0,0\") = c,_,p%0,"0,0,""") + - -+ + ¢, p¥0,"°6,0,) + c,p%(0,"0,)
But the words ¢,0,0,""', ..., 0,0, are not in E and therefore their probability
by B is L. This implies that p*(g,"6,6,") = % Y 72¢ ¢; = § which contradicts
the fact that p(6,"6,0,") # Lsince 6,"0,6," € E. The proof is complete. |}
Theorem 4.3: The class of exclusive PCEs is closed under union.

Proof: Let T.(A, A) and T.(B, 1) be two exclusive PCEs. As in the proof
of Proposition 4.2, there are pseudo probabilistic automata C and D such that
T.(A4, ) = T(C, 0) and T_.(B, p) = T(D, 0) with p°(x) > 0, p°(x) > 0 for all
x € X*. Then T(C + D,0) = T(C, 0) U T(D, 0) where C + D is the auto-
maton defining the function p€+?(x) = p°(x) + pP(x) [see Proposition A,2.1].
By Proposition 1.1 there is a PA A’ such that 7(4', v) = T(C + D, 0) =
T.(A4, 1) U T.(B, p) for some cut-point v and, as follows from the proof of
that theorem, P4(x) > v for all x € Z* so that T(4',v) = T.(4',v) as re-
quired. ]

Theorem 4.4: The class of PCEs is closed under intersection with exclusive
PCEs.

Proof: Let T(A, ) and T.(B, u) be a PCE and an exclusive PCE respec-
tively. Then there are automata 4’ and B’ such that T(4, 1) = T(4', 0) and
T.(B, 1) = T.(B',0). It follows that T(AX B'® B', 0) = T(4, A) N T (B, p).
By Proposition 1.1 there is a PA C and a cut-point v such that T(A & B’
X B', 0) = T(C, v) and this completes the proof. ]

Proposition 4.5: The class of exclusive PCEs is closed under intersection.

Proof: One can assume that T.(4, 1) = T (A4, 0), and similarly T.(B, )
= T (B, 0)so that T.(4' X B',0) = T (A4, ) N T B, ). |

EXERCISES

1. Let A be the PA in Proposition A,1.10. Prove that the event T(4, }) is not
an exclusive PCE.

2. Prove that the event {0717 : n = 1, 2. .} is not an exclusive PCE.

3. Define the event T_(4, 1) = {x:x € X*, p#(x) = A} for a given PA and a
cut-point A. Prove that the class of events of the form T_.(4, A) is closed under
union and intersection and includes the regular events.
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4. Prove that the event {0"17:n > 1} can be written in the form T.(4, 1)
where A4 is a PA with cut-point A.

OPEN PROBLEM

Are the events T_(4, 4) included in the class of PCE and, if yes, is the in-
clusion proper?

b. Definite PCEs

Definition 4.2: A PA A is weakly k-definite if and only if for any x € X* with
I(x) > k and any initial distributions = and pt we have that p,4(x) = p,*(x).
Proposition 4.6: If 4 is a weakly k-definite PA and z = yx is a word in Z*
with /(x) > k, then p(z) = pA(x).

Proof: pA(z) = mA() A" = (p)AXN" = puy(¥) = px) [p4(x) i in-
dependent on the initial distribution since /(x) > k]. |
Corollary 4.7: If A is a weakly definite PA, then T(4, A) is a definite PCE for
any cut-point.

Proof: Tt follows from Proposition 4.2 that the set of values p*(x) is finite
[it is smaller than or equal to the different values in the set {p*(x) : I(x) < k}]
and for any z = yx, I(x) > k and any A, p*(z) = p(x) so that p#(z) > A if and
only if p#(x) > A. |
Proposition 4.8: A PA A is weakly k-definite if and only if for any word
x € I* with /(x) > k the vectors n(x) and p(x) are equivalent for any initial
distribution 7 and p.

Proof: If n(x) is equivalent to p(x), then p(x) = a(x)n" = p(x)* = p,(x)
by Definition 3.1. Conversely, if p(x) = p,(x) for all x € X* with I(x) > k
then, for any y € £* and x € * with /(x) > k we have that p.(xy) = p,(xy).
But p(xy) = A(x)n"(y) and p,(xy) = p(x)n"(y). Thus for all y € T*, (x)1"(y)
= p(x)n"(y) which implies that 7(x) and p(x) are equivalent vectors. 1
Corollary 4.9: If A is a weakly k-definite PA, then for any x € X* with

I(x) > k the rows of the matrix 4(x) considered as distributions are equivalent
one to the other.

Proof: Any row in a matrix A(x) can be written in the form n(x) where z
is a degenerate stochastic vector. |

Remark: The converse of Corollary 4.9 is also true and is left as an exercise.

+For the purpose of this definition it is assumed that 4 does not have an a priori fixed
initial distribution.
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Definition 4.2: A PA is k-definite if it is weakly k-definite, but is not weakly
(k — 1) definite. It is definite if it is k-definite for some k > 0.

It follows from the above definition and from Proposition 4.8 that if and
only if a PA is k-definite, then any two vectors n(x) and p(x) with I(x) > k
are equivalent, but there are two nonequivalent vectors n(x) and p(x) with
Ix)=kK — L

As in the case of SSMs one can define, for a given PA 4, a matrix H* such
that its columns are a basis for all column vectors of the form 7%(x), x € T*
[see Section I,B,1). The first two columns of H4 will be #* and #* [F = § — F].
The procerdure for constructing H* will be exactly the same as that used for
constructing H and the rank of a PA A4 will be defined as rank 4 = rank H“,
[This rank is always less or equal than the number of states of A.] As the
columns of H“ are a basis for the set of vectors #7(x) we have that two vectors
7 and p are equivalent initial distributions for A if and only if (x — p)H* = 0.
We are now able to prove the following:

Theorem 4.10: Let A be a PA. If A is k-definite, then k << rank 4 — 1.

Proof: The proof is almost the same as the proof of Theorem 4.11 in Section
ILA. As in that proof, we define the set of matrices K = {A(x): I(x) = i} {to
avoid ambignity we use here the notation K’ instead of H' there] and the linear
spaces V = {7 = (v)): 2 v, = 0},

VK =[S 5,A(x); 5,€V, Ax)e K, r=12..]}
i=1

so that all the statements (a)-(d) in the proof of Theorem 4.11 in Section IL,A
are still true. As for statement (e), we change it to the following statement (¢'):
If the PA is k-definite, then the space VH* is the nullspace of H“ [ie,
dim VH* = n — dim A, where n is the number of states of A].

To prove this statement, assume it is not true. Then there is a vector of the
form % = Y 5, A(x,) such that 4, € V, x, € X*,I(x) = k and 5H4 = 0. This
implies that at least one of the summands 7,4(x;) has this property, i.e., there
isa 9, € V and a matrix A(x;) such that I(x;) = k and o, A(x;)H* = 0. Let
5, = (v;) with X% v, = 0, then setting X7 ,v} = —3 " v;=c¢ [c#0
necessarily] we define the two distributions 7 = (%;) with n; = v};/c and p=(p,)
with p; = |v;|/c. Tt follows that (1/c)(m — p)A(x)H* = 5,A(x)H* # 0 or
(r(x) — p(x))H*==0 this implying that m(x) is not equivalent to p(x) although
I(x) = k, and this is a contradiction.

Continuing the same way as in the end of the proof of Theorem 4.11 in
Section II,A we have a sequence of decreasing numbers

n— 1 = dim VK° > dim VK' > ... dim VK* = n — dim H*
Hence, k << dim H4 — 1. [ |

Corollary 4.11: If the rank of a k-definite PA A4 equals the number of its
states, then k << n — 1 and the matrices 4(x) corresponding to words x with
I(x) > k are all constant matrices.
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Procf: The first statement of the corollary is evident. As for the second
statement, any two rows in a matrix A4(x) with /(x) > k considered as distri-
butions are equivalent, but no two different distributions 7 and p can satisfy
the equation ( — p)H# = 0 if rank H* = n [i.e., H* is a nonsingular matrix].

EXERCISES

1. Prove that if the rows in any matrix 4(x), I(x) > k of a given PA A are
equivalent one to the other, then 4 is a weakly k-definite PA.

2. Let A be a k-definite PA. Prove that there are two distinct distributions for
A which are j-equivalent [two distributions z and p are j equivalent for a PA
Aif pA(x) = p,A(x) for all x with /(x) < j] where j=1,2,...,k — L.

3. Let A be a definite PA, then the matrices 4(o) are all singular.

4. Prove that if the set of matrices {A(u):u € X*} in Exercise 1.7 is a k-
definite set, then the event T(M, 4, y) is definite. Find the order of definiteness
of T(M, 4, ) in this case.

¢. Quasidefinite PCEs

Definition 4.3: A PA 4 is quasidefinite if and only if for any € > 0 there is a
number k(€) such that for all x € T* with I(x) > k(¢) and any two initial
distributions for 4, m, and pt, | p.(x) — p,(x)| < €.

Proposition 4.12: If 4 is a quasidefinite PA, then for any € > 0 there is a
number k(€) such that for all x € Z* with I(x) > k(€) and any y € Z* we
have that |p,4(yx) — pi(x) | <.

Proof: pA(yx) = Puy(¥) and |p.*(x) — pA(x)| < € by definition.

Proposition 4.13: A sufficient condition for a PA 4 to be quasidefinite is: For
any € > 9, there is a number k() such that for all x with I(x) > k(€) and any
two initial distributions z and p for 4, ||[n(x) — p(x)|| <€. If x=(n) is a
vector then [|z]| = Y |n.].]

Proof: If |[n(x) — p(x)|| < €, then
|pAx) — p,(x)| = [nGm™ — p()n”]|
= |(m(x) — pn*| < ||m(x) — p(R)|| < €
since the entries in #” are either O or 1. |

Proposition 4.14: If and only if the condition specified in Proposition 4.13
holds for a PA A, then the corresponding syster (S, {A(o)}) is a weakly ergodic
Markov system [see Definition 3.2 in Section II,A].

