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Preface 

Probabilistic automata have been studied in the literature from different 
(although related) points of views. An approach emerging from information 
theory was initiated by Shannon and Weaver in their classical book as early as 
1948. Later, in 1958, a (somewhat vague) definition of a probabilistic automata 
was given by Ashby in a semipopular book. The theory began its real develop­
ment only in the early sixties when scientists from different parts of the world 
introduced probabilistic automata as a natural generalization for deterministic 
automata of different types. 

Almost every book on automata theory published in the past few years con­
tains some parts devoted to probabilistic automata (see, e.g., Harrison, 1965; 
Booth, 1967; Salomaa, 1969; Starke, 1969; Arbib, 1969; Carlyle, 1969). This 
seems to prove that there is growing interest in this new and fast developing area 
of research. This is a first attempt to devote a book to probabilistic automata 
and related topics, an attempt based on the assumption that the theory consid­
ered is already mature enough to deserve a book of its own. 

The book is intended to serve both as a monograph and as a textbook and, 
as such, is augmented with a large collection of exercises distributed among the 
various sections. Some exercises are necessary for understanding the follow­
ing sections; others, which the author considers to be hard, are marked with 
an asterisk. For the convenience of the reader, a section containing answers 
and hints to selected exercises is given at the end of the book. A collection of 
open problems as well as an exhaustive bibliography are included for the benefit 
of those readers who may wish to continue research in the area. 

The choice of topics presented and their extent is, of course, subjective, and 
the author wishes to express his apologies to those who may feel that their work 
has not been covered thoroughly enough (after all, a first book in a new area 
is a first trial in a sequence of trials and errors). 

The book emerged from a two-quarter course given during two consecutive 
years at the Department of Electrical Engineering and Computer Sciences, 
University of California, Berkeley. Some parts of the book have also been 
presented in a course given at the Department of Mathematics, Technion, 
Haifa, Israel. While the first chapter of the book is engineering oriented, the 
other two chapters are mathematically oriented. The interdependency between 



χ Preface 

the two parts is weak, and they can be presented separately and independently. 
Only some theorems in Section C of Chapter II depend on the first chapter. 
The only prerequisites assumed for being able to follow the material in this 
book are: finite automata theory, e.g., Harrison (1965), Booth (1967), Salomaa 
(1969), Arbib (1969); linear algebra and matrices, e.g., MacDufee (1964), Thrall 
and Tornheim (1957), Gantmacher (1959); elementary probability theory, e.g., 
Feller (1957), and some mathematical maturity. 
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Preliminaries 

Α. NOTATIONS 

The following notations are used throughout unless otherwise stated: 
X οτΣ denotes an input alphabet with individual elements (symbols) χ and 

σ respectively. Sequences of symbols X οτΣ are called words or tapes and are 
denoted by u (when X is the alphabet) or χ (when Σ is the alphabet). F or A 
denotes an output alphabet with individual elements yora respectively. Words 
(or tapes) over 7 or Δ are denoted by i; or >; respectively. The set of all words 
[including the empty word denoted by λ or e] over X (or Σ or F or Δ) is de­
noted by X* (or Σ* or Y* or A* respectively). Subsets of words over a given 
alphabet are called events or languages and are denoted by C/ or F or E, If 
X = σι ' " Of, and x ' = σ^' - - σ/ are words then xx' is the word xx' = 
Gl '' σ^σ/ ' " σ/ and the operation is called concatenation (χλ = λχ = x); 

x^ denotes the word xx ^ * x. If U and U' are languages, then UU' = 
{xx' :xe υ,χ' e U'} and C/̂  = {x* : χ e U}. 0 denotes the empty language 
[U0 = 0U = 0]. Other set theoretic equations between languages are de­
noted as usual. l(u) denotes the length of the word u [the number of symbols 
in the word w], (M, V) denotes a pair of words of the same length, u e X* 
and V G ¥*; i(u,v) denotes the common length of u and v. If is a set, 
then | 5 | denotes the number of elements in S, The brackets ( ) are used 
generally for enclosing an ordered set, the brackets { ] are used generally 
for enclosing an unordered set. The notation [a,y] is used for denoting a 
matrix whose elements are a^j. ξ = (ξ^) or ξ,. = (^,^) denotes a vector ξ 
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B. SOME ANALYTICAL LEMMAS 

The following analytical lemmas are assumed. 

Lemma 2 . 1 : Let \a„] and \b„] be nondecreasing sequences of real numbers such 
that Oi < for all / with lim, a^ — a, lim, ... b^ = b [including the case where 

or ξι whose elements are ξι or respectively. The superscript Τ over a 
vector or a matrix [ζ^ or A^] denotes the transpose of the vector or the 
matrix, η denotes a column vector all the entries of which are equal to 1 
and whose dimension will depend on the context. A vector is called sub-
stochastic if all its entries are nonnegative and the sum of its entries is < 1; 
if the sum is = I, then the vector is called stochastic. The set of all «-dimen­
sional stochastic vectors is denoted by A matrix is called substochastic or 
stochastic if it is square and all its rows are substochastic or stochastic corre­
spondingly. A matrix is called constant if all its rows are equal one to the other. 
The vector ( 0 , . . . , 1 , . . . , 0), where the 1 is in the /th place and the dimension 
depends on the context, is called a degenerate stochastic vector and is denoted 
by the notation The usual notation Pv{A\B) is used to denote the conditional 
probability of the event A given that B. If X j , . . . , x,, are point vectors, then 
the combination Σ is a convex combination of them if (λ,) is a stochastic 
vector. The notation c o n v ( X i , . . . ,x„) stands for the convex closure of the set 
[ ^ 1 , . . . , The set of point vectors { X j , . . . , x „ } is linearly independent if the 
set of vectors [xi — x^,... ,x„ — x^] is linearly independent. A simplex is a 
set of points which can be represented as the convex closure of a set of linearly 
independent point vectors. A set of points is convexly independent if no point 
in the set is a convex combination of the other points in the set. A convex 
polyhedron is a set of points which can be represented as the convex closure of 
a finite set of convexly independent points. If Κ is a convex polyhedron and 
W ci V [PF is a subset of K], then is a face of V if the linear closure of W 
[notation: aff W] has no points in common with the convex closure οϊ V — W 
[the set of points which are in V but not in W\ The interior of a convex 
polyhedron V [notation: int K] is the set of all points in V except the points 
on the faces of V which differ from K, the relative interior of V [notation: 
relint K] is the set of all points of V except its vertices. Two functions are 
equal if they have the same domain and agree on it. The term machine is used 
for devices which have both inputs and outputs, the term automaton is used for 
devices with input only [the output is represented directly by the internal 
states] and the term acceptor is used for automata, or machines which are used 
for descriminating between words over a given alphabet. Superscripts are used 
for descriminating between different machines (automata, acceptors) and are 
omitted if context is clear. 
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C. SOME ALGEBRAIC PRELIMINARIES 

The notation A ^ Β is used for implication ("statement A implies statement 
5"] ; A ^ Β means that statement A is equivalent to statement B; ae A means 
that a is an element of A and [a : A] stands for the set of all elements a satis­
fying the property A. The Cartesian product of two sets A and Β is defined as 
Ax B = {(a, b):ae A,b e B}, 

A (binary) relation between the sets A and Β [including the case where 
Β = A] is a subset of ^ χ ^ . If denotes a relation and (a, b) e R v/e shall 
denote this also by the notation aRb. A relation R between A and A ("over 
Ä') is 

1. Reflexive if aRa for every a e A. 
2 . Symmetric if => 
3. Transitive if aÄ6 and => fl/?c. 

a and/or b is equal to o o ) . Then a<b. Ιΐ a < b, then there is a natural 
number Ν such that for all j > Ν and all / the inequality a, < bj holds. 

Corollary 2.2: If a, < Μ for some real number Μ and all /, then also a<M. 
If α > M for some real number M, then there is a io with a, > Μ for all / > Íq. 

Lemma 2.3: Let {a^„} be a double sequence, nondecreasing with regard to both 
m and n. Then lim^^,, \im„^^ α^„ = lim„ _ lim,„^^ a^„ [including the case 
where the limit has infinite value]. 

Definition: Let {a,) be a set of real numbers, sup, (a,) is defined as the number 
ä such that < ä for all / and for any e > 0 there is η such that a„>a — €\ 
inf, (a,) is the number a such that a < a, for all / and for all 6 > 0 there is η 
such that a„<a + 6 [ä or a can assume the values + 0 0 or — 0 0 also]. 

Lemma 2.4: If (a,) and (¿?,) are two sets of numbers such that a, < ¿, for all /, 

then ä <b,a<b. Moreover if a, < Μ for some real number Μ and all /, then 
ä < Μ and similarly if a, > Μ for all /, then a>M. 

The notation ΠΠ^ι ^/ stands for the infinite product of a sequence of numbers 
(fl,) and is equal to lim„_oo 11"= 1 [provided that the limit exists and including 
the case where the limit equals 0 0 ] . 

The product J\^T=i converges if there is m with > 0 for / > m and 
lim„^oo Π"=/π exists and is finite. 

Lemma 2.5: Let [a¡\ be a sequence of numbers Λ < α , < 1. If Σ/^ι^/ 

verges, then ]][Γ=7 (1 — ß/) converges to zero for any j . 

Lemma 2.6: Let {a) be a sequence of numbers, 0 < If ΣΓ=ι < then 
the product ΠΓ=ι (1 + ci¡) converges. 
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D. PROBABLISTIC PRELIMINARIES 

Consider a physical experiment such as tossing a coin, matching a deck of 
cards, observing the life-span of radioactive atoms, etc. The set of all possible 
outcomes of such an experiment is called a sample space. The elements of a 
sample space are called sample points and aggregates of sample points or sub­
sets of the sample space are called events. In what follows we shall concern 
ourselves only with finite or countable sample spaces [i.e., sample spaces con­
taining finitely many or at most a countable number of elements]. 

The set of all events over a sample space [including the empty set—to be 
denoted by 0 — a n d the whole space considered as an event—to be denoted by 
Ω] is closed under countable intersection and union, and under complementa­
tion with regard to Ω. The set of all events as above with the operations of 
union, intersection, and complementation is sometimes called a a-algebra [see 
Feller (1966)]. 

A relation satisfying all the three properties above is called an equivalence 
relation. 

Any equivalence relation R over a set 4̂ induces a partition of the set A into 
subsets Ai such that Ai η Aj^ 0ii i= y, uAi = A and aRb if and only if both 
a and b are in the same subset Ai for some /. The subsets Ai as above are called 
equivalence classes of R, If the number of different equivalence classes induced 
by a relation R over a set 4̂ is finite, then the relation R is of finite index. Let 
^ be a set with an operation o : A χ A-^ A and a relation R over A. 

1. is r/^A/ invariant if implies that for any c, a o c jR boc. 
2. Ä is invariant if aÄ6 implies that for any c, coa cob. 
3. is a congruence relation if it is an equivalence relation and it is both 

left and right invariant. 

Let a, ¿, c be integers then a = b mod c ["α is congruent to b modulo c"] 
means that c is a factor οΐ a — b. Congruence modulo an integer c has the 
following properties: 

Lemma 3.1: Ιΐ a = b mod c and a' = b' mod c then a + a' = b b' mod c 
and aa' = bb' mod c. 

We conclude this section with two lemmas concerning operations between 
infinite [countable] stochastic matrices. 

Lemma 3.2: The set of countable stochastic matrices is closed under matrix 
multiplication. 

Lemma 3.3: Multiplication of countable stochastic matrices is associative. 
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A probability measure ρ over a σ-algebra s/ as defined above is a function 
ρ from ^ into the interval [0, 1] of real numbers such that : 

1. p{A) > 0 is defined for all Ainj^. 
2. ρ(Ω) = 1. 
3. If {Λ}Γ, is a countable set of nonoverlapping or disjoint events i n j / , then 

It is easy to show that ( l ) - (3) above imply: 

4. p(0) = O, 
5. p(Q-A)=l -ρ(Ω). 

A random variable is a function from the sample space into the real numbers. 
Under the assumption that the sample space is at most countable, no restric­
tion is placed on such a function. 

Example: The physical experiment: Tossing a coin 100 times. The sample 
space: All 2 °̂° possible outcomes. A sample point: The coin falls "heads" all 
the 100 times. An event: The coin falls "tails" for 50 consecutive times. A 
probability measure over Ω : If ω G Ω is a sample point such that the coin 
falls heads m times and it falls tails 100 — m times then/?(ω) = pmq\oo-m ^here 
0 < / ? < l , 0 < ^ < l , / ? + ^ = 1,/? and q are real numbers. If A is an event, 
then p{Ä) = Σω€^ρ(ω). A random variable over Ω : Let χ(ω) be the func­
tion χ(ω) = the number of "heads" in the sample point ω, then χ(ω) is a 
random variable. 

Given a σ-algebra, a probability measure, and a random variable over it, a 
related distribution function from the real numbers to the interval [0, 1] is de­
fined as follows: Let A^ be the event A^ = [ω: χ(ω) < t}. Then the distribution 
function is the function F(t) = p(At), Sometimes the notation ρ(χ(ω) < t) is 
used for p(At), and the notation ρ(χ(ώ) = t) is used for p{Bt) where is the 
event {ω: χ{ώ) = /}. 

Given a tr-algebra and a probability measure over it, the conditional prob­
ability p(A\B) [read: the probability of A given that Β where A and Β are 
events] is defined as p(A\B) = p(A Π Β)/ρ(Β), The intuitive meaning of the 
above definition is as follows: If it is given that the event Β occurred, then 
the sample space reduces to the points in B, and the event A reduces to the 
event A η Β so that p(A\B) is the proportion of the weight of the event An Β 
to the weight of the event Β [usually p(A) is interpreted as the proportion of 
the weight of A to the weight of the whole space Ω which is equal to 1]. 

Given two random variables χ and y over a σ-algebra and a probability 
measure over it, one can define the following function 

M « = ,|, = „) = £ ( £ 5 i A Z p ) (., 
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where, χ = t /\ y = u is the event [ω: χ(ώ) = t A y(co) = u). The random 
variables are said to be independent if 

p{x=t\y = ü)=p{x = t) 

i.e., the information that y{ω) = u does not change the probability of χ{ω) = t. 
It follows from formula (*) that if χ and y are independent [or more generally, 
if A and Β are independent events, i.e., p(A\B) = p{A)\, then 

p{x = tAy = ú) = p{x = t\y = u)'p(y = u) = p(x = t)'p(y = u) 

More generally, if A and Β are independent events then 

p(AnB)=p(A)^p(B) 

Let Xo» Λ Γ ι , . . . be a sequence of random variables such that for any m 

P(Xm = j \ x o = «0, Χχ = n,,,.., x^., = i) = p(x^ = j\x^_, = /) 

i.e., the random variable x^ depends on the random variable but not on 
the previous ones. Such a system is called a Markov chain. We shall consider 
only finite or countable Markov chains, i.e., Markov chains over a sample 
space containing finitely many or a countable number of elements. 

Any Markov chain can be represented in the following model: The sample 
space is represented by a finite or a countable number of vertices: the random 
variable χ i represents the position of a moving point at time t = i; p(Xi = j) 
is the probability that the point will be at the vertex Vj at time t = i and 
p(Xm = j\Xm-i = 0 is the probability that the point will be at vertex Vj at time 
t = m provided that it has been at vertex / at time t = m — 1. 

As the process is assumed to be Markov we have that 

P(Xm = j\Xm-l = i) = P{Xm = j\Xo = «0, · · · , Xm-X = 0 

and we shall use, for the above probability, the notation „p¿j. 
If „Pij = „Pij for any natural numbers m and n, then the Markov chain is 

called homogeneous and it is called nonhomogeneous otherwise. As the values 
^Pij are independent of m in the first case, we shall use the notation Pij for that 
case. It is tacitly assumed throughout that the Markov chains considered are 
discrete, i.e., the transitions from state to state occur at discrete intervals of 
time. 

The probabilities „Pij can be arranged in a matrix form and such a matrix 
is called stochastic or Markov. Clearly any Markov matrix [mPu] has the 
property that 0 < „Pij < 1 and Σ ; Pu = ^ which stems from the fact that 
system represented by the matrices [mPu] evolves in time and it must enter some 
state at time t = m + I if it has been in state / at time m where the term 
"state" is used for denoting a point in the sample space. 
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Examples: 

1. Sequential deterministic machine with possible errors. 
2. A slot machine: the static position of the dials represent the states. In 

this case the ^Pij are generally independent of m. 
3. Suppose some person is ill with probability po [the probability of him 

being healthy is = 1 — Po]- After swallowing a specific medicine he may 
change state [there are two states, representing illness and healthiness] the 
probability of the transition from state / to state j at time m being ^Pij de­
pending on the medicine swallowed at time m, 

EXERCISES 

1. Prove all tthe lemmas given without proof in the preceding sections. 

2. Prove that the set of Λ χ Λ stochastic matrices are a monoid under matrix 
multiplication [i.e., the set of stochastic η χ η matrices is closed under multi­
plication and the unit η χ η matrix is stochastic]. 

3. Let P(m) = [^Pij] be the transition probabilities matrix at time AW of a given 
Markov chain. Denote Π ? = ι ^ ( 0 = [p\f]^ prove that p\f is the probability that 
the process will go to state j beginning from state / after η steps. 

4. A stochastic matrix Ρ is called constant if all its rows are equal. Prove: If 
Ρ is constant stochastic and Q is stochastic [of the same order], then PQ is 
constant stochastic and QP = P. [Thus P^ = Ρ which means that stochastic 
constant matrices are idempotent.] 

5. Let Ρ be a stochastic matrix such that there is an integer ko with P*" con­
stant. Prove that in this case, for all m > ko, P'" = P^\ 

6. If π = (π,) is a vector such that Σ ^/ = ^ Ρ is a stochastic matrix [of 
the same order], then the sum of the entries of the vector πΡ is also equal to /. 

7. Prove: If Ρ and Q are finite stochastic matrices such that PQ = I, then 
both Ρ and Q are degenerate. [A stochastic matricx is degenerate if all its 
entries are either 0 or 1.] 

8. Prove, by an example, that Exercise 7 above is not true in the infinite case 
unless it is required that both Ρ and Q have nonzero elements only. 



Chapter I

Stochastic
Sequential
Machines

INTRODUCTION

In this chapter we introduce various mathematical models of stochastic se­
quential machines (SSMs) and provide motivation for these models. Methods
for synthesizing SSMs from their mathematical models are given. Various con­
cepts of equivalence and coverings for SSMs are introduced and studied. Some
decision problems and minimization-of-states problems induced by the above
concepts are investigated and a procedure is formulated for constructing a mini­
mal state SSM equivalent to a given one. The last part of this chapter in de­
voted to stochastic input-output relations and their representatibility by SSMs.

A.THEMODEL

1. Definitions and Basic Relations

Definition 1.1: A stochastic sequential machine (SSM) is a quadruple M =
(S, X, Y, {A(ylx)}) where S, X, and Yare finite sets [the internal states, inputs,
and outputs respectively], and {A(ylx)} is a finite set containing IXI x IYI
square matrices of order lSI such that aiiylx) > 0 for all i and j, and
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where A(ylx) = [aij(ylx)]

Interpretation: Let 1r be any lSI-dimensional vector. If the machine begins
with an initial distribution 1r over the state set S and is fed sequentially with a
word u = Xl' . ·xk , it prints the word v = Yl" .Yk and moves on to the
next state. The transition is controlled by the matrices A(y Ix) where aij(ylx)
is the probability of the machine going to state Sj and printing the symbol y,
given it had been in state Si and fed with the symbol x.

Examples:
a. Any deterministic sequential machine with faulty elements which may

cause errors in transition from state to state is an SSM.
b. Consider a psychological [or physical] experiment such that a sequence of

stimuli [inputs] is applied to an animal [or to a physical system]. The system,
assumed to have a finite number of possible internal states [which mayor may
not be observable], responds with a sequence of outputs and undergoes succes­
sive changes of its internal state. Transition is generally not deterministic, nor
is the relationship between inputs and outputs.

c. A finite-state communication channel (Shannon, 1948) transmitting sym­
bols from a source alphabet X, the symbols received belonging to an output
alphabet Y. The channel may assume a finite number of states and is specified
by a conditional probability functionp(y, Sj!Si, x), interpreted as the probability
of the output symbol received being y and of the channel remaining in state
Sj, given the channel is in state Si and the input symbol X is transmitted. Such
a communication channel is readily described by ali SSM.

d. Consider a situation where a pursuer is following a moving object (Zadeh,
1963), with both capable of assuming a finite number of positions [states].
Assume also that the motion of the pursuer is characterized by a conditional
probability distribution Pij(x) (which denotes the probability of the pursuer
moving to state j from state i on application of x) where x is one of several
controls (inputs) available to the pursuer. As for the object, assume that it does
not seek to evade the pursuer [the alternative case can be dealt with in a similar
way] and that its motion is governed by a probability distribution qkl [which
denotes the probability of the object moving to state I from state k]. The com­
bined system can be described by an SSM with set of states S equal to that of all
pairs (i, k) with i referring to the pursuer and k to the object; the set of inputs
X is that of all controls available to the pursuer; the set of outputs is identified
here with that of states, and the transition function is given by

aUk),(JI)(X) = Pij(x) qkl

[It is tacitly assumed that the random variables controlling the pursuer and
the object are mutually independent.] In this setup the problem of the pursuer
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is to find a minimal sequence of inputs which takes the composite system from
its initial state to an "interception" state.

Let M be an SSM. Let A(vlu) be defined as

A(vlu) = [aij(v[u)] = A(Yllxt ) A(Y2lx2)" ·A(Yklxk) (1)

It follows from the interpretation of the values aij(ylx) that ai}(vlu) is the
probability of the machine going to state SJ and printing the word v, having
been in state Sj and fed sequentially the word u. This assertion is clearly true
for lev, u) = 1, since in this case (v, u) = (Y, x) for some Y and x. Assuming
now that the assertion is true for lev, u) = k - 1, we have, by the notation (1)
above, that

(2)

and the right-hand side of (2) is, by elementary rules of probability, the prob­
ability of the machine going to state SJ and printing the word vy, having been
in state Sj and fed sequentially the word ux. The assertion is thus proved true
for any pair (v, u) with lev, u) > 1 by induction. For lev, u) = leA, A) = 0, we
define A(AIA) = I, the lSI-dimensional unity matrix, meaning that with proba­
bility I there is no change in the internal state of the machine and no output
emerges if no input is fed.

Notation: 1'[ denotes a column vector with all entries equal to 1, and with
dimension equal to the number of states of the machine to which it is related.

Definition 1.2: Given a machine M and an input-output pair of words (v, u),
the vector 1'[(vlu) is defined as

1'[(vlu) = A(v[u)1'[ (1'[(AIA) = 11'[ = 1'[) (3)

Interpretation: The ith entry in vector 1'[(vlu) consists in summation of all
entries in the ith row of matrix A(vlu), and is therefore the probability of the
machine printing the word v [and moving to some state], having been in state
Sj and fed the word u.

It follows from (3) and (1) that

1'[(vylux) = A(vylux)1'[ = A(v[u)A(ylx)1'[ = A(vlu)1'[(ylx) (4)

Similarly,

1'[(yvlxu) = A(y[x) 1'[(vlu) (5)

Definition 1.3: Let n be a [probabilistic] initial distribution vector over the
states of a given machine M, and let (v, u) be any input-output pair of words.
The vector n(vlu) and the function pnCvlu) are defined as

n(vlu) = nA(vlu) (n(AIA) = nl = n) (6)

Pn(vlu) = n1'[(vlu) (= n(vlu)1'[) (7)
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otherwise
if Pn(vlu) =F °

It follows by elementary rules of probability and from the interpretation of
l1(vlu) that Pn(vlu) is the probability of the machine printing the word v when
started with initial distribution n over its states and fed with the word u. Simi­
larly, nlvlu), the ith entry of the vector n(vlu), is the probability of the machine
printing the word v and moving to state s/ when started with initial distribution
n over its states and fed the word u. The following equalities are easily verified:

Pn(Vj v21uj uz) = nl1(vj vz!Uj uz) = nA(v jvzlu1uz)l1

= nA(vduj)A(vzluz)l1 = n(vjluz)l1(vzluz) (8)

Note that n(v]u) need not be a stochastic vector, as there may be several output
words v, with positive probability, corresponding to a given input word u. Let
ii(v, u) be the vector whose ith entry is the probability of the machine moving
to state s/ given that the machine started with initial distribution n over its
states, the input has been u, and the output v. It follows that

ii/(v, u) . Pn(vlu) = nlvlu) (9)

To prove this relation, we rewrite it in the form: Pr [final state s/Ioutput v,
input u, initial distribution n] . Pr [output vlinput u, initial distribution n] =
Pr [final state s/, output vlinput u, initial distribution n].

It follows from (9) that

iilv, u) = {nlv1u)/PiVIU)
undefined

If Pn(vlu) =F 0, then ii(v, u) is a probabistic vector; moreover, in this case we
also have the relation

pivvjluuj) = pblu) Pif(v.u)(V1Iul) (10)

since, using (8), (6), (7), and (9) we get

Pn(vvjluul ) = n(vlu)11(vdu1)

I n(vlu) I= n(v u)11-(-I-)-11(v1u1)nv u l1

= n(vlu)l1 ii(v, u) l1(vjluj)
= pblu)Pif(V.u)(vjluj)

as required. If Pn(vlu) = 0, we define Pn(VV1/UU1) = °for any input-output pair
of words (Vj, u1).

Example 1: Let M = (S, X, Y, (A(ylx))) with X = (0, I}, Y = (a, bJ, S =
(Sh sz}, and

A(aIO) = [~ ~J

A(all) = [~ ~J

A(bIO) = [: ~J

[
I O~JA(bll) = ~ ~
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and let n = (t t) be an initial distribution for M. It is easily verified that

A(abIOO) = A(aIO) A(bIO) = [; ~J

'1(abIOO) = A(abjOO) '1 = [; ~JC) = (;)

n(abIOO) = nA(abIOO) = (it) [; ~J = (-h-h)

Pn(abIOO) = n(abjOO)'1 = t
ft(ab,oo) = n(abjOO)/p,,(abIOO) = G·-V

5

Similarly,

so that

n(aIO) = (-A- j),

ft(a, 0) = (i t),

piajO) = ~

P~(a.o)(bjO) = ~

piaIO)P~(a.olbIO) = ~! = t = Pn(abIOO)

in accordance with (10).
Note the difference between n(abIOO) and ft(ab, 00). The first vector is not

probabilistic, and the values in it are the probabilities of the machine entering
the first (second) state and printing the output ab, given that the input is 00
and the initial distribution is n. However, this input and initial distribution may
also have other outputs (ba or bb or aa) with positive probability, In the vector
ft(ab, 00), both the input and the output are assumed in advance.

EXERCISES

1. Let M be as in Example 1 and n = (0 1), an initial distribution for M.

a. Find: A(vlu), '1(vlu), n(vju), ft(v, u),pblu) with v = bb and u = 10.
b. The same with v = ab, u = 10; in this case, compute also the value

Pn(abal100). Discuss your results.
2. Show that every deterministic sequential machine of the Mealy type can be
represented as an SSM as given in Definition 1.1.
3. Give an algorithm for recursive construction of any vector of the form '1(vlu)
for a given machine.
4. For a given machine M and a given initial distribution n, prove that the
vector Lv n(vlu) is probabilistic for any given input u (summation over all
possible outputs v having the same length as u).

5. For the machine given in Example 1, find:

a. the value q(bIOOl, ab) = the probability of the next output being b, given
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that the input 00 resulted in the output ab and the input 1 was fed next,
b. the value r(bIOOl) = the probability of the final output being b, after the

input 001 is fed.

6. Give three reasons why the following quadruple is not an SSM:

M = (S, X, Y, {A(ylx)}) with S = {Sl> sz}
X = {O, I}, Y = {a, b}

A(aIO) = [~~l A(bIO) = [~ ~J

A(all) = [~~4l, A(bll) = [~t tl
"2 4_ 4 0..J

2. Moore, Mealy, and Other Types of SSMs

In the preceding section, we described an SSM parallel to the Mealy-type de­
terministic sequential machine. The Moore-type machine also has a stochastic
version which will be described below.

Definition 2.1: A Moore-type SSM is a quadruple M = (S, X, Y, {A(x)}, A)
where S, X, and Yare as in Definition 1.1, {A(x)} is a finite set containing IXI
square stochastic matrices of order lSI and A a deterministic function from S
into Y.

Interpretation: In accordance with the interpretation following Definition
1.1, the value ailx) [A(x) = [au(x)]] is the probability of the machine moving
from state Si to Sj when fed the symbol x. When entering state Sj, the machine
prints the symbol A(sj) E Y.

Let A(u) be defined as
A(u) = [ailu)] = A(x1) A(xz) ... A(xk ) (A(A) = 1) (11)

It follows from the above interpretation that au(u) is the probability of the
machine moving from state Si to Sj when fed the word u. [The proof of this
assertion, along the same lines as for the corresponding assertion in the preced­
ing section, is left to the reader.] The output word v depends on the sequence
of states through which the machine passed when scanning the input word u.
It is worth noting here that, as in the deterministic case, there is a basic differ­
ence (inplicit in the definitions) between Moore-type and Mealy-type machines.
For the latter, the output depends on the input and the current state, and is
intuitively associated with the transition; thus Px(AIA) = 71:111 = 71:11 = 1, since
no output emerges when there is no input. By contrast, the output of a Moore­
type machine depends on the next state and is intuitively associated with a state;
thus pnCAIA) = 0 and there is a time difference of one stroke between the begin-
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ning of the output sequences of the two types. Disregarding the empty input­
output sequence, equivalence between the two types can be defined as follows:

Definition 2.2: Two machines M and M' are state-equivalent if to every state
S/ of M there corresponds a state Sj of M', and vice versa, such that p~(vlu) =
p~'(vlu) for every input-output pair (v, u) with lev, u) > 1.

Let M be an SSM of Moore-type M = (S, X, Y, {A(x)}, A). Define an SSM
M' of Mealy-type as follows: M' = (S, X, Y, {A'(yjx)}) where S, X, and Yare
as in M, but the entries of the matrices A'(Ylx) = [a;iylx)] are defined by

, ( I ) - {ao<x),a·· yx -
'1 0,

if y = A(sj)
otherwise

It is left as an exercise to show that the machines M and M' are state-equivalent.
Let M be a Mealy-type SSM, M = (S, X, Y, {A(ylx)}). Define an SSM M'

of the Moore type as follows: M' = (S', X, Y, {A'(x)}, A) where X and Yare
as in M; S' is the cartesian product S x Y; the (lSI· IY/-dimensional) matrices
A'(x) are defined as

l
A(YIIX)

A(ydx)

A(YI/X)

A(Yllx) ... A(hIX)J
... A(hlx )

A(Yklx )

where Yl> ... , Yk is the sequence of symbols in Y; finally, A is the function
A(s/, y) = Y for all i. It is left to the reader to show that the machines M and
M' are state-equivalent.

Inasmuch as every Moore-type SSM has a Mealy-type equivalent and vice
versa, either type will be used at convenience for proving properties of machines
in general.

It is easy to see that the above definitions of Moore and Mealy types gener­
alize the corresponding definitions of deterministic machines. On the other
hand, since the stochastic machines are more elaborate in structure than deter­
ministic machines, further generalized definitions are possible. Consider, for
example, the following:
Definition 2.3: An output-independent SSM is one such that the matrices A(ylx)
can be written in the form A(y/x) = I(y/x) A(x) where the A(x) are stochastic,
and I(y/x) are diagonal matrices with l:y I(ylx) = I (= the lSI-dimensional
unit matrix).

The interpretation of this definition is as follows: Let a;(ylx) be the ith dia­
gonal entry in I(ylx), and a;~(x) the (i, j)th entry in A(x); then aO<ylx) is given
by
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alj(ylx) = d;(ylx)a;~(x) (12)

If d;(ylx) is interpreted as the probability of the output being y if the input
is x and the current state i, and d;~(x) as the probability of next state being Sf

if the current state is Si and the input x, then (12) means that the two random
variables are mutually independent, that is, the next state of the machine is in­
dependent of its output for a given current state and input.

It is clear that the output-independent machines as defined in Definition 2.3
provide another generalization of deterministic Mealy-type machines. On the
other hand, the two generalizations are not equivalent. We will show now that
although every output-independent machine is an SSM, the converse is not al­
ways true.

Lemma 2.1: If M is an output-independent machine, then for any degenerate
initial distribution Si the value Ps'(yvlxu)jPs'(ylx) does not depend on y, pro­
vided Ps,(ylx) =1= O.

Proof' Let a;(ylx) be the ith diagonal entry of I(ylx), then d;(yjx) =
Si I(ylx)'l and

But

SiA(ylx)'l = Sj I(ylx) A(x)'l = Si I(ylx)'l

A(x) is stochastic, so that A(x)'l = 'l. Combining these equalities, we have

Ps,(yvlxu) = Si A(ylx) A(vlu)'l

= Si I(ylx) A(x) A(vlu)'l = Si I(ylx)'l Si A(x) A(vlu)'l

= Si A(yjx)'l Sj A(x) A(vju)'l = Ps,(ylx) Sj A(x) A(vju)'l

or

Ps,(yvlxu) = Sj A(x) A(vlu)'l
Ps,(Ylx)

and the right-hand side does not depend on y.

Example 2: Let M be the SSM with S = {Sh S2}, X = {a}, Y = {O, I}, and

A(Ola) = [; tl A(1la) = [~ 7J
Assume also that the initial distribution is Sl = (1 0). Then

Ps,(Oja) = (1 0) [; tJ GJ = -f2

[
1 :1J2 [IIJ -_ -h-Ps,(OOlaa) = (1 0) ; 0 '0
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ps,(1la) = (1 0) [1 7J GJ = ~

ps,(lOlaa) = (1 0) [1 ~J[: :J GJ = i

thus
Ps.(OOlaa) _ 3/16 _ 9
Ps.(0la) - 5/12 - 20

and
Ps,(10laa) _ 1/4 _ 3
Ps.(1la) - 7/12-7

The two values are not equal, hence the given machine is not output independent.
Another Mealy-type SSM can be defined by requiring that the entries in the

matrices I(ylx) be either °or 1, and another Moore-type SSM by assuming that
the function A in Definition 2.2 is probabilistic [see Exercises 6 and 7 at the
end of this section].

EXERCISES

1. Find a Moore-type machine which is equivalent to the machine in Exam­
ple 1.

2. Given the Moore-type machine M = (S, X, Y, (A(x)}, A) with S = (SI> S2},
X = (0, I}, Y = (a, b},

A(O) = [~;} A(1) = [~ :J
and A(s,) = a, A(S2) = b, find an equivalent Mealy-type machine.

3. Prove that the interpretation of A(x) and (11) implies that al}(u) is the prob­
ability of the machine moving from state s/ to sJ when fed the word u.

4. Prove that every Mealy-type machine has an equivalent Moore-type machine
and vice versa, using the construction given in the text.

5. For the machine given in problem above, compute the following values:
a. ps.(abbj010)
b. q(aI011, bb)
c. r(aj1101)

[For the definition of q and r, see Exercise 5 in Section 1.]

6. Consider the following:

Definition: An SSM is of the Mealy-type with probabilistic output if the mat­
rices A(ylx) can be written in the form A(ylx) = A(x) I(y), A(x) being stochas­
tic and I(y) diagonal matrices with I;yEyI(y) = 1.
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Show that, under proper interpretation, the output of such a machine is a
[probabilistic] function of the next state and independent of the transition im­
posed on the current state by the input.

7. Show that Example 2 can be represented as a Mealy-type SSM with proba­
listie output.

3. Synthesis of Stochastic Machines

In the two methods for synthesizing stochastic sequential machines presented
below, the machines are assumed to be of the Moore-type.

a. Method 1

Method I is illustrated in Figure 1. Let M = (S, X, Y, {A(x)}, A) be a ma­
chine, Z an auxiliary alphabet with lSI = n symbols, and p(Sj' x) an indepen­
dent information source emitting the symbol Zj E Z with probability au(x).

y

State
Source Z-.. I logic box o logic f-----

box
(delays)

Output lines

Input lines X

Figure 1. Schematic representation of a network synthesizing an SSM.

The source box emits all sources p(Sj' x), each of them through a separate line.
The box marked "I Logic" is a combinatorial network whose output is that
emitted by source p(Sj' x) if the feedback input is Sj and the X input is x. The
"state box" is a combination of delays (or flip-flops) representing the states of
the machine. If the input to this box is Zj> the delays are set so as to represent
the state Sj, the feedback being a signal representing the current state of the
machine. Finally, the "0 logic" box is a combinatorial gate simulating the
function A.
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It is clear that the above diagram synthesizes the given machine. It follows
from the construction that pr[next state sjlcurrent state Si input x] = prE! logic
output zjlcurrent state Si' input x] = pr[zjl the source emits p(Sj, x)] = ail(x)
as required.

The procedure above involves synthesis of combinatorial networks with or
without feedback, and construction of information sources with prescribed
probability distributions, for which the reader is referred to Harrison (1965),
Hartmanis and Stearns (1966), or McCluskey (1965), and to Gill (1962b, 1963),
Sheng (1965), Tsersvadze (1963), or Warfield (1965) respectively. It will now
be shown that the procedure can be simplified by means of the following lemma.

Lemma 3.1: Any m x n stochastic matrix A can be expressed in the form A =
I: PiUi where Pi > 0, I: Pi = 1, and Ui are degenerate stochastic matrices (with
entries either zero or one), and the number of matrices Ui in the expansion is
at most m(n - 1) + 1.

Proof: Let A = [ail]' U I = [u:J is a degenerate stochastic matrix such that

if ail is the first maximal element in the ith row of A

otherwise

Let PI be the value PI = mini maxj ail; then clearly A - PI U I is a matrix with
nonnegative entries. Moreover, Al = [1/{1 - PI)] [A - PI U I] is a stochastic
matrix (for the sum of entries in any row of A - PI U 1 equals 1 - PI) with
more zero entries than the original matrix A, and A = PI U1 + (1 - PI)A 1• The
procedure is now repeated for Al as the new A, represented in the form Al =
pzUz+ (1 - pz)Az with Az again stochastic with less zeros than AI' In this
manner at most m(n - 1) steps yield a matrix Ak in the form of a degenerate
stochastic matrix Uk' The required expansion is thus found with at most
m(n - 1) + 1 matrices Uk'

Example 3: Let A be the matrix

A~(:
I

;)
4"

0
I
4"

then

U, ~(i
0

~}0 PI =-t
0

hence,
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A, ~[~
1

n U, = [~
1

!J
~

0 0 P2 = ~
1 0~

A, ~ [~
0

~] ~U,0
1

And the resulting resolution is

A = iU1 + ·~HU2 + ~UJ] = ~Ul + iU2 + iUJ
Note that although the above example is a square matrix, this requirement is
not essential and the procedure works for any stochastic matrix.

We now apply Lemma 3.1 to the procedure. To this end, let A be the
stochastic matrix whose rows are the probabilistic distribution vectors P(Si' x),
i.e., A has lSI x IXI rows and lSI columns, and can be expressed in the form
A = L;:~I PiUj according to the lemma. Let W = [WI' ... , w,} be an auxiliary
alphabet with t symbols, one for each matrix Uj in the expansion of A, and let
P be a single information source over Wemitting the symbol Wj with probability
Pj'

So

L-....,

Combinatorial
Inputs X

logic
Z Delays a logic

(states)
urce p, W

Figure 1. Simplified network for an SSM.

The combinatorial logic is constructed so that its output is Zj for input
(Xz, Wm , Sk) if and only if the entry of matrix Um in the row corresponding to
(Sk' XI) and in the column corresponding to Sj equals one (notation: u'(k,I),j = 1);
the state box and the O-logic are as in Figure 1. We have that pr(next state sjl
current state Sk> input XI) = pr(W-input is Wm with u'(k,l)j = 1) = L;Pm where
the summation is over all m with u'(k,I),j = 1. This sum, however, equals the
corresponding entry in A which is plSk' XI) as required.

Example 4: Let M = (S, X, Y, [A(x)}, A) be an SSM with S = [0, I} =
X = Y, A(O} = 1, A(l) = 0, and

A(O) = [~;} A(l) = [; ~J
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l~ ~JA = "4 "4
2 1
"3" 3
1 1:r :r

Applying the resolution of Lemma 3.1, we get

13

thus W = {WI> W2, W3, w4} and p = (-h t, fr' -h-). Encoding the symbols in Was
00,01, 10, II respectively we get the transition table, Table I. Now using the

Table I Transition Table for the machine in Example 4.

w x (current) s (next) Output

00 0 0 0 I
00 0 I I 0
00 I 0 0 1
00 I 1 0 0
01 0 0 1 1
01 0 1 0 0
01 I 0 1 1
01 1 1 1 0
10 0 0 1 1
10 0 1 1 0
10 1 0 0 1
10 I 1 1 0
11 0 0 1 1
11 0 I 1 0
11 1 0 1 1
II 1 1 1 0

Karanaugh map method or other methods we obtain a network which synthe­
sizes the given SSM, as shown in Figure 3.

b. Method 2

Given the machine M = (S, X, Y, {A(x)}, A), expand all matrices A(x) in the
form A(x) = L:i p/U/ using Lemma 3.1. Assuming that the above expansions
all have the same matrix U in the ith place for all i [i.e., the values p/, but not
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y

W p(W)

00 1/2

01 1/4

10 1/6

11 1/12

"And" gate "Or" gate Inverter Unit delay

Figure 3. Realization of transition Table I.

the matrices U/, depend on x], the restriction on p/ is weakened to p/ > o.
[This is possible because there are only a finite number of different matrices of
the form U/ and some zero-valued p/ may be added if necessary to meet the
requirements.] Let Z be an auxiliary alphabet with q symbols, where q =
maxI [there exists x E X such that p/ =1= 0 in the expansion of A(x)] < (n - I)".

We define the deterministic Moore-type sequential machine vIt as follows:
vIt = (S, Z, Y, 0, A), where S, Y, and A are the same as in M, Z is the auxil­
iary alphabet as specified above, and 0 is the function defined by

if ut = 1 (13)

where Uk = [ut] [by construction, Ukx = Uk does not depend on x.] Finally,
let p(x) be an independent information source over Z such that the probability
of Z/ being emitted by p(x) is Pt. Consider now Figure 4. The source box here
emits all sources p(x), each of them through a separate line. The I-logic is a
combinatorial gate whose output is that emitted by source p(x) if the X input
is x.

It is easily seen that the above diagram is a realization of M (the states of M
being identified with those of vIt), for if the current state of vIt is Sf' then its
next state is SJ only if the input is Zk and o(s/, Zk) = sJ or ufJ = I [see Eq. (13)].
But the probability of the input being Zk is PkX, depending on the input symbol
x of M. Therefore, pr(next state of vIt sJlcurrent state ofvIt Sf) = ~ PkxUljk =
aij(x) by the construction of the matrices Uk.
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es YSource
I logic

Z Machine Output lin

box M

Input lines X

Figure 4. Schematic representation of a network synthesizing an SSM according to
second procedure.

As in the preceding procedure, the above construction can be further sim­
plified by using Lemma 3.1 again and resolving, accordingly, the stochastic
matrix A whose rows are the distributions p(x). The resulting diagram will be
as in Figure 5.

Source

Inputs X
Deterministic

Combinatorial Z Y (outpu
machine

network Mp(W inputsl

tsl

Figure 5. Simplification of network in Figure 4.

Since the simplification follows the same course as in the preceding case, the
details are left to the reader.

Example 5: Let M be the same SSM as in Example 4. The second procedure
will be used.

[
1 °

A = too

+ 1.[0
6 1

A(O) = t [~ ~l + i [~ ~l +°[~ ~l + t [~ ~l

A(l) = t[~ ~l + o[~ ~l + t[~ ~l + t[~ ~l

Thus p(O) = (t, t, 0, t) and p(l) = (t, 0, t, t)· Let A = [~~?~J, then

° 0l [0 1 ° OIl
1 ° +t ° ° °
~ ~ ~l + f2 [~ ~ ~
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Let Z = {ZI> Z2' Z3' Z4}, W = {WI' W2, W3, w4} and assigning Zl ~ 00 <- WI> Z2 ~

01 <- W2' Z3 ~ 10 <- W3, Z4 ~ II <- W4'

Table II Transition table for the machine in Example 5.

s s
w x z z (current) (next) y

00 0 00 00 0 0 I
00 1 10 00 1 1 0
01 0 01 01 0 1 1
01 1 11 01 1 0 0
10 0 11 10 0 0 1
10 1 00 10 1 0 0
11 0 11 11 0 1 I
11 I 11 11 1 1 0
Combinatorial network Machine J(

The combinatorial network and the machine .A are given in the tranSItIOn
tables, Table II. The synthesis of the machine M is given in the network in
Figure 6.

11 1/12

10 1/6

01 1/4

'------f-----I-- Y

r-----------T-----------------,
I I
I I W p(W)

I
I-f-f\-_~~ I r=~tl----, 00 1/2

I

I
I
I
I
I
I
I IL L ~

x

W{

Combinatorial
network

Machine M

Figure 6. Realization of Transition Table II.

c. Comparison of Methods

The methods given above are obviously not exhaustive. Another alternative
with the SSM in its Mealy-type form is as follows: The matrices A(yjx) are
arranged in the form of a single matrix
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A = [A(Yd X1 ) . i .A(YkIXt)]

A(Ytlxm) ... A(Yklxm)
where Y = Yh ... ,Yk and X = Xl' ..• , Xm • A is stochastic and can be resolved
according to Lemma 3.1, after which the process is continued along the same
lines as in the original procedure (details are left to the reader).

In the deterministic case the most common measure of complexity of a ma­
chine is the number of its states; it is evident, however, from the above consid­
erations that other factors (such as the number of gates in the resulting network
or its type), should also be taken into 'consideration.

For example, the degree of simplicity of the network is governed not only by
the realization method used, but also by the assignments prescribed for the state
variables and inputs (both original and auxiliary). Still another likely factor is
the number of symbols in the auxiliary alphabet W appearing in all the above
methods as a random source with prescribed probabilities for each symbol. It
is easily seen that from this viewpoint the first method is preferable, since by it.
Lemma 3.1 is applied to a matrix A with IXI x lSI rows and lSI columns, so
that IWI < (lSI - 1)(IX/ x lSI) + I, whereas by the second method the lemma
is first applied to the matrices A(x); since there are at most <lSI - l)ISI deter­
ministic stochastic matrices, the auxiliary alphabet Z has at most that many
symbols, and the resulting matrix A has IXI rows and at most <lSI - 1)ISI col­
umns. Resolution of the resulting matrix A yields

IWI < «ISI- l)ISI - 1)IXI + I

a much higher bound than in the first case, which proves our claim.

EXERCISES

l. Given the SSM, M = (S, X, Y, {A(x)}, A) with S = {Sh sz, S3}, X = {O, l},
Y = {a, b},

l
~ i 0] [~ 0t]

A(O) = 0 t t, A(l) = ; t 0

tOt t t i
and A(st) = A(sz) = b, A(S3) = a, give a synthesis of M using the first method.

2. As above, using the second method.

3. Prove that if {Aa is a set of stochastic matrices and (p;) is a probabilistic
vector of dimension equal to the number of matrices in the set, then 1: pjAj is
a stochastic matrix.

4. Let M 1 and Mz be machines over the same input alphabet X = {Xl' Xz} and
output alphabet Y = {O, I} respectively. Let the transition matrices be
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Transform M 1 and Mz into Moore-type machines and find the random distribu­
tion over W according to the second method. Show that although ISMll <
ISM'I, IWMl\ > IWM'I·

5. Prove that if some of the input lines of a deterministic sequential machine
are induced by a random independent source, the resulting machine is an SSM.

6. Work out in detail the construction of the network in Figure 6 according
to the second method.

7. As above using the method described in Subsection 3,d.

4. Bibliographic Notes

Subsections 1 and 2 of Section A are based on the work of Carlyle (1961)
with additions and examples suggested by Rabin (1963), Zadeh (1963b), Starke
(1965) and Salomaa (1968). Subsection 3 is based in part on the work of Nieh
and Carlyle (1968), Cleave (1962) and Davis (1961). Some additions in this
section are new and the synthesis procedure suggested in Subsection 3d is due
to Carlyle (private communication). Further reference: Booth (1964, 1965,
1967), Gill (1962-b, 1963), Harrison (1965) Hartmanis and Stearns (1966),
McCluskey (1965), Sheng (1965), Sklansky and Kaplan (1963), Tsertsvadze
(1963), and Warfield (1965).
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B. STATE THEORY AND EQUIVALENCE

1. Set KM and Matrix H M
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From this section on the machines to be considered are of the Mealy type
unless otherwise specified.

Definition 1.1: Given a machine M, KM denotes the ordered infinite set

KM = (I1M(lll) ... I1M(ylx) •.. I1M(vlu) •.. )

such that all vectors of the form I1M (vlu) for all pairs (v, u) are in the set and
the order is induced by some fixed lexicographic order on the pairs (v, u).
KM(m) denotes the ordered subset of KM such that I1M(vlu) E KM(m) implies
that l(v, u) < m and the order in KM(m) is the same as in K M. [KM] denotes
the [infinite] matrix whose ith column is the ith element of KM

•

Let Y(m) be the linear space spanned by vectors in KM(m) (Y denotes the
space spanned by all vectors in KM.) Then rank Y{i) < rank Y(j) if i < j,
and rank Y(m) < n = 181 for m = 0, 1, .... Furthermore, it is readily seen
that if Y(i) =Y{i + I) for some i, then Y{i) =Y{i + j) for j = 1, 2, ....
To prove this assertion, we observe that

11 E Y(i + 2) =} 11 = :E akl1(vkluk) and l(vk' Uk) < i + 2

=} 11 = :E ak A«Yklxk)l1(vk'luk') and l(vk" u/) < i + 1

=} 11 = :E akA(Yklxk) :E bJ l1(v~lukJ)
k J

and
(for Y{i) =Y(i + 1»

so that

11 = :E :E bJakA(Yklxk)11(v~JI~J) = :E :E bJak11(v~Jlu£J)
k J k J

and l(v~J' u£J) < i + 1. Thus,11 E Y{i + 1) =Y{i) and the assertion follows.
The above considerations show that there exists an integer m such that

1 = rank Y(O) < rank Y(l) < ... < rank Y(m) = rank Y(m + 1)

= rank Y(m + 2) = ... = rank Y < n

also implying that m < n - 1.
It is thus possible to find a set of linearly independent vectors in KM(n - 1)

such that any vector in KM is a linear combination of these vectors.

Definition 1.2: Let 1110' .. ,11m be a set of vectors having the following properties:
1. 111 is the vector 11(lll).
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2. 111>"" 11m are the first vectors in KM(in order of the vectors in it) which are
linearly independent and span the whole set.

The matrix HM is defined as

HM = [111> 11z, •.. ,11m] = [hij], i = 1, ••• ,n, j = 1, •.. , m < n
Thus, HM is such that hi} = 1, for i = 1,2, ... , n; 0 <hi} < 1 for all i and
j; the vectors 11i are elements of KM and linearly independent, and any vector
of the form 11(vlu) is a linear combination of them; finally, the rank of HM is
m<n.

In the sequel, when referring to the rank of a machine M, we refer to that
of its HM matrix.

Example 6: If the matrices of a single-input two-output machine Mare

AM(y,) [~
then its HM matrix is

o 1]o ~,
o ~

HM = r~ ~1
1 i

Straightforward computation shows that by multiplying any of the matrices
A(ya or A(yz) by any of the column vectors of HM [which are a subset of
KM(l)], we have a new vector linearly dependent on the columns of HM. It
follows that Y(l) _ Y(2) (- Y), which proves that the given matrix HM
has all the required properties.

EXERCISES

1. Construct a step-by-step algorithm for finding a matrix HM for a given
machine M.

2. Find an HM matrix for the machine whose matrices are

A(y,lx,) ~ ~J
0 4

~I' A(y,lx,) ~li0 0

IJ

1f

0 4 0 01f

0 2 0 01f

0 2 0 01f

~o
1 0

'I A(y,lx,) ~ ~l
0 0

~J
2" 2"

A(y,lx,) ~ ~
0 0 0 1 1

"3 "3
1 0 1 ' 1 !"8 ; 4"

3 0 1 1
"8 T2 T2
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3. Given a matrix HM = [hij] such that hij = 1 for all i, 0 < hI} < 1, and all
its columns are linearly independent vectors, show that a machine M can be
constructed effectively such that the given matrix H is its HM matrix.

4. Find a machine M whose HM matrix is

II ~ t~HM = 1 1 1
100

1 ~ i
5. Let M be a machine and 1t an initial distribution for M. Define the ordered
set of row vectors G(M,n) = (ft(A, A), ... , ft(y, x), ... , ft(v, u), ... ), such that
all vectors of the form ft(v, u) for all pairs (v, u) are in the set [if for some pair
(v, u) the vector ft(v, u) is not defined, then set ft(v, u) = ft(A, A) for this input­
output pair], and the order is induced by fixed lexicographic order on the pairs
(v, u). Show that a matrix G(M,n) = [gi'f] can be found effectively such that its
first row is ft(A, A), 0 < gij < I for all i and j, all its rows are linearly indepen­
dent vector elements of G(M,nl, and any vector of the form ft(v, u) is a linear
combination of the rows of G(M,n).

6. Construct a step-by-step algorithm for finding a matrix G(M,n) for a given
machine and a given initial distribution 1t.

7. Find the matrix G(M,n) for the machine whose matrices are as in Exercise 1,
with distribution 1t = (t, -h t, 0).

2. Equivalence and Minimization of States

Definition 2.1: Let 1t and p be two initial distributions for a given machine. 1t
and p are called k-equivalent distributions if the functions pivlu) and pp(vlu)
[see (7)] have the same values for all pairs (v, u) such that I(v, u) < k. 1t and p
are called equivalent distributions if the functions Pn(vlu) and pp(vlu) have the
same values for all pairs (v, u). We are now able to prove the following theorem:

Theorem 2.1: Two distributions 1t and p for a given machine are equivalent if
and only if they are (n - I)-equivalent, where n is the number of states of the
machine.

Proof: The "only if" part of the theorem is trivial. Assume now that the
condition of the theorem holds, i.e., pblu) = pp(vlu) for all pairs (v, u) with
l(v, u) < n - 1. This implies that 1t11(vlu) = PI1(vlu) for all pairs (v, u) with
l(v, u) < n - I, so that 1tHM = pHM. [The columns of HM are, by construc­
tion, of the form l1(vlu) with l(v, u) < n - 1.] Let (v, u) be any input-output
pair, then l1(vlu) = L: ai l1i where the l1/s are the columns of HM. It follows
that
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p,,(vlu) = n11(vlu) = n I; a/111 = I; a/n11/

= I; a/P111 = pI; a/11/ = P11(vlu) = pp(vlu) I
CorolJary 2.2: Two initial vectors nand P for a given machine M are equiva­
lent if and only if nHM = pHM.

Remark: An interesting geometrical interpretation of the above theorem and
corollary derives from the following considerations.

Let

for some machine M, and consider Figure 7. The set of all possible distribution

i "7
2

: c

Figure 7. Geometrical interpretation of distribution equivalence.

vectors for M is represented by the simplex g;n. Any point x on the simplex
satisfies the equation X111 = 1, x/ > O. Any point x also satisfying the equation
X112 = c for some real number c, must lie on the intersection of the simplex
with the plane X112 = c. The equivalence classes of initial distributions are
therefore represented by parallel segments in the simplex, and their number is
infinite.

Let M be a machine and let elY/x) be the ith row (assumed to be a nonzero
row) in the matrix A(ylx). Let e' be a substochastic vector with the property
elYlx)HM = e'HM, and let M' be a machine derived from M by replacing the
row elylx) of A(ylx) with the rowe'. We have the following:
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Theorem 2.3: The machines M and M' as above are state-equivalent.

Proof: It suffices to prove that the equality

l1M(vlu) = l1M'(vlu) (14)

holds for any pair (v, u). If the pair of symbols (y, x) does not appear in (v, u),
then (14) holds trivially, for nothing is changed in the matrix M'(vlu). Assume
now that the pair of symbols (y, x) apears only once in (v, u), i.e., (v, u) =
(VlyV2' UI xu2) where y does not appear in VI or V2 and x does not appear in U 1

or U2' Then

l1M(vlu) = l1M(vlyv2Iulxu2) = AM(vdv2)AM(ylx)l1M(v2Iu2)

By the definition of M', we have that AM(ylx)HM = AM'(ylx)HM, so that
AM(ylx)l1M(v2/u2) = AM'(ylx)l1M(v2/u2) as l1M(v2Iu2) is a linear combination of
the column of HM. It follows that

l1M(vlu) = AM(v1Iul)AM'(ylx)l1M(V2Iu2)

= AM(vl lul)AM'(ylx)l1M'(v2Iu2) = l1M'(vlu)

The theorem follows since the above argument is readily extended by induc­
tion to the general case. I
Theorem 2.4: Let M be an n-state machine such that two rows of HM are
identical. Then an (n - I)-state machine M* can be effectively construct¢
such that M and M* are state-equivalent (see Definition A.2.2).

Proof: Let e be a row in a matrix A(ylx) of M. Assume that the rows j and
k of HM are identical, then the coefficients of eJ and ek in the summation
L; e/h/q, q = 1,2, ... ,m are also identical. Replace the vector e in A(ylx) with
a new vector e', such that ek' = 0, e/ = eJ+ ek' and e/ = e/, otherwise. Then,

L; e/h/q = elh1q + ... + (eJ + ek)hJq + ... + Ohkq

+ ... + emhmq = L; e~h/q

with q = 1,2, ... , m or eH = e'H. The resulting machine M' is therefore
state-equivalent to the original machine M by the previous theorem, but the
kth columns in all matrices of M' are zero columns. Let M* be the system
derived from M' by deleting all kth rows and kth columns in the matrices of
M'. M* is clearly an (n - I)-state machine, for deletion of the zero columns
of the matrices of M' does not affect the relations L;YEY L;J aff'(ylx) = 1;
moreover, M* is state-equivalent to M'by the correspondence

and

This follows from the fact that

p"M'(vlu) = sJl1M'(vlu) = skl1M'(vju)

[the jth and kth entries in any column of HM' are identical, hence this holds
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also for any vector of the form I1M'(vlu)], and p:{'(vlu) = p:{'(vlu) by construc­
tion. The theorem follows by the transitivity of state equivalence. I
Definition 2.2: A machine M is in reduced form if no two rows of HM are
identical [i.e., no two of its states are equivalent]. The following corollary is a
direct consequence of Definition 2.2 and Theorem 2.4.

Corollary 2.5: Every machine M has a reduced-form state-equivalent machine.

Definition 2.3: An initiated stochastic sequential machine (ISSM) is an SSM
combined with a fixed initial distribution.

Definition 2.4: Two ISSMs (M, 1l) and (M*, 1l*) are k-equivalent if PnM(vlu) =
Pn,M'(vlu) for all pairs (v, u) with lev, u) < k. They are equivalent if the above
equality holds for all pairs (v, u).

Definition 2.5: A state Sj of an ISSM (M, 1l), is accessible if there exists an in­
put-output pair (v, u) [the pair (A, A) included] such that trlvlu) =F O.

Definition 2.6: An ISSM is connected if all its states are accessible.

Theorem 2.6: If Sj is an accessible state of an ISSM (M,1l), then there exists an
input-output pair (v, u) with lev, u) < lSI - 1 such that 1llvlu) =F O.