{For the purpose of this definition it is assumed that A does not have an a priori fixed
initial distribution.
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Proof: It follows from Proposition A, 1.4 in Chapter II that for any fixed
word x € T*,

lln(x) — pD)| = llim — pPAX)|| < llr — pll6(A(x)) < 26(A(x))

since ||t — p|| < 2 for any two stochastic vectors = and p. On the other hand
there are indices i, and i, such that d(A(x)) = X (a,(x) — a,(x))* and if =
and p are the degenerate vectors having a 1 in the i, and i, entries respectively,
then [[(x — p)A(x)|| = X5 la, (%) — a,, (%) = 2 3@, (x) — a,,(x))* = 20(A(x))
so that, for the specific vectors p and & as above, ||n(x) — p(x)|| = 26(A(x)).
It follows that limy,,...||7n(x) — p(x){| = O not depending on the choice of z
and p if and only if lim,,,...0(4(x)) = 0. |

Remark 1: 1t is easy to verify that the condition of Proposition 4.13 is not a
necessary condition for quasidefiniteness; on the other hand the condition is
decidable, by Proposition 4.14 and Section IH,A Corollary 4.6 and Theorem
4.7. More precisely we have the following:

Theorem 4.15: Let A be a PA. If for every € there is a number £ = k(€) such
that ||z(x) — p(x)|| < € for any distributions # and p and any x € X* such
that /(x) > k(e), then the system (S, {A(c)}) satisfies the condition H, of some
order less or equal to 3 (3" — 2"*! 4+ 1) where |S| = n [see Definition 4.4, Sec-
tion ILA].

Remark 2: It is easily verified that the PA used in the proof of Theorem
3.1 is quasidefinite. This shows that the class of PCE which can be defined by
quasidefinite PA is nondenumerable. The concept of quasidefiniteness is thus
a proper generalization of the concept of definiteness.

We shall consider now quasidefinite PAs with isolated cut-point.

Theorem 4.16: If A is a quasidefinite PA and A is an isolated cut-point for it,
then T(4, ) is a definite [regular] event.

Proof: A being an isolated cut-point, there is € such that [p4(x) — 4| > €
for all x € * and some € > 0. Since A4 is quasidefinite, there is a number
k = k(e/2) for the above € >0 such that |p(yx) — p(x)| < €/2 for all x € Z*
with I(x) > k(e/2) and all y € Z* [see Proposition 4.12]. We have therefore,
for all x with I(x) > k(€/2) and all y € X*, that p(yx) > A if and only if
p(x) > A. It follows that T(4, A) = U, U U, where U, = {x:I(x) < k(€/2),
p(x) > A and U,={x:x = yz, z) > k(€/2), p(z) > A}. But U, is a finite set
and therefore definite, and U, can be written in the form U, = X*V where V
is the finite set V = {z: l(z) = k(€/2), p(z) > A}. Thus U, is definite and, since
definite events are closed under union, we have that also T(4, 1) is definite. i

Remark: 1t is worth mentioning that the conditions of Theorem 4.16 may

serve as a characterization of definite events, for the following converse of that
theorem is also true.
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Theorem 4.17: Any definite event E can be represented in the form E=T(4, 1)
where 4 is a quasidefinite PA and A is an isolated cut-point for A.

Proof: Given the k-definite event E = X* U U V with U and V finite and
length of all words in U equal to k [any definite event can be written in this
form) we define the PA 4 = (S, 7, {A(06)}, F] over the alphabet I as follows:
LetX =X U b, b ¢ Z, then

k

D —
S={b,...,0,...,0,):0,€ L,0<r <k}

i.e., the states are k-tuples of symbols in X’ and only k-tuples of the above form
areinS. If || = m, then|S| =1 +m+m? + --- + m* =g and there is a
1-1 correspondence between the states in S in the words in £* with length
< k. The initial distribution = is the degenerate distribution having a 1 in the

entry corresponding to the state (b, ..., b). The set of final states F contains
all the states corresponding to words in U U V. Finally, the transition matrices
are defined as follows. If i is the state (4, ..., 7;), then

1 —¢€ if j=(1...,70)

o) =1 e otherwise

l—q
If xc X*isaword x=o0,---0,r<kandiis the state i = (b,..., D),
then g0, ---06,)=(1 —¢€y for j=(,...,b,0,...,0,). f x € T*isa
word x =g, --- 0, and i is any state then, q (o, --- 0,) = (1 — €)* for
j=1(oy...,0,). If x,y € T* are words such that x = &, - - - 6;, then for
j=(oy,...,0:), and for any state i,

a,(yD) = 3 al9)a) = a,(x) () = (1 — -1 =(1 — &

It follows that if x € E then p#(x) > (1 — €)* [if r < k, then (1 —¢€)
> (1 — €)*] and we may choose € so small as to have the value (1 — €)* as
close to 1 as wanted [the number k is given a priori and depends on E only].
Let € be such that (1 — €)* > 3 and let A = 4. For any word x, if x ¢ E,
then p4(x) < 4 [the machine will enter a state not in F with probability at least
3 in this case] so that 4 is isolated. Moreover, the above considerations show
that E = T(4, A). Finally, all the entries in the matrices A(c) are positive and
this implies that the set (S, A(¢)) is a quasidefinite set [the H, condition of
order 1 is satisfied in this case]. [ |

EXERCISES

1. Prove by an example that the condition of the Proposition 4.13 is not neces-
sary for quasidefiniteness.

2. Provide a full proof for Theorem 4.15.
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3. Let A be a vector all the entries of which are equal to 4, 0 << 4 <1, and

let A be a PA with number of states equal to the dimension of 1. 4 is an
isolated vector for A if there is a number d > 0 such that

(AGeyr™ — AN AG® — 1) = &

for all x € L* where the product is the ordinary scalar product of vectors.
Prove: If A is an isolated vector for a quasidefinite PA A, then the event
T(A, A) is a definite [regular] event.

4. Prove that if 4 is a two state PA such that no matrix A(c) equals the matrix
[§ 9 or [? §], then A is a quasidefinite PA.

5. Prove that if A is a PA such that all the entries in all the matrices 4A(o) are
positive, then A is a quasidefinite PA.

5. Approximations

We know already that the cardinality of PCEs [over the real numbers] equals
the cardinality of the continuum [Theorem 3.2] and therefore there must be
PCEs which are not definable by any type of deterministic automaton [all
deterministic machines, including Turing machines, are denumerable]. On the
other hand we know also that if the cut-point 4 is isolated, then the resulting
PCE is regular [Theorem 2.3]. This raises the suspicion that probabilistic
automata may reduce to deterministic automata when compared in a weaker
form, allowing for approximations in the vicinity of the cut-point. To make
this notion explicit we introduce the following:

Definition 5.1: Let A be a PA inducing the PE f over * and let B be any
finite state machine [Turing machine, linear bounded, etc]. B €-approximates
A if there is a function ¢ with domain B(s,, x) [B(s,, x) denoting the configu-
ration of B after the word x has been scanned from the initial state s,] and real
values such that

| flx) — $(Blso, x))| < €
Definition 5.2: An event E [understood here as a subset of Z*] e-approximates
a PCE T(4, 4) if
(E—TA4N)UE-TA D S{x:xeX|fix)—A <€

where f is the event [here understood as a function] induced by 4.

It is easy to prove that, in the above sense, PAs [the matrices and vectors
defining A have real entries) are approximable by Turing machines, this being
a consequence of the fact that Turing machines can “compute” within any

preassigned € the values of a function f(x) induced by a PA. The above de-
finitions will therefore enable us to compare the nondenumerable set of PAs
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for cut-point events defined by them] with denumerable sets [e.g., Turing
machine and events defined by them]. Some particular cases will be considered
in the following subsections.

a. €-Approximation by Finite Automata

Definition 5.3: Given a PE f and € > 0, an €-cover induced by f is a finite
set {C}-., where the C, are sets of points in the interval [0, 1] satisfying the
following requirements:

L UL C={:f(x) =¢ x € T}

2. 61352 € Clblél—ézl <61i:03 ls'--,k-

3. For any i and z, there is j such that C,z < C; where C,z is defined as the
set C;z = {§: flxz) = ¢, flx) € C}.
Theorem 5.1: Given a PE fand € > 0, f is e-approximable by a finite auto-
maton B if and only if there exists a 2¢ cover induced by f.

Proof: Let {C}-., be an e-cover for f. Define the deterministic automaton
B as follows. The states of B are C,, ..., C;. Let C, be the first set such that
fle) € C,, then the initial state of B is C,. The transition function of B is
defined by the relation

B(C,0)=C, if Coc=C

and j is the smallest index satisfying the relation. Finally, set §(C) =
supsec. & + inf,.,]. We prove first, by induction, that for any x € Z*,

f(x) € B(so, x):
i. For x = e, the statement follows from the definition of B.

iil. Let x be a word with /(x) = ¢ and assume that f(x) € B(s,, x) = C.
Then f(xa) € C,6 = B(s,, x0) by the definitions of C,o and B, and this proves
the statement. 1

We have, therefore, that for any x € Z*

| fx) — $(B(so, )| = | f(x) — [supeec,€ + infrec gl <€

by the fact that f(x) € B(s,, x) = C; and the second property of the € cover.
Assume now that f is e-approximable by a deterministic automaton B with
state set S = {s,, ..., 5;}. Define the sets

C={:f(x)=¢ B(sox) = s}
It is easily verified that the set C; thus defined is a 2¢€ cover as required.
Definition 5.4: Given a PCE E = T(4, 1), an e-cover induced by the auto-
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maton A with cut-point 2 is a finite set {C]}%., where the C, are sets of points
in the interval [0, 1] satisfying the following requirements:

1. UL C, = :f4x)=¢ x € %)

2. Either C,;c {{:{>A—€orC,c{¢: <A+ €

3. For any i and z, there is j such that C,z = C, where C,z is defined as in
Definition 5.3.

Theorem 5.2: A PCE E = T(4,A) is €-approximable by a regular event
E’' = T(B) if and only if there exists an e-cover induced by the automaton 4
with cut-point .

Proof: The proof is similar to the proof of Theorem 5.1. The final states

of B will be the C, satisfying the relation

Ccl:éE=>2—¢ |
Proposition 5.3: Let f be a PE. If f is e-approximable by some finite auto-
maton B, then for any A, the CPE T(4, 4) is e-approximable, where A is the
PA defining f.

Proof: The final states of B will be defined to be the states s, such that
&(s;) > A [see Definition 5.1]. For any x € X*, | fix) — §(B(s,, x)| < € and if
@(B(s,, x)) > A meaning that x € T(B), then f(x) > A — €. If $(B(so, x)) <A
meaning that x ¢ T(B), then f(x) < A + €. |
Proposition 5.4: Let f be a PE defined by 2 PA A4 such that for any 4 the CPE
T(A, A) is e-approximable by an event T(B,) where B, is a finite [deterministic]
automaton, then there exists a finite automaton B which é-approximates 4.

Proof: Divide the interval [0, 1] into k equal parts by kK — 1 points 4,,. . .,
Aroi[ho=0,4, =1] such that 4, — 4, <e€i=1,2,...,k and let B,,
i=0,1,...,k —1 be the corresponding e-approximating automaton for
T(A4, 1). Define the machine B as follows. B = (S, so, M) [F is immaterial
here] with

S = {(54(Ao), 8, (A1), - . ., S (A=) si(A) € 83}
So = (So()'o), cees so(lk—l))
M((sfl(lo), sh()’l)’ sevy six(}’k—l))a 6)
- (Mzo(slp 0’), LI ) M}.,-,(sip 0'))
with B;, = (Sy, S(A), M, F,) and S, = {s,(4)}. Set
() = d(s,(Ao)s - - -, st.(;tk—l)) = mflx {lj: Sl}-l()'j) € F}

Thus, $(B(so, X)) = A, implies that x € T(B,,,) and x ¢ T(B,,,) which im-
plies that f(x) >4, —€ and f(x) < A,,; +€<<A; + 3e. It follows that
|§(B(so, x)) — flx)) < 26§
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Remark: Any PE f induced by a PA A can be transformed into a PCE
T(4, A) for a cut-point 4. It follows from the above two propositions that f is
e-approximable if and only if the derived PCEs T(4, 1) are e-approximable
for any cut-point A.

b. A Counterexample

Consider the following PA A4 = (=, S, {A(0)}, n¥) over Z = {0, 1} with § =
{508,8:85), m = (1 0 0 0) and

1 + 0 1 0 + £ 00
1 1 1 1
P=lof 4=lo 1 of W=\ 000
0 0 0 01 0100
By straightforward computations one can prove the following relations:
=@)r if x=0,n=0,1,2,..., [0° is the empty word.]
=14 if x=0m10~1,...,0%], n>0j=12...,k
P00, and there is i with n, = 0
>4 if x=0"10"1,...,0%1, n>0,j=12,...,k
<3 if x=0m10"1,...,0%10%, n>0,j=12,...,k
ey >0

where p(x) is the (1, 1) entry in A(x).

Consider now the PE defined by A4, p4, and let T(4, A) be the PCE, with

— 1

=1

We have that

T((p* 1) = [x: p(x) > 4}

It follows from the above inequalities that 7((4, 1)) for A = } is the set of
words x such that x is empty or x begins with a zero, ends with a one, and
contains no subword of two or more consecutive ones. It is easily verified that
this set of words is a regular set [there exists a finite automaton accepting it]
and therefore it is €-approximable [even for € = 0] by a finite automaton.

We shall show now that there is a 4 such that 7(4, ) is not €-approximable
by a finite automaton with the result that the function p“ is not approximable
either, this following from Praposition 5.3.

Let x,™ be the word x,” = (0"1)". One can prove, again using straight for-
ward computation, that

pxm = L =G
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Thus lim, .. p4(x,”) = ! for fixed m > 0, while lim,,_...p%(x,™) = } for fixed
n > 0. Now let A be a real number 4 << 4 < 1, say 4 = 2, and let € be a real
number € < + and suppose that T(4, A) is e-approximable for the given A and
€. Let the approximating machine have k states. Choose n, so great that

pimy>A+€ for m=1,2,...,k+1

The first £ + 1 applications of the input sequence x,, must send the approxi-
mating machine B through a sequence of states s, 5y, . . . , ¢4, Which are all
final states of B. But B has only & states so thats, = s, forsome i < j <{ k + 1
so that all the tapes of the form x7,m = 1,2,... will be in T(B). Thus B
cannot €-approximate p since there is m, with p4(x™) < A — ¢, i€,

p'(xr) — Al > €

while x™ ¢ T(B) and x ¢ T(A4, A). The following are direct consequences
of the above example:

1. There is a PCE which is not approximable by a regular event.

2. There is a PE which is not approximable by a finite [deterministic] auto-
maton [this follows from Proposition 5.3].

3. The PCE given in the above example with cut-point A = } is e-approximable
by a regular event, but the underlying PE, p* is not €-approximable. The two
concepts of approximation are not equivalent.

4. The class of PCEs strictly includes the class of regular events even if com-
parison is based on €-approximation and not strict equivalence.

5. There exists a PE f and € such that there is no e-cover induced by it.
6. There is a PCE, T(4, A) and € such that there is no €-cover induced by it.

6. Some Nonclosure and Unsolvability Results

The following notation will be used in this subsection:

An RPA is an PA such that all the entries in the vectors z# and in the
matrices A(c) are rational numbers.

An ISA is an SPA such that all the entries in the vectors 7, # and in the
matrices A(c) are infegers.

A P-event is an event E which can be represented in the form E = T(4, 1)
where A4 is an RPA and A is a rational number. Thus any P-event is a PCE.

An E-event is an event E which can be represented in the form

E = {x: f{x) = f(x)}
where A and B are RPA and f4 and f® are the PEs induced by them.
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A D-event is an event E which can be represented in the form

E = {x:fi(x) # fA(x)}
where 4, B, f4 and f® are as above.

Lemma 6.1: Every E-event can also be represented in the form

E={x:f(x) =}
where C is an RPA and every D-event is an exclusive PCE (see Section 4.a)

Proof: Set f(x) = 4 fAx) + % f5(x) = 4 + $(f4(x) — f*(x)), then use
the construction in the proofs of Propositions 1.1, 1.2, and 1.5 in Section A
to show that C can be chosen to be an RPA under the conditions of the

lemma. |

Lemma 6.2: The set of P-events is equal to the set of events which can be
represented in the form 7'(4, 1) with A an ISA and 2 an integer.

Proof: Any event of the form T(4, ) with 4 an ISA and A an integer is a
P-event. This follows from the construction involved in the proofs of Proposi-
tion 1.1 and of the propositions and theorems on which that proposition is
based. To prove the converse let E = T(4, 1) be a given P-event. One proves
easily (using a construction similar to the one used in the proof of Theorem
A.2.4) that E can be respresented also in the form E = T(4', 0) where A’ isan
SPA but the entries in its matrices and vectors are still rational numbers. Let
m be the absolute value of the smallest common multiple of all the denomi-
nators of all the entries in all the matrices and vectors of 4’ and let 4" be the
SPA derived from A’ by multiplying all its matrices and vectors by m. A" is
an ISA by construction and f4(x) > 0 for every x € £*. Thus T(4, 1) =
T(A', 0) = T(A", 0) as required. |

Theorem 6.3: The set of P-events is closed under complementation.

Proof: Let E = T(A, A) be a P-event. Then, as in the proof of the previous
lemma, E = T(A4', 0) where A’ is an ISA, i.e., the values f#(x) are integers for
every x € X*. Thus E = {x:f4(x) > 0} and E = {x:f4(4) <0} = {x:
f4(x) < 1} for the values f4(x) are integers. If A’ = (S, &, {A4'(0)}, 1), let
A" = (S, m, {4(6)}, —n). A" isan ISA and E = {x: f*'(x) > 1} which is a
P-event by Lemma 6.2. |

Corollary 6.4: The set of E-events is a proper subset of the set of P-events.

Proof: By Lemma 6.1 every E-event, E, can be represented in the form E =
{x:f4x) = 4} with 4 an RPA. Thus £ = {x:f4(x) % }} = E'. Now E =
T.(A4, }) is an exclusive PCE with 4 an RPA and using the construction used
in the proof of Proposition 4.2 one proves that E' is a P-event so that, by
Theorem 6.3, £/ = E is also a P-event. That the inclusion is proper follows by
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an argument similar to the argument used in the proof of Proposition 4.2. This
part of the proof is left to the reader. |

Lemma 6.5: Let E, = T(4, 1) be a PCE (not necessarily a P-event) and let
E, = T(B, 0) be a regular event and let ¢ be a symbol ¢ ¢ Z. Then E,cE,
and E.cE, are PCE.

Proof: Let A = (S, m, {A(0)}, ™) and let B = (Q, &, {B(0)}, 1), where the
vector ¢ and the matrices B(o) are degenerate stochastic. Let |\S| = m and
|Q] = n. Construct the following P4, C, C = (K, {, {C(0)}, n™) where |K| =
m-+n+1

Ble) 0 O
Cle)=|0 Ao) 0
0 0 1
{=@¢ 0 0---0), 7™ =(0---0(#™) 0) and
Ci(o)
c@=|
Crent1(0)

with
C‘(C)Z(O---OnO) ifs,e%"2
©.-. 01) otherwise

1t is left for the reader to verify that T(C,A) = E, < E,. Thus, E, c E, is a
PCE. In addition

EcE, = EcE,

which implies by Proposition 1.6 that E, c E, is also a PCE. |
If E is a set of words, then E* denotes the star closure of E and is defined as

E*=|JE  with E°={e}, ‘= E"'E.
i=0
Lemma 6.6: Let £ = {a, b}. The set of words
E = {a* b(a*b)* a* b: x > 0}
is a PCE.