Proof' If Sj is accessible by an input-output pair (v, u) such that lev, u) = m,
then there exists a sequence of states oflength m + 1, Sh Sz,' .. 'Sm+1 such that
SI corresponds to a nonzero entry in 1l, Sm+1 = Sj, and there is a positive proba­
bility of transition by the corresponding input-output pair from one state in the
sequence to the next. If m > lSI - 1, then the graph connecting that sequence
of states contains a loop which can be reduced to yield a shorter input-output
pair (Vi, u') by which Sj is accessible. Proceeding in this way, an input-output
pair (v, u) with lev, u) < lSI - 1 can be found by which Sj is accessible.

Remark: It follows from the above theorem that the set of accessible states
of a given ISSM (M, 1l) is the set of states corresponding to nonzero entries in
all vectors 1l(vlu) where lev, u) < lSI - 1. A practical method for determining
the accessible states of (M, 1l) is thus available.

Theorem 2.7: Every ISSM has an equivalent connected ISSM.

Proof: We first observe that if SJ is not an accessible state, then the jth entry
in 1l is necessarily zero, so that the vector 1l' derived from 1l by deleting that
entry is a stochastic vector. We note next that if SJ is not accessible and, for
some pair (y, x), ai}(ylx) > 0, then Sj is not accessible either. Given an ISSM,
(M,1l), let (M', 1l') be the initiated machine such that:

a. 1l' is derived from 1l by deleting all entries corresponding to nonaccessible
states.

b. The matrices of (M', 1l' ) are derived from the matrices of (M, 1l) by delet­
ing all rows and columns corresponding to nonaccessible states. It is clear that
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(M', n') is the required ISSM because, by the previous remarks, if a deleted
column has nonzero entries, then all rows corresponding to these entries are also
deleted, so that the resulting matrices have the property that I;YE y M'(Ylx)
is a stochastic matrix, as required. I
Definition 2.7: Let A and B be two square matrices of order rand s respectively.
The matrix

. [A OJ
A+B= ° B

of order r + s is called their direct sum, and has the following properties:

a. If A and B are stochastic matrices, then so is A + B.
b. (AI +BI)(Az +Bz) = A(Az +BIBz (provided the pairs AI and Az, B(

and Bz, are each of the same order).

These properties are readily verified.

Definition 2.8: Let M = (S, X, Y, (A(ylx))) and M' = (S', X', Y', (A'(ylx))) be
two SSMs. The machine M + M' = (S US', X, Y, (A(ylx) + A'(Ylx)}) is
called their direct sum.

Theorem 2.7: Two ISSMs (M, n) and (M', n') are equivalent if and only if
they are (lSI + IS'I - I)-equivalent.

Proof: The "only if" part of the theorem is trivial. Assume now that the
condition of the theorem holds. Let M* be the direct sum M + M' and let p
and p' be the (lSI + IS'I)-dimensional vectors

where

p = (nH ••• , niSi' 0, ... ,0),

and

p' = (0, ... , 0, n/, ... , nlS'O

Then it is readily seen that p"M(vlu) = PpM'(vlu) and p",M'(vlu) = Pp,M·(vlu).
Therefore, assuming that (M, n) and (M', n') are (/SI + IS'I - I)-equivalent,
we have that Pp,M'(vlu) = p",M'(vlu) = PPM(vlu) = PPM'(vlu) for all pairs (v, u)
with l(v, u) < /SI + IS'I - 1. Thus p and p' are (lSI + IS'I - I)-equivalent
distributions for M*. The theorem now follows, using Theorem 2.1, and bear­
ing in mind that M* has lSI + IS'I states. I

Notation: For a given machine M, ~M denotes the set of all functions
~M = (p"M : n E .9'"}.
Definition 2.9: Two machine M and M' are equivalent if~M = ~M'. In other
words, for every distribution n there is a distribution n' and vice versa such
that (M, n) and (M', n') are equivalent ISSMs.
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Remarks

1. It is readily seen that ,%M is closed under convex combinations. To show
this, we observe that if P = (Pi) E & .. then

~ PiPni(vlu) = ~ PtClli17(vlu)) = ~ Pi ~ ll/17iv/u)
iii j

where p/ = ~ Pill/ and therefore P' = (p/) E &n.
2. By Pn(vlu) = ~i lliP,.(vlu), we have that the set,%M is the convex closure

of the set offunctions {PI" P", ... ,p,J = '%SM. [A function of the form PI, will
be called an extremal function.]

3. In terms of the sets ,%M, state equivalence of two machines M and M'
signifies that,%SM =,%S,M', hence [by the previous remarks] state equivalence
implies equivalence. The converse, however, is not true, for the elements of
'%SM [or of '%S,M'] need not be convexly independent. [A set is convexly in­
dependent if no element of the set is a convex combination of the other
elements].

4. The following two conditions, are equivalent for two machines M and M':
(a) ,%M = ,%M'
(b) '%SM c ,%M' and '%S,M' c ,%M

The proof is left to the reader.

Theorem 2.8: Let M be an n-state machine such that some row of HM is a con­
vex combination of the other rows. Then there exists an (n - I)-state machine
M' equivalent to M.

Proof: Let hi,' .. ,hn be the rows of HM, and assume that hi = ~j*i ajhj
(a j) E &n and ai = O. Thus, conv(hh' .. ,hn) = conv(hl , ••• ,hi-h hi + 12 ••• ,h.).
Let c; be any nonzero row vector in any matrix of M, then c;/~ c;i is a vector
in & .. so that ~j (c;j/L c;i)hj E conv(h12 ••• ,h.) = conv(h 12 ••• ,hi - 12 hi+ I , • •• ,

h.). It follows that there exists a vector P E &. and Pi = 0 with ~j (c;j~i c;i)hj
= ~""J pjhj. Thus, c;HM = (~c;Jp HM, and replacing the vectors c; in the
matrices of M with the corresponding vectors (~ c;i)P, we have a state-equiva­
lent machine M (see Theorem 2.3) such that the ith columns in all its matrices
are zero columns. M and M' are therefore equivalent machines (see Remark 3
above). Let (M', 1l) be an ISSM derived from M'. By the same argument as
above, we find that there exists a vector ll' E &. with 1l/ = 0 such that (M', 1l)
is equivalent to (M',ll'). Now the state Si for (M',ll') is not accessible, hence
there exists an equivalent ISSM, (M*, 1l*) with (n - 1) states only, by Theorem
2.7. The theorem follows by the transitivity of equivalence.

Definition 2.10: A machine M is in minimal-state form, if the set of row vec­
tors in HM is convexly independent.
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Corollary 2.9: Every machine M has an equivalent minimal-state from machine
M',

~ ~ ~1
o 0 OJ
000

o -l-]o 0
o i'
o -l-

Example: Let M be a machine with one input and two output symbols, de­
fined by the matrices.

A(ydx) = l~ ~
i 0
-l- 0

o 0]o 0
o 0

A'(y,lx) ~ [!o 0l
o 0,
o oj

HM{ ~]

The first and last rows of HM are identical, hence the machine can be reduced
to the state-equivalent machine M' [which is in reduced form] as described in
the text, with

A'(y,lx) ~ [~

The first row of HMo is a convex combination of the other two, so that M' is
state-equivalent to Mil, with

[

0 1 1]
A"(ydx) = 0 ~ ~,

O 1 1
2" 2" 1

0 1 1]
A"(Yzlx) = 0 ; ;,

000
Now let n = (n! nzn3) be any distribution for Mil, then

n* = (0 nz + tn j n3 + tnt)

has the property nHM" = n* HM", so that nand n* are equivalent vectors. But
the first state is not accessible in (Mil, n*), hence Mil is equivalent to M* [a
connected and minimal-state form machine] with

M*(Yzlx) = [~ ~J
Remark: Given a reduced machine M, in order to find its minimal-state form

equivalent machine M' one must be able to find the (unique) set of convexly
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independent [external] vectors among the row vectors of HM. This problem can
be solved by linear programming methods [e.g., Vajda (1961)]. Clearly, a vec­
tor hiM is a convex combination of the other row vectors of HM if there exists
a solution to the following linear programming problem: Find a vector x =
(XI> ... ,x.) such that ~j"'i x j = 1, Xi = 0, x j > 0 for all j and xHM = hiM.
Some of the extremal rows of HM can, however, be found by simpler methods
[see Exercises 7, 8, and 9 below].

EXERCISES

1. Find the reduced form and minimal-state form machine equivalent to the
one defined by the matrices

A(y,lx) Jt t t F A(y,fx) J~ ~ : :J
l-h -h -h oj lo 0 i i

Find a distribution 11:, equivalent to the distribution (t i- i i) for the above ma­
chine and such that 11: = (11:1 1I:z 11:3 11:4 ) and 1I:z = 11:3 = O.

2. Construct an algorithm for finding the set of all nonaccessible states of a
given ISSM.

3. Prove the relations (a) and (b) after Definition 2.7.

4. Prove the assertion in Remark 4.

5. Let II, ... ,Ik be functions. Prove that /; E conv (II> ... ,Ik) implies that
/; E conv(ll>'" '/;-1>/;+1>'" ,fk), unless/; is an extremal function.

6. Prove that the relation conv(%sM) = conv(%s,M') for two given minimal­
state form machine implies that % sM = % sf'!', with the following consequences:

a. All minimal-state form equivalent machines are state-equivalent and have
the same number of states.

b. If M and M' are equivalent machines and M is minimal-state form, then
lSI < IS'I·
7. Prove that if a row in some HM has an entry which is maximal or minimal
in the corresponding column, then that row is extremal (i.e., is not a convex
combination of other rows).

8. Let di be the value di = ~j (hijM)Z for a given row hiM in a matrix HM.
Prove that the rows corresponding to the maximal d i values are extremal.

9. Let hiM be an extremal row in a matrix HM, and let dij be the value dij =
~k (hik - hjk)Z where hj is some other row of HM. Prove that the rows hj cor­
responding to maximal di) values are extremal.



B. State Theory and Equivalence 29

10. Find a set of extremal column vectors in the matrix ((HM)T denotes the
transpose of HM).

(HM)T = [~ ~ ~ i i ""3"~I]
I I I I 3
~ "4 "3" "4 "4

11 *. Let L be a linear space over the real numbers and a an arbitrary fixed
element of L. The set of elements (y: y = x + a, x E L} is called a translate
of L or a flat. Prove that

a. A set of points in n-dimensional space, which is closed under convex com­
bination of its points, is a flat.

b.Let 9.- be the flat (hyperplane) 9.- = (1l = (1l h ••• , 1l.): I: 1l; = I}, and
Man n-state SSM. Define an equivalence relation over 9.- induced by M which
is right-invariant and such that 9.- is decomposed by this equivalence relation
into a cartesian product of two flats, the elements of the first flat being the
equivalence classes of the defined equivalence.

3. Covering Relations

Definition 3 1: Let M and M* be two SSMs. The machine M covers the ma­
chine M*(M > M*) if fFM :2 fFM·.

Theorem 3.1: The following four conditions are equivalent:

a. M>M.
b. There exists a stochastic matrix B such that B"M(vlu) = "M'(vlu) for all

pairs (v, u) (i.e., B[KM] = [KM·]).
c. There exists a stochastic matrix B such that

BAM(ylx)"M(vlu) = AM'(Ylx)B"M(V/U)

for all pairs (v, u) and all pairs (y, x).
d. There exists a stochastic matrix B such that

BAM(ylx)HM = AM'(ylx)BHM

Proof: (a) {:} (b): Assume that (a) holds. Then
Let 11M '(vlu) be a vector in K M

', then

• [pt;'.(V1U)] [P~l(.VIU)]
11M (vlu) = : = :

p:;:(vlu) p~",(vlu)

[

1l(l)11
M

(V1U) ] [1l(l) ]
= : =: 11M(vlu) = B11M(vlu)

1l<")11M(vlu) 1l<")
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where P;;fll is the function in fFM equal to PB,M' in fFM' and B the matrix
whose rows are the vectors n(l). Thus (a) implies (b). Assume now that (b) holds
and let p;;!' be any function in fFM' Let n be the distribution n = n* B; then,
for all pairs (v, u), we have

p~(vlu) = n11M(vlu) = n* B11M(vlu) = n* 11M'(vlu) = p;;!'(vlu)

Thus fFM ;2 fFM' and (b) implies (a).
(b) {=} (c): Assume that (b) holds, and consider Figure 8. It follows directly

"1 M (vlu)

"1 M
" (v ju)

M (Ylx)
---...:...---_~ "1 M (y vlx u)

M* (ylxl
___~__•• 'l)M"(y vlx u)

Figure 8. Mapping B from M to M*.

from this diagram that (b) implies (c). We now prove by induction on the
length of pairs (v, u), that (c) implies (b). For l(v, u) = 0 the implication is
trivial, as both 11M(A, A) and 11M'(A, A) have all their entries equal to I, and
therefore for any stochastic matrix B of suitable dimention B11M(A, A) =
11M'(A, A). Assuming that the equality B11M(vlu) = 11M'(vlu) holds for some
pair (v, u) with l(v, u) = k and (c), we have that

B11M(yvlxu) = BA(ylx)11M(vlu) = AM'(ylx)B11M(vlu)

= AM'(yJx)11M'(vlu) = 11M'(yvlxu)

as necessary. The implication is thus proved.
(c) {=} (d): That (c) implies (d) is trivial, as the columns of HM are vectors

of the form 11M (vlu). The converse is also obvious as any vector of the form
11M(vlu) is a linear combination of the columns of HM. I
Definition 3.2: Given two machines M > M*, JM' is the matrix whose columns
are vectors in KM' which are related to the same input-output pairs as the col­
umns in HM.

Theorem 3.2: Let M > M' be two machines such that rank M = rank M', then
there exists a stochastic matrix B such that BHM = HM'. Furthermore, if
11M(vlu) = 2:~1 oi11iM(the 11f!s being the columns of HM) is a vector in KM and
11M'(vlu) = 2:~1 bi 11f!' the corresponding vector in KM', then 0i = bi for i =
1,2, ... , m.

Proof' Let B be the matrix in condition (b) of Theorem 3.1. Then JM' =
BHM. Denote the columns of HM by 111> .•• , 11m and the corresponding columns
of JM' by 111*" .. , 11m*. Finally, let 11M(vlu) be any vector in KM. Then
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(15)

(16)

Thus any vector in KM' is a linear combination of the columns of JM' and
therefore, since M and M* have a common rank, rank JM' = rank HM' = rank
HM. Furthermore, the columns in HM' must be columns in JM' (in the same
order). If this is not true, then let l1M'(vo/uo) be the first column in HM' which
is not a column in JM'. The corresponding vector '1M(voluo) in K M is, by defini­
tion, not in HM, hence it is a linear combination of vectors in HM preceding
the vector l1M(voluo) in KM. This would imply by (16) that '1M'(voluo), a column
of HM', is a linear combination of other columns of HM', contrary to the pro­
perties of HM'. Thus the columns of HM' are a subset of those of JM'. Now
this subset cannot be proper, for rank HM = number of columns in HM =
number of columns in JM' = rank JM' = rank HM' = number of columns in
HM'. The second part of the theorem is an immediate consequence of the first
part and of relations (15) and (16) above. I
Theorem 3.3: Let M and M* be two equivalent SSMs with nand n* states re­
sINctively. Then rank M = rank M*, conv(h I

M, ... ,h.M) = conv(h I
M·, . .. ,

h.,M')(where hiM and hiM' are the ith rows in HM and HM' respectively), and
there are stochastic matrices Band B* such that HM' = BHM and HM =
B*HM'.

Proof: M ~ M* implies that M > M* and M* > M. By Theorem 3.1, there
exist stochastic matrices Band B* such that l1M'(vlu) = B'1M(vju) and '1M(vlu) =
B*'1M'(vlu) for all pairs (v,u). This implies that rankM* >rankM> rank
M*, or rank M* = rank M. By Theorem 3.2, HM' = BHM and HM = B* HM',
signifying that every row of HM is a convex combination of rows of HM' and
vice versa, or, conv(hI

M, ... , h.M) = conv(h t
M·, ... , h.,M'). I

Theorem 3.4: Let M and M* be two state-equivalent machines with nand n*
states respectively. Then (hiM.. .. , h.M} = (hiM, ... , h.,M'J.

Proof: The entries in the ith row of HM are values of an extremal function
h M E .'Fs

M for some input-output pairs (..1., ..1.), (VI' uI ), ... , (vm-t> Um-I)' As
M is state-equivalent to M*, it follows from Remark 3 on p. 26 that .'FsM =
.'FS •M' so that there exists an extremal function Ps,M' E .'Fs,M equal to Ps,M.
The entries in the ith row of HM are therefore equal to those of the jth row of
the matrix JM' whose columns are 11M'(..1./..1.), l1M'(vdul ), ••• ,11M'(vm _ I lum _a.
Now, state-equivalence implies equivalence and therefore, by the previous
theorem, JM' = HM'so that there exists a row in HM', the jth row, identical
with the ith row in HM. The proof is completed by reversing the argument. I
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Theorem 3.5: Let M and M* be two state-equivalent and reduced machines
with nand n* states respectively, then n = n*; the rows of HM are a permuta­
tion of the rows of HM*; and, if AM(ylx) and AM*(yix) are corresponding ma­
trices of M and M* respectively, then AM(ylx)HM = AM*(ylx)HM' up to a
permutation of rows.

Proof: It follows by definition that no two rows of HM and no two rows of
HM' are identical (the machines are reduced). By the previous theorem
{hiM, .. . , hnM} = {hiM', .. . , hn•M*]. Combining these facts, we have that n =
n* and the ordered set of rows of HM is a permutation of the ordered corre­
sponding set of rows of HM·. If the states of M* are properly ordered, then the
equality HM = HM' holds and, as the machines are state-equivalent and the
equivalence is one-to-one, we have that '7M(vJu) = '7M*(vlu) for all pairs (v, u).
By (5), AM'(ylx)HM* = AM*(yJx)HM'. The theorem is thus proved. I
Theorem 3.6: Let M and M* be two equivalent minimal state form machines
with nand n* states respectively, then

a. n = n*.
b. M is state-equivalent to M*.
c. The corresponding matrices AM(ylx) and AM*(yJX) satisfy the relation

AM(ylx)HM = AM*(ylx)HM' up to a permutation of rows.
d. There exist permutation matrices Band B* such that HM = B* HM* and

HM* = BHM.

Proof" By Theorem 3.3, since M and M* are equivalent, we have that conv
(hiM, ... , hnM) = conv(h l M*, ... , hnM*). By definition, points hiM, ... , hnM
are the vertices of the polyhedron convfhl

M , ••• , hnM} and points hI
M*, ... ,

hn•M* those of conv{hI
M *, ... ,hn*M*}. As the set of vertices of a polyhedron is

uniquely determined by the polyhedron, we have that {hiM, ... , hnM} =
{h I

M*, ... ,hn*M·}. M and M* being minimal-state form, they are also reduced­
form, so that all points in either set on both sides of the above equality are
distinct. Thus n = n* and M is state-equivalent to M*. Properties (c) and (d)
now follow from the previous theorem. I
Corollary 3.7: Let M and M* be two equivalent machines such that M is a
minimal-state form machine. Then n < n*.

Proof' The set {hiM, ... , hnM} is the unique set of vertices of the polyhedron
conv(h I

M , ••• ,hnM) = conv(hI
M *, ... ,hn,M*), and the number of vertices of a

polyhedron is the smallest number of points such that their convex closure spans
the whole polyhedron. I

Remark: Compare the above theorem and corollary with Exercise 6 in the
previous section.

We now consider the uniqueness problem for reduced-form and minimal-state
form machines.
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Definition 3.3: If HM is a matrix related to a machine M and ~ is a row sub­
stochastic nonzero vector of suitable dimension, then hM(~) is the point
(~/L: ~JHM in conv(h1, ••• ,hm). The vector ~ is simplicial, if hM(~) is a point
on a face of conv(h l , •.• , hm ) which is a simplex.

Definition 3.4: Two machines M and M' are isomorphic if they are equal up to
a permutation of states.

Theorem 3.8: Let M be a reduced-form machine. There exists a reduced form
machine M* which is state-equivalent but not isomorphic to M if and only if
there exists a row ~(ylx) in a matrix- AM(ylx) which is not simplicial.

Proof' Assume first that all the rows in the matrices AM(ylx) are simplicial.
If M* is reduced and state-equivalent to M, then by Theorem 3.5, AM(ylx)HM =
AM·(Ylx)HM· for all pairs (y, x) up to a proper rearrangement of states. Since
the rows of AM(ylx) are simplicial, this is possible only if AM(ylx) = AM"(y[x),
for an interior point of a simplex has a unique representation as a combination
of its vertices. Thus M is isomorphic to M*. Assume now that there is a row
~(ylx) in a matrix AM(ylx) which is not simplicial. This means that h(~(ylx)) =
L: (1,/h/, where the h/ corresponding to nonzero coefficients (1,/ are not a simplex.
This implies, by a classical theorem on convex bodies (see Exercise 5 at the end
of this section), that there exists a set of coefficients (PJ not identical to ((1,J,
such that the combination L: p/h/ is convex and equals L: (1,/h/. Thus there
exists a substochastic vector p not identical to ~(ylx) and such that ~(ylx)HM =
pHM. Let M* be a machine derived from M by replacing the vector ~(ylx) in
A(ylx) with the vector p. By Theorem 2.3, M and M* are state-equivalent, but
M* is not isomorphic to M by construction. I

Assume now that two equivalent machines M and M* are in minimal-state
form. Then they are also in reduced form and state-equivalent [Theorem 3.6].
This observation leads to the following corollary.

Corollary 3.9: Let M be a minimal-state form machine. There exists a minimal
state form machine M* which is equivalent but not isomorphic to M if and
only if there exists a row ~(ylx), in a matrix A(ylx) of M, which is not simplicial.

It follows from the above theorem and corollary that the uniqueness of the
reduced or minimal-state form of a machine M is conditional on the nature of
the points hM(~(ylx)), where ~(ylx) is a row in a matrix AM(ylx). To find the
nature of these points, we must be able to extract from the set of points
(hiM, . .. ,hn

M) (denoted by V throughout this subsection) all subsets W such
that conv(W) is a face of (V). This done, we have to decide whether the faces
conv( W) are simplexes or not. A decision procedure for these questions is based
on a theorem stated below. [The reader is referred to Grunbaum (1968) for
proof of the first part of the theorem.]

Let M and HM be a machine and its corresponding H matrix, assumed to be
of dimension n x m. With HM we associate a new matrix EM such that the
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columns of jiM form a basis for the null-space of the space spanned by the
columns of HM. Clearly jiM is an n x (n - m) matrix. Let V be the set of
rows of jiM [considered as points in (n - m)-space]. Let N' = (it, ... , i k ) be
a subset of the set of integers N = (I, ... ,n). V(N') denotes the set V(N') =
(hi!' ... ,hi,) and similarly V(N') = (hi" ... ,hi.)' where V = (ht , ••• , h.).
Finally, V - W stands for the set V(N - N') where W = V(N').

Definition 3.5: The set of points conv(W) = conv(V(N'» is a coface of conv
(V) if and only if conv(V - W) is a face of conv(V). [We shall say, alterna­
tively, that W is a coface of V.]

Theorem 3.9: W = V(N') is a coface of V if and only if either W = ifJ or 0 is
in the relative interior of V(N'). [The whole polyhedron is considered as a face
of itself.] A face V(N') = Wof V is a simplex if and only if the set of its ver­
tices is linearly independent.

Remark: It is clear that the criteria used in this theorem are decidable and
effectively checkable by straightforward linear programming methods. Note
also that the second part of the theorem is a trivial consequence of the
definitions.

EXERCISES

1. Let M be a reduced machine such that all entries in its matrices are either
oor 1 (i.e., M is deterministic). Prove that M is also in minimal-state form.
2. Prove: If M is a reduced deterministic SSM, then no SSM M* such that
M* > M has fewer states than M.
3. Prove: Let M and M* be two state-equivalent machines such that the map­
ping between the states of M and those of M* is one-to-one, then for every pair
(y, x), AM(ylx)HM = AM*(ylx)HM, and AM*(ylx)HM* = AM(ylx)HM' up to a
permutation of rows.
4. Prove: M* > M if and only if /FsM ;2 /FM·.

5. The following is Radon's classical theorem on convex bodies:
Theorem: Each set of n + 2 or more points in n-dimensional space can be sub­
divided into two disjoint sets whose convex closures have a common point.

On the basis of this theorem, prove that for any row c;(ylx) in a matrix
A(ylx) which is not simplicial, there exists a substochastic vector not identical
to c;(ylx), with h(c;(ylx» = h(p).

6. Prove: Let M be a machine. Construction of a reduced form by merging
equivalent states yields resultant machines which may be nonisomorphic only
if there exists two rows c;;(ylx) =/; C;lylx) in a matrix A(ylx) which are not
simplicial and such that h(c;;(ylx» = h(c;lYlx» and the states Si and sJ are
equivalent.
7. Prove: Let M be a machine. Construction of a minimal-state form equiva­
lent machine yields resultant machines which may be nonisomorphic only if
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there are two rows elYlx) =f::. eiylx) in a matrix A(ylx) which are not simplicial
and such that h(ei(ylx)) = h(e/Ylx)), the states Sj and S) are equivalent and
hie = h)) is a vertex of conv(h 1, ••• ,hn ).

Note: Is "hi is a vertex of conv(h1, ••• , h.)" a necessary condition? Explain.

8. Let HM be the matrix
1 1 1

"2 "2 "2
1 0 1
"2 "2

HM= 0 0 1
"2

0 1 1
"2 "2

0 0
Find the faces of conv(h ll ••• ,hs) for the above matrix, and also which faces
are simplexes.

9. Consider the following:

Definition: A machine M is observer/state-calculable if there exists a function
f: S x X x Y --+ S such that ai}(ylx) = 0 if s) =f::. f(sj, x, y). Accordingly, such
a machine has at most one nonzero element in each row of its matrices. What
corollaries derive from Theorem 3.8 and Corollary 3.9 when applied to it?

10. Prove that the vertices of a polyhedron are uniquely determined by the
polyhedron.

11. Prove that any machine of rank 2 has an equivalent two-state, minimal­
state form, machine.

12. Prove that the covering relation is transitive.

4. Decision Problems

Theorem 4.1: Let M > M* be two machines, and let B be any stochastic matrix
such that BHM = JM". Then BI1M(vlu) = 11M"(vlu) for all pairs (v, u).

Proof" By Theorem 3.1 (M > M*) there exists a stochastic matrix B' such
that B'I1M(vlu) = 11M"(vlu), in particular B' HM = JM". Thus B' HM = JM" =
BHM, so that the rows of B considered as distributions for M are equivalent to
the corresponding rows of B'. It follows that BI1M(vlu) = B'I1M(vlu) = I1M'(vlu)
for all pairs (v, u), and the theorem is proved. I
Corollary 4,2: Let M and M* be machines. If for some stochastic matrix B,
such that BHM = JM', the condition BAM(y[x)HM = AM'(yjx)BHM does not
hold for all pairs (y, x), then M;;j:: M'.

Proof· It is implicit in the proof of Theorem 3.1 that the matrix B satisfying
the relation (b) satisfies also the relation (d). Using the previous theorem, we
conclude that if M > M* and BHM = JM', then B must satisfy the relation
(b) in Theorem 3.1. The corollary is thus proved. I
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Corollary 4.3: Let M and M* be machines. M > M* if' and only if there exists
a stochastic matrix B satisfying the conditions BHM = JM', and for any such
B the condition (d) of Theorem 3.1 is satisfied.

Corollary 4.4: Given two machines M and M*, it is decidable whether M >
M*.

Proof: There exist algorithms for finding the matrices HM and JM·. Using
the preceding corollary, we see that if a stochastic matrix B such that BHM =
JM" does not exist, then M 4': M, and this question can be answered with the
aid of linear programming methods. If such a B does exist, it is again obtainable
by linear programming methods. Finally, with B found, if and only if the rela­
tion (d) in Theorem 3.1 holds for it, then M > M*. The corollary is thus
proved. I
Corollary 4.5: Given two machines M and M*, it is decidable whether M =
M*.

Proof" M = M* if and only if M > M* and M* > M. I

EXERCISES

1. Given two machines M and M*, formulate a decision procedure for finding
whether M > M* based on Theorem 2.7.
2. Given two machines M and M*, formulate a decision procedure for finding
whether M =M*, based on the fact that M _ M* implies that rank M =
rank M*, on Theor~m 3.2, and on Corollary 4.3.

3. Let M and M* be the machines whose defining matrices are

AM(OIO) ~ [~
1

H AM(IIO) = [~
1

~J
"4 "2

5 3
TO "If

0 1

AM(OjIl ~ [~
0

H AM(II!) ~ [f 0

f]5 0TO
1 0"4

AM"(OIO) ~ [11

!l AM"(I!O) = [~
i

~]
'lI

1 0"4

0 1
"2

AM"(OII) ~ [:

0 II A~(lll) ~ [~
0

~]3 0'lI

3 0TO

Check for M > M* and M* > M.
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5. Minimization of States by Covering, Problem I
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In the preceding section, we have seen that any machine can be reduced to an
equivalent reduced-form or minimal-state-form machine. We now consider
further reduction of the number of states of a minimal-state-form machine.
The following problems are considered:

Problem I: Find an n*-state machine M* such that M* > M and n* < n.
Problem II: Find an n*-state machine M* such that M > M* and n* < n.
Problem III: Let (M, n) be an initiated machine; find an initiated machine

(M*, n*) such that (M, n)~ (M*, n*) and n* < n.

A solution to Problem I yields a machine capable of realizing more functions
than the original and with fewer states, and a solution to Problem II a machine
less general than the original and again with fewer states. [The need for con­
sidering the latter problem is due to the fact that there are cases in which it
alone has a solution.] In Problem III we seek a minimal-state realization of a
particular function defined by a given machine.