Proof: Consider the following SPA A= (S, 7, {A(0)}, ez, M) With S={sy, .. .,
ShAt=(%40---0,7=(0--- 01— 1) and 4(0) = [a;(0)] with

a(a) = a(a) = as(@) = ag(a) = 4, ap(a) = ass(a) = %
an(@) =as(@) =%  anla) = ap(a) = anla) = 1,

a;(@) = 0 in all other cases and
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a;5(b) = ay5(b) = axu(b) = ax(b) = an(h) = ax(b) = au(d) = aw(b) = %
asy(b) = ag(b) = an(b) = ayn(b) = axn(b) = 1
a,(b) = 0 in all other cases.
It is left for the reader to verify that the following relation holds
E = {x:fYx) =0}
=E, U a*bla*h)*a*b=E, U E,
with E, a regular event.

Using an argument similar to the one used in the proof of Corollary 6.4 one
can easily prove that E, is a P-event and therefore a CPE. By Proposition 1.5
E, is also a CPE (since E, = E, — E, and E, is regular). ,

Lemma 6.7: Let E, be defined as in Lemma 6.6. The events E,X* and E¥ are
not CPEs.

Proof: If an event E = T(4, A) is a CPE, then, by Theorem 2.8 Section II,

C, for every word x € X* there are constants Cy, ..., C, such that for any
y € Z* the following equations hold true

C ) + Cos A ) + - + G fH() =0 )
Cot Gt +Co=0 ()

Assume now that E,X* is a CPE E,X* = T(4, A). Then f4 satisfies the above
property. Let x = a. For this x some of the coeficients in (*) are positive and
some are not. Let C,C,,...,C, be the positive coeficients, and let y =
ba'ba* - - - ab’=. Then f4a’y) > A if and only if @’ y € E,Z* i.., if and only
if j has one of the values iy, iy, ..., 0.

Multiplying (**) by A and substracting from (*) we get

CfAxy) =N+ +C(fA)— V=0 (k%)

This leads to a contradiction since by the above argument, f4(x’y) — A > 0 if
and only if C, > 0 which would imply that the left-hand side of () is strict-
ly positive. Thus E,X* is not a CPE. The proof that E,* is not a CPE is
similar, but y = b(a "b)(a"*b) - - - (a"b)* in this case. |

Definition 6.1: Let X and A be two alphabets and let ¥ be a mapping ¥ : X —
A*. The natural extension of ¥ of the form W(¢) = eand forx =o, --- o,
e+, ¥Y(x) = ¥(o,) - - - ¥(o,.) € A* is called a homomorphism from Z* into
A*. Given a homomorphism ¥ : £* — A* and an event Ec Z*, 'W(E) is the
event W(E) = {ye A*:y = W(x), x< E}. (e here is the empty word.)
Theorem 6.8: The set of CPEs is closed neither under concatenation nor under
concatenation closure nor under homomorphism.
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Proof: E, in Lemma 6.6 is a PCE and so is X* (any regular event is a PCE)
but by Lemma 6.7 E;X* and E,* are not CPEs. This proves the first two
statements of the theorem. Now, by Lemma 6.5 E,cX* is a PCE. Consider
the natural extension of the following homomorphism: ¥(a) = a, ¥(b) = b,
Y¥(c) = e, Then W(E,cXL*) = E, L* which is not a PCE. This completes the
proof. |

Remark: 1t is well known that regular events are closed under the above
operations.

Exercises 6.9: Let E be the event consisting of the set of all words a‘'b a*'b a™
b ... a*b such that i, x,,..., Kk, are nonnegative integers and, for some ¢
0<t<r,i=kK,+ K, k. Prove that E is context-free [see Ginzburg
(1966)] but is not a CPE (compare with Theorem 1.10).

Definition 6.2: (Ginzburg, 1966) A generalized sequential machine (GSM) is
a 6-tuple 4 = (S, X, A, 55, M, N) where S, X, A are finite sets (representing the
states, input, and output symbols, respectively) s, is an element of S (the initial
state) M is a function M : S x £ — S (the next state function) and N is a
function N:S x X — A* (the output function).

The functions M and N are extended by induction to S x X* by defining

for every state s every word x€ Z* and every o € T
M(s, e) = s, N(s,e) =e¢
M(S, XO') = M(M(Ss .X), 0'), N(S, XO') = N(S, X)N(M(S, X),O')

The mapping W4:X* — A* defined by W4(x) = N(so, x) where N is the
output function of a given GSM is called as GSM mapping.
Theorem 6.10: Let ¥4 be a GSM-mapping WP4: X* — A* and let f® be a PE
f?:A* - [0,1]. The product ¥4o f2 defined as ¥4 o f3(x) = f*(¥4(x)) for
x € T* is a PE, i.e. there exists a P A C such that f© = W40 f2: Z*— [0, 1)].
If B is an RPA, then C can be chosen to be an RPA.

Proof: Let A= (S, X, A, s, M, N) and B = (Q, 7, {B(0)}scs n") Wwith
IS| = m and |Q] = n. Define the PA C = (X, ¢, {C(0)},z, #™) as follows:

K=5x0, |K| = m x n, E=@®00---0)
{(n—=1)m

7™ is a column vector consisting of »n equal m-dimensional subvectors every
such subvector equal to #*. For each o€ ZC(g) is a square matrix of order

m x n consisting of n? blocks C,(0), p,q = 1,2, ..., n, each block C,(o)a
square matrix of order m defined as follows:
B(Y4(7)) if M(s,, 0) = s,
C,(0) = . .
a zero matrix of order m otherwise

If ¥4(o) = e, then B(¥4(0)) = B(e) = I = the unit matrix of order m. It is
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left to the reader to verify that C as defined above is a PA (and if B is an RPA,
then so is C) and that it satisfies /¢ = ¥4 o f® as required. |

We are now able to establish some connections between CPEs and a
certain type of context-free language. Familiarity with formal languages [e.g.,
Ginzburg (1966)] is a prerequisite for the following lemmas and theorems.

Definition 6.3: A context free grammar G = (V, Z, P, ¢)(we use here the nota-
tion ¢ for the start symbol, # € V — X, instead of ¢ which stands for an element
of X) is deterministic linear (DL) if the productions in P satisfy the follow-
ing requirements.

(i) Each production has the form v — alu or the form v~ b with v, eV —
X;a, beX, ue X*; (ii) if two productions v, — a,x, v, > @, y, v, V, € V—Z,
a,a, € I;x,ye€ {e} U (¥ — Zx* are such that v, = v, and a, = a,, then
also x = y.

A language L «— X* is DL if it is generated by a DL grammar.

Lemma 6.11: Every DL language is an E-event and therefore a PCE.

Proof: Let L bea DL language generated by the grammar G = (V, I, P, 1).
Let 4, be the GSM 4, = (S, Z, A, ¢, M, N) such that S = (V — Z) U (f, d),
f.d ¢ V; A = Z and the definitions of M and N are given by:

¢, ifv—oofu € Pforsomeu € X*

Mv,0) =1 f ifv—ooe Porifv=f

d otherwise

u ifv— olu € Pfor some u € T*
N, 0) = .

e otherwise

Let A/ be another GSM A, = (S, X, A, t, M, N') Thus A4, differs from A,
only in the function N' which is defined as

o ifv=f
e otherwise

N, 0) = {

Let A7 be the finite automaton A; = (S, Z, t, M, F) where F = {f} — S, and
all the other elements are as in A;.

Let L, = T(A¢,0), L, is a regular event by definition. Let x = x,x, € L,
where x, is the subword of minimal length of x such that x, € L,. If x;, =
0,0, - - o, then, by the definition of M|, the following productions are in P:

t—o0,&u, & - 06u, cee ez 0,16y, {1t >0,

It follows that x = x;x, € L if and only if x, = u, _,u,_, - - - u,. In addition
it follows from the definitions of N and N’ that W4%(x,x,) = #,8, - - - U,
while W46’ (x,x,) = x,. Thus x € L, implies that x = x,x, € L if and only if
X, =1y -+ t,_, or P4(x) = W4(x). Let 4 be the RPE induced by the m-
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adic, m > 3, PA (see Exercise 3.1) with A(1) = A(a) and A(2) = A(b) and all
the other symbols in the alphabet of 4 are deleted.

Let f“ be the reverse of f4 which is an RPE by the costruction in the proof
of Proposition 1.6, It follows from Theorem 6.10 that ¥4 o f4 4 g,/ and P4¢'o
4 4 g,/ are both RPEs. Moreover, it follows from the above considerations
that if x € L,, then x € L if and only if g,'(x) = g,'(x). It is clear, from the
definition of Aj that if x € L,, then x € L. Therefore, in order to complete
the proof, one has to modify the functions g,” and g,’ to g, and g, so that
gx)=g/x)if xe L,i=1,2, but g(x) # gyx) if x ¢ L,. Now L, is
regular. Let 4 be the RPE such that 4(x) = 1 if x € L, and A(x) = 0 other-
wise. Set g, =g,/ V hand g, = g,” A h. By the construction in the proof of
Proposition A.1.9, g, and g, are both RPEs. One verifies easily that g, and g,
satisfy the above requirements and the proof is complete.

Lemma 6.12: Let E, and E, be two DL languages over the alphabets X,
and I, respectively X, N X, = ¢. Let d be a letter 6 ¢ X, U X,. Then E,JE,
is an E event (and therefore a CPE).

Proof: We shall prove the Theorem for X, = {a, b} and %, = {a’, b’}. The
proof for the general case is similar. By Lemma 6.11, we can construct two
RPEs for E,, g,, and g, such that x € E, if and only if g,(x) = g,(x). Taking
f* in the proof of that lemma to be the RPE induced by the 9-adic PA will
cause g,(x) and g,(x) to have the following properties:

a. g(x)=1(fx € L,, where L, is as in the proof of Lemma 6.11 for the

given DL language, including the case x = e)
or

g(x)=.€6---€,>0withe,=1ore, =2
in any case 0 << g,(x) < 1.

b. g,(x) =0 (if x ¢ L, as above, including the case x = e)

or
ex)=.€ --€,<1withe,=1lore =2
In any case 0 <C g,(x) < 1.

Similarly we can construct two RPEs for E,, g, and g,’ such that x € E, if
and only if g,'(x) = g,'(x). We shall choose this time f* to be the RPE induced
by the 9-adic PA, but A(a’) = A(3) and A(b') = A(6). g, and g,’ will have
the properties:

a. g/x)=1lorg/(x)=.€6-+-€,€6=30r€ =256

0<g'x)< 1

b. g/(x)=0o0rg,/(x)=.€,---€,€6,=30r€, =6

0<g(x) <1
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We shall extend first the functions g,g,, g,'g;’ to the functions A,, by, k', h,’
such that the domain of the new functions will be (X U £’ U )*, by adding
to the underlying PA of each function unit matrices of due dimension for
all symbols not included in the original domain of the specific function.

We construct now the RPEs (Corollary A.1.7)4(h, + h/)=w, and {(h, +
h,) = w,. Finally, let y be the characteristic function of the regular event
T*OX'* = E (i.e., y(x)=11if x € Eand y(x) =0 otherwise), and set g =y, V %,
g =w, A x. gand g’ are RPEs [Proposition A.1.9] and g(x) = g'(x) if and
only if x € E, ie, if and only if x has the form x = zdy, z € £*, y € T'*
and W¥,(x) = w,(x), which happens if and only if h,(zdy) + h/(z0y) =
hy(z0y) + h,(z0y). This is equivalent to g,(z) -+ g,/(») = g(2) + £,/(») which
is equivalent by properties (a), (b), (2’), and (b’) to the equations g,(z) = g,(z)
and g,/(y) = g,'(y) which hold true if and only if z € E, and y € E,. Thus
x € E0FE, if and only if g(x) = g’(x) and E,0FE, is therefore an E-event. ||

The lemmas proved above will be used now to prove some undecidability
results for CPE. Some of the subsequent results and their proofs are similar to
the ones used in the theory of context-free languages and will be omitted (see
e.g., Ginsburg, 1966, Chapter 4).

Lemma 6.13: Consider the following languages:

For X ={a,b,c,a,b,c'}, if x € {a, b, c}*, let x’ be the word derived from
x by replacing every occurrence of a letter in x by its primed counterpart, thus
x' e {d,b,c}*.

Define L, = {xcydy'cX':x,y € {a, b}*}. Let x = (x;,..., x,) and y =

(#s . . . » y) denote n-tuples of nonempty words in {a, b}*. Define
L(x) ={a'*b--- a"bex, -+~ x, . :xk>1, 1<ij<n}
L(X’ Y) = L(X) dL(yI)’ y, = (yl, LIREERE ] yn’)

All three languages, L,, L(x) and L(x, y) are E events for any given x and y
Proof: L, is generated by the DL grammar

G=({¢ab,cdab, c}, {abecddb,c}, P o)

where P={t s atd', t > btb', t — c&c', & —> aka', & — bED', £ — d). There-
fore, by Lemma 6.11, L, is an E-event. L(x) is generated by the DL grammar
G=({t¢&,....¢,ab,c},{a,bc), P,t) where P = {t > af,, & — aé,, &, —
asy .. 6 —al, b0, & o bEx, & boxy, . 8 — b&,x,} and there-
fore L(x) is also an E event. As for the language L(x,y) one can use the
same proof as the one used for Lemma 6.12 with f4 replaced by 74 in the
definition of the functions g," and g, in order to show that L(x, y) is an E-
event as well,

Lemma 6.14: L(x,y) N L, is an E-event for given x and y and it contains no
infinite constext-free language.
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Proof: E-events are closed under intersection (see Exercise 4.a.3). The second
statement is known (see Ginsburg, 1966). |

Lemma 6.15: Let 7 be the homomorphism 7:{a, b, ¢, d, @', ¥, ¢'}* — {a, b}*

defined by t(a) = ab, ©(b) = @b, ©(c) = a*b, ©(d) = a*b, 1(a’) = a’°b, 7(b') =
a®h, 1(c") = a’b. Then t(L(x,y) N L,) for given x and y is a P-event and it
contains no infinite context-free languages.

Proof: One can easily construct a GSM mapping W*: {a, b}* — {a, b, ¢, d,
a'b'c'}* such that W4(x) = y if 7(y) = x and ¥#(.«) = e otherwise. By Lemma
6.14, L(x,y) N L, is an E-event and therefore (by Corrollary 6.4), a P-event
of the form T(B, 1) with B an RPA. By Theorem 6.10, g = ¥4 o f? is an
RPE.t For x € {a, b}*, if x = 7(y) for some y then g(x) = f%(¥4(x)) = fA(y)
so that g{x)> 4 if and only if x € T(L(x, y) "N L,). Let y be the characteristic
function of the regular event {ab, a*b,...,a’b}* and setg' =g A y-g’isan
RPE having the property that 7(L(x, y) N L,) = 7(g’, A). The second state-
ment of the lemma is well known (see Ginzburg, 1966). |

Lemma 6.16: Each of the following is recursively unsolvable for arbitrary
L(x,y): (a) whether L(x,y) N L, is empty, (b) whether 7[L(x,y) N L,] is
empty where 7 is as in Lemma 6.15.

Proof: This result is well known (see Ginzburg, 1966). |

Theorem 6.17: Let T contain at least two elements. It is recursively unsolvable
to determine for arbitrary P-events T(4, 1) over T (a) whether 7(4, 1) is empty
(b) whether T(4, A) = £* (c) whether T(4, 4) is regular and (d) whether
T(A, 1) is context free.

Proof: By Lemma 6.15, 7(L(x, y) N L,) is a P-event and it can be proved
that it is either empty or infinite (see Ginzburg, 1966). Therefore Lemma 6.16
implies. (a). £* — 7(L(x,y) N L,) is a P-event (Theorem 6.3) which implies
(b). Furthermore, T(L(x, y) N L,) is regular (and therefore also context free)
if and only if it is empty, by Lemma 6.15. Therefore Lemma 6.16 implies also

(c) and (d). |

Exercise

By Lemma 6.15, T7(L(x, y) N L,) can be represented in the form 7(L(x, y) N
L,) = {x: P(x) > 1} for some RPE p. Let ¢ be the RPE g(x) = § for all xe
3*. Irove:p A qand p \/ g are RPEsif and only if 7(L(x,y) N L,) is empty.
(This implies that it is recursively unsolvable to determine, for arbitrary RPE’s
p and g over I*, with [£| > 2 (1) whether p V ¢ is an RPE, (2) whether
p A q isan RPE.)

+An RPE is a PE g¢ such that the underlying PA, c, is an RPA.
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EXERCISES

1. A word function f is called quasidefinite if it has the following property:
For any ¢, there exists an integer k(€) such that for any x with /(x) > k(¢) the
inequality | f(x) — f{y)| < € holds, where y is the k(€)-suffix of x.

Prove that any quasidefinite function is e-approximable by a finite automaton
[for any given €].

2. Let A = (n, S, {A(0)}, ") be a PA over £ = {a, b} with S = {55, 5,}, = (1 0)
= (#¥)" and the transition matrices are

1 0 '+ %
A =
@ [0 i 1 0}
and let p* be the PE defined by 4.

Prove that A is not quasidefinite but p* is e-approximable for any € > 0 by
a finite [deterministic]} automaton.

], Ab) =

3. Let f be a word function and consider a relation P, induced by f over ¥,
as follows: xP.y if and only if for all z € X* | f(xz) — f(yz)| < € (thus xP,y
implies that | f(x) — f(»)| < €).

a. Prove that P, is symmetric reflexive and right invariant.

b. Prove that any word function f which is e-approximable by a finite auto-
maton induces a P,, relation of finite index.

c. If the word function f is defined by a PA, then the relation P, is of finite
index k with

k<(1+1)"
<(1+7)
where n is the number of states of the PA defining f.

4. Let f be a word function and A a cut-point. The relation R, induced by f
and A is defined as follows: xR,y if and only if for any z € T* | f(xz) — A| > €
and | f(yz) — A| > € implies that f(xz) > A if and only if f(yz) > A.

Prove:

a. The relation P, defined in Exercise 3 above is a refinement of the relation
R, here.

b. If fis induced by a PA, then for any 4 and € > 0, R, is of finite index.

c. If the event E = {x: f{x) > 4} is e-approximable by a regular event then
R, is of finite index.

5. A cut-point event E = {x: f(x) > A}, where f is a word function, is quasi-
definite if for any € there is an integer k(€) such that for any x with I(x) > k(€)
and any y € T* we have that x € E implies that f(yx) >4 —€and x ¢ E
implies that f(yx) <A + €.
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a. Prove that if f is a quasidefinite function [see Exercise 1] then the cut-
point event E = {x: f(x) > A} is quasidefinite for any 4.

b. Prove that the converse of the above statement is not true by considering
the function induced by the PA = (m, S, {A(0)}, #¥) with 7 = (1 0) = (4")"

X ={a, b} and
1o R
() '[o J’ A(5) = L?r J

with E = T(4, 3).

6. Prove that if f is a quasidefinite function [see Exercise 1] then any cut-point
event of the form E = {x: f(x) > A} is e-approximable by a regular event.

7. Prove that any quasidefinite cut-point event [see Exercise 5] is e-approxi-
mable by a regular event.

OPEN PROBLEMS

1. Characterize the word functions which are €é-approximable by push down
automata.

2. Characterize the events which are e-approximable by context free languages.
3. Is the class of PCE e-approximable by context free languages?

7. Bibliographical Notes

Probabilistic cut point events were introduced in the literature by Rabin
(1963). Some subsequent and other ideas involved in the study of those events
can be found also in the M.Sc. Thesis of Paz (1962) done in Jerusalem.

The source papers for the material given in this section is listed below. (It is
to be mentioned here, however, that some of the theorems and many proof are
new due to the unifying exposition.) Bukharaev (1964), [see also Bukharaev
(1965, 1967, 1968)]: Theorems 1.8 and 1.9. [The above paper also includes an
example for Theorem 1.10 but that example is much more complicated than
the one given here and is mentioned there without proof. The author of this
book was not able to convince himself that the example of Bukharaev actually
works.]