We have proved in Section 3 [Theorem 3.1] that M* > M holds for two
machines M* and M, if and only if there exists a stochastic matrix B* such
that

for all pairs (v, u)B*'lM*(vlu) = 'lM(vlu)

or, equivalently, such that

B* AM*(y/x)HM* = AM(ylx)B* HM*

(17)

(18)

If M is given and an answer to Problem I sought for it without additional in­
formation on M*, (17) or (18) are of little use, as the matrix HM* is not known.
On the other hand, one may begin the search for a solution by assuming that
rank M* = rank M. If this is the case, then using Theorem 3.2, we know that
a matrix B* satisfying (17) must also satisfy B* HM* = HM. Since only HM is
given, one may begin with any HM* matrix such that

and n* < n (19)

[since B* is stochastic, (19) is necessary], and try to reconstruct M* according
to (18). The following algorithm ensues:

Step 1: Assume rank M = rank M*, and find any matrix HM* satisfying (19).

Step 2: Find a matrix B* satisfying

B*HM* = HM (20)

Step 3: Solve (18) for AM*(ylx), subject to the condition that the matrices
AM*(y/x) be nonnegative.
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If all steps prove effective, the algorithm yields a solution to Problem I. In
some other cases it may provide a definite negative answer as to the existence
of a solution. Unfortunately, it has many shortcomings in the general case, and
these are considered in the following comments on its three steps.

Step 1: The equality rank M* = rank M has not been proved to be a neces­
sary assumption. In other words failure to find a solution to Problem I under
this assumption does not mean that no solution exists. On the other hand, no
counterexample has been found to-date for proving that the situation M* > M,
n* < n, rank M* > rank M, and no M+ > M with n+ < n and such that rank
M+ = rank M may occur, but here no method is available for finding a cover­
ing machine M*. There is, however, at least one case which necessitates the
above assumption, namely that of rank M = n - I [see Exercise I in this
section].

Still another shortcoming of the first step is that it involves another problem
to which no general solution is known (although solutions are available for some
particular cases), namely: Given a polyhedron within the positive unit cube,
find another polyhedron within the cube with fewer vertices and covering the
given polyhedron.

Step 2: With a matrix HM' assumed, there may exist an infinity of matrices
B* satisfying (20), obtainable by linear-algebra methods, but we need not check
all of them. To ascertain whether the assumed HM' actually leads to a covering
machine as required, it suffices to check a single B* satisfying (20), and if step
3 fails here, this signifies that the assumed HM' is unsuitable. This follows from
Corollary 4.2 and Theorem 3.2. [The reader is advised to attempt a detailed
proof.]

Step 3: Under the assumption that rank M = rank M*, the matrix B* found
in Step 2 is a transformation which perserves the rank of the row space of HM'
and thus has a (nonstochastic) left inverse B such that BB* HM' = H M'. Mul­
tiplying both sides of(18) by B, we have BB*AM'(y/x)HM' = BAM(ylx)B*HM'.
Thus one can write the matrix BB* in the form BB* = I + N, where I is the
n*-dimensional unity matrix and NHM' = O. Let 11 be any column vector which
is a linear combination of the columns of HM', then Nl1 = O. However, since
all columns of the matrix AM'(y/x)HM' are linear combinations of the columns
of HM', BB* AM' HM' = (I + N)AM' HM' = AM' HM' and the following equa­
tion results

AM'(ylx)HM' = BAM(yjx)B* HM' (21)

Solving Eq. (21) for AM'(y[x) [all other matrices are known], subject to the
restriction that AM'(y/x) are nonnegative matrices, provides the answer to our
problem. The system (21), subject to the above restriction is readily reduced
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to a set of linear programming problems. Failure to find a nonnegative solution
to (21) indicates that the chosen matrix HM' is unsuitable and a fresh start is
called for.

It is thus seen that the above three step procedure is not an algorithm in the
ordinary sense, for even in the case where the assumption that rank M = rank
M* is justified there still may be an infinity of HM' matrices satisfying (19)
which may serve as starting point for Step I.

Example 7: Let M be a five state machine [X = (0, I}, Y = (0, I, 2)]

o ~ 000
0+000

A(OIO) = 0 0 0 0 0
00000
o 0 0 0 0
o 00+ 0
o 0 0 + 0

A(210) = 0 0 0 + 0
o 0 0 + 0
o 0 0 0 I
o 0 0 0 0
i 0 tOO

A( III) = i 0 tOO,
00000
00000

An HM matrix for this machine is

o 0 0 0 0
o 0 0 0 0

A(lIO) = 0 tOt 0
o tOt 0
o 0 0 0 0

+ 000 0
o 0 000

A(OII) = 0 0 0 0 0
~ 0 0 0 0
o 0 0 0 0
o 0 + 0 0
00+ 0 0

A(2jl) = 0 0 + 0 0
o 0 ~ 0 0
0+0 0 ~

~ + + hi
~ 0 ~ hz
o 0 + h3

o + + h4

o 0 hs

As the first coordinate of the hiS is always I, one may use a three-dimensional
subspace (again with first coordinate I). The geometrical representation is given
in Figure 9.

Since rank M = 4 = n - I, we have here that any covering machine M*
with fewer states has the same rank (see Exercise I, Section 5) and four states.
The figure shows that the only possible choice, in this case, for HM' is
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Figure 9. Geometrical interpretation of HM.

HMO {

1 0

fl
h1*

0 0 h2*
0 1 h3*
0 0 h4*

and the matrix B* satisfying (20)
1 0 1 02" 2"
1 1 0 02" 2"

B* = 0 0 0
0 1 1 02" 2"

0 0 0 1
Let us now try to solve (18) for AM'( I/O), replacing all other matrices in that

equation with the above ones. This yields (B* HM' = HM)
1 0 1 0 0 0 0 0 0 1 1 1 1
2" 2" 2" 2" 2"
1 1 0 0 0 0 0 0 0 1 1 0 1
2" 2" 2" 2"

0 0 0 AM'(l!O)HM' = 0 1 0 1 0 1 0 0 1
4 4 2"

0 1 1 0 0 1 0 1 0 1 0 1 1
2" 2" 4 4 2" 2"

0 0 0 1 0 0 0 0 0 I 0 0
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The first, second, and fifth rows on the right-hand side are zero rows. As for
the left-hand side, assuming that a nonnegative matrix AM'(lIO) satisfying the
above equation exists, it is seen that the first and third rows of AM'(ljO)HM'
are zero rows [contributing to formation of the first row on the right-hand side];
the first and second rows of AM'(lIO)HM' must be zero rows [contributing to
the formation of the second row on the right-hand side]; finally the fourth rQw
of AM'(110)HM' is a zero row [being identical to the fifth row on the right-hand
side]. Thus all rows of AM'(lIO)HM' must be zero rows, but this is impossible
as there are nonzero rows on the right-hand side. The conclusion is that there
is no machine M* convering M with less than five states, although rank M =4.

Example 8: Let M be a four state machine [X = Y = {a, I}],

A(OjO) ~ l~ ~ ~ ~J A(ljO) ~ II ~ 1~J

A(Oll) ~ l~ ~ IIJ' A(lll) ~ l~ i~iJ
and HM matrix for this M is

t OJ hi° -! hz

! t h3

t! h4

As rank M = 3 = n - 1, a covering machine M* with fewer states must have
the same rank and three states. The geometrical representation of this HM is
shown in Figure 10, and it is seen that the only possible choice for HM' is

HM' = [: ~ ~,
1 1 1

Using this HM', two possible matrices B* and B are found as

II ° OJ
B* = 0 1 °

I 0 I'
"2 2"

O I I
2" 2"

[1 ° ° 0]
B= ° 1 ° °° -1 ° 2

Using these matrices and (21) the machine M* is found
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r-----------------....,. h;

hi =h~

Figure 10. Illustration to Example 8.

AM"(OIO) = [:

1

H AM"OIO) = [~
0

~]
"4

0 0
1 02

AM"(OII) ~ [:

0

H AM"(III) ~ [~
3

~]
"4

1 3
1S 1S
1 0"4

By construction, M* > M, and M* has only three states.

EXERCISES

1. Let M* > M be machines with n* and n states respectively, and such that
n* < n. Prove that rank M < rank M* < n, hence rank M = n - I implies
rank M = rank M*.

2. Let M* > M be as in Exercise I, let m* and m be their respective ranks and
B* the matrix satisfying (17) for these machines. Prove that

a. m < m* < m + n* - rank B* < n* < n, hence if rank B* = n*, then
m* =m.

b. m < rank B* < m + n* - m < n*.
Hint: Use Sylvester's inequalities and (17).
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OPEN PROBLEMS
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a. Answer the following decision problem, or prove that it is not decidable:

Given a machine M, does there exist a machine M* with fewer states than
M and such that M* > M?

b. If the problem under (a) is decidable, then construct a finite algorithm for
finding a machine M* > M with ISM"I < ISMI, whenever such a machine M*
exists.
c. Construct an algorithm for finding all solutions to the following problem:

Given two convex polyhedra VI and Vz such that VI covers Vz [i.e., the ver­
tices of Vz are convex combinations of those of VI], find a third polyhedron V3,

with a minimal number of vertices, which covers Vz and is covered by VI'

6. Minimization of States by Covering-Problem IT

This section deals with the problem of finding a machine M* covered by a
given machine M and with fewer states.

Replacing M* with M in (18), we have

BAM(ylx)HM = AM·(ylx)BHM (22)

Since M is given and so are HM and AM(ylx), Problem II appears to be simpler
in the sense that (22) can be used without any a priori assumption as to the
rank of M*. Thus one can assume any stochastic matrix B having fewer rows
than columns and try to solve (22) in terms of AM"(yJX) [for all pairs (y, x)]
subject to the restriction that the matrices AM"(ylx) be nonnegative.

If no solution exists for a given B, another is assumed and so on. The draw­
back here is that their number is infinite, and no means has been found to date
for solving the problem [or deciding that no solution exists] on the basis of a
finite number of checks.

Definition 6.1: If HM is the matrix H associated with a machine M and A any
nonnegative matrix of suitable dimension, then hM(A) is the set of all nonzero
vectors of the form hM(Ai), Ai denoting the ith row of A [see Definition 3.3].

The following theorem is a geometrical interpretation of (22), enabling us to
check whether or not a chosen matrix B provides a solution to our problem.

Theorem 6.1: Let M be a machine. There exists a machine M* < M with
n* < n states if and only if there exists a stochastic n* x n matrix B such that

U hM(BAM(ylx» c conv hM(B)
(Y,x)

(23)

A machine M* as above can be constructed effectively if a matrix B satisfying
(23) is given,
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Proof' Assume first that M > M* with n* < n. Then (22) is satisfied by
some n* X n stochastic matrix. Let e= (e1o" . ,e.) be any nonzero row in
AM'(ylx) and C = (C1o ... ,C.) the corresponding row ofBAM(ylx) on the left­
hand side of (22). All entries in the first column of HM are 1 and, since B is a
stochastic matrix, so are all entries in the first column of BHM. Thus CHM =
eBHM =} I; CI = I; el =} (CII; CI) HM = (elI; et) BHM.

Now elI; el is a probabilistic vector, hence (elI; eJBHM is a convex com­
bination of the rows of BHM, or (elI; el)BHM E conv h(B). On the other
hand, (CII; CI) H = h(C) by definition, so that U (y,x) h(BAM(ylx)) s: conv h(B).

Assume now that there exists an n* X n stochastic matrix B satisfying (23);
then any row vector in the left-hand side of (23) is a convex combination of
the points"in hM(B). Those vectors [on the left-hand side] are of the form rx,CHM,
where rx, is a normalizing constant and' is a row in a matrix BAM(ylx) for some
pair (y, x). We thus have

(24)

where 1l is a stochastic vector.
It is readily seen that (22) is satisfied if the matrices AM'(ylx) are defined as

follows:

a. If a row in BAM(ylx) is a zero row, then so is the corresponding row in
AM·(yJX).

b. Let' be a nonzero row in BAM(ylx), then the corresponding row in
AM'(ylx) is (l/rx,)1l, where 1l and rx, are as in (24) the theorem is thus
proved. I
Corollary 6.2: Let M be an n-state machine of rank m. Let hi *, ... ,h••* be a
set of n* < n points in m-dimensional space, such that

U hM(AM(ylx)) c conv(h l *, ... , h••*) c conv(h1o"" h.) (25)
(y,x)

then there exists an n*-state machine M* < M and M* can be effectively con­
structed if the points hi*, ... , h••* are given.

Proof' Let B be the stochastic n* X n matrix such that

Since conv(hh ... , h••*) c conv(h l , ••• , h.), B can be found effectively. For
any stochastic matrix B, it is true that

U hM(BAM(ylx)) c conv( U hM(AM(ylx))
~~ ~~

so that, for the above B we have
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U hM(BAM(ylx» c conv( U hM(AM(ylx»
~~ ~~

c conv(h,*, ... , hn.*) = conv hM(B)
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by the definition of B.
Equation (23) of Theorem 6.1 is thus verified for the above matrix B, and

the corollary follows.
A particular case of the above corollary would be when the points (hi*, ... ,

hn• *) are a subset of the points (hI> ... ,'hn). In this case B would be a degen­
erate stochastic matrix. We therefore also have the following:

Corollary 6.3: Let M be an n-state machine. If there exists a subset (hi*, ... ,
hn.*) of the set of points (hI> ... ,hn) such that

U hM(AM(ylx» c conv(h,*, ... , hn.*) (26)
(Y,x)

then an n*-state machine M* < M can be constructed effectively.

The above corollaries may help in solving our problem in some particular
cases. On the other hand, the following remarks are in order:

1. The conditions specified in the corollaries are only sufficient conditions,
and a solution to the covering problem may exist even if the conditions do not
hold for a given machine (see Exercise 1 at the end of this section).

2. While the conditions of Corollary 6.3 are decidable (prove this fact), this
is not known to be true for those of Corollary 6.2. In fact the latter involve
the unsolved problem mentioned on p. 38.

Example 8 (continued)
We shall show, using a procedure based on Theorem 6.1, that there exists no

machine M* < M with n* < 4 states, where M is the machine in Example 8.
This will show that the second covering problem is nontrivial in the sense that
a solution is not always available.

We first arrange the set U(Y,x) hM(AM(ylx» in tabular form (Table III) where
81> ••• ,84 are the states of M, and hI> ... , h4 the rows of HM; if a row corre-

Table III Distribution of the set u(Y,x) hM(AM(y Ix» according to states and matrices in
{AM(y[X)}

T hM(AM(O I0» hM(AM(IIO» hM(AM)(O II» hM(AM(III»

8 1 ¥hl + h2) t(h l + h3) ° ~(h2 + h4)

82 ° ~(hl + h3) {-(h3 + h4) {-(h2 + h4)

83 {-(hi + h2) {-(hi + h3) {-(h3 + h4) i-(h2 + h4)

84 i-(h l + h2) i-(h l + h3) i-(h3 + h4) {-(h2 + h4)
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sponding to SI in some matrix AM(ylx) is a zero row, then the corresponding
entry in the table is zero. Let B be any stochastic matrix with m < 3 rows.
The table T', corresponding to the set U(Y,x) hM(BAM(yjX», has only m rows.
A nonzero entry in a column of T' will be a convex combination of the nonzero
entries in the corresponding column of T. [This follows from the definitions.]
Since all nonzero entries in a column of T are identical, any convex combina­
tion of them results in an entry having the same value as the combined entries.
We shall consider two cases:

a. The matrix B [which has m < 3 rows] has nonzero entries in two, three,
or all of its columns. The entries in the rows of T' are, in this case, convex
combinations of the corresponding entries in at least two rows of T, hence, T'
has nonzero entries in all its columns, which are identical to the nonzero entries
in the corresponding columns of T. This implies that

I U hM(BAM(ylx»j = number of different nonzero entries in T'
(Y,x)

= number of different nonzero entries in T

= I U hM(AM(ylx»j
(Y,x)

On the other hand, since B has m < 3 rows, we have that the set hM(B) has
at most three different points. It is seen in Figure 10, where the points in the
set U(Y,x) hM(AM(ylx» are denoted by UI> ••• , U4, that (23) cannot be satisfied,
since the set UI> ••• , U4 cannot be covered by a convex closure of three points
only, inside conv(hl>"" h.).

b. If the matrix B has nonzero entries in one column only, then the table
T' has nonzero entries in at least three columns. In this case the set
U(y,x) hM(BAM(ylx» contains three of the four points U 1, ••• 'U4 at least. On
the other hand, the set U(y,x) hM(BAM(ylx» contains only one point, since B
has only one nonzero column, and (23) cannot be satisfied in this case either.

Example 9: Let M be the four-state machine (X = Y = {O, In

" :'0:1 :0:
11 o~OlA(OIO) = II . . J

,0 ~~11 ~~11 ~:111A(Ojl) ~ I~ ': ': :
A matrix HM for this machine is
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h, =h~

Figure 11. Illustration to Example 9.

The reader is advised to compute these points and verify that their position in
the figure is correct. It is seen that the choice h l * = hi, h2* = u2, h3* = h4

satisfies the condition of Corollary 6.2.
The resulting matrix B is

[

1 0
B = 0 {­

o 0

o OJ{- 0
o 1

and the resulting machine M* is [The reader is advised to verify the results by
actual computation.]

AM'(OjO) = [11 ~],
o 0 0

AM'(OII) = [~ ~ ~J
AM'OIO) = [~ : ~]

010

[1 0 ::1]AM'OIl) = ~ 0 ~ 0

t 0
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EXERCISES

1. Show that there exists a machine M* < M with n* = 4, where M is the
machine in Example 7. Hint: Use the matrix

B=l~ ~~~~Jo 0 1 0 0
00010

Note: Show that the machine M in Example 7 with the matrix B above, does
not satisfy the condition of Corollary 6.2.

2. Is the configuration M* < M < M+ with n* < n > n+ possible? Hint:
Solve covering Problem I for the machine in Example 9.

3. Let M be the (deterministic) four-state machine [X = (0, I, 2}, Y = (0, I}]

A(OIO) { ~ ~ ~j. A(OII) ~ r~ ~ ~ ~J

~IIO) = l~ ~ ~ ~j. A(III) = l~ ~ ~ ~J

A(Oj2) ~ l~ ~ ~ ~J' A(l12) { ~ ~ ~J

o 0 000
o 0 000
o 0 0 -t 0
000 ~ 0
o 0 000

A(IIO) =

a. Find an HM for this machine, and show that it is a reduced-form (and
minimal state form) machine.

b. Show that there exists an n*-state machine M* < M with n* < n states
[compare Exercise 2, Section 3].
4. Let M be a machine [X = (0, I}, Y = {O, I, 2}]

o -t 0 0 0
o -t 0 0 0

A(OIO) = 0 0 0 0 0,
o 0 0 0 0
o 0 0 0 0
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0 0 0 0 1
"2"

0 0 0 0 1
"2"

A(210) = 0 0 0 0 1"2",

0 0 0 0 1
"2"

1 0 1 0 0"2" "2"

0 0 0 0 0
0 0 1 0 0"2"

A(lll) = 0 0 1 0 o ,"2"

0 0 0 0 0
0 0 0 0 0
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1 0 0 0 0"2"

0 0 0 0 0
A(Oll) = 0 0 0 0 0

1 0 0 0 0"2"

0 0 0 0 0

A(211) = A(210)

a. Find a matrix HM for this machine and show that it is minimal-state form,
strongly connected, has equivalent strongly connected nonisomorphic ma­
chines, and its rank is smaller than its number of states.

b. Show that no machine M* exists with less than five states and such that
M* >MorM* <M.

5. Consider the following.

Definition: A sequential pseudostochastic machine is a quadruple M =
(S, X, Y, [A(ylx)}) where all elements in the quadruple are as in Definition 1.1,
but the entries in the matrices A(ylx) may be negative, positive, or zero.

a. Prove the following

Theorem: Let M be an n-state machine of rank m < n. There exists a pseudo­
stochastic sequential machine M* with m states such that M and M* are equiva­
lent, (equivalence being defined in the usual way).

b. Find the four-state pseudomachine equivalent to the one defined in
Exercise 4 above.

OPEN PROBLEM

a. Answer the following decision problem, or prove that it is not decidable:

Given a machine M, does there exist a machine M* with fewer states than
M and such that M* < M?

b. If the problem under (a) is decidable, then construct a finite algorithm
for finding a machine M* < M with ISM'I < ISMI whenever such a machine
M* exists.
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7. Minimization of States by Covering-Problem III

In this section, Problem III [i.e., that of finding an initiated machine (M*, n*)
having a minimal number of states and equivalent to a given initiated machine
(M, n)] is reduced to the two problems considered in the previous sections.

Let (M, n) be a given initiated machine as in Exercise 5, Section I, we can
construct a matrix G(M,,,) whose rows are of the form ft(v, u) for some pairs
(v, u) and linearly independent, and any vector of the form ft(v, u) is a linear
combination of them. We shall now prove the following:

Theorem 7.1: Given an initiated machine (M, n) and a machine M*, there
exists a stochastic vector n* such that (M, n) = (M*, n*) if and only if there
exists a stochastic matrix B* such that

B*[KM'] = GlM''')[KM] (27)

Proo!' Assume first that (27) is satisfied, and let n* be the first row in B*.
Then, since the first row of G(M,,,) is n, we have that the first entry in a column
of the form G(M''')11M(vlu) on the right-hand side equals p"M(V[U). The corre­
sponding value on the left-hand side is the first entry in the column B*11M'(vlu)
which equals p".M'(vlu), so that (M, n) = (M*, n*). Assume now that there
exists a vector n* such that (M*, n*) = (M, n) then n*[KM'] = n[KM]. This
implies that n* AM'(vlu)[KM'] = nAM(vlu)[KM], since the columns of the matrix
AM(vlu)[KM] are a subset of the columns of KM and those of AM'(V/u)[KM'] are
the corresponding columns in [KM·]. But any row vector n in G(M,,,) is of the
form a1tAM(vlu), where a is a normalizing constant, hence for any such vector
there exists a corresponding vector a1t* AM'(vlu) = ft* such that ft*[KM*] =
ft[KM]. The matrix B* whose rows are the vectors ft* corresponding to ft of
G(M,,,) satisfies (27), and the theorem is proved. I

Theorem 7.1 above reduces the third problem to one of finding a machine
M* having fewer states than the given initiated machine (M, n), and such that
the relation

B*[KM'] = [[(lM,,,)] (28)

holds for some stochastic matrix B*, where [[(lM,"l] denotes the matrix
G(M''')[KM]. For tackling this problem, a relation similar to (18), which is
equivalent to (28) can be derived.

Let HM,,,) be a matrix having the following properties:
1. The columns of HM,,,) are columns of [[(lM,"l].

2. The columns of HM,,,) are linearly independent, and any column in [[(lM,,,)]

is a linear combination of them.
3. The columns of H(M,"l are the first columns of [[(lM,,,)] satisfying I and 2

above.



B. State Theory and Equivalence 51

Clearly, the columns of /fM,"l can be chosen from those of the form
11(M''')(vlu) = G(M''')11(v/u) with lev, u) < n - 1. To prove this, we note that
any column in [KlM,,,)] has the form

G(M''')11M(vlu) = G(M,,,) L ai11~ = L aiG(M''')11~

where 11iM are the columns of HM and ai constants. It follows that the matrix
/fM,,,) can be effectively constructed.

Denote by /fM''')(Ylx) the matrix such that its ith column is 11(M,"l(yulxv) if
the ith column of jf.M,,,) is 11(M''')(ulv); likewise, KlM,,,)(y!x) and [KM(ylx)]. We
seek a matrix 4(yjx) such that

4(Ylx)[KlM,,,)] = [KlM,"l(ylx)] (29)

But Eq. (29) is satisfied by any matrix 4(ylx) satisfying also

G(M,,,) A(ylx)HM = 4(y!X)G(M,"lHM (30)

for if 4(ylx) satisfies (30), then
[KlM''')(Ylx)] = G(M''')[KM(y!x)] = G(M,,,) A(ylx)[KM]

= 4(y!x)G(M''')[KM] = 4(Ylx)[KlM,,,)]

by definition, and bearing in mind that the columns of [KM] are linear combi­
nations of the columns of HM.

Now Eq. (30) has at least one solution [there may be more], being satisfied
by any matrix 4(ylx) satisfying also

G(M,,,) A(ylx) = 4(Ylx)G(M,,,) (31)

Eq. (31) has a (unique) solution, for the rows of the matrix on its left-hand side
G(M,,,) A(ylx) are by the definition of G(M,,,) linear combinations of the rows of
the latter, and these are linearly independent.

Using the above definitions and a method similar to that used in the proof
of Theorem 3.1, one can prove the following:

Theorem 7.2: Given an initiated machine (M, n) with n states, there exists an
initiated machine (M*, n*) with n* < n states and such that (M, n) = (M*, n*)
if and only if there exists an n*~state machine M* and an n* x n* stochastic
matrix (n* < n) B* satisfying the relation

B* AM'(Ylx)HM' = L1(M''')(Ylx)B* HM' (32)

The proof of this theorem is left to the reader. Theorem 7.2 reduces the third
problem to the first covering problem [with /fM,,,) replacing HM], so that all
considerations in Section 5 are valid here. Since no general procedure is availa­
ble for solving the first problem, the above theorem, together with Section 5,
yields solutions to the third problem only in particular cases.

We shall therefore also consider some additional approaches, based on Section
6.
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Theorem 7.3: Let M > M* be two machines with B[KM ] = [KM '], and n a
distribution for M such that hM(n) E cony hM(B). Then, there exists a distribu­
tion n* for M* such that (M, n) = (M*, n*).

Proof' Since hM(n) E cony hM(B), there exists n* such that nHM = n* BHM.
Hence nand n*B are equivalent vectors for the machine M, so that nllM(vlu) =
n* BllM(vlu) for all pairs (v, u). It follows that

p~(vlu) = nllM(vlu) = n* BllM(vlu) = n* llM'(vlu) = p:t"(vlu)

for all pairs (v, u), and the theorem follows. I
Corollary 7.4: Let (M, n) be an initiated machine with n states. There exists
an initiated machine (M*, n*) with n* < n states and such that (M, n) =
(M*, n*) if either condition 1,2, or 3, as well as condition 4, holds:

I. There exists a stochastic n* X n matrix B such that

U hM(BAM(ylx» c cony hM(B)
(Y,x)

2. There exists a set of n* points hi *, ... , h.,* in m-dimensional space (m =
rank HM) such that

U hM(AM(ylx» c conv(h,*, ... ,h.,*) c conv(h l , ••• , h.)
(Y,x)

3. There exists a subset hi*, ... , h.,* of the set of points h" ... , h. such that

U hM(AM(ylx» c cony (hi*, ... , h.,*)
(Y,x)

4. Let B be as under condition (I) if that condition is satisfied, or otherwise
a matrix defined by

r"jBHM = :*
h••

if either condition (2) or (3) is satisfied. Then hM(n) E cony hM(B).

Proof' By Theorems 7.3 and 7.1 and Corollaries 6.2 and 6.3.

Example 10: Let (M, n) be an initiated machine [X = Y = (0, I}], n =
(i 0*0)

A(OIO) ~ ~~
0 0

~J' A(lIO) ~ ~f
1 1 °l4" "2

1 0 0 0

~J
"2
1 0 0 0"2

0 0 1 1
4" "2

A(OIl) = ~~
0 0

;j. A(lll) ~ ~f
0 0

iJ
0 0 0 0

0 I 0 0"2

0 1 0 0"2 4"
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A matrix HM for this machine is

[
I 0 OJ

HM = I I 0
I I I

101
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The points in U(Y,x) h(A(ylx)) are (~, 0), ct, ~), (~, .i), and (O,~) (first coor­
dinate omited), hen) = G·, ~).

The second and fourth conditions of Corollary 7.6 are satisfied if we choose
h1* = (~, 0), h2* = (1, I) and h3* = (0, ~). [The reader is advised to draw an
illustrating sketch.]

The resulting matrix B is

[

1 1 0 OJ
B= ~ ~ I 0

~ 0 0 ~

and the required initiated machine is found to be: n* = (-h .g. -12),

AM'(OIO) ~ [! 0

H AM '(I 10) = r~
1

~]
"4

0 0
0 1

2"

AM'(OIl) ~ [~
0

n AM'(lll) ~ [~
0

:]1 02"
1 0"4

The reader is advised to verify the results by actual computation.

EXERCISES

La. Find the matrices G<M,n\ HM,n) and a<M,n)(y!x) for all pairs (y, x) where
(M, n) is as in Example 10.

Lb. Find a three-state initiated machine (M+, n+) equivalent to (M, n) in Ex­
ample 10 and different from (M*, n*) there, using a procedure based on The­
orem 7.2.

I.e. Show that the third condition of Corollary 7.4 does not hold for Example
10.

2. Prove that if (M*, n*) '" (M, n), then the number of states of M* is not
smaller than rank HM,n).

3. Give a proof of Theorem 7.2.
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4. Consider the following machine [X = Y = {O, I}]; n = (1- -l- -l- -l-),

~DID) = l~
0 0

~J' M(Dll) ~ l~
0 0

~j
1 0 0 02"

0 1 1 1
2" "4 "2

0 0 1 1
"4 2"

MOlD) ~ l~
1 0

~j, MOIl) ~ l~
1 1

~J
2" "4 2"

0 0 1 1
"4 2"

0 0 0 0
0 1 0 02"

Show that the third and fourth conditions of Corollary 7.4 apply to this ma-
chine, and find a two-state initiated machine (M*, n*) equivalent to (M, n).