Nasu and Honda (1968): Theorem 1.6, Exercises 1.5 and 2.2. [This paper
also contains some generalizations of the topics included in Section 4,c]. Page
(1966): Exercise 2.4 and the considerations concerning the impossibility of
merging equivalent states in automata defining cut-point events (Figure 17).
Page also introduced the generalization from PCEs to pseudo probabilistic cut-
point events Paz (1966, 1967d, 1970a, c): Theorems (Lemmas, Corollaries) 1.5,
1.7, 1.10, 3.2, 3.4, 3.6, 3.7, 4.2, 4.8, 4.9, 4.10, 4.11, Sections 4,b and 4,c.
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Exercises 1.2, 1.7, 1.8, 3.1, 3.12, 3.13, 4.2, 4.3, Rabin (1963): Teorems 1.2,
2.2, 2.3, 3.1, 3.3, 4.17 (private communication, Rabin proved also a weaker
version of Theorem 4.16), Exercise 3.2 and our proposition 5.4 here is some-
what related to Theorem 5 in Rabin (1963). Salomaa (1965, 1966, 1967):
Exercises 1.11, 3.5, 3.6, 3.7, 3.8, 3.9. Starke (1966a, ¢): Exercises 1.1, 1.3, 1.4,
2.1, 2.3. Turakainen (1968) Theorems 1.1, 1.4, 1.5, Section 4.a, Exercises 1.6,
3.10. The following are three additional recent works relevant to the subjects
considered in this section: Flachs (1967), Yasui and Yajima (1969), and Tura-
kainen (1969-b). See also: Rose and Ullian (1963), Even (1964), Kfoury and
Liu (1969), Paz (1967c).

After a first example of a linear bounded language which is not a CPE has
been found by the author of this book (Theorem 1.10) and distributed as a
private communication (1969) Nasu and Honda used Paz’s idea and gave an-
other example of a context-free language which is not a CPE (their language
is given here as Exercise 6.9 and was also distributed as a private communica-
tion (1970)). Using the language of Nasu and Honda as a starting point Tura-
kainen (1970a, b) managed to prove the nonclosure properties of CPE given in
section 6. Thus Section 6 up to and including Theorem 6.8 is based on the
works of Turakainen (1969b, 1970a, 1970b). The rest of that section beginning
from Exercise 6.9 and on is based on the work of Nasu and Honda (1970).
See also Schiitzenberger (1962).



Chapter IV

Applications
and
Generalizations

INTRODUCTION

This part contains an extended survey of most known papers dealing with
applications and generalizations of probabilistic automata theory.

There have been some attempts to apply the theory of probabilistics auto-
mata to other disciplines. These attempts are however still in the beginning
stages. We choose therefore to supply the reader with an extended bibliography
including explanatory remarks as to the nature or direction of the intended
application or generalizations.

A. INFORMATION THEORY

One of the motivations for studying probabilistic sequential machines [see e.g.
Carlyle (1963a)] was the fact that communication channels (Shannon and
Weaver, 1968) can be represented as stochastic sequential machines. The
topics studied in connection with the theory of information using probabilistic
machines are: probability structure of channels-Carlyle (1963a, b), Onicescu
and Guiasu (1965), Thomasian (1963), Wolfowitz (1963); encoding and de-
coding of finite state channels-Ott (1966a, b), Viterbi (1967), Guiasu (1968)
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Viterbi and Odenwalder (1969). Other related references: Blackwell er al.
(1958) Huffman (1952) Fano (1961) Shannon (1957), Paz (1965), Souza,
et al. (1969).

B. RELIABILITY

When a deterministic automaton has some unreliable elements then its external
behavior is probabilistic, thus, another motivation for studying probabilistic
automata was the reliability problem. In connection with this aspect, the reader
is referred to Von Neuman (1956) and Rabin (1963). An additional interesting
reference can found in the book of Cowan and Winograd (1963). Many
authors working in reliability theory have attempted to construct reliable net-
works using unreliable components but the resulting network was always of
the “definite” type. Cowan and Winograd showed that this is not a coincidence.
They showed that, as a result of the axioms imposed on the network and the
unreliable behavior of its components, the resulting probabilistic automaton
satisfies the conditions of the Theorem 4.16 in Section III,B of Rabin and
therefore the reliable network must be definite. Additional relatted bibliography:
Arbib (1965) Harrison (1965) Tsertzvadze (1966) Germanov (1966).

C. LEARNING THEORY AND PATTERN RECOGNITION

Still another motivation for studying stochastic automata was the possibility of
using them as models of learning and pattern recognition systems [e.g. Tsetslin
(1961), Schreider (1962), Bruce and Fu (1963)]. The model used by Tsetslin
consists of a deterministic automaton subject to a probabilistic training
process. The input to the deterministic automaton is random and represents
the reaction of a medium (“teacher”) to the performance of the automaton.
Two inputs are possible, 1 (representing a penalty) and O (representing a
nonpenalty) and the medium will insert its next input to the automaton in
a random way, the probability of a penalty or nonpenalty depending on the
present state. Let {s]}7., be the set of states of the (deterministic) automaton
and let p, be the probability of receiving a penalty in state s, The auto-
maton is called expedient if its expectation (in the long run) for receiving a
penalty is less than the average of the ps. It is easy to see that the model
corresponding to the above description is a probabilistic automaton with a
single letter in the alphabet (the i-th row of its single transition matrix is the
convex combination of the i-th rows of the transition matrices of the determin-
istic automaton corresponding to the inputs O and 1 respectively, and the
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coefficients of the combination are p, and 1 — p,). Tsetslin who initiated the
study of expediency (as explained above) of deterministic automata in random
media was followed by many authors who extended and generalized its ap-
proach, allowing for changes in the transition probabilities induced by con-
trolled learning, and using reinforcement algorithm: Bush and Mosteller (1955)
Bruce and Fu (1963), Tsertsvadze (1963), Varshavskii and Vorontsova (1963),
Fu and McMurtry (1965), Fu and McLaren (1965), Vorontz6éva (1965),
McMurtry and Fu (1966), and Fu and Wee (1967). Other related biblio-
graphy: Suppes and Atkinson (1960), Braines and Svechinsky (1962), Krulee
and Kuick (1964), Vaisborg and Rosenstein (1965), Sklansky (1966), Fu
(1966, 1967), Wee and Fu (1969), Gelenbe (1969b).

D. CONTROL

It occured to several authors that control systems [e.g. Eaton and Zadeh
(1962)] can be modelized by stochastic machines, with input symbols repre-
senting commands, after some additional structure is added to take care of the
costs associated with the transitions between the states. In this representation,
a policy is a function associating commands to the states of the system and the
policies are characterized by their expected costs. Some results in control
theory, using this interpretation can be found in the works of Page (1965) and
Arbib (1966). Other related bibliography: Zadeh (1963b); Screider (1962);
Pospelov (1966), Kalman (1968), Kalman, et al. (1969).

E. OTHER APPLICATIONS

A connection between stochastic automata and the problem of time sharing in
computer programming has been established by Kashiap (1966) and the theory
of functions of Markov chains has been used by Fox and Rubin (1965) for
statistical inference (for evaluating the cloud cover estimation of parameters
and godness of fit based on Boston data). See also Lewis (1966).

F. EXTENSIONS AND CONNECTIONS TO OTHER THEORIES

Probabilistic extension of Turing machines have been studied by De Loeuw et
al. (1956), Santos (1969), and Ellis (1969). Probabilistic extensions of context
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free languages have been considered by Salomaa (1969-b) and Ellis (1969).
Probabilistic extension of time variant machine has been studied by Turakainen
(19692). Tree automata with a probabilistic structure have been studied by
Magidor and Moran (1969), Paz (1968a), and Ellis (1969). Some properties of
fuzzy automata similar to properties of probabilistic automata have been
established by Santos and Wee (1968) and by Mizimoto et al. (1969), an
approach to stochastic automata and systems, from the point of view of the
theory of categories can be found in the works of Heller (1967) and Depeyrot
(1968) finally, some connections with dynamical programming has been
established by Feichtinger (1968) [see also Howard (1960)]. Additional refer-
ences: Wing and Demetrious (1964), Warfield (1968), Tou (1968), Li and Fu
(1969).
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Answers and
Hints to
Selected
Exercises

SECTION I, A.1

l.a.
Aol = [“ ‘] H(ol) = ﬂ
8 ¥ 7z
n(v}u) = (%’ 'é' ] ﬁ(vlu) = (%9 21'): Pn(% u) - é
1.b,

1 0 %
Alolu) = B } (v]u) = M

w{vju) = (0, 0) 7(vju)—not defined, 2.v[u) = 0 = paba|100)
5.a. 9/16
5.b. 87/128

6. A(a|l) has negative entries.
A(b|1) has entries bigger than 1.
A(al0) + A(b[0) is not a stochastic matrix.



210 Answers and Hints to Selected Exercises

SECTION 1, A.2

5.a. ps(abb|010) = 0.
5.b. q(al011, bb) = 1/4m + 1/2n, where (m, n) is the initial distribution.
5.c. r(a|1101) = L3m + §n.

7.
ao=t 1 wow=} 0 o=} Y]
3 0 % 0 i

SECTION I, A.3

2,
[0 1 0] (1 0 0 0 1.0 1 00
A0)=4%0 0 1|+%0 1 0;/+%40 O 1| +&%/0 O 1
11 0 0] 10 0 1 10 0 1 0 0 1
1 0 0] [0 0 1 1 0 0
A(1)=§010+-}100+{;010]
10 0 1} 1 00 10 1 0]
|Z] =6
A= [% v i 0 0], etc.
0 § 0 0 %} 3
4. |wM| = 10; |wHe| = 5,
SECTION 1, B.1
2.
1 21
1 2 0
1 & 3
1 3 %

3. Hint: Let M be a machine over an input alphabet X with [X|=m — 1
where m is the number of colums in the given matrix H, and output alphabet
| Y] = 2, define the matrices A(y|x) as follows: A(y,|x;) has its first column
equal to the ith column of H all its other entries being zero and A(y,|x;) has
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its first column such that with all the entries in the other columns zero
A(y,lx) + A(yy)x,) is stochastic.

SECTION 1, B.2

1. Reduced form:
t 30 0% 4
Aplx)=|% % 0}, Aplx)=|0 ¢ %
7 % 0 0 % &
Minimal form:
3 1 t o
A(}ﬁl)t)=[1 1} A(yz|x)=[3 ,,]
T T2 16 16

(&% O 0 -%) is a distribution which is equivalent to the distribution
G % & ¥
5. Given that f; = 3%, a,f;, Y%, a, = 1,a, > 0 we have that f(1 —a,) =

S e18,f; of fi = X34 [a;/(1 — a)lf; [since f; is not extremal 0 < 1 — a; < 1]
and

Y4 =

% -9
j;eil——a, —

1—a

b

11.a. Hint: Let F denote the given flat and let a, be an element of F; prove
that the set L¥ = {a — a,: @ € F} is a linear space.

b. Hint: Define the equivalence R over #,” nRp & nHM = pH™ where
m, p € &,”. Show that R is right invariant and the set of equivalence classes
is closed under convex combinations. Show also that each equivalence class is
closed under convex combination of its elements. The rest of the proof is
straightforward.

SECTION 1, B.3

1. All the rows of H™ are different vertices of the |S|-cube and no vertex of
the cube is a convex combination of other vertices.

3. M* > M, M2 M~

8. Let v, represent the ith row in H™, then the faces are: {v,, v,}, {03, v3}, {v3, va},
{'Us’ '01}’ {'Us, 'Uz}, {'Us, v3}, {vss Va}, {v1, vs, vS}a {7)1, V4, Us}, {vs, v5, vS}s {'Uz, vy, ¥s},
{v1, V2, 3, .}, {01, V2, 5, 5}, The faces containing two or three vertices above
are simplexes.
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[1. H™ has two columns one of them having all its entries equal to 1; there-
fore, there are two rows in H™ such that all the other rows are convexly de-
pendent on those two rows. The theorem follows from Theorem 2.8 in the
previous section.

SECTION 1, B4

3. M*>M, M3 M*.

SECTION 1, B.6

2. Yes.
3.

1
o=t ]
1

e e )
QO = =
S O =

0

3.b. The trivial machine M* with a single state and such that A*(0|0) =
A*(0]1) = 4*(0}2) = 1, A*(1]0) = A*(1|1) = 4*(1]2) = O satisfies the con-
ditions.

[=]

5. Proof: Let 4;,...,h;, be m linearly independent rows of HY. As rank
H™ = m, all the other rows of H™ are linearly dependent on A, ..., h; . Let
&(y|x) be a row in a matrix of M. There is a vector {'(y|x) having nonzero
entries only in columns corresponding to the indexes iy, ..., i, [the entries in
&'(y|x) may assume now negative values or values bigger than 1] and such that
E(ylx)HM = &'(y|x)H™, since {(y[x)H™ is a vector which represents a linear
combination of the rows of H¥,

Using an argument similar to the one used in the proof of Theorem 2.3 we
see that the machine M, defined as the machine derived from M by replacing
all vectors &(y|x) in the matrices 4(y|x) by the corresponding vectors &'(y|x),
is state equivalent to M and all the columns in the matrices 4'(y|x) corre-
sponding to indexes other than iy,...,i, are zero columns. The machine M’
can now be reduced to an equivalent m-state machine M"' for only the states
corresponding to the indexes i,, . . ., ,, are accessible in M'.
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SECTION I, B.7

la.

7 7 1

§ 0§ 0 1§ F

1 1 00 1 £ 0

Gm =% 2 HEw=|
LLIO’ 1 3 1

i 4 7 i 3z

103 I

2. Consider formula (28). The number of linearly independent rows in [ K]
equals rank H™» therefore there must be at least that many rows in K" so

that rank M* > rank HM®,
0 10
*(110) =
ob aam=|t ]

4. n* =%
A%(0)0) = [
% 0
A*(0|1) = [0 %} A1) = [0 ;

QO M N

o

5.
0 0 0] EET]
A*00)=1+ 3 0y, A*(1j0)=1{0 0 O
10 0 0] [+ & 0
[0 0 0] 1+ 3 0]
A0 =1} 3 0|, A*Q)=1{0 0 O
1+ 4 0] 10 0 O]
=[G 0 3
No further reduction is possible in this case.
6.
1 11
HM = 110 = HMm
1 0 1
1 00

and there is no convex polygon inside the unit cube with less than four
vertices in two dimensional plane which covers the unit cube [the rows of H¥,
ignoring the first coordinate].
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SECTION I, C.2

1. By definition p(1|A) = 1 and any compound sequence determinant of order
2 is equal to zero. Thus

p(Ald) p(v'|u)
p(vlu)  plov'lun)
or p(w'|u') = p(elw)p(v'|u).

SECTION ], C3

3 7 M % ° M O O
n=lfy &) AO=|, b Am=|,
4.b. It is easily seen that 4¥(v), for any v € Y* has the form
a 00

where @ > 0 so that #M(v) = AM(v) n is a column vector whose first entry has
a positive and <1 value for any » € Y*. As the sum of the matrices 4(0) +
AM(1) has row sums equal to 1, this is true also for the sums

AM(v) so that >, pMo)=1.

vi(v)=k vil(v)=k

The required statement is proved now by induction on the length of ». For
I(v) = 1, the proof results from straightforward computation. We consider now
p.X(1v) and p,M(0w) for I(v) = k.

1 0 07[a(v)
pM(v) = mA(n(v) = [¢ +s 5|3 0 0 b()
2 0 0lic()

IS,

= a0t 5 ]

e
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thus, 0 < p,"(lv) < p,#(1) < 1. Considering now the value p,™(0v), we have
that

i 0 017 a(v)
pMO) =103 &5 410 —% 0 bk)
0 0 —1llcw)

= £ 1a(v) — 15 3b6(v) — L5 1c(v)
It is clear from the definitions of the matrices that either both b(v) and ¢(v) are
> 0 or both values are < 0. In the second case, p,*(0v) > 0. In the first case
2. M(v) = 4a(v) — £5b(v) — 4¢(v) > 0 by the induction hypothesis. There-
fore,
$a(v) > +5b(v) + f5c(v)
or
3 $a(v) > 3 15b(v) + § L5c(v)>F A5b(¥) + § Loc(v)
or
pM(0v) > 0

It follows that p,*(0v) > 0 and p, M(1v) > 0. But >, p,*(0v) + p,M(lv) = 1;
and, therefore, both values are also <C1.

4.c. Hint: Use eigenvalue considerations.

9. Hint: Use the nulity laws of Sylvester and the fact that the ranks of the
spaces of the vectors m(v|w) and n(v|u) grow strictly when /(v, 1) grows or else
the ranks do not grow any more.

10. Hint: Use Exercise 9.

SECTION 1II, A.1

4.d. Let P = (p,;) be the matrix such that p,, =4 ifj=iorj=i-+ 2 and
Di; = 0 otherwise. Show that 8(P*) = 1forn=1,2,...butlim,_.. d(P") = 0.

4.e. d(P) = 0 implies that P is constant.

6. Let E be the matrix all the rows of which are equal to some row of P then
Q = P— E = P — RP where R is a matrix having a column of ones all the
other columns being zero columns. Now use Corollary 1.5.

11. Use induction. If n = 2, then
|44, — A, 4))| < || A4, — Ai4)| + ||A, 4, — A A)]] = ||(4, — A)A4,]
+ 144, — || < |14, — Al 4] + |44, — Al < 2€

by Exercise 10 and by the assumption.
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12. ||P — B,J| = ||P — RP|| < 26(P) by Corollary 1.5 where R is a matrix
whose i, column is a column of ones, the other columns being zero columns.
Thus &(P) > 4||P — B,||. On the other hand 26(P) = sup,, ||P — P,|| which
proves the second part of the exercise.

13.a. 8(P) = 0 implies that P is constant and an infinite constant matrix can-
not be doubly stochastic.

13.b. A matrix P is doubly stochastic if and only if 4 and A" are both stochastic.
If P and Q are doubly stochastic, then PQ is stochastic and (PQ)" = Q"P"is a
stochastic matrix because QT and P are stochastic.

13.c. One proves easily that EP* = E thus ||P" — E|| = ||P" — EP"|| <
o(P") — 0.

13.d. If the statement is not true, then for some 0 < € < } there is n such
that &(P") << € < 4. There is k such that for given iy, > %, pi") > 1 — €. But
for any i, and i

k
35010 — iy <SP <
This implies that > %, p >1—2¢,i =1,2,...0r

o k o k

2 p)=0c0 but 3 pY =k
i=1j=1 i=1j=1
a contradiction.

14. Use the fact that if Q = lim,_.., P" then PQ = QP = Q.

SECTION 1I, A.2

3.
\|nP, ~ || < ||nH,, — 7|} + ||[H ., — 7P|
|H p — 7P| = ||RH -1 Po — 7P|
= ||(wH, -1 — B)P|| < ||AH -1 — 7|
Thus,
|zP, — || < ||nH,., — =ll + ||AH, - — 7|l =0
4,

“PnPnPn—l n—1 """ P1P1 - -n—IP—l e P1P1”
S 5(Pn-1Pn—1 e PIPI) < 5(Pn—1)5(Pn—l) e 5(P1) — 0.
This implies that lim,_., 2,P,P, ,P,_, --- P,P, = S exists [since the infinite
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sequence of products is bounded]. That S is constant follows from the fact that
é(S) = lim,_., 8(P,P,P,_, - -- P,P) < lim,...8(P,P,_, -+- P) =0

5. See Exercise 4.d in Section II, A.1.
6. See Exercise 4.a in Section II, A.l.
13. Hint: Use Exercise 4 in this section.

SECTION II, A4

4. S=1{s,..., 85T =8, for i=12,...,n—2 and s5,,I' = {s,, 5.},
s, =s,.

9. Hint: Show that at most 2" states can have a common consequent of order
n.

10. Let Pbe defined as follows: P=[p,]withp,,=1/n,p,,=1—(1/n),p;; =0
otherwise. It is easy to see that y(P) = lim,_.. p,, = 0, but the first column of
P has all its entries different from zero.