5. Same as 4, but n = (-:1-.0, -l-,~) and (M*, n*) has three states. Is further re-
duction of states possible in this case?
6. Consider the initiated machine (M, n) whose defining matrices are

A(DID) ~ [

0 0

~j, A(lID) = l~
0 0

~j
0 0 0 0
0 0 I 0
0 0 I 0

A(Dll) ~ l~
0 I

~j, AOll) = l~
0 0

;j0 0 0 0
0 I 0 0
0 0 0 0

and n = (l 0 0 0).
Show that rank HM, ..)= 3, but there exists no initiated machine (M', n')

equivalent to (M, n) with fewer than four states.

OPEN PROBLEMS

a. Answer the following decision problem, or prove that it is not decidable:
Given an initiated machine (M, n), does there exist an initiated machine

(M*, n*) with fewer states than (M, n) and such that (M, n) '" (M*, n*)?

b. If the problem under (a) is decidable, then construct a finite algorithm for
finding an initiated machine (M*, n*) '" (M, n) with ISM'I < ISM\ whenever
such an initiated machine (M*, n*) exists.
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otherwise

if p(v'lu') > 0

The basis for the material in Chapter I.B is to be found in Carlyle (1961,
1965, 1967). Many additions, clarifications and simplifications are due to Bacon
(1966), Even (1965), Ott (1966a, 1966b) and Paz (1967a, c). Linear-algebra
methods, on which the material in some subsections is based, were used previ­
ously by Blackwell and Koopmans (1957) and Gilbert (1959) for Markov
chains, and by Youval (Perles et al., 1963) for finite automata. Some of the
exercises are based on the work of Even (1965), Bukharaev (1968) and Ott
(1966a, b). Additional reference: Dantig (1963).

C. INPUT-OUTPUT RELATIONS

1. Definitions and Basic Properties

Definition 1.1: A probabilistic input-output relation is a function p(vlu) whose
domain is the set of all pairs (v, u) of input-output sequences (of equal length)
over respective finite input and output alphabets X and Y, whose range is the
interval [0, IJ, and subject to the restrictions:

1. pO.I).) = 1

2. I;yp(vylux) = p(vlu) for all x E X, the summation is over all y E Y
Throughout this section the term "relation" refers to a probabilistic input-

output relation unless otherwise specified.

Remark: Note that (1) and (2) in Definition 1.1 imply that

3. I;yP(ylx) = 1 for all x E X
Definition 1.2: An initial segment of length n of a relation p (denoted by [pJ.)
is the part of p which corresponds to input-output pairs of length not exceed­
ing n. Any relation p with [pJ. as its initial segment is a completion of [pJ•.

Notation: f!lJ(X, Y) denotes the class of all relations over the input and out­
put alphabets X and Y.

Definition 1.3: The left-hand derivate of a relation p E f!lJ(X, Y) with respect
to the pair (u', v') [denoted by Plu',v,Il is the function

jP(v'v1U'U)
Pru',v')(v!u) = p(v'lu') '

the zero function,
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(33)

Theorem 1.1: The class &(X, Y) has the following properties:

1. If P is a finite convex combination of function in &(X, Y) such that P =
~?~I AiPi, ~?~I Ai = 1, Ai > 0, i = 1,2, ... ,n, and (x, y) a pair such that
~ AiPiylx) =1= 0, then p[x,y] = ~ PiPi[x,y] where Pi = AiPiylx)/~ AiPiY/x), so
that ~ Pi = 1 and Pi > °for i = 1, 2, ... , n.

2. If (xl, i) and (x2, y2) are two pairs and P E &(X, Y) is a relation such
that p(ilxl) =1= °and p(yly2JXIx2) =1= 0, then (PrX1,yl])[x',Y'j = p[XIX',ylY']'

3. The class &(X, Y) is closed under convex combinations of its elements.

4. If P E &(X, Y), and (x, y) is a pair such that p(ylx) =1= 0, then P[x.Yl E
&(X, Y).

Proof" (1): Under the given conditions, we have that

1
- ~ AiPlyvlxu) _ '" p;(Yvlxu) - '"

p[x,y)(v u) - ~ AiP/ylx) - ~ Pi piYlx) - ~ PiPi[x,yj

2. It follows from the definition that

( ) ( I ) - p[X1,yl](y2V JX2U)
P[X',yl] [x',Y'] V U - ( 21 2)

p[xl,y'j y X

_ p(yly2vlx l x2U)/p(yl lxl)
- p(yly2IxIX2)/p(yllxl)

_ p(yly2vlx l x2u) _
- (I 21 I 2) - Prx1x' y1y,lvlu)pyy xx '

Proof of properties (3) and (4) is left to the reader.
Relations induced by stochastic sequential machines are characterized by

Theorem 1.2: Let PI' ... , Pn be a finite set of functions in &(X, Y). There exists
an n-state machine M such that Pi = PI,M if and only if for every i, and for every
pair (x, y) such that piylx) =1= 0, the function Pi[x,y] is a convex combination of
the functions Pi'

Proof" The "only if' part is straightfoward and its proof is left to the reader.
Assume now that the conditions of the theorem hold. If there exists a machine
M such that Pi = p!'M, then Pi(ylx) = PI,M(Ylx) = SiAM(ylx)'1 and

. (vlu) = PI,M(yvlxu) = Si AM(ylx)'1M(vlu)
Pdx,yj p!'M(ylx) Si AM(ylx)'1

_ ~J aiJ(yJx) . PI,M(vlu) _ ~J aij(Ylx)p/vlu)
- ~) aiJ(ylx) - ~J ai/(ylx)

Thus the machine M must satisfy the equations

~ aif(ylx) = piylx)
J
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P. (vlu) = ~J alj(ylx)pivlu)
,(x,y] I:J alj(ylx)

But we also have by the conditions of the theorem that

Pilx,yj(vlu) = t A/Jpivlu)
J~1

Combining the three equations, we have

I: Aljpivlu) = ~ alj(Ylx)pivlu)/piYlx)
J J

or
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(34)

(35)

(36)

(37)

A possible but not necessarily unique solution to (37) is

a/j(ylx) = p/(yIX)AIj (38)

Let M be the machine whose defining matrices are given by (38). We now
prove by induction that for this machine, PI,M = p/ as required:

1. It follows by construction that PI,M(ylx) = plYlx), i = 1,2, ... , n.

2. Assume that p~(vlu) = plvlu) for all i and all pairs (v, u) with leu, v) <
k, and let (u, v) be any such pair; then

p~(yvlxu) = ~ a/j(ylx)p::-(vlu) = I: alj(yl,x)pivlu)
J J

and the latter by (37) and (35), equals

I I plyvlxu) I
plylx)p/[x,y](v u) = ply x) p/(ylx) = piyv xu)

where l(xu, yv) = k + 1. Thus p~ = PI' and the proof is complete.
Corollary 1.3: Let P E &leX, Y) be a relation. If the set of all nonzero deriv­
ates of P is finite and contains n different relations, then there exists an n-state
machine M such that P = p~.

Proof' Let P, Pru',v'J' •.• ,Prun-',vn-'J be the set of all nonzero different derivates
(including P itself which is the derivate with respect to the pair (A, A)) of p.
Then, any other nonzero derivate of P is included in this set, hence the condi­
tions of Theorem 1.2 hold. I

Remark: In Section B3, Exercise 9, we introduced the definition of an ob­
server/state-calculable machine. These machines have at most one nonzero
element in each row of their matrices. Now it is readily shown that if M is
such a machine and p~ is considered as a relation in &leX, Y) for the appro­
priate X and Y, then this relation has only a finite number of nonzero different
derivates. To prove this claim, we note first that
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M (I) - p:;C(yvlxu) _ M (I)
p~,[x,y] v u - p:{(ylx) - p(~j(x,y)) v u

by (10) (Section A,l), and therefore the number of different nonzero relations
of the form Ptfru,vl equals that of nonzero vectors of the form slu, v). If Mis
an observer/state-calculable machine, then by the definitions any vector of the
form slvlu) = SiAM(vju) has at most one nonzero entry. Thus any nonzero
vector of the form slu, v), which is sivlu) multiplied by a normalizing constant,
is a stochastic degenerate vector and there exists only a finite number such vec­
tors. Furthermore, a closer look at Corollary 1.3 above and its proof shows that
the machine M in that corollary can be chosen to be observer/state-calculable,
for the states of M are identified with the derivates P, p[u',v']' ... ,p[u'-',v'-'l and
the transition between these states is deterministic. We thus have the following
characterizing:

Theorem 1.4: Let P E f!J(X, Y) be a relation. If and only if the set of nonzero
derivates ofP is finite, then there exists an observer/state-calculable machine M
such that P = pr..

Another corollary to Theorem 1.2 is:

Corollary 1.5: Let P E f!J(X, Y) be a relation. There exists a machine M and
an initial vector 1t for M such that P = P;: if and only if there exists a finite set
of functions PI>' .. , Pn in f!J(X, Y) such that P E conv(pl' ... ,Pn), and for every
i, and every pair (x, y) such that plyIx) =1= 0, also Pi[x,y] E conv(pl' ... ,Pn)'

The proof if straightforward and is included in the exercises below.

EXERCISES

1. Prove properties (3) and (4) in Theorem 1.1.

2. Prove Corollary 1.5.
3. Prove the "only if" part of Theorem 1.2.

2. Compound Sequence Matrix

Definition 2.1: Let (Ul> VI), (uz, vz), ... , (un> vn), (u/, v/), (uz', vz'), ... , (un', v:)
be a set of 2n pairs of sequences and P E 9(X, Y) a relation. The matrix

P = [p(v/v/luiu/)]

is then called a compound sequence matrix, and its determinant a compound
sequence determinant.
Definition 2.2: The rank rep) of a relation P is the maximum among the ranks
of all compound sequence matrices which can be formed from P, or +00 if
no such maximum exists.
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Corollary 2.1: If P E &(X, Y) is a relation such that p = p"M for some ma­
chine M and some distribution n, then rep) = rank (M, n).

Proof" Let p(M, n) be a compound sequence matrix for p"M. Any entry in
p(M, n) has the form p"M(v/v/luiu/)'= n(vi lu/)I1(v/lu/) so that the matrix
p(M, n) can bewritten in the form p(M, n) = G'H, where G' is the matrix
whose rows are the vectors n(v/lu/) and H the matrix whose columns are the
vectors l1(v/lu/). Let G be the matrix whose rows are the vectors ft(u/lv/)v corre­
sponding to n(v/lu/) in G'. Since the rows in G' differ from those in G by a
multiplicative constant, obviously rank G' = rank G, so that rankp<M,,,) =
rank (GH). It follows that

rankp = rankp"M = max p(M, n) rank p(M, n) = max rank (GH)
G,B

= rank (G(M,,,) HM) = rank HM,,,) = rank (M, n)

(See Section B.7 for the definitions). I
Lemma 2.2: Let p be a relation of finite rank n, and P a compound sequence
matrix for p of rank n. Another compound sequence matrix pI, also of rank n,
can be found such that the pairs (ul, VI) and (ut', vt') in the sequence defining
P'satisfy

(39)

Proof" Let (Ul> VI), ... , (um vn), (ut', vt'), ... , (un', vn') be the sequence defin­
ing P, and (u, v), (u', v') any two input-output pairs. The following determinant
then equals zero

(40)=0
P

p(vnv'lu" u')

p(vvt'luut') ... p(vv;luu;) p(vv'luu')

since P is a regular compound sequence matrix of maximal pos.'lible rank n.
Substituting u = v = u' = v' = A in (40) and expanding about the last column,
we obtain (p(AIA) = 1) that IPI + ~ (X/IP/I = 0 where the (X/ are numerical
constants and p/ is derived from P by replacing the ith row with p(v/lut') ...
p(vn'lun'). Thus one of the p/ is a regular matrix and Pin (40) can be replaced
with Pi' Using the same argument for the new determinant (40), expanding
this time about the last row, we find that there exists a regular matrix (p/Y
derived from p/ by replacing its jth column with

p(vllul)

p(vnIu,,)

We thus have a regular matrix (PY derived from P by replacing (Ui,Vi) and
(u/, v/) with the pair (A, A). Appropriate reordering of rows and columns yields
a compound sequence matrix with the required properties. I
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EXERCISES

Chapter I. Stochastic Sequential Machines

1. Prove that any relation P of rank 1 has the property

p(vv'luu') = p(vlu)p(v'lu').

2. Prove that the set of relations of finite rank < n is closed under convex
combinations of its elements.

3. Prove that the set of relations of finite rank < n is closed under left
derivation.

4. Show that Theorem 1.2 can be refined as follows.

Theorem: Let PI> ... ,Pn be a finite set of relations in flJ(X, Y). There exists an
n-state machine M such that PI = pt[ if and only if for every i rank PI < n,
and for every i and every pair (x, y) such that PI(ylx) "* 0, the segment
[PHx,yllzn-1 is a convex combination of the segments [PJ2n-1'
5. Refine Corollary 1.5 using Exercise 4 above.

3. Representability of Relations by Machines

Expanding the determinant in (40) about its last column, we obtain

p(vv'luu') = t alvlu)p(vlv/lulu')
I~I

(41)

where the alvlu) are functions of the entries of matrix P and of the values
( 'I ') R 1 f" . h " " . 1 .P vVj UUj • ep aeement 0 v, v, u, U WIt vlv, v vJ ,U;U, U Uj respectIve y 10

(41) yields

or, in matrix form,

where

P(vv'Juu') = A(vlu)P(v'lu') (43)

P(vlu) = [P(vlvv/lu;uu/)] and A(vlu) = [aivlvju;u)] (44)

(P(All) = P and A(AIA) = I = the identity matrix.) In particular, we have

P(vlu) = A(vlu)P (45)

and
P(ylx) = A(ylx)P or A(ylx) = P(yIX)P-I (46)

Thus if P (which is regular) and P(ylx) are given, A(ylx) is obtainable from
(46). Substitution of (45) on both sides of (43), with the common (regular)
matrix P cancelled out, yields
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A(vv'juu') :::;: A(vlu)(v'lu') (47)

The above formulas lead to the following

Theorem 3.1: Given a compound sequence regular matrix P of maximal rank
n for a relation p. A pseudostochastic sequential machine M with n states (see
Exercise 5, Section B,6) and an initial distribution n can be found effectively,
such that p:::;: p"M.

Proof' Using Lemma 2.2, construct another compound sequence matrix P'
satisfying (39). Compute the matrices A(ylx), using (46). [It is assumed that
the matrices P'(Ylx) are available.] Let Q be any regular matrix of order n such
that Q" equals the first column of P and the first row of Q is nonnegative [which
implies that it is a probabilistic vector, as the 1, 1 entry in Pis 1]. Define

AM(ylx) :::;: Q-I A(ylx)Q (48)

and n :::;: the first row of Q.
Let M be the pseudomachine whose matrices are AM(ylx) with initial distri­

bution n. Then by (47) we have that

AM(vlu) :::;: Q-I A(vlu)Q

hence, P"M(vlu) :::;: nAM(vlu),,:::;: nQ-I A(vlu)Q" :::;: sIA(vlu)Ph with PI denoting
the first column of P[nQ-I :::;: SI :::;: (l0 ... 0), as n is the first row of Q by
construction]. But A(vlu)P:::;: P(vlu) by (45), hence A(vlu)PI is the first column
ofP(vlu), so that P"M(vlu) :::;: sIA(vlu)PI :::;: sIPI(vlu):::;: the 1,1 entry in P(vlu):::;:
p(vlu) as required. I
Theorem 3.2: Let p be a relation of finite rank < n such that the values p(vlu)
are recursively computable. [In other words, p(vlu) with lev, u) :::;: k is obtain­
able effectively from the values p(v'lu') with lev', u') < k - 1.] Then a regular
compound sequence matrix of order n can be formed from a segment [P]2.-2
ofp.

Proof' If p is a relation of finite rank < n then by definition there exists a
regular compound sequence matrix of maximal rank < n for P. By Theorem
3.1 there exists a pseudomachine M with < n states and a distribution n such
that p :::;: p"M. Recalling the construction of matrices HM [Section B,l] and
G(M.,,) [Exercise 5, Section Rl] we see that it is not affected by the fact that M
is a pseudomachine. Thus HM and G(M.,,) exist for a pseudomachine M such
that the values pl,M(vlu) in the former and p"M(vlu) in the latter correspond to
pairs of length < n - 1, and rank G(M.,,)HM :::;: rank HM.,,) < n. But the entries
in HM.,,) are of the form

ii(v, u)"M(v'lu') :::;: an(vlu)"M(v'lu') :::;: ap"M(vv'luu')

where a is a normalizing constant depending only on the row ii(v, u) of G(M,,)
and l(vv'juu') < 2n - 2. The required matrix P can thus be derived from the
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above ]f.M,n'. which is regular for pseudomachines [prove this fact!], by division
of its rows by an appropriate constant. I
Corollary 3.3: Let P be a relation satisfying the conditions of Theorem 3.2. A
pseudostochastic machine M with <n states and an initial distribution can then
be found effectively such that P = PnM.

Proof' By Theorem 3.1 and 3.2. I
Corollary 3.4: Let P be a relation satisfying the conditions of Theorem 3.2.
Then its segment [phn-I uniquely determines the whole relation.

Proof' The initiated pseudomachine (M, n) such that P = PnM is determined
by [Phn-I' as the required compound sequence determinant P is obtainable from
[P]Zn-Z and the matrices A(ylx) [see (46)] depend on P and P(y/x), which can
be derived from [P]Zn-1 by (44).

Corollary 3.5: Let P be a relation of finite rank n satisfying the conditions of
Theorem 3.2. If there exists a true initiated machine (M, n) with n states and
P = PnM, then there exist also a compound sequence determinant P of rank n
for P and a nonsingular matrix Q such that AM(Ylx) = Q-I A(ylx)Q where
A(ylx) is defined as in (46).

Proof' Under the assumptions, P may be chosen as the matrix p(M,n) defined
in the proof of Corollary 2.1. Thus P = pCM,n) = G(M,n) H M. [See definitions
in the proof of Corollary 2.1] and

A(Ylx)G'(M,n)HM = A(ylx)P = P(ylx) = G'(M,n) AM(ylx)HM

As M has n states and PnM is of rank n, ]f.M,n) has n independent columns and
n rows. Thus ]f.M,n) together with G'(M,n) and HM are regular matrices, imply­
ing that (G'(M,n»-1 A(y!x)G'(M,n) = AM(ylx) as required. I

Example 11: Consider the relation (assumed to be of rank 2) in the follow­
ing table (X is a single-symbol alphabet and is omitted):

v A 0 00 01 10 II 000 001 010 Oil

p(v) 3711773711
Tll Tll "4 2lf 2lf 2lf 4lf 4lf 4lf 4lf

Setting U1 = A, Uz = 0, u/ = A, uz' = I, we have

P= [~ ~J
which is a regular matrix of rank 2. Proceeding as in Theorem 3.1 we have

P(O) = [fo- frrJ
1 7'

"4 4lf
P(l) = [+: -t:],

2lf 4lf
[ 5 35]p_1 = -nr -8

15 25
""8 ""4
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A(O) = P(O)P-I = [~ ~J A(l) = P(I)P-1 = [~ lJ
63

There are many possible alternatives for matrix Q. One such choice is

Q = [~ i J
io -io

so that

and finally

AM(O) = Q-I A(O)Q = [-O~ OJ
-~

AM(l) = Q-I A(l)Q = [; ~J

n = (~, i) and (M, n) = P. Verification is left to the reader.
Let p be a relation. If there exists an initiated (pseudo-) machine (M, n) such

that p = p"M, then (M, n) is said to represent p and p to be representable by a
(pseudo-) ISSM.

We are now able to sum up the situation as to the representability of relations.

a. The following theorem is readily proved for the general case:

Theorem 3.6: A given relation p is representable by a pseudo-ISSM if and only
if p is of finite rank.

The "if' part is meaningless unless it is specified how the relation is "given."
It is therefore assumed that it is given such that the values p(vlu) are recursively
computable [as in Theorem 3.2].

b. If a relation is given as above and known to be of finite rank, then it is
also known to be representable. Still, so long as no bound is set on that rank,
the latter cannot be computed, nor can a representation be found for it [see
Exercise 5 at the end of this section].

c. If a relation is given and a bound set on its rank, then using Corollary
3.3, a representation can be effectively found for it, but the result is, in general,
an initiated pseudomachine (with number of states equal to the rank of the
relation).

d. Given a relation p which is known to be of finite rank < n, no effective
answer is known as to whether p is representable by a true ISSM. This last
problem can be further subdivided as follows:
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Given a relation p of rank n, is p representable by a true ISSM (M, n) such
that rank M = n = the number of states of M?

(d-l). If it is, formulate an effective procedure for constructing the represent­
ing machine.

(d-2). If case (d-l) does not apply, then is p representable by a true ISSM
(M, n) such that rank M = n but the number of states of M exceeds n? If it
is, then formulate an effective procedure for constructing (M, n).

(d-3). If neither (d-l) nor (d-2) apply, thenisprepresentable by a true ISSM
(M, n) such that rank M > n? [Note that rank (M, n) = rank p may not equal
rank M.] If it is, then formulate an effective procedure for constructing (M, n).

It is readily seen from examples that case (d-l) is not empty. It can also be
shown that case (d-2) is not empty either [see Exercise 8 at the end of this sec­
tion]. The author is not aware of any example proving that (d-3) is feasible,
but there is no reason why it should not be.

EXERCISES

1. Prove that any relation of rank 1 is representable by a true ISSM.
2. Discuss the implications of Exercises 2-5 in Section 2 with regard to the
decision whether a given relation is representable by a true ISSM.

3. Consider the relation given in the following table [X is a single-symbol al­
phabet and is omitted.] Assume that the relation is of rank 2 and find a true
representation for it.

o 00 01 10 11 000 001 010 011v

p(v)

A­

I 3 7 1 1 7 7
nr nr "4 TI "20 TI

1
TI

1
4lf

o 0]o 0
o 0[

1 0

AM(l) = ; 0

i 0

Compare with Example 11.
4. Consider the following initiated pseudomachine (M, n) [X = {OJ and is

omitted. Y = [0, I}]

AM(O) = [~-~ ~1,
o 0-"4

n = H-h-h)
a. Show that rank (M, n) = 3.
b. Show that 0 <p"M(V) < 1 for all v E y*

c. Show that there exists a three state true initiated machine (M*, n*) such
that p"M = p".M·.
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5.a. Show that for every relation p of rank n there exists another relation pi
such that p =F pi but [p]2n-1 = [p']2n-I'
5.b. What can be said about rank pi apart from the problem of deciding
representability?

6. Prove: A relation p is representable by a pseudo-ISSM if and only if p is of
finite rank.

7. Find a relation p of rank n, representable by a true n-state ISSM (n chosen
at convenience).

8. Consider the following ISSM: X = to, I}; Y = to, I}; S = {t, 2, 3, 4}; n =
(I 0 0 0), with the transitions from state to state deterministic as follows

Present state Input Output Next state
1, 2 0 0 2
3, 4 0 1 3
1, 3 1 0 1
2, 4 1 1 4

Prove that the above ISSM represents a relation of rank 3, but no true ISSM
with less than four states can represent it.

9. Let p be a relation known to be of finite rank. Let r(k) denote the maximal
rank ofall compound sequence matrices P(k) for p with P(k) = [p(v;v /Iu;u/)]
where l(vi> u;), l(v/, u/) < k.

Prove: If r(k) = r(k + I) = r(k + j) = m, then either rank p = m or rank
p> m + 2j
10. Give the most efficient algorithm possible for finding rank p < n for a given
relation p.

OPEN PROBLEMS

I. Given a recursively computable relation p, formulate a decision procedure
for ascertaining whether p is of finite rank, or prove that the problem is not
decidable.

2. Given a pseudo-ISSM (M, n), does there exist a true ISSM (M*, n*) such
that (M*, n*) = (M, n), rank M* = rank M, and the number of states of M
equals that of M*?

Formulate a decision procedure for this problem, or prove that it is not
decidable. If a decision procedure exists, give an algorithm for constructing
(M*, n*) whenever possible
3. Same as 2, except the number of states of M* is not required to equal that
ofM.
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4. Same as 3, except that it is not required that rank M = rank M*.

5. Formulate a decision procedure for the following problem, or prove that it
is not decidable: Given any pseudo ISSM (M, n) are all the values p"M(vlu)
nonnegative?

4. Bibliographical Notes

Input-output relations and sequential functions were studied, in the determinis­
tic case by Elgot and Mezei (1965), Gill (1966), Gray and Harrison (1966),
Raney (1958), Tal (1966), and others. Derivates were introduced by Brzozow­
ski (1964) for the deterministic case. The first subsection here is based on the
work of Arbib (1967) with additions from Carlyle (1967), and the second and
third subsections on the work of Carlyle (1963a, b, 1965, 1969). The above re­
ferences also served as a source for some of the exercises. Additional references:
Blackwell and Koopmans (1957), Booth (1965,1966,1967), Dharmadhikari
(1963a, b, 1965, 1967), Fox (1959), Gilbert (1959) Page (1966). Recently, a
connection between the theory of categories and that of input-output proba­
bilistic relations was established by Heller (1965, 1967) and Depeyrot (1968).
See also Depeyrot (1969a, b).



Chapter II
Markov
Chains

INTRODUCTION

This chapter is devoted to the theory of nonhomogeneous Markov chains and
related topics. Nonhomogeneous Markov chains and systems are studied from
a mathematical point of view, with regard to asymptotic behavior, compositon
(direct sum and product), and decomposition. The last part of this chapter
investigates "word functions" induced by Markov chains and valued Markov
systems. These functions are studied with regard to characterization, equiva­
lence, and representability by an underlying Markov chain or system. The
reader is refered to the Preliminary Section in this book for an introduction
and for the basic definitions used (see also the bibliographical remarks at the
end of the chapter).

A. NONHOMOGENEOUS MARKOV CHAINS AND SYSTEMS

1. Functionals over Stochastic Matrices

The matrices to be considered in this subsection are countably infinite unless
otherwise specified.
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Definition 1.1: Given a stochastic matrix P = [pol and an arbitrary vector n =
(nl ) we define

d(P) = sup sup !PIIJ - PI.JI, den) = sup Inl , - nl.1
J h,1I it,it

t5(P) = sup sup ~ (PI,J - PI.J)
1,,1. rn'} JE [n'}

where {n'l denotes a subsequence of the sequence of natural numbers (to be
denoted by {n}). If P is a finite matrix, then "sup" is to be replaced by "max"
and "inf' by "min."

Notation: If a is a real number then a+ = max(a, 0) and a- = min(a, 0).

Proposition 1.1: t5(P) = SUPII.l. ~ (Pili - PI.J+
The proof is left as an exercise.

Proposition 1.2: 0 <d(P) < t5(P) < 1.
Proof: It is a trivial consequence of the definition that 0 <d(P). For any

fixed j, ilo and i 2 it is clear that

(PIIJ - PI.iY < sup ~ (PM - PI.k) = ~ (PM - PI.kY
{n'} kE rn'}

But SUPII,I, IPI,J - PI.il = SUP",I.(PI,J - P;,JY since the indexes i1 and i2 are in­
terchangeable so that

sup IPIIJ - PI.JI = sup (PIIJ - PI.iY < sup sup ~ (PM - PI'i)
il,i! it,it (J,l, {II'} kE{n/)

for any fixed j and tp.erefore d(P) = SUPi SUPII,I./PIIJ - PI.JI < t5(P). Finally, for
fixed i 1 and i 2 we have that

~ (PI'J - PI.i)+ < ~ PI,J - ~ PI,J < I
j~n'}

and using Proposition 1.1 we get that t5(P) < 1. I
Proposition 1.3: If P = [Po] and Q = [qli] are stochastic matrices then t5(PQ)
<t5(P) t5(Q).

Proof: Fix i 1 and i2• We show first that

~ (PM- PI.k) + + ~(PM-PI.k)- = ~ (PM - PI,k) = ~PM - PI.k = 1 - 1= 0
k k k k

and, therefore

~ (PM - P/okY = - ~ (P"k - PI.k)- (1)
k k

Denoting by ~' summation over a subset of the set of natural numbers we
have
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~ (~(PM - PI.k)qkJt = ~' ~ (PM - Pi.k)qkJ = ~ (PM - PI'k)~' qkJ
J J k k J

< ~ (PM - PI.kt sup ~' q"J
" " J+ ~ (PM - PI.,,)- inf~' q"J
" k J

= ~ (Pil" - PI.,,)+(sup ~' qkJ - inf~' qkJ)
" "J" J

where the indices involved in the summation ~' may depend on i l and ;z. But

sup ~/q"J - inf~/q"J = sup ~/(qklJ - q".J)
" J "J "•.k. J

which is independent on ;1 and ;z.
Thus, ~i~ (PI,,, - PI.k)q"J)+ < ~k(Pll" - Pi."t ~(Q) so that

~(PQ) = sup [~(~ (PM - Pi,k)q"Jt] < sup [~(PM - Ph")+ ~(Q)]
it.it j il,it

< ~(Q) sup ~ (PI," - PI.,,)+ = ~(P)~(Q) I
(l,it k

Definition 1.2: If e = (el) is an arbitrary vector and P an arbitrary matrix, then
lei = SUPI lell, IPI = SUPi,J IpiJI; lIeli = ~ lell provided that ~ lell < 00 and
lIell = 00 otherwise; IIPII = SUPI ~Jlpl}l provided that ~Jlpl}l < 00 for all;,
and IIPII = 00 otherwise.

Proposition 1.4: Let P = (PI}) be a stochasti~ matrix and let ebe a nonzero
vector of the same dimension as P such that Ilell < 00 and ~ el = 0 [e = (el)]
then lIePIl < lIell ~(P).

Proof: Define the vectors '1 = (,/) and 'Z = (,/) as

YI-2 e/ d YZ-2 Iel- 1
'01 - ~ an '01 - ~

Then using an argument similar to the one used in proving formula (1) we have
that both '1 and 'Z are stochastic vectors and 'I - 'Z = 2(e/llell).

Let Q be a matrix such that its first row is 'I all the other rows being equal
to 'z. Then

2~(QP) = 2 ~ (~('"I - '"Z)p"J)+ = ~ I~ ('"I - '"Z)PkJI
J " J "

again using the formula (1).
By the definition of 'I and 'Z we have that

~ I t: ('"I - '"Z)PkJI = 2~ I ~1~iIP"JI
_ 2 _ lIePl1- Il'TI ~ I~ ekPkJI - 2 W
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Thus, II~PII/II~II = o(QP) < o(Q) o(P) < o(P) by Propositions 1.2 and 1.3, so
that II~PII < 1I~lIo(P). I
Corollary 1.5: If P is a matrix such that all its rows have the properties of the
vector ~ in Proposition 1.4 and Q is a stochastic matrix then

IIPQII < IIPII o(Q)

Corollary 1.6: If P and Q are stochastic matrices, then IIPQ - QII < 2o(Q). In
particular if 7T. is a stochastic vector and p is row of Q, then IlnQ - pll <
2o(Q).

Proof: IIPQ - QII = II(P - I)QII < liP - Illo(Q) < (IIPII + IIIIJ)o(Q) =
2o(Q). [See Exercise 8 at the end of this section.] I
Definition 1.3: Given a stochasic matrix P = [Pu], yep) is defined as

Proposition 1.7: Let P be a stochastic matrix, then o(P) = 1 - yep).

Proof: Denote

and

then

Oili'(P) = 2: (Pil) - Pi'})+ = 2: (Pill - min(pill' Pi,}))
} }

= 1 - 2: min(pill' Pi'i) = 1 - Yil;,{P)
i

Therefore, o(P) > Oili'(P) = 1 - Yili'(P), which implies that o(P) > 1 - yep).
Similarly, Oi'i'(P) = 1 - Yili'(P) < 1 - yep) which implies that o(P) < 1 ­
yep). Combining the two inequalities we have that o(P) = I - yep)· I
Proposition 1.8: If P and Q are stochastic matrices and 11 a column vector
such that lI1il < 1 for all i, then d(PQ) < o(P)d(Q) and d(PI1) < o(P)d(I1)·

Proof: It suffices to prove the second inequality. Let i 1 and i z be two arbi­
trary rows in P. Since 2:ilpili - Pi'il < 2, we can find for any given f a number
ko such that
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= I; (Pili - Pi,J(lli - llio)
i*h
k o

< I; (Pili - Pi,J(lli - lli.) + 2f
i~1

By the definition of llio all the terms of the form lli - llio are nonnegative in
the above sum so that by omitting the terms such that hi < Pi,i the sum is
increased. Also (lli - llio) < d(ll) with the result that

II; hilli - I; Pi'illil < I; (Pili - Pi,J+ d(ll) + 2f < o(P)d(ll) + 2f
j j j

Since f > 0 is arbitrarily small and il> i2 are arbitrary, the proposition fol­
lows. I
Proposition 1.9: If P and Q are stochastic matrices and 11 is a vector as in
Proposition 1.8, then 1P1l - 111 < d(ll) and IPQ - QI < d(Q).

Proof: The same method used in the proof of the previous proposition can
be used here beginning with the inequality 0 < I;iPililli - I; f iti lli where
fij is equal to 0 except for a unique, but arbitrary, entry which is equal to 1,
and continuing the same way as in the previous proof. The details are left to
the reader. I
Example: Let P be the matrix

(H f)
then IIPII = 1 [this is true for any stochastic matrix]; IPI = i; d(P) = the
maximal distance between two elements in the same column = t [ = Ip" ­
PI3!], o(P) = t [ = I;l~, (Pli - P3i)+] and yep) = t ( = I;1~1 min(p'i> P3;))'
The inequalities proved in this section are easily verified.

EXERCISES

1. Prove Proposition 1.1.
2. Prove Proposition 1.9.

3. Illustrate by examples all the inequalities proved in this section.
4. If P is a finite stochastic matrix of order n, then

a. d(P) > l/nO(P).
b. It is possible that d(P) < 1 and o(P) = 1.
c. d(P) = 0 if and only if o(P) = O.

If P is an infinite stochastic matrix, then
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d. For any E, there is P such that d(P) < E but o(P) = 1.
e. d(P) = 0 if and only if o(P) = O.

5. Prove: If reP) =F 0 for a stochastic matrix P, then reP) is not smaller than
the minimal nonzero entry in P and is not smaller than the sum of the mini­
mal elements in the columns of P.

6. Prove that every stochastic matrix P can be expressed in the form P = E +
Q where E is a stochastic constant matrix and IIQII < 2o(P)

7. Prove: If P is a constant stochastic matrix, then o(P) = d(P) = 0 [reP) = 1];
if P is a degenerate nonconstant stochastic matrix, then o(P) = d(P) = I [reP)
= 0].

8. Prove that the functionals "II II" and "I I" have the following properties:
For any matrices P, Q and real number oc it is true that IIPII > 0, liP + QII <
IIPII + IIQII, IIPII = 0 if and only if P = 0, IlocP11 = loclllPll [defining o· co =
00], and similarly for "I I".
9. Let P be a Markov matrix representing a given Markov process. Let tl} be
the probability that the process will transite from both states i and j to some
common consequent state in the first step. Prove that ti} > 0, for any two
states i and j, if and only if reP) >0.
10. Prove that for arbitrary matrices A and B,

IIABII < IIAII IIBII
11. Let AI> ... , An and AI, ... , An be two sets of n matrices such that IIAI ­

Aill < E, for i = 1,2, . .. , then IIII7~l AI - 1I7~1 Alii < nE.

12. Let P be a Markov matrix and let PI, be the Markov matrix such that all
its rows are equal to the i, row of P. Prove that o(P) > tilP - Pi,11 but for
every E there is an index io such that o(P) < !II P - Pi,11 + tE.

13. A double stochastic matrix is a stochastic matrix P = [PI}] such that both
L.}PI} = 1, i = 1,2, ... and L.IPI} = I,j = 1,2... , i.e., the sum of the en­
tries in any column is also equal to 1. Prove:

a. If P is double stochastic and o(P) = 0, then P is of finite order, say n,
and all the entries of P are equal to lin.

b. The set of doubly stochastic matrices is closed under multiplication [since
I is double stochastic this implies that the set of doubly stochastic matrices is
a monoid.]

c. If P is a double stochastic matrix of finite order n such that o(P) < 1, and
E is a matrix all the entries of which are equal to lin, then

Iimllpm - E!I = 0 [lim pm = E]

d. If P is a countable double stochastic matrix, then o(P) = 1
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14. Consider the following Markov matrix

73

Prove that

P = [I - p p ]
q I-q'

p + q > 0, p, q > 0

limpn = lP t q P~ qJ
n~= _q__P_

p+q p+q

15. Prove that sup (11ePll/llelD = c5(P) where eranges over vectors such that
Ilell < 00 and I;ei = O.
16. Prove that any vector e such that Ilell < 00 and I; ei = 0 can be express­
ed in the form e= I;;"'~l 'I where the 'I = ('0) vectors have only two non­
zero entries, "'111 < 00, I;J '0 = 0, and Ilell = I; 11'111·

2. Nonhomogeneous Markov Chains

The different functionals d, c5, y introduced in the previous section provide,
in a certain sense, a measure of the "distance" between two arbitrary rows of
a given stochastic matrix. Thus if the matrix P is constant, then r5(P) = d(P)
= 0 and y(P) = I [see Exercise 7 in the previous section]. These functionals
will be used subsequently for studying the long-range behavior of Markov
chains. As mentioned before, a nonhomogeneous Markov chain can be repre­
sented by an infinite sequence of Markov matrices {pal OO such that the matrix
Pi represents the transition probabilities of the system from state to state at
time t = i. Let H m• be defined as the matrix

then the ij entry in H m• is the probability that the system will enter the state
j at time t = n if it was at state i at time t = m. We shall now distinguish
between two cases for the long-range behavior of a given Markov chain.

Case 1: limn_=r5(Hmn) = 0, m = 0, 1,2 .... In this case the chain is called
weakly ergodic.

Case 2: For any given m there exists a constant stochastic matrix Q such
that lim._=IJHm. - QII = 0 in this case the chain is called strongly ergodic.

In addition to the two above distinctions, there may be other distinctions as
well (e.g., the matrix Q in the second case may not be constant, or the limit-in
both cases-may exist only for some m, but not for all m, etc.) but because of
their restrictive nature those distinctions will not be considered here. We shall
give now some characterizations of the above defined properties.
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Theorem 2.1: A Markov chain is weakly ergodic if and only if there exists a
subdivision of the chain into blocks of matrices (HiJiJ..} such that Lj=1 y(HiJiJoJ
diverges, [il = 0].

Proof: The condition is sufficient, since Lj~1 y(H;JIJ+1) diverges implies that
for any jo, limn~oo II')=}. (1 - y(HIJIJ.J) = 0 and using Propositions 1.3, 1.2,
and 1.7, we have that

m+n m+n m+n n

~(II Pi) < ~( II HiJlJ.J < II ~(HiJiJ.J = II (1 - y(HiJIJ.J)
i=m i/:2.m ii2:.m ii2:..m

where i} > m means that the product begins with the first index i} > m.
Taking limits on both sides, we get that

m+n N
lim ~(II Pi) < lim ~( II HIJiJ.J = 0
11 .......00 i=m N-oo iJ>m

with N = m + n. If limn~oo ~(IIf=m Pi) = 0, m = 1,2, ... , then by Proposi­
tion 1.7,

lim YCO: PI) = lim (1 - ~ IT PI)) = (1 - lim ~(rr PI)) = 1
11--+00 i=m i=m 11-+00 J'=m

Let 0 <. f < 1 be a small constant, then if follows from the above inequalties
that a sequence of blocks HIJIJ.I can be found such that y(HIJIJ.J > f so that
Lj~1 y(HiJiJ.J diverges. I
Theorem 2.2: A given Markov chain is weakly ergodic if and only if for each
m there is a sequence of constant Markov matrices Emn such that

1imllHmn - Emnll = 0

Proof of sufficiency: Let f > 0 be an arbitrary small number and let i 10 i 2

be two arbitrary indices. Let Hmn = [aij], Emn = [eij] and suppose that n is so
big that IIHmn - Emnll < f. Then by (1)

L: (all} - al,}t = t L: lail } - al,}I< t L \all } - ell} + el,} - al'll
} 1 }

< teL: lall1 - ell}1 + L: lai,} - ei,}I) <-Hf + f) = f
} 1

[Cleary ell1 = ei,l for Emn is a constant matrix.] Since i l and i 2 are arbitrary,
we have also that

Proof of necessity: Under the same notations as above, let n be so big
that ~(Hmn) < f/2. Let Emn be a matrix such that all its rows are equal to
some row, say the i1th, of Hmn. Then
L: laM - elIiI = L:lal,} - all}1 = 2L: (a;,} - all })+ < 2~(Hmn) <2(f/2) = f

} }

Since i 10 i2 and f are arbitrary we have that
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IIHmn - Emnll = SUPI, I;J!al,J - ellJI < E I
Theorem 2.3: Let {Ptl he a given Markov chain and let PI = EI + RI with EI
a constant stochastic matrix. Then th.e given Markov chain is weakly ergodic
if and only if limn_~ IIIT~+':Rill = O.

Proof: It follows from Exercise 4 in the preliminary section that PIEI = EI
and EIPI is constant. Thus (PI - EI)(Pz - Pz) = PIPZ - EIPz and by induc­
ion

m+1I m+1I m+n m+n
IT RI = IT (PI - EI) = IT PI - Em IT PI
m=l m=l i=m l=m+l

where the second term on the right-hand side is constant. It thus follows that
the condition of Theorem 2.3 implies the condition of Theorem 2.2 which
implies weak ergodicity. On the other hand

by Corollary 1.5 and, therefore, weak ergodicity implies the condition of
Theorem 2.3. I

Examples:
1. Let {Ptl be a chain such there is E > 0 with 'l'(PI) > E > 0 for all i [this
condition will hold, for example, if all the entries in all the matrices PI are >
E, or even if in every matrix PI there is a column such that all the entries in
that column are > E], then the chain is weakly ergodic by Theorem 2.1.
2. Let PI be a chain such that

[

-!- i
_ I I

PZn- 1
- ~ ~ [

0 0 1]
PZn = i i 0

1 1 1
4" "2" 4"

one finds by straightforward computation that 'l'(Hzn-1,zn) = 'l'(Pzn-lPZn) = t
[check the computation] the condition of the Theorem 2.1 holds true and the
chain is weakly ergodic.

3. In the definition of weakly, ergodic chains it is required that limn~~ O(Hmn)
= 0 for m = 0, 1,2... ,that is, o(Hmn) ~ 0 independently of m. This require­
ment is intended to exclude cases in which the ergodicity of the chain is
induced by finitely many matrices in the chain. Consider, e.g., the chain {Ptl;:.o
with

[
10 0]

Po =100,
100

[
1 0 OJ

PI = 001
010
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Clearly Hon = Po for all nand y(Hon) = 1. But limn~=o(Hmn) does not exist
for m > 1.

Theorems 2.1-2.3 characterize weak ergodicity of chains. The following
theorem gives a characterization of strong ergodicity. It also confirms the
intuitive feeling that strong ergodicity implies weak ergodicity.

Theorem 2.4: A Markov chain {PI} is strongly ergodic if and only if for every
m there is a sequence of constant stochastic matrices {Emn} and a sequence of
stochastic constant matrices {Em} such that (1) limn~=I/Hmn - Emnll = 0 and
(2) limn~=IIEmn - Emil = O.

Proof:- If (1) and (2) hold true, then

But if (1) and (2) hold true then Em is independent on m. To prove this we
note that PmHmn = Hm-1,n and PmEm= Em [see Exercise 4 in the preliminary
section] so that,

IIEm- 1 - Emil < IIEm- 1 - Hm-1,nll + l/PmHmn - PmEm11 + IIPmEm- Emil
= IIEm- 1 - Hm-1,nll + l/Pm(Hmn - Em)11
< IIEm- 1 - Hm-1,.11 + IIHm• - Emil

by Exercise 1.10 [and I/Pmll = 1]. Taking limits in both sides we get

IIEm- 1 - Emil = limn~=IIEm_l - Emil

= lim.~=(IIEm_l - Hm-1,nll + IIHmn - Emil) = O.

Thus (1) and (2) imply that the chain is strongly ergodic. Conversely, if the
chain is strongly ergodic, then setting Q = Emn = Em for all m and n we have
that (1) and (2) hold true. I

Corollary 2.5: A strongly ergodic chain is also weakly ergodic. A weakly
ergodic chain which satisfies (2) is strongly ergodic.

Proof: Strong ergodicity implies the condition (1) in Theorem 2.4, which, by
Theorem 2.2 implies weak ergodicity, Conversely, by Theorem 2.2 weak
ergodicity implies (1) which together with (2) implies strong ergodicity by
Theorem 2.4. I

Corollary 2.6: Conditions (1) and (2) in Theorem 2.4 and Corollary 2.5 can
be replaced by the condition (2') limn~=I/Hmn - Emil = O.

Proof: IIHmn - Emil < IIHmn - Em.11 + [IEm• - Emll--+ O. Conversely (2')
implies (1) and (2) with Emn = Em for all m and n. I
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Corollary 2.7: Condition (2) in Theorem 2.4 and Corollary 2.5 can be replaced
by the condition: there is a constant stochastic matrix E such that (2") limn_=
IIEHmn - Ell = O.

Proof: IIEHmn - EII<IIEHmn - Hmnll + l!Hmn - Ell <2c5(Hmn) + IIHmn ­
Ell by Corollary 1.6. Condition (I) of Theorem 2.4 implies that c5(Hmn) -+ 0
and condition (2) in that theorem implies that IIHmn - Emil = IIHmn - EII-+O
[Em is independent on m as proved in the proof of that theorem]. Thus condi­
tion (2") holds with E = Em. Conversely if (I) and (2") hold true, then let
Em = E. It follows that

IIEmn - Emil < IIEmo - Hmnll + l!Hmn - EHmoll + IIEHmn - EII-+ 0
by (I), (2"), and the fact that c5(Hmo) -+ O. I
Theorem 2.8: Let [pa and (PJ be two Markov chains such that I;/IIP/ - F/II
< 00 then, for any f > 0, there is an integer mo such that l!Hmo - Hmnll < f,

for all m > mo and all n > m, [Hmo is the product of PIS corresponding to
H mn].

Proof: Let p/ - p/ :::::;: E/ with liE/II = e/> then Hmn = IJ(p/ + E/) = Hmn +
Rmn where Rmo contains all possible products of p/ and E/ matrices. Using the
facts that liE/II = e/ is finite for all i, liP/II = I for all i [PI is stochastic] and
IIABII < IIAII IIBII for any two matrices A and B [see Exercise 1.10] we have
that

IIRmnll ~ I; e/ + I; e/ej + I; e/ejek + ... + IT e/ = IT (I + e/) - 1
i,} i,j,k i=m+l t=m+l

Note that the e/s are nonnegative. Now as I; e/ < 00, the product II7~m+l

(I + eJ converges and, therefore, for any f, there is m with IIRmn ll < f. The
theorem is thus proved. I
Corollary 2.9: Let (PJ and (pa be two Markov chains satisfying the conditions
of Theorem 2.8. If one of the chains is weakly ergodic, then so is the other.

Proof: Assume that limn_oo c5(Hmn) = 0, m = 0, 1. ... Let Cmo be a matrix
all the rows of which are equal to some row say i o of H mn and Let Cmn be a
matrix all the rows of which are equal to the corresponding io row of Hmn.

II Hmo - Cmoll < IIHmo - Hmoll + l!Hmn - Cmoll + IICmn - Cmnll
and for any io, IICmn - Cmnll < IIHmo - Hmnll, since the rows of Cmo are equal
to the io row of Hmn and the rows of Cmn are equal to the io row of Hmo by
definition. Moreover, by Exercise 1.12 HHmn - Cmoll < 2c5(Hmn) and by
Theorem 2.8 one can choose an m such that IIHmn - Hmoll is as small as
wanted. Let us now combine the above arguments together. Given f, choose
io to be an integer such that c5(Hmo) < tllHmn - Cmoll + f/2, this is possible
by Exercise 1.12. Choose mo so that l!Hmon - Hmooll < f/3. For any m > mo
there is n such that c5(Hmo) < f/6 thus, for the fixed io and for ·any m > mo,
there is n such that
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- - £ 2£ £IIHm• - cm.11 < 3 + 6 + 3 = £

- 1 - - £
O(Hm.) < 2"Hm• - cm.11 + T < £

Finally, for i < mo, we have that o(iil .) < O(iii,mo-l) o(iimo') < o(iimo') so that
lim.~o(iim.) = O. I

EXERCISES

1. Prove that a Markov chain {P;} such that L; y(P;) diverges is weakly
ergodic.

2. Prove that if a Markov chain (PJ is weakly ergodic then every convergent
subsequence of the sequence H m• (for fixed m) converges to a constant matrix.
[Ai converges to Ameans that IIAi - AII-4 O.J
3. Let (PJ be a Markov chain. Prove: If there exists a vector n such that
lim.~~llnHm. - nil = 0, then also lim.~~lInP. - nil = O.
4. Let (PJ be a Markov chain such that there is £ > 0 with y(P;) > f for all
i, and let (PJ be an arbitrary Markov chain. Prove that there is a constant
stochastic matrix S such that

limIIP.P.p._1P._1" .p!p! - SII = 0

Generalize this result.

The following exercises (5-11) deal with the distinction between finite and
countable Markov chains.
5. Prove by an example that for any £ there is a countable Markov matrix P,
such that d(P,) < £ but o(P,) = 1.

6. Prove that a finite Markov chain is weakly ergodic if and only if lim.~~

d(Hm.) = O. Is the above statement true for countable Markov chains?
Explain.
7. Prove that a finite Markov chain is strongly ergodic if and only if there is
a constant stochastic matrix Q such that lim.~~IHm. - QI = o. Is the above
statement true for the countable case? Explain.
8. Prove that if the Markov chain in Theorem 2.2 is finite, then the condition
of that theorem can replaced by the condition: lim.~~[Hm. - Em.1 = O. Discuss
the countable case.
9. Same as Exercise 8 but for Theorem 2.3 with the condition replaced by the
condition that lim.~~III~;:Ril = o.
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10. Same as Exercise 8 but for Theorem 2.4 with the conditions replaced by
the conditions

(1) lim IHmn - Emnl = 0
n-oo

(2) lim IEmn - Eml = 0

11. Prove that all the other theorems in this section can be replaced by similar
theorems with the norm "I I" replacing the norm "II II" whenever it occurs
and discuss the countable case.

12. Markov chains in general can be classified according to the following four
types:

Type IIHmn - Qmll ~ 0 J(Hmn)~ 0

Strongly ergodic Yes Yes
Weakly ergodic No Yes
Convergent Yes No
Oscillating No No

where IIHmn - Qmll ~ 0 means that for any m, there is a matrix Qm (not neces­
sarily constant) such that limn~oollHmn - Qmll = O. In Corollary 2.9 it is proved
that if two chains satisfy the conditions of Theorem 2.8 and one of them is
weakly ergodic then so is the other. Prove that the same is true for all the
other three types of chains above.

13. Prove that if all the matrices in the Markov chain are equal one to the
other (the chain is homogeneous), then weak ergodicity implies strong ergo­
dicity.

14. Prove that if all the matrices in a Markov chain are doubly stochastic, then
weak ergodicity implies that the matrices are of finite order and implies strong
ergodicity.

3. Nonhomogeneous Markov Systems

The difference between Markov systems, to be introduced in this section,
and Markov chains, discussed in the previous section, is that in the Markov
system model one studies the set of all possible products of Markov matrices
taken from a (finite) given set of such matrices, while in the Markov chain
model one investigates a specific given infinite product of Markov matrices
and its possible subproducts. The approach in this section is closer to the auto­
maton concept where the set of all words over a given alphabet is studied with
regard to the transitions induced on the states of the automaton by the different
words.
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The words correspond here to products of Morkov matrices which induce a
probabilistic transition between the states of the automaton.

It is to be noted, however, that a homogeneous Markov chain is a particular
case of both a nonhomogeneous Markov chain and a Markov system-the case
where only one Markov matrix and its powers is considered.
Definition 3.1: A Markov system over a [finite] alphabet 1: is a pair (S, {A(u)})
where S is a [at most countable] set of states and {A(u)} is a set of Markov
matrices [representing the transitions between the states] such that the matrix
A(u) is associated to the symbol u E 1:.
Notation: If x is a word in 1:* (the set of all words over 1: including the
empty word denoted by A) such that x = u, ... Uk then A(x) = A(u,)A(u2)

... A(uk ); A(x) = [alj(x)] and alj(x) is the transition probability from state i
to state j associated with the word x.

It will be assumed that the alphabet 1: is finite. We shall, however, mention
later some of the implications induced by the assumption that 1: is infinite.
When two systems are compared it is always assumed that they are over the
same 1:.
Definition 3.2: A Markov system (S, {A(u)}) is weakly ergodic if for any
f> 0, there is an integer n = n(f) such that <5(A(x» < f for all words x such
that l(x) > n(f) where l(x) denotes the length of the word x.

Remark: If a Markov system is weakly ergodic, then <5(A(x» - 0 uniformly,
the magnitude of .<5(A(x» depending only on the length of x and not on the
specific symbols contained in x. Such a requirement of uniformity will be too
restrictive for the strong ergodicity and therefore strong ergodicity will not be
dealt with for Markov systems.

Note that A(xy) = A(x)A(y) so that <5(A(xy» < <5(A(x»<5(A(y» < <5(A(x»
and therefore if and only if <5(A(x» < f for all x with l(x) = n(f), then
<5(A(x» < f for all x withl(x) > n(f).

Theorem 3.1: A Markov system is weakly ergodic if and only if there is an
integer k such that <5(A(x» < 1 for all x with l(x) = k.

Proof: Necessity follows directly from the definition. To prove sufficiency
set <5 = maxl(x)~k <5(A(x» < 1. [there are only finitely many words x with
l(x) = k because I: is finite.] Let no be an integer such that <5"0 < f for a given
f> O. Let x be a word such that l(x) > kno, then x = y, Yno Y where
l(y,) = ... = I(Yno) = k and l(y) > O. Thus, <5(A(x» < <5(A(y,) <5(A(Yn.»
< <5"0 < f. It follows that the system is weakly ergodic. I

Remark: The theorem will remain true even if the alphabet I: is infinite
provided the requirement that <5(A(x» < 1 is replaced by the requirement that
there is a real number <5 < 1 such that <5(A(x» < <5 for all x with l(x) > k.
Theorem 3.2: Let (S, {A(u)}) and (S, {A(u)}) be two systems such that the first
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is weakly ergodic and the second is arbitrary. There is f > 0 such that if
IIA(O') - A(O')11 < f for all 0' E 1:, then the second system is also weakly
ergodic.

Proof" Using Theorem 3.1, we must prove that there is f such that if
IIA(O') - A(O')11< f for all 0' E 1:, then there is n such that o(A(x» < I for
all x with lex) > n. Let A;.(x) be the matrix such that all its rows are equal to
the io row of A(x), then IIA(x) - AJx)11 < 20(A(x» by Exercise 1.12. As the
first system is weakly ergodic, there is no such that o(A(x» < i for all x with
lex) > no, i.e., IIA(x) - AJx)11 < t for all such x and any io. Let x be a fixed
but arbitrary word with lex) = no and choose ioso that o(A(x» < ~IIA(x) ­
Ai.(x)1I + t. Such an io exists by Exercise 1.12. Finally, let f be a number
o< f < 1/(3no), and let IIA(O') - A(O')II < f for all 0' E 1:. Then, by Exercise
1.11, we have that IIA(x) - A(x)1I < i- (for lex) = no). Thus,

o(A(x» < t + ~IIA(x) - Ai.(X)/1

< t + MIIA(x) - A(x)l/ + IIA(x) - AJx)/I + /lAi.(x) - Ai.(x)1I

< t + Mt + t + t) = 1

since IIAi.(x) - Ai.(x)11 < jIA(x) - A(x) I1 < t. But x is arbitrary and therefore
we have that o(A(x» < 1 for all x with lex) = no provided that IIA(O') - A(O')11

< 1/(3no) for all 0' E 1:, where no is an integer such that o(A(x» < i for all x
with lex) > n. To complete the proof we note that if o(A(x» < 1 for all x
with lex) = no, then this is true also for all x with lex) > no, as mentioned
before. I
Theorem 3.3: Let (S, {A(O')}) and (S, {A(O')}) be two systems such that the first
system is weakly ergodic. For any 0 > 0, there is f > 0 such that if IIA(O') ­
A(O')11 < f for all 0' E 1: then IIA(x) - A(x)11 < 0 for all x E 1:*.

Proof: By the previous theorem, there is f 1 such that IIA(O') - A(O')11 < fl>

for all 0' E ~, implies that both systems are weakly ergodic. Thus there is f 1

such that there is no with both o(A(x» < 0/6 and o(A(x» < 0/6 for all x with
lex) > no and the given 0 provided that IIA(O') - A(O')11 < fl' For the number
no above, there is f 2 such that if IIA(O') - A(O')II < f 2 then /lA(x) - A(x)/I <
0/3 for all x with lex) < no [this follows from Exercise 1.11]. Let f =
min (f1, f 2). Then for all x with lex) < no, IIA(x) - A(x)/I < 0/3 < O. If
x = yz with l(z) = no and ley) > 0 i.e., if lex) > no then, using Corollary 1.6
we have that

IIA(x) - A(x)II = /IA(yz) - A(yz)/I

< IIA(y)A(z) - A(z)11 + IIA(y)A(z) - A(z) II + IIA(z) - A(z) I1

< 20(A(z» + 20(A(z» + IIA(z) - A(z)11

<~+~+~=o I- 3 3 3

file:////AiXx
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Remarks: Theorem 3.3 provides an interesting application: Assume that a
system (S, {A(O')}) is given together with an initial distribution n over the states,
and it is required to compute the values of the vector nA(x) for some word
x = 0'1 ••• Uk' If the number of states in countably infinite, then it will be
impossible to compute the exact values of the entries of nA(x). If the system is
weakly ergodic, then using Theorem 3.3 one can change the vector n into a
new vector it such that lin - itll < E and it has only finitely many nonzero
entries. The rows of A(O'I) corresponding to zero values in it can be replaced
by zero rows and one can choose finitely many columns in the remaining rows
so that by replacing the other columns by zero columns one gets a matrix A(O'I)
such that IIA(O'I) - A(O'I)II < E and A(O'I) has only finitely many nonzero
entries. The process is repeated for A(0'2) ... A(O'k)' As lin - itll < E and
IIA(O'/) - A(O'/)II < E, IInA(x) - itA(x) II < 0 with E a function ofO. An infinite
computation can thus be replaced by a finite computation and the resulting
error can be kept under control. Theorem 3.3 may also be used for rounding
off the entries in the individual matrices A(O') [in order to simplify the com­
putation, or to make computation possible when the entries are irrational] and
keeping the resulting error in long computations under control.

Because of the importance of Theorem 3.3, one is induced to ask whether
the condition of that theorem is best [Le., whether it is also a necessary con­
dition for the theorem to hold true]. That this is not the case is shown by
Exercise 3.4. On the other hand it is clear that the theorem is not true in
general, e.g., let I be the unit matrix of order n and let P be any double
stochastic matrix such that liP - III < E and such that o(P) < 1, then, inde­
pendently on E we have that limm~~ pm = E where E is a matrix such that all
its entries are equal to lin [see Exercise 1.13c]. Thus, for large enough m and
n> 2,

III - pmll > III - EII- liE - pmll = 1 + n -;; 2 - liE - pmll > 1

independently of E.