11. See Exercise 4.d in Section II, A.1.

12. The matrices (1/n) 3%, P™ are stochastic and any sequence of stochastic
[therefore bounded] matrices has a convergent subsequence. It suffices to show
that all the convergent subsequences have the same limit. Let ny, n,, ..., 1,
be a subsequence of integers such that @ = lim, .., (1/n;) 3°%_, P™ exists. Then
QP = PQ = lim (1/n) > %%1 P™ and the two limits are equal, since they differ
by the terms P™*!/n,, P/n; which tend to zero when n, — oo. Similarly, for
any n, Q = QP" = P"Q which implies that 0 = QR = RQ for any limit R of
another subsequence of averages of matrices. Using the same argument one
finds that R = QR = RQ or R = Q.

15. See Exercise 12 above.
17. By Exercise 16, the equations
(- x)JI—PI=0; Yx=1 ()

have a unique solution. Thus det [/ — P] = 0 and [/ — P] has rank n — 1.
The system of equations (*) can be shown to be equivalent to the system

(e oo x)UI — [P —n¢]] = ¢,

where 7 denotes a column vector with all its entries equal to 1 and &, is the
rth row of P. Thus det [I — [P — n,]] # 0 and both parts of the exercise
follow.
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18.
2 1 2
5 ¥ 5
2 1 2
5 F %
2 1 2
5 5 5

21, Let Q = lim,_.. P”. Then Q is constant and QP* = 0 for all k. Let
n = (n,) be a row of Q, then 7n,* = =,. Thus the vectors #,* all satisfy the
equation of the (n — 1)-dimensional hyperplane #,x, 4+ m,x, + --- 4+ 7, x,
=7,

22a.
30 0 #] I+ 0 0]
0110 1100
A= 7 7 i Bsz
0 1 3 0 0 0 } &
3 00 1] 00 3 %
b.
Y(A4B)=1>0, (4% =yB)=0
%%00_ %%00_
0110 1100
A= z z i B___?"E
0 001 13100
0 0 0 1] 0 0 3 %]

W4B)=0, p£)>0, yB)>0

23. It follows from the assumption that PQ" ~ P. There is n such that Q" is
scrambling so that also PQ" is scrambling and also P is scrambling.

25. Let Q, = lim,_,., A(x"), then
[|4(yx) — Q.ll
< [l A(yx) — Al + [[4(x) — Q.
= || A(p)A(x) — Ax)|| + || A(x) — QA
< 26(A(x)) + 20(A(x))
which tends to zero with n.

26. If P =[p,] is a matrix of order n such that p,; 7 0 forj=iandj=
i + 1 only then P satisfies H, of order n — 1, which is minimal.

28. Use Exercise 4.
29. Use Theorem 4.9.
30. Use Exercise 4.9.
31. Use Exercise 4.10.
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SECTION 11, A.5

6. Hint: Use Exercise 5 and induction on the length of x.
7. For any 2-state matrix P(¢) = [P,(0)], one can prove that
u(o) uyo u(6) —uyo
P(o) = [ i(0) )} lp[ A0) o )}
u(0) uy(0) —uy(0) u,(0)

where u,(0) = P,,(0)/(P(6) + P, (0)), u(6) = 1 — u,(6). Under the as-
sumptions #,(g) and u,(c) are independent of & and therefore,

uw, u U, —i,
P(6,0,) = [ ‘1 } + AP@D p(m)[ 2 ]
u —u, u
since lim, ., AP AP@D ... AP0 — (), the limiting matrix is

U u
U U

9. As in Exercise 8, we have that the limiting matrix is

u U . U, —u,
+ lim mA*
u u, U, —u

SECTION 1II, B.1

6. Using the ordinary probability laws, resolve first the probability of the
state of the whole system, given the present and past, into the probabilities of
the next states of the separate systems 4 and B given the same, then use the
Markov property of the two systems to eliminate the dependence on the past,
and then combine back, proving that the resulting probability for the whole
system depends only on its present situation.

SECTION 1I, B.2

1.b. The matrix VU has stochastic submatrices in its diagonal parts with
rows and columns corresponding to the same block 7, of 7 and, because of the
lumpability condition, every column in the matrix 4(o)V has all the entries
corresponding to the same block 7; equal one to the other. This implies that
VUA(o)V = A(o)V.
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1.c. Use the property 2.1.b proved above.

1.d. As in 2.1.b the matrix YU has stochastic submatrices in its diagonal
parts with rows and columns corresponding to the same block x; of #, more-
over the rows of those submatrices are equal. This fact together with the con-
dition that VUA(6)V = A(o)V implies that all the entries in a column of
A(o)V corresponding to the same block 7, of 7 are equal one to the other
which implies the lumpability condition.

2.
10
L1 £ 00 10
U___[?'ﬁ' J Vo
00 & & 0 1
0 1

A 0.5 05 i 04 0.6
9=103 07/ =075 025
3. The system A is equivalent to the cascade product of the two systems

B = (n, {B(0)}) and C = (7, {C(, 0))

with
B@) — r0.4 0.6“’ B — [0.3 0.7]
105 0.5 02 0.8
and
C(1,a)=_0'5 0.5" C(z’a):[o.s 0.2]
0 1 | 0.5 0.5
10 04 0.6
aLoy=1, J’ e, b)z[o.s 0.7]

4, The system A4 is equivalent to the cascade product of the systems B =
(T{B(0)}) and C = (T,{C(s,0)}) with T, = {s;s;}, T, = {s/'s,’} when the
states (s,5,’) and (s,, 5,") of the composite system are merged at the output and
the transition matrices of B and C are defined as follows

s[04 08 L 0.7] c b__[l o]
(“)“[0.75 0.25}’ ()‘[0.2 0.8 15 =|05 08

05 05 0.4 0.6 03 07
Cond =75 gasF C2D=lgc o4p C@D=107 03
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SECTION I, C.1

5. Let P, be a compound sequence matrix of maximal rank for f. The entries
in P, are of the form f(v,0v,"): Assume that there is some d in v, and let
v; = w;00% where k, is some integer [including 0 in which case ¢° = 4] and
w; is a word. Then, f(v,00,) = f(w,06%v,) = ( f(w,;0)/f(8))f(c* av,) [by
(22)] one can replace therefore the sequence v, by the sequence do** without
affecting the nonsingularity of the compound sequence matrix [the factor
f(w,0)/f(0) multiplies all the entries in the ith row of P and it is assumed that
f(0) = 0]. If there is no symbol ¢ in v, then v, = ¢*. To complete the ex-
ercise one uses a similar argument for the columns of P,.

6. Let o, considered as a block of the partition 3] over S contain the states
St Sir -+ Sty where k(i) is the rank of o, Consider the partition Y’ which
is the same as Y, but the block &, of 3] is split into k(i) blocks containing the
states s, as their single elements. Let f* be the function corresponding to the
new partition Y. Then f(vo,v") = Y ¥ f'(vs,2’). But the compound sequence
matrices whose elements are of the form f'(vs,v') are of rank 1 = r(s,).

7. Asin Example 16 one can always find a nonsingular diagonal matrix X
satisfying the condition #' = X7 and then define 4' = XAX '’ = nX !
with 'ff =X 'Xfp=nf = 1and A = A Xn= XA = Xij = 7.

8. Let G, H,G', H be the G and H [see the proof of Theorem 1.12 for de-
finitions) matrices corresponding to .# and .#' respectively. .# and .#’ being
equivalent we have that GH = G'H" and GAH = G’'A'H'. But rank f = |S|
and therefore G and H are nonsingular so that 4 = G'G'AH'H™' and
G 'GHH'=G'GHH'=1 Letnow B = G'G’ and C = HH ..

9. Prove that the conditions in Example 17 are satisfied for this case.

12. Use Exercise 9 above.

SECTION 11, C.2

7.c. It follows from Corollary 2.13 that XA4(c) = 4'(6)X for a nonsingular
matrix X. If € is an eigenvalue for 4(c) then A(o)E™ = €& for some vector &
and therefore A'(0)X{" = XA(6)E" = eX&™ which proves that € is an eigen-
value for 4'(¢) with eigenvector X¢{7. Similarly, if € is an eigenvalue for 4'(6)
with row eigenvector £, then (X A(o) = EA'(6)X = €£X so that £X is a row
eigenvector for A(g) with same eigenvalue.
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8. Use the Sylvester inequalities for matrices.

10. Let X be the unity matrix with an additional all zero row. Show that
the conditions of Theorem 2.15 are satisfied for this matrix X under the con-
ditions of the exercise.

11. Let X be the matrix whose rows are all 2'S! vectors of dimension |S]
with entries zero or one. Show that the conditions of Theorem 2.15 are satis-
fied for this matrix X under the conditions of the exercise.

12. See Exercise 2.7.c.

13. Let ¢ be the maximal absolute value of the eigenvalues of a matrix AA47.
It can be shown that ¢ satisfies the inequality (¢4, £A) < |¢|(&, &) where £ is
any row vector and (¢, &) denotes the scalar product of & by & Let X in
Theorem 2.15 be the matrix with 2'S' rows, its rows being all possible |S|-
dimensional vectors with entries either 0 or 1. Let £ be a row of X, then
(&4, E4) < (1/|SPE, &) < 1, for (&, &) < |S|. This proves that the conditions
of Theorem 2.15 are satisfied.

SECTION 1II, A.2

Lh=%3f+38=3s+4/—2)

5. Change the matrices A(o) into (|S| + 1) x (|S] -+ 1) matrices with first
column an all zero column and first row of form (0, ), the remaining |S| X |S|
diagonal submatrix of A'(g) being equal to the matrix A(o).

9. Express |f — g| in terms of the operations “\/” and “A” and use Pro-
position 2.3.

SECTION 111, B

5. Use Exercise 1 in Section IH, A.2.

7. Let u=0,---0,,u = a,/ ---a,’ and define the following equivalence
relation R: uRu’ if and only if (1) nd(o, --- 6,_,) = nd(o, --- 6,.,"); (2)
A(ylo,) = A(y|o,’) for all y € Y. R is right invariant, of finite index and
PM(ylu) > A if and only if P¥(yju’) > A.

The reader will find additional hints and answers by consulting the biblio-
graphical notes associated with each section.

’
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