One additional question with regard to Theorem 3.3 to be considered here
is the following: Assume that we drop the requirement that the first system is
ergodic and require instead that A(O') has zero entries in the same places where
A(O') has zero entries [i.e., no new transitions are added in the approximation].
Is this new condition necessary or sufficient, or both, for the theorem to hold
true? It is clear that this new condition is not necessary, since a weakly
ergodic system may have zero entries in its A(O') matrices and the theorem does
not impose any restrictions on the corresponding entries in the matrices A(O').
The following example will show that the above condition is not sufficient
either.
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Example: Let

A(u,) ~ [~
I-p 0 Iq; [I -P

0 P

~]
1 0

A(u,) ~ ~
0 0

0 q 0 l-q

0 0 0 1

then, by straightforward computation one finds that

Denote (11'(12 by X•• It is easily seen that if words of the form x. only are
considered, then the subsystem consisting of the first and third states is inde­
pendent of the other two states, i.e., if A'(x.) denotes the submatrix of A(x.)
corresponding to the first and third state

then A'(x.xm ) = A'(x.)A'(xm). Let now p = q = t. In this case

l
11--.+1

A'(x.) = ~
4.+ 1

."\ ]
I - 4.+ 1

A'(x.) being doubly stochastic, we have that [see Exercise 1.13c]

lim A'(x.m) = [~ ~J
m~= i t

But if p = t and q = t - f with 0 < f < t, then the matrix A'(x.) will have
the form
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r(11 - 4
L

):+1 (~:., )n+lJ
--f 1- --f4 4

So that [see Exercise 1.14]

(
1 )n+l 1

4 - f + 4n+1

(
1 ) n+ 1

""4- f

(
1 ) n+ 1 1 ( 1 ) n+ 1 14 - f + 4n+1 4 - f + 4n+1

And for any f > 0 and 0 > 0, there is n with

(
1 ) n+ 1
--f
4

(
1 )n+l 1 < 0

""4 - f + 4n+1

(let the reader prove this fact). Let B(a/) be the matrix A(a/) when p = q = t
and let B(aJ be the matrix A(a/) when p = t and q = t - f, 0 < f < t.
Then IIB(aJ - B(aJII < 2f, but for any such f, there is a word of the form
xnmsuch that the 1,1 entry of B(xnm) is bigger than i and the corresponding
entry in B(xnm) is smaller than t so that IIB(xnm) - B(xnm)11 > t which shows
that the consequence of Theorem 3.3 is not true for this example although
B(a/) has nonzero entries in the same places as B(a/).

EXERCISES

1. Discuss Theorems 3.2 and 3.3, in the case where 1: is infinite.
2. Show that if all the Markov systems considered are finite then all the
theorems of this section are true with the norm "II II" replaced by the norm
"I I" and 0 replaced by d.

3. Prove that any system (S, {(a)}) such that lSI = 2 is weakly ergodic if and

only if the matrices [b ~J and [~ bJ are not included in the set {A(a)}.

4*. Prove the following proposition: Let (S, {A(a)}) and (S, {A(a)}) be two
systems such that lSI = 2. For any 0 > 0, there is f > 0 such that if

1. IIA(a) - A(a)II < f for all a E 1: with

A(a) :1= [~~J and A(a):I= [~ ~J
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[1 OJ [0 lJ -2. If, A(u) = 0 1 or A(u) = 1 0' then A(u) = A(u).

Then IIA(x) - A(x)II < o.
5. Prove that a weakly ergodic system such that all its matrices are double
stochastic, has only finitely many states, is strongly ergodic and the limiting
matrix is such that all its entries are equal. [A system is strongly ergodic if
liml(x)_~ IIA(x) - QII = 0 for some constant stochastic matrix Q.]

4. Graph Properties and Decision Problems

Up to this section no restriction was assumed with regard to the finiteness or
infiniteness of the Markov chains or systems considered. In this section, how­
ever, we shall assume that the chains or systems have only finitely many states.
This restriction will enable us to simplify the classification of the states of a
chain. In addition we shall be able to prove some decidability theorems under
the finiteness restriction although it is not known whether these theorems are
true in the infinite case. Some of the difficulties encountered in this case will
be illustrated in the exercises following this section. For more information on
infinite homogeneous Markov chains, the reader is referred to the books by
Kemeny, Snell, and Knapp (1966), and Feller (1958).

Given a Markov matrix P = [Pill with state set S, the graph associated with
P is a pair (S, n where r is a binary relation on S (r ~ S x S) such that
(i,j) E S if and only if PI) > O. If i E S, then ir denotes the set of states

ir = U: (i,j) E r}

A sequence of states (io, i h •.• , i.) is a path oflength n if every pair of adjacent
states in the sequence is in r. Then state j is a consequent of length n of i if
there is a path of length n beginning with i and ending with j. A pair of states
have a common consequent (of order n) if there is an integer n such that
iP n jP * 0 where r· means the composition of r with itself n times
[(i,j) E P if and only if there is k such that (i, k) E rand (k,j) E r.] The
graph is strongly connected if there is a path connecting any pair of states.

We are now able to classify the states of a given graph (S, n. A state is
called transient if it has a consequent of which it is not itself a consequent. A
state which is not transient is nontransient.

Remarks

1. It is decidable whether a given state is transient or not [see Exercise 4.1].

2. There must be nontransient states in any graph. Otherwise, one can con­
struct an infinite sequence of states io, il> ... ik , ••• such that for k > j, ik is a
consequent of i) and i) is not a consequent of ik (the relation of consequence is
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transitive). All the states in the sequence must therefore differ one from the
other, and, as the chain is finite, this is impossible.

3. If i is a nontransient state and j is a consequent of i, then j is also non­
transient. For let k be any consequent of j, then k is a consequent of i which
implies that i is a consequent of k [i is nontransient] which implies that j is a
consequent of k [since j is a consequent of i].

The set of nontransient states is divided into ergodic classes, where an ergodic
class is a maximal strongly connected set of states and two states belong to the
same ergodic class if and only if they are consequents of each other. In order
to be able to proceed with the classification we need now the following:

Lemma: A set of positive integers that is closed under addition contains all
sufficiently large multiples of its greatest common divisor.

Proof: Let d be the gcd of the given set of numbers, then there is a finite
set of these numbers, say nlo nz, ... , nk' such that d is their gcd [Let n, be the
first number in the set. If n, = d, we are done, if n, > d, then there is an nz
such that the gcd of (n lo nz) = dz is >d. If dz = d, we are done. If dz 7'= d,
we continue the process getting a sequence of numbers n1, nz, n3, ••• which
must terminate as the d/s are decreasing.] By a well-known theorem of
arithmetic, there are integers [negative or positive] a" az, ... ,ak such that
a, n, + ... + ak nk = d. Let m be the positive part and let n be the absolute
value of the negative part in the left-hand side of the above equation. Then m
and n are numbers in the given set [for the set is closed under addition].

Let q be any number, then q can be written in the form q = an + b with
b < n - 1. Multiplying by d we get dq = dan + db. But d = m - n so that
db = (m - n)b and dq = dan + (m - n)b = (da - b)n + bm. Thus for any
q such that a > (n - 1)/d the value da - b will be nonnegative with the result
that dqis in the set. The lemma is thus proved. I

Let E be an ergodic class of states, let i and j be two states in E and let ~j
be the set of integers ni} such that there is a path of length nil connecting the
two states i and j. The sets ~J are not empty by the definition of E. Consider
now the two sets of integers ~{ and NJJ and let d{ and dJ be their gcd respec­
tively. By the previous lemma we have that for sufficiently large k, kdj E N JJ

[since the sets N JJ are clearly closed under addition]. Let a E Ni} and c E N j {

be two integers, then for sufficiently large k, a + kdJ + C E Nil' It follows
that d{ divides a + kdj + c, and, since d{ also divides (a + c) E Nil, we have
that d{ also divides kdJ for all sufficiently large k. But this is possible only if d{
divides d j • Similarly d j divides d{ or d{ = d j • The consequence is that all the
sets Nil have the same gcd to be denoted by d. Let a and b be integers in ~J

and let C be in Nj/' Then a + c E Nil and b + c E Nil so that a + c =
o(mod d) and b + c = 0 (mod d) or a = b (mod d). It follows that all the
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integers in Nil are congruent to each other (mod d) and in particular to the
smallest integer in NIj, to be denoted by tij' [If i *- j, then tl} *- 0 and if i = j
we may define til = 0, for any integer in Nil is congruent to 0 (mod d).]

We are now able to divide any ergodic class E into periodic subclasses as
follows: Two states i and j in E are in the same periodic class if and only if
j E iP and n =0 (mod d). It is easy to see that the relation of being in the
same periodic class is an equivalence relation (see Exercise 4.3), and any ergodic
class is thus subdivided into exactly d periodic subclasses [d is the gcd of the
sets Nul CI> C2, ••• , Cd where any path connecting a state in C/ to a state in
CJ> i < j has length n with n = j - i (mod d) and j - i = ti}'

Example: Consider the graph in Figure 12. The states 1,2,3 are transient.
The set of states {6, 7, 1O} is an ergodic class and the sets {6}, {7}, flO} are its
periodic subclasses with d = 3. The set of states {4, 5, 8, 9} is another ergodic

Figure 12. Schematic representation of a transition graph.

class and the sets {4, 8} and {5, 9} are its periodic subclasses with d = 2. Note
that, by a proper rearrangement of the states, the matrix whose graph is as
above can be written in the form shown in Figure 13 (nonzero entries are rep­
resented by a x sign). Thus every ergodic (EI> E2) class is represented in a
square main diagonal submatrix with all the entries in the remaining parts of
the corresponding rows being zero. The periodic subclasses are represented in
[not necessarily] square submatrices filling the intersection of a set of rows
corresponding to one periodic class with a set of columns corresponding to
another periodic class in the same ergodic class. All the other entries in the
corresponding rows are zero.

The rearrangement of states, illustrated above, is possible in general and any
stochastic matrix can be rearranged so as to have the above form.
Definition 4.1: A matrix is SIA (stochastic, indecomposable, and aperiodic) if
it is stochastic and its graph has only one ergodic class with period d = 1 [i.e.,
there are no periodic subclasses].
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Figure 13. Canonical representation of stochastic matrix.

Definition 4.2: A stochastic matrix satisfies the condition HI if every pair of
states in the associated graph has a common consequent.

Lemma 4.1: A stochastic matrix is SIA if and only if it satisfies the condition
HI'

Proof: Let P be an SIA matrix of order n, and let i and j be two of its
states. There is m «n - I) such that both i and j have consequent states i'
and j' of order m and i', j' are nontransient. Since there is only one ergodic set
which is not periodic, there is an m1 such that ml E Ni'i' and ml E Nj'i' so that
i' is a common consequent of order m + m l of both i and j.

Assume now that P satisfies HI and that there are several ergodic classes in
the graph GI> G2, ••• ,Gr' Let i l E GI and i) E G) be a pair of vertices in dif­
ferent classes, then i l and i) have a common consequent k which is nontransient
(k is a consequent of nontransient states). Hence i 1 and i) are consequents of k
which implies that kEG, and kEG) or G I = G). It follows that there is a
single ergodic class in the graph. Assume that the ergodic class is divisible into
several periodic subclasses C l , ••• ,Cd and let i l and i) be a pair of vertices in
different classes C I and C) respectively. Then i l and i) have a common con­
sequent k which is nontransient and belongs, therefore, to a periodic class Ck •

Then k is a consequent oforder k - I (mod d) of i l and a consequent of order
k - j (mod d) of i) and [since k is a common consequent of both i l and i j ]

k - 1 - k - j (mod d) or 1=j (mod d) or C I = Cj • Thus there is no
periodic subdivision of the ergodic class and the proof is complete. I
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Lemma 4.2: Let (S, r) be a graph with n states. If a pair of states i and
j, i,j E S, has a common consequent, then it has a common consequent of
order v where v < n(n - 1)/2.

Proof: If states i and j have a common consequent, then there exists a se­
quence of (unordered) pairs of states [with i = io, j = jo]

(ioio), (ilil), ... , (ipip)

such that (1) ik = jk' k = 0, 1,2, ... ,f.l - 1; (2) ik E iP,jk E jP; (3) ip = jp.
If the sequence contains two equal pairs, then omit the part of the sequence

between these pairs, including the second of the equal pairs. Repeat this pro­
cedure until a reduced sequence is obtained

(ioio), (i/N),···, (ik'N),···, (i.'j.')

such that (1) ik' '*N, k = 0, 1, ... ,v - 1; (2) ik' E iP,N E jrk; (3')
(i/N) '* (i/j/), k '* j, k,j = 0, 1,2, ... ,v: (4') i.' = jv'.

Now by (2') and (4'), i.' = j.' is a common consequent of order v of the
states i andj, while by (I') and (3'), v is at most n(n - 1)/2. I

Remark: It is not known whether the bound given in Lemlllfl 4.2 is_ sharp.
It can be shown however that the difference between the above bound and any
sharper bound is of the order of magnitude n/2 where n = lSI [see Exercise
4.4].

Definition 4.3: A stochastic matrix is called scrambling if every pair of states
in the associated graph has a common consequent of order 1.

Lemma 4.3: Let P be a finite stochastic matrix, 'l'(P) > 0 if and only if Pis
scrambling.

Proof: mini"i' I:} min (Pili' Pi,}) > 0 if and only if for any i l and i2, there
is a j with both Pi,} and Pi,} > O.

Theorem 4.4: Let P be a finite stochastic matrix. P satisfies HI if and only if
there is an integer k < n(n - 1)/2 such that 'l'(Pk) > O.

Proof: If P satisfies HI then, by Lemma 4.2 there is a k < n(n - 1)/2 such
that pk is scrambling [the common consequent property is hereditary, i.e., if
two states have a common consequent of order n then they have a common
consequent of order >n] so that by Lemma 4.3 'l'(Pk) > O. If there is k with
'l'(Pk) > 0, then pk is scrambling, i.e., P satisfies HI' I
Corollary 4.5: It is decidable whether a finite homogeneous Markov chain is
ergodic or not.

Definition 4.4: A stochastic system (S, {A(a)}) satisfies condition H2 (of order
k) if there is an integer k such that all the matrices A(x) with /(x) > k are
scrambling.
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Corollary 4.6: A stochastic system is weakly ergodic if and only if it satisfies
condition H2•

Proof" By Lemma 4.3, Proposition 1.7, Theorem 3.1, and Definition 4.4. I
Remarks:
a. If all the matrices A(u) are equal one to the other (the homogeneous case)

then the condition H 2 reduces to the condition HI'
b. It suffices that the matrices A(x) with l(x) = k be scrambling for the

condition H2 to be satisfied [see Exercise 4.6].

Theorem 4.7: If a stochastic system (S, {A(u)}) satisfies the H2 condition, then
it satisfies this condition of order k with

k < H3' - 2·tl + 1)

where n = lSI.
Proof: Assume that there is a matrix A(x) with l(x) > ~(3' - 2· tl + 1) and

A(x) is not scrambling. Then there are two states i l and i 2 which do not have
a common consequent by A(x). Let x = U I ••• u. and consider the following
sequence of unordered pairs of sets of states

(ao
l , ao

2), (a/, a I
2), ••• , (a/, a.2

)

where aol = il> ao2 = i2 and

are the consequents of the states in a/, al respectively by the matrix A(O'i)'
By the definition of the matrix A(x) and of the as, we have that all as are

nonvoid sets and every pair of as is a disjoint pair of sets. Let a/ denote the
set of states in S which are not in a/ u al. There are 3' different partitions of
S into 3 disjoint subsets a/, al, a/, but 2·tl - 1 of these have a/ or al or both
empty. [There are 2' partitions of S into two sets a/ and a? or al and a?, but
the partition with S = a/ is counted in both cases.] Thus there are 3' - 2· tl
+ 1 ordered partitions (a/, al, a/) of S such that both a/ and al are not
empty. If the order between a/ and al is not taken into account then the
number of such partitions reduces to -H3' - 2· t1 + 1). This argument implies
that there are two equal pairs in the above sequence say (a/, al) = (ak

l , ak
2),

j < k < n. It follows that any matrix of the form

A(ul ••• O'j_I)A'(O'j ... Uk-i), r = 1,2, ...

is not scrambling and the condition H 2 is not satisfied. I
Corollary 4.8: It is decidable whether a given stochastic system satisfies the H 2

condition.

Proof: By Lemma 4.3, Theorem 4.7, and Definition 4.4. I
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Remark: To decide that a given system does not satisfy H2 one must check
all matrices A(x) with l(x) < ~(3' - 2,+1 + 1) which will make the procedure
difficult and for large n, even impracticable. One may facilitate the computa­
tion by disregarding any matrix A(x).which has a scrambling matrix as a factor,
for any such matrix is a priori scrambling [see Exercise 4.6]. On the other hand
it is shown in the following example that the bound of Theorem 4.7 is sharp
and cannot be improved in general.

Theorem 4.9: The bound in Theorem 4.7 is sharp.

Proof: Fix n, let K be a set of n states and let the following sequence by any
enumeration of all different unordered pairs, of nonvoid disjoint sets of states
from K:

(2)

such that the number of states in any set of the form a/ = a/ u a? is not
smaller than in the set a/-l for i = 1, 2, ... ,k. As stated before k + 1 =
..H3' - 2'+1 + 1).

If rp is a set of states and A(x) is a matrix in a system, denote by A(x, rp) the
set of states which are consequents of those in rp by A(x). Let (K, {A(O')}) be a
system such that 11:1 = k and the matrices A(O'I), .•. ,A(O'k) satisfy the follow­
ing property:

r
if rp n [K - a/-I] =F 0

a/ if rp s;; al- IA(O'/l rp) = (3)
a.2 if rp s;; a~_1I

a/ otherwise

Note that the number of states in A(O'/l rp) can be smaller than in rp only in the
second or third case in (3). This follows from the definition of sequence (2),
and we shall refer to this property as the conditional monotone property. Note
also that if (3) is satisfied for one-element sets, it is satisfied for any sets.

We will show now that the stochastic system as defined above satisfies the
H 2 condition, but there is a word x E 1:* with l(x) = k such that A(x) is not
scrambling.

The second assertion follows from the fact that the matrix A(x) =
A(O'h 0'2" •• , O'k) is not scrambling by the definition of the sequence (2) and
by (3).

To prove the first assertion, assume that there is a matrix A(x) =
A(O'/, ... 0'/,) which is not scrambling and such that l(x) = t > k. Thus there
are two states i l and i 2 not having a common consequent by A(x). Set i l = POl,
i 2 = Po\ P/ = A(O'iJ' P}-I) and P/ = A(O'/J' P7-1) and consider the following
sequence

(4)
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This is a sequence of unordered pairs of nonvoid disjoint [by assumption] sets
of states, and as t > k + 1, the sequence contains at least two equal pairs, say

(P/, P/) = (P/, P/), p < q (5)
Consider the following subsequence of (4)

(Ppt, P/),· .. ,(P~-h P:-I), (P/, P/),· .. ,(P/' P/) (6)

As before, we shall denote by Pi the set Pi = P/ uP?
The matrix A(O'iJ transforms the sets (P~-h P:_I) into the sets (P/, P/), but

A(O'iJ is one of the A(O';)s say A(O'iJ = A(O'h)' The following cases must be
considered :

(a) P~-l n (K - OCh - l ) =F 0 or P:_I n (K - och - I ) = 0

This is impossible, for this would imply that Pr l n Pr2 =F 0 by (3), contrary
to the assumption that these sets are disjoint.

(b) Pr-I c OC~_I or Pr-I c OC~_I

which is also impossible, as in this case we get that

P/ = A(O'{" P~_I) = OCh
l (or OCh2

) = A(O'{" P:-I) = P/
contrary, by (3), to our assumption that P/ n Pr2 =F 0.

(c)
P~-I n OC~_I =F 0,

P:-I n OC~_I =F 0,

together with P~_I n OC~_I =F 0, or

together with P~-l n OC~_I =F 0

which is also impo~sible, as in this case we get, by (3), that Pr I n Pr 2 =F 0.

(d)
PI C NI

r-1 - U\lh-l'

PI C N2
r-1 - v..h-h

together with P:_I S; OC~-h or

together with Pr-I S; OC~_I

(~)

and the inclusion is proper 10 at least one part of the conditions, which is also
impossible, since by the conditional monotone property and by the impossibility
of case (b) [applying the same argument to all pairs in sequence (6)], we get
that the number of states in Pq is larger than that in pp, contrary to (5).

P~_I = OC~-h together with P:_I = OC~_I' or

P:_I = OC~_I' together with P:-I = ocl- 1

In this case we get that seauence (6) is a middle part of sequence (3), which
is impossible since all the sets in (2) are different, contrary to (5).

All possible cases are covered by (a)-(e), and the proof is complete. Note
that the bound in Theorem 4.7, although sharp, is independent of the number
of letters in the alphabet 1:. On the other hand the number of letters in the
counterexamples of Theorem 4.9 grows with n. It would be therefore interest­
ing to find out whether the bound in Theorem 4.7 can be improved under the
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condition that the number of letters in I is kept fixed or small [say 2 letters].
No answer to this question is presently available. I
Definition 4.5: A stochastic system (S, {A(a)}) is definfte [of order k] if there
is an integer k such that all the matrices A(x) with l(x) > k are constant and
this property does not hold true for all words x with l(x) < k.

Corollary 4.10: If (S, {A(a)}) is a definite stochastic system of order k and
y = ux is a word such that l(x) = k, l(u) > 0 [l(y) > k] then A(y) = A(x).

Proof' A(y) = A(u)A(x) = A(x), by Exercise 1.4 in the preliminary section
since A(x) is constant.

A final problem to be discussed in this section is the decision problem for
definite stochastic systems. This problem is solved by the following.

Theorem 4.11: If a stochastic system (S, {A(a)}) such that lSI = n is definite
of order k, then k < n - 1.

Proof' Denote by V the set of all n-dimensional vectors v = (VI> ..• ,vz)
such that LVI = 0; denote by HI the set" of matrices HI = {A(x): l(x) = i}
and denote by VHI the linear closure of the set of vectors of the form vA(x),
V E V, A(x) E HI, i.e.,

VHI = {t vIA(x); VI E V, A(x) E HI, r = 0, 1, ...}
1=1

Then (a) V is a linear space, (b) VHI is a linear space VHI ~ V.

To prove (b) we note that any vector of the form vA(x) is in V, which is
closed under addition; the set VHI is closed under vector addition by definition,
and is closed under multiplication by.a constant because the set V is closed
under such multiplication [i.e., C L vIA(x) = L (cvl)A(x) = L v/A(x)].

(c) VJlI+1 ~ VHI. This follows from the fact that VH ~ Vand VJlI+1 =
(VH)HI ~ VJlI.

(d) If for some i, VHI = VHI+l, then VHI = VJlI+J, j = 1,2, .... This
follows from the fact that VJlI+z = (VJlI+I)H.

(e) If the system is definite of order k then VHk is the space containing the
zero vector as its single element [i.e., dim VHk = 0], but this is not true for
VHI,i < k.

This follows from the fact that if and only if A(x) is constant then vA(x) = 0
for all v E V.

Consider now the sequence of linear spaces
V(= VlfO) ::::2 VH::::2 VHI::::2 ... ::::2 VJlI···

Because of property (d) this sequence must have the form
VlfO ::J VH::J VHI ::J ••• ::J VHp = VHP+l = VHP+z = ...

[the sequence cannot descrease indefinitely because dim V = n - 1]. Thus, if
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the system is definite of order k, then necessarily VHP = VHk = (O} by property
(e) so that n - 1 = dim VlfO > dim VHI > ... > dim VHk = O. Hence,
k<n-1. I
Corollary 4.12: If P is a stochastic matrix of order n such that pk is constant
but pk-I is not, then k < n - 1.

Corollary 4.13: It is decidable whether a given stochastic system is definite.

Example: Consider the following set of 3 x 3 matrices

A(a,a,) ~ A(a,a,) ~ (1
This system is therefore definite of order 2.

-.h)-h
7

24

!1)

A(O'I) = (; : :),
1 1 1
"4 "2" "4

Straightforward computation shows that

A(a,a,) ~ A(a,a,) ~ (~ !
and

EXERCISES

1. Prove that the property of being a nontransient state is decidable and find
an optimal algorithm for deciding it. [A property is decidable if there is an
algorithm with the aid of which one can decide, after finitely many steps,
whether an element of a certain class has or has not the property.]
2. Prove that the relation of being in the same ergodic class is an equivalence
relation.
3. Prove that the relation of being in the same periodic class is an equivalence
relation.
4. Find a graph (S, r) such that lSI = n, it satisfies the HI property, but there
is a pair of states i, j E S which do not have a common consequent of order m
[m is a function of n] where m is as close as possible to the bound of Lemma
4.2.
5. Provide a full proof for Corollary 4.5.
6. Let P and Q be stochastic finite matrices. Prove that the product PQ is
scrambling if one of the matrices P or Q [or both] is scrambling.
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7. On the basis of Theorem 4.7 and Exercise 4.6 above, give an algorithm for
deciding whether a given stochastic system satisfies H 2•

8. Consider the following condition: A stochastic matrix P satisfies condition
H3 of order k if there is an integer k and a state j such that j is a consequent
of order k of all the states (including j). Prove: If P has finite order, then the
conditions HI and H 3 are equivalent.

9. Let I be a 1-1 function from the set of all disjoint unordered pairs of
integers into the set of intergers. Let P = [Po] be an infinite stochastic matrix
such that Po =I=- 0 if and only if there is a k with I(i, k) = j. Show that P has
the H, property, but it does not have the H 3 property.

10. Find an infinite stochastic matrix P which satisfies the H3 property of order
1 but yep) = O. [Compare with Lemma 4.3.]
11. Find an infinite stochastic matrix P such that limn~= d(pn) = 0 but
limn~= J(pn) = 1.

In the following exercises it is assumed that the matrices are of finite order.

12. Let P be a stochastic matrix, Prove that there is a stochastic matrix Q
such that

1 n
lim- I: pm = Q
n-+oo n m=l

13. The matrix Q in Exercise 12 is constant if and only if there is a single
ergodic class in the graph associated with the given matrix.

14. If, and only if, there are no periodic subclasses in any ergodic class of P,
then

lim 1- :t pm = lim pn = Q
n_oo n m=l n_oo

and Q is constant.

15. Show that in any of the Exercises 12-14 the matrix Q satisfies the equation
QP = PQ = Q or Q[I - P] = 0, providing a means for computing it.
16. Prove that if the graph associated with a matrix P contains a single ergodic
class, then there is a unique solution to the system of n + 1 equations

(x" ... , xn)[I - P] = 0

x, + ... + X n = 1

17. Let Pr be the (n - 1)-dimensional matrix obtained from P by substracting
the rth row from all its rows and then deleting the rth row and column. Let
:ir be the vector obtained from the vector x by deleting its rth entry. Prove:

a. If, and only if, there is a single ergodic class in the graph of P, then
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det(/ - P,) =f= 0 for any r

b. Let~, be the rth row of P, then the solution to the system of equations
in Exercise 16 [given that there is a single ergodic set in the graph of P] is

18. If I I]4" 4"

o i
I I
4" "2"

compute limn_= pn.
19. Let pea) be a set of stochastic matrices, let P,(a) be defined as in Exercise
17 and let e,,(a) be the rth row of pea) with the rth entry deleted. Let x =
al ••• ak • a. Prove by induction that

e,,(x) = e,,(al )P,(a2 ••• ak) + e,,(a2)P2(a3 ••• ak) + ...
+ e,,(ak-I)P,(ak) + e,,(ak)

b. Show that with the aid of the above formula one can compute the entries
of a 2-dimensional matrix P(x) directly from the values of the 2-dimensional
matrices pea) as follows:

k-I k
P21(X) = P21(ak) + 1: P21(a;) II (PII(aJ - P21(aj »

i=1 j~i+1

k-I k
Pdx) = P12(ak) + 1: Pda;) II (PII(a j ) - P21(aj »

i=l j~i+1

PII(x) = 1 - P21 (X); P22(X) = 1 - P21 (X)

20. Show that if P = [Pill is a 2-dimensional matrix, then det P = PlI - P21 •

21. Let P be an SIA matrix of order n and let 11/ denote the rth column of
pk. Show that the set of vectors {11/} are all contained in an (n - I)-dimen­
sional subspace of the n-dimensional Euclidean space.
22. Show by examples that it is possible to have two finite stochastic matrices
A and B such that

a. )I(Ak) = 0 = )I(Bk) for all integers k, but there is an integer k such that
)I((AB)k) > O.

b. There is an integer k such that )I(Ak) > 0 < )I(Bk) but for all integers
k )I((AB)k) = O.
23. Two stochastic matrices P and Q are called similar (P '" Q) if they have
the same associated graph. Prove that if Q is an SIA matrix and PQ '" P, then
P is scrambling.
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24. Let (S, {A(CT)}) be a stochastic system. Prove that all the matrices A(x) are
SIA if and only if the system is weakly ergodic. Let t be the number of all the
different graphs associated with lSI-dimensional SIA matrices. Prove that if
the given system has the property that all the matrices of the form A(x) are
SIA, then all the matrices A(x) with lex) > t + 1 are scrambling [use Exercise
23].

25. Let (S, {A(CT)}) be a weakly ergodic Markov system. Prove that

lim IIA(yx) - lim A(x")II = 0
l(x)-oo R-OO

for any word y.

26. Let (S, {A(CT)}) be a stochastic system such that lSI = n and having the
following property: For any CTE1:, if IX and Pare two disjoint subsets of S
and also A(CT, P) and A(CT, IX) are disjoint then IA(CT, IX) U A(CT, P)I > IIX U PI.
Prove that any such system satisfies the condition H2 of order n - 1 and prove
that the bound n - 1 above is sharp for such systems.

27. Let (S, {A(CT)}) be a system such that all the matrices A(CT) have the same
graph which satisfies HI. Then the system is weakly ergodic.

28. Find a sequence of infinite stochastic matrices Pk such that for every
integer k, Pk

k is scrambling but PZ-I is not.

29. Find a sequence ofinfinite state systems of stochastic matrices Sk = {Akix)}
such that Sk satisfies H2 of order k but Sk does not satisfy H2 of smaller order.

30. Find a sequence of stochastic infinite matrices Pk such that Pkk satisfies H 3
but PZ-I does not satisfy H 3•

31. Show that there exists an infinite stochastic matrix P such that P satisfies
H3 but y(Pk) = 0 for k = 1, 2, ....

OPEN PROBLEMS

1. Let P be an infinite stochastic matrix and assume that there is an integer k
such that y(Pk) > O. Does this imply that P satisfies H 3?

2. Is the condition "y(Pk) > f > 0 for some f and some integer k" decidable
for infinite stochastic matrices P?

3. Is the condition that 1imn_~ d(pn) ~ 0 implied by HI or H 3 for infinite
stochastic matrices?

4. Find a sharp bound for Lemma 4.2 or show that the given bound is sharp.

5. Improve the bound of Theorem 4.7 under the assumption that the alphabet
is bounded [e.g., 2 letters] or show that it is impossible to improve the bound.

file:////Aiyx
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5. Eigenvalues of Stochastic Matrices and Particular Cases

We shall list here for future reference the properties of the eigenvalues of
stochastic matrices without going into details. A detailed account on these
properties, as well as their proofs, can be found in the book of Frechet (1938).
See also Feller (1957), Frazer, Duncan, and Collar (1938), Turnbull and Aitken
(1932), Turakainen (1968) and Yasui and Yajima (1969).

Let A be a stochastic matrix A = [au] and let AI,' .. ,AT be the distinct
eigenvalues of A [r < n = the order of A]. Then

1. IAA < 1 for i = 1,2, ... , r.
2. There is an index i such that AI = 1.
3. If and only if the eigenvalue AI = 1 is simple, there is a single ergodic

class in the graph of A.
4. Let Am = [a)j)], then for m > n the following identity holds

a)j) = t AkmcoUk(m)
k=1

where coiik(m) is a polynomial in m of smaller order than the multiplicity of
Ak'

5. There are periodic classes in the graph of A if and only if there are eigen-
values AI such that AI *- 1 but IAil = I, in which case all these Ai are roots of
unity, and the subsum corresponding to these eigenvalues in the formula in 4
above is not identically equal to zero.

6. If the eigenvalues of A are all simple then the formula in 4 reduces to

a)j) = :t Lt x~k)y~k)]-IX)k)y)k)Akm
k=1 v=1

where X)kJ and y)k) are the ith entries in the column or row eigenvector, corre­
spondingly, of the eigenvalue Ak •

7. If the eigenvalues of A are all simple, then A can be written in the form
A = l:7~1 AlAI, where Al = 1, and the As are square matrices such that
AlAi = 0 if i *- j, A/ = AI and Al = limm~= Am, if the limit exists.

8. If A and B are two stochastic matrices which commute and have simple
eigenvalues, then they both have the same Al [i.e., they both have the same
limiting matrix, if it exists] and the same A;S, i > I, will appear in the expan­
sion in 7.

9. Let the formula in (4) be written in the form

t Akmcolik(m) = cou(m) + fl/(m)
k~1

where cou(m) is the subsum corresponding to the eigenvalues Ak such that
IAkl = 1 and ftj(m) is the remaining subsum. Then colj(m) is a periodic func­
tion of m [over the integers] having finitely many values and film) is a func­
tion of m such that limm~= Iflj(m)1 = O.
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Some of the properties listed above will be used in subsequent sections. Some
others should be used in the proofs of the following exercises; the rest of them
are given for the sake of completeness. Unfortunately the properties of the
eigenvalues of individual matrices Ai h.ave very little to do, in general, with the
properties of the eigenvalues of their products of the form II Ai' Therefore
the main use of the properties of eigenvalues is for the homogeneous case [see,
however, the above-cited works of Turakainen (1968) and Yasui and Yajima
(1969)]. In that case (the homogeneous) there is a strong connection between
the properties of the eigenvalues and the classification of states given in the
previous section. This is shown by properties 3, 5, and 9.

EXERCISES

1. Let (s, {A(a)}) be a finite state system such that all the eigenvalues of the
matrices A(a) are simple, A(ai)A(a)) = A(a))A(ai) for all i and j, and the
products of "corresponding" eigenvalues other than +1 tend to zero. Then
the system is strongly ergodic. [By corresponding eigenvalues we mean eigen­
values corresponding to the same matrix Ai in the expansion of A(a), property
7. Because of property 8 all the matrices A(a) have the same matrices Ai in
their expansion.]

2. Show by an example that there are stochastic matrices having the same limit
but which do not commute [AB * BA but lim An = lim Bn = Q].

3. Prove that 2-state stochastic matrices which have the same limit commute.

In the following exercises the matrices are assumed to be of order 2 and the
eigenvalue which differs from + 1 (if there is such an eigenvalue) of a matrix
A will be denoted by AA.

4. Prove that if A = [au] is a two state stochastic matrix then AA = det A =
all - 0 21 ,

5. If A = [aiJ] and B = [bill and AB = C = [ciJ] then

extend this formula by induction to longer products of 2-state stochastic
matrices.
6. Let :I: = {O, 1, ... , d - I} and define

l
i1--

A(i) = d
1 _ i + 1

d

Prove that

i = 0, 1, ... , d - 1
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adx) = .(hak-I ... a 1

where x = a h •.. , a k E ~* and .akak-I •.• a 1 is an ordinary d-ary fraction.

7. Let (S, {A(a)}) be a system such that the ratio ada)jazl(a) is independent
of a and AA(CT) < I for all a then the system is strongly ergodic [find the limit­
ing matrix].

8. Let (S, (PJ) be a two state Markov chain. If IIi~m AP
' tends to some limit

which can be calculated and the ratio between the I, 2 element and the 2, I
element of PI is independent on i then the limit Hmn can be calculated [find the
formula].

9. Find H 1n where

fl - ;3~Z I P 2~z I J
Pi =

l 2nl I 2nl
i 3 +1 -i3 +1

where nl, nz > 0 and n1 + nz = 1. Hint: II:~z [(n3 - l)j(n3 + 1)] = -§-.
10. Let (S, {A(a)}) be an n-state stochastic system such that all the eigenvalues
of A(a) are simple for all a all the eigenvalues of A(a) different from + I have
modulus < I and such that limn~~ A(at) = limn~~ A(a/) for all i and j [the
limit exists necessarily by the above required properties] then the system is
strongly ergodic.

II. Formulate and prove a theorem which parallels the theorem in Exercise 10
for n-state Markov·chains.

12.* Prove: For any integer n, there exist a finite set of stochastic matrices
such that any probabilistic vector of order n having finite binary expansion, can
be realized as a row in a finite product of these matrices [compare with
Exercise 6 above].

6. Bibliographical Notes

Most of the material and exercises of Sections I and 2 are based on the work
of Dobrushin (1956), Hajnal (1958), Kozniewska (1962), Paz and Reichaw
(1967) and Paz (1968b). While Section 3 is based mostly on Paz (1968b,
1970d), a particular case of Theorem 3.3 was first proved by Rabin (1963) and
the example in that section is due to Kesten (private communication).

Section 4 and some of its exercises are based on the work of Paz (1965) and
Wolfowitz (1963). A (very) particular case of Corollary 4.12 was proved by
Blogovescensky (1960) but the method of proof of that corollary here is due
to Youval [see Perles et al. (1963)]. Exercise 25 at the end of Section 4 is from
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Larisse and Schiitzenberger (1966) and Exercise 26 from Sarymsakov (1958)
References for Section 5 are given at the beginning of that section. Additional
references for the whole part A: Sirazdinov (1950), Sarymsakov (1952, 1956,
1958), Sarymsakov and Mustafin (1957), Sapogov (1949, 1950, 1967), Rosen­
blatt (1957), Bernstein (1936, 1944, 1946), Dynkin (1954), Doob (1953),
Frechet (1938), Kalman (1968), Kalman et al. (1969), Kemeny and Snell
(1960), Kemeny et al. (1966), Kolmogorov (1958), Linnik (1948, 1969a, b),
Lovell (1969), Marik and Ptak (1960), Markov (1913, 1951), Mott (1957),
Mott and Schneider (1957), and Paz (1963).

B. OPERATION ON MARKOV SYSTEMS

1. The Direct Sum and Product

Definition 1.1: Let A and B be two square matrices, A or order rand B of
order s. The matrix

A+B= [~ ~J
of order r + s is called their direct sum. It is easily verified that

(AI + BI)(Az + Bz) = AI Az + B) Bz (7)

provided that the right-hand side of the equation is defined. Trivially, the
direct sum of two stochastic matrices is stochastic.

Definition 1.2: Let A = [a/j] and B = [bkIl be two matrices [not necessarily
stochastic] of order m x nand p x q respectively [thus the matrices are not
necessarily square]. Then A ® B denotes the Kronecker [or direct] product of
A and B where

A ® B = C = [c1k.JIl = [a/jbkIl

The double indices ik, jl of the elements of C are ordered lexicographically
ik = 11,12, ... , Ip, . .. , ml, . .. , mp;
jl = 11, ... , lq, ... , nl, ... , nq

Note that the elements in the ikth row of C are products of elements in the
kth row of B, and similarly for the jl th column ofC. C can thus be written in
the form
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Lemma 1.1: Let A = [al]]' B = [bl]]' A' = [a;J] and B' = [b;J] be matrices
such that the [ordinary] products AB and A'B' are defined. Then

(AB) ® (A'B') = (A ® A')(B ® B') (8)

Proof: The ij entry in AB is ~t aitbtj. The kl entry in A'B' is ~r a~rb~/'

Therefore the ik,jl entry in (AB) ® (A'B') is ~t altbtj ~r a~rb~/' The ik, mn
entry in A ® A' is a/ma~n' The mn,jl entry in B ® B' is bmJb:/. Therefore the
ik, jl entry in (A ® A')(B ® B') is

~ alm~nbmJb:1 = ~ a1mbmJ ~ ~nb:1
m,n m n

as required.

Lemma 1.2: If A and B are stochastic matrices, then so is A ® B.

The proof is straightforward and is left to the reader.

Definition 1.3: If (S, {A(u)}) and (S', {A'(u)}) are two stochastic systems over
the same alphabet~, then their direct sum is defined as (S U S, {A(u) +A'(u)})
and their direct product as (S x S, {A(u) ® A'(u)}). It follows from (7) and
(8) that the matrix related to a word x E ~* is A(x) + A'(x) in the sum
system and A(x) ® A'(x) in the product system.

Lemma 1.3: Let A = [al]] and B = [blf] be two scrambling [see Definition
A.4.3] matrices, then C = [CIf] = A ® B is also a scrambling matrix.

Proof' Let ilk, and izkz be any two rows in C. A being scrambling, there is
jl such that a/lh , a/,j, > 0, similarly there is I, such that bk\/\, bk,lo > 0; this
implies that citkJiIiI > 0 and C/,k,h/, > 0 and therefore the states labeled ilk!
and izkz have a common consequent in the graph of C.

Corollary 1.4: Let (S, {A(u)}) and (S', {A'(u)}) be two quasidefinite stochastic
systems, then (S x S, {A(u) ® A'(u)}) is a quasidefinite system.

Proof: The proof is straightforward and is left to the reader.

Definition 1.4: Let A = [alf] be a Markov matrix and let {B(q)} = {[blj(q)]} be
a set of Markov matrices, one matrix for every state q of A. The cascade
product of A and {B(q)} is the matrix C = [C/k,Ja = [aiJbkl(i)].

Definition 1.4 above can easily be extended to Markov systems but property
(8) in Lemma 1.1 does not apply here, and there is no simple relation between
an entry in a matrix corresponding to a word in a cascade product and the
entries in the components of the system corresponding to the same word. Once
a cascade product is formed it can be further combined in cascade product
with another set of matrices, and so forth.

The reader who is familiar with deterministic automata theory will recognize
that Definition 1.4 above is an extension of the parallel definition in the deter­
ministic case. The graphical representation of a cascade product is given below
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in Figure 14. The two systems A and B are assumed to be Markovian. The
next state of A depends on the present state of A and on the present input (line
represented by X). The next state of B depends on the present state of both A
(line represented by Y), and B and on the present input. The state of the
system C is represented by a pair of states, one state from A and one from B
(lines Y and Z). T~ system may further be generalized by introducing a
combinatorial gate between line Y and box B, and another combinatorial gate
between the lines Yand Z, and the actual output of the system.

zI
I.. I

A B I
y I

!

xJ r-.--------I---------1
I
I
I
IL ~

C

Figure 14. Graphical representation of a cascade product of Markov matrices.

Note that if the system B is independent on the input line Y, then the cascade
product reduces to the previously defined Kronecker product and the connec­
tion between the two systems is a parallel connection.

In addition to the direct sum, Kronecker product, and cascade product de­
fined above, one can define other forms of connections or combinations of
connections. The basic problem is, however, to find conditions under which a
given Markovian system can be decomposed into simpler parts, using these
interconnections. This topic will be dealt with in the next section.

EXERCISES

1. Prove the relation (7).
2. Prove Lemma 1.2.
3. Prove Corollary 1.4.
4. Prove Corollary 1.4 for definite systems [see Definition A,4.5].
5. Prove that Corollary 1.4 holds true when one of the systems is quasidefinite
and the other is definite.
6. Prove that the box C in Figure 14 represents a Markovian system [i.e., its
next state depends on its present state and present input only] provided that
the systems A and B are such.



104

2. Decomposition

Chapter II. Markov Chains

Definition 2.1: A set S' of states of a Markov system A is a persistent sub­
system of A if and only if the set of states which are accessible from S' are in
S'.

Note that it follows from Definition 2.1 above that the submatrices of the
matrices of A corresponding to states in S' are Markov matrices.
Definition 2.2: A Markov system (S, C(a» is decomposable if and only if it is
isomorphic to a persistent subsystem of a cascade product of two (or more)
Markov systems such that the number of states of every component in the
product is smaller than the number of states of A.

Let C = (S, {C(a)}) be a Markov system and assume that it is decomposable.
Then C(a) is a submatrix of the matrix [Clk,fl(a)] [the row and column indices
have been written as double indices to facilitate the exposition], and [see
Definition 1.4] after a proper assignment of indices,

[clk,fl(a)] = [alj(a)· bkl(i, a)] (9)

where A = (S', {A(a)}) and B = (S", {B(i, a)}) are Markov systems with
IS'I < lSI and IS"I < lSI. There may be entries Clk,fl(a) in (9) which do not be­
long to C(a), since it is required only that S c S' X S" [C is a persistent sub­
machine of the cascade product], in which case the Eq. (9) contains "don't care"
conditions.

Summing up both sides of Eq. (9) over I and noting that B(i, a) are stochas­
tic for every i and a, we have that for fixed i, k, and j

~ Clk fl(a) = alj(a) (10)
I '

The right-hand side of (10) does not depend on k and therefore also the left­
hand side must have this property.

Summing up now both sides of Eq. (9) for j and noting that A(a) is stochas­
tic we have that for fixed i, k, and I

~ Clk,fl(a) = bkl(i, a) (11)
}

Combining (9), (10), and (II) we have that for every i, j, k, I the following
equation must hold true

~ Clk,fl(a) ~ cik,f,(a) = Cik,ll(a) (12)
I 1

We are now able to formulate two necessary conditions for decomposability.
Definition 2.3: A partition on the state set S of a system is a collection of sub­
sets of S such that each state in S belongs to one and only one such subset.
Each subset as above will be called a block of the partition. If the number of
blocks is bigger than one and smaller than the number of states, then the
partition is nontrivial.
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Let C = (S, {C(o')}) be a Markovian system which is decomposable. It
follows from Eq. (10) above and the remark after that the system must satisfy
the following:

Lumpability condition: There exists a nontrivial partition on the state set S
such that for any 0', the sum of the columns of the matrix C(o') corresponding
to any block of the partition, is a column having equal values in entries corre­
sponding to the same block of the partition.

Remark: One sees easily that the partition in the lumpability condition above
is represented in Eq. (10) by the first part of the row [or column] double index,
i.e., two states are in the same block if they have the same i in their row-ik
index (or the same j in their column-j/ index). Thus, summing up all Cik,)I(O')
for fixed j [i.e., in a given block] results in a value which depends on i [Le., on
the corresponding block] but not on k.

It follows now from (12) that if the system (S, {C(O')}) is decomposable, one
must also have the following:

Condition of Separability: There exist two nontrivial partitions on the state
set, 1t with blocks 1t) and l' with blocks 1'1 such that: (I) 11t) n I'll < I for all
j and /; (2) if 1t) n 1'/ = j/, then for all ik and all 0'

I; C/k,)/(O') I; Cik,)/(O') = cik,J/(O')
I )

Remark: The partitions 1t and l' in the separability condition are represented
in Eq. (12) by the first and second part of the column [or row] index corre­
spondingly. Thus two states are in the same block of 1t if they have the same
j and they are in the same block of l' if they have the same / in their j/-column
index.

The previous considerations suggest the following:

Theorem 2.1: A Markov system (S, {C(O')}) is decomposable if and only if it
satisfies the conditions of lumpability and separability with the same 1t partition
in both conditions.

Proof' Necessity has been proved already. It is easy to show that the con­
ditions are also sufficient, for if a system (S, {C(O')}) satisfies the two conditions,
then, by a proper reindexing of the entries of the matrices C(O') into double
indices: C(O') = [cik,J/(O')] with i,j ranging over the blocks of 1t and k, / rang­
ing over the blocks of 1', one can define the matrices A(O') and B(i, 0') by way of
the Eqs. (10) and (11). [If for some / and k, 1t/ n l'k = 0 then this represents
a "dno't care" condition and the corresponding entries in the B(i, 0') matrices
can be chosen at will.] I

The decomposition procedure will be illustrated in the following example.

Example 13: Let C = (S, {C(O')}) be a Markov system such that S =
{I, 2, 3, 4, 5} [for the sake of simplicity the states are identified with their index
if no ambiguity results], 1: = {a, b}, and
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1 0 0 0 0
1 1 0 0 0"2" "2"

C(b) = 0 1 0 1 0"2" "2
1 1 1 1 0"3" 6 "3" 6

i 0 i 0 {­
i 0 i 0 {­

C(a) = {- i i ~ 0,
o i 0 {- 0
o 0 {- {- 0 i 0 ~ 0 i

Consider the partitions 1t = (1t h 1tz, 1tJ) = ({I, 2}, p, 4}, {5}) and 'r = ('rio 'rz) =
({I, 3, 5}, {2, 4}). It is easy to verify that 1t satisfies the lumpability condition
and 1t and 'r satisfy the separability condition. Using Eq. (10) we have
:E).x, cij(a) = ak/(a), i E 1tk; k,1 = 1, 2, 3, or

106

[
I 1 IJ"4 "4 "2"

A(a) = i i 0,
010

[
10 0]

A(b) = {- {- 0
1 1 1

"3" "3" "3"

Using Eq. (11) now we have :E).T, cda) = bim, a), if k E 'r/ (11tm =t= 0;
m= 1,2,3;i,/= 1,2. Ifm=3andi=2,then'r/(1'rm = 0, and the values
bim, a) can be chosen for this case in an arbitrary way subject to the condition
that the B(i, a) matrices are stochastic. Choosing bzl(3, a) = bzz(3, a) = {- for
a = a, b we have

B(l, a) = [; ~J. B(2,a) = [~ tJ. B(3,a) = [: :J
B(I, b) = [~ ~J. B(2,b) = [~ ~J. B(3,b) = [; ~J

and the decomposition is completely defined.

Corollary 2.2: Let (S, {C(a)}) be a Markov system such that there are two
nontrivial partitions 1t and 'r on its state set satisfying the following properties:

1. Both 1t and 'r satisfy the lumpability cQndition.
2. 1t and 'r satisfy the separability condition.

Then the system is decomposable into a Kronecker product of two systems.

Proof' Consider again Eq. (11) and let bk/(i, a), bk/(j, a) be two different
elements in its right-hand side with fixed k, I, a. bk/(i, a) is the sum of the ele­
ments corresponding to the block 'r/ of 'r in a row corresponding to the block
1t1 of 1t in the matrix C(a) [to be more specific, the index of the row is 1t/ (1 'rk].
Similarly, bk/(j, a) is the sum of the elements in the row with index 1t) (1 'rk

corresponding to the block 'r/ of 'r in c(a). It follows from the fact that 'r
satisfies the lumpability condition that bk/(j, a) = bk/(i, a), the summation
being over entries in the same block of 'r('r/) and the rows belonging to the
same block of 'r('rk ). Thus B(i, a) = BU, a) for all pairs i,j so that the B
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system can be represented in the form (S", fB(a)}) and is independent on the
state of the system A, which proves the corollary. I

Remarks:

a. Given a Markov system (S, fe(a)}) which satisfies the lumpability con­
dition above one can still use Eq. (10) to define a new system (S', fA(a)}) with
IS'I < lSI and such that the original system is homomorphic to the new one
[Le., there is a mapping if> from S to S' such that al}(x) = I:'E ~-I(j) Ck'(X),
k E if>-I(i) for all x E 1:*; the states in S' will be the blocks of 11: and if
m E 11:0 then if>(m) = n]. The new system is; however, not isomorphic to the
original one which cannot be recovered back from it. Some of the information
on the transition probabilities from a particular state to another is lost in the
lumping process and only the information about the transition probabilities
from a block of states to another block is retained. [see Exercises 1,2 at the
end of this section.]

b. The set of all partitions over a set of states, including the trivial parti­
tions have a lattice structure. One can define a partial order < over partitions,
where 11: < 't' means that each block of T is the union of one or more blocks
of 11:. Thus if S = {I, 2, 3, 4}, 11: = (fI, 2}, f3}, f4}) 't' = ({I, 2, 3}, f4}), then
11: <'t'.

Let 1 be the partition with all the states in a single block and 0 the partition
with each state in a separate block and, using the partial order defined above,
define 11: + 't' to be lub(11:, 't') and 11:' 't' to be glb(11:, T). Clearly 0 < 11: < 1 for
any partition 11: and, as the lattice of partitions over a finite set in finite, 11: + l'

and 11:' T always exist. Thus ({I, 2}, f3}, f4, 5, 6}) + (P}, f2, 3} f4, 5}, f6}), =
(fI, 2, 3}f4, 5, 6}) and (P}, f2}, f3}, f4, 5}, f6}) is the product of the above two
partitions. In addition to the above properties, one can also prove the following:

Theorem 2.3: If 11: and l' are two partitions over the set of states S of a Markov
system (S, fC(a)}) such that both partitions satisfy the lumpability condition and
in addition

(13)

then 11:' T is a partition satisfying the Iumpability condition.

Proof: Because of the Iumpability condition for both 11: and l' the sum I:/EO.
cu<a) has the same value for all i E 11:, and the sum I:/E<.cl}(a) has the same
value for all i E 't'g where 11:, and 't'g are arbitrary blocks in 11: and l' respective­
ly. It follows that the sum I:/E".M,CIj(a) has the same value for all i E 11:,nTg •

But 11:, n Tg and 11:k n 't'J are arbitrary blocks of 11:' l' and all the blocks of 11:' l'
have this form, which proves the theorem. I

Using the algebra of partitions and the theorem above one can find all pos­
sible pairs of partitions satisfying the necessary conditions for decomposition.
It is to be mentioned, however, that, in contrast to the deterministic case, there
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exist no clear-cut theory of decomposition for Markov systems. The conditions
of lumpability and separability are restrictive and cannot be both satisfied in
general.

c. Generalizations of the results in this section can be achieved through in­
troducing combinatorial gates between the various parts in an interconnection
of systems or through combinations of various types of decomposition. In ad­
dition a decomposition can be carried through several steps leading to more
than two component subsystems. Those possibilities have been mentioned before.
There may be also decompositions based on interconnections more general than
the cascade type as will be shown later. [See exercises 9-12 at the end of this
section.] Still another possibility is the possibility of state splitting. This will
be illustrated now by the following:
Example 14: Let (S, {C(u)}) be the 3-state system over I: = fa, b} with

C(a) = l~ : :1, C(b) = [: : :]

itO ~ t t
An easy check will show that the above system is not decomposable. One can
try, however, to split some state into two, to get another 4-state system which
will be decomposable into two 2-state components. Suppose some state say Si

is split into two (or more) states s;, and Si" i.e., the ith row in each matrix is
duplicated and then the ith column is divided into two columns whose sum is
equal to the original one. Trivially, the new system satisfies the lumpability
condition for the partition which will merge the states Sit and Si, into a single
block and leaving all the other states alone. The new system is therefore
equivalent to the old one provided that the states Sit and Si, are merged at
its output, and a decomposition of the new system provides us, therefore, with
a decomposition of a system which is externally equivalent to the original one.
In our example one may try to split the second state so as to have a 4-state
system with matrices

and the ail and bij will be determined by a series of equations requiring that:
(1) The sum of the two a columns and the two b columns equal to the cor­

responding columns in the original matrices C(a) and C(b); (2) there is a parti­
tion 1C say 1C = ((SIS2}, {S3S4}} which satisfies the lumpability condition; and (3)
there is a partition 'r say 'r = ({Sl S3}. {S2S4}}, such that 1C and 'r satisfy the
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separability condition. Formulation of these equations is an easy matter to do
and is left as an exercise. The resulting matrices are

C'(a) = l~ :~:1 C'(b) = l: "; ::l2412' 2142
~ ~ ~ ~ ~ ~ ~ ~

! 0 tOt t t t
A decomposition of the system is now obtained in the same way as in Example
13. The resulting decomposition (for 1t and 't' as specified above) is

A(a) = [; :} A(b) = [: ;J
B(a, 1) = [~~J. B(b, 1) = [: :J
B(a, 2) = [~~J. B(b, 2) = [; :J

d. In deterministic machine theory, it has been proved that, by properly
splitting the states of an n-state machine one can always decompose an external­
ly equivalent machine, in a cascade form, into two component machines, one
of them having a set of transition matrices which are either permutation or reset
matrices and the other having only n-1 states. This fact has served as a bas~

for the classical theorem of Krohn and Rhodes (1963) showing that every de­
terministic machine can be "embedded" into a cascade interconnection of a
sequence of machines of a certain simple and cannonical form. Unifortunately,
it seems reasonable to assume that the Krohn-Rhodes theorem does not carry
over, in its original form, to the stochastic case. One of the reasons for this is
that even if state splitting is allowed the conditions for cascade decomposability
seem to be restrictive for stochastic systems and cannot always be met. Note,
however, that a cascade interconnection of a sequence of systems A lo A2, ••• ,

Ak has the property that the next state of a system AI in the interconnection
depends on the present input, on its present state and on the present state of
all other systems A j with j < i, but does not depend on the present state of
any system A j with j > i. This means that the interconnectivity in the decom­
position is not maximal a fact which has some advantage from the realiza­
tion point of view. We will show now that if the interconnectivity is allowed
to be maximal, then any n-state Markov system can be decomposed into a
sequence of 2-state Markov systems.

Definition 2.6: Let

A = (S, [A(CT, t)J"El;)
rET

and
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be two Markov systems. The system (S x T, (C(O')}Uq;) is the maximal inter­
connection of A and B if

C(O') = [Cst,.,,,(O')] and cst, •.,.{O') = a...(O', t)btt,(O', s) (14)

([a...(O', t)] = A(O', t); [briO', s)] = B(O', s».
Thus, in a maximal interconnection, the next state of each system depends

on the present state of both systems and on the present input.
It is easily proved that a maximal interconnection of two Markov systems is

a Markov system. A maximal interconnection reduces to a cascade intercon­
nection if all the matrices of one of the two component systems corresponding
to the, same input, 0', are equal. Once the maximal interconnection of two
systems is formed the resulting system can be further maximally interconnected
with a third system and so on. The resulting system will be called a maximal
interconnection of the sequence of systems involved. Definition 2.6 is illustrated
in Figure 15.

\--------------1
I I
I A
I I
I I

-~-+----l I
I

I I
I IL -l

C

Figure 15. Graphical representation of a maximal interconnection of
Markov systems.

We are now able to state the following:
Theorem 2.4: For each n-state Markov system A = (S, (A(O'))) there exist two
systems B1 with state set T 1 containing two states and Bz with state set T z con­
taining n-l states and a partition p on the state set T 1 x T z = T of their
maximal interconnection C = (T, (C(O'))) such that if states of C belonging to
the same block of p are merged, then the resulting system is equivalent to the
original given system A.

Proof: Given the system A with state set S = (SI ... sn}, split the state Sn
into n - I states snl ... s~-1, i.e., let A' be a new system having state set S' =
(SI ... Sn-I, snl ... S~-I} and matrices A'(O') = (a;lO')}'

Define the following two partitions over S'
1t = «(SI ... Sn-I}, (snl .. , S~-I}), T = «(SIS/}, (szs/}, ... ,(Sn_IS~-I})
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(c)

(b)

(18)

We shall define the matrices A'(a) in a way such that the above two partitions
will enable us to express the system A' as a maximal interconnection of two
systems, a two state system B = (n, {B(a, 1'J)}) whose states are the blocks of n,
and an (n - I)-state system B' = (1', {B'(a, nl )}) whose states are the blocks of
1', In addition we will require that the partition {[Sl}, ... ,{sn-d, {Snl S:-l}}
satisfy the Iumpability condition for A' so that after the states sn l s:-l are
merged, the resulting system is equivalent to the original system A. In order
to satisfy all the above conditions one must have that, for any fixed row in
A'(a), say the ith, the following equations hold

(a) 1: d;ia) 1: a;ia) = a;,(a) with s, = nk n 1'1
8JE7rt SJE Tl

{
a (a) if i < n1: dia) = In

J"2.n I ann(a) if i> n

{
a (a) if i,j'<n-Idia) = IJ

I anJ(a) if i > n j < n - 1

Equations (b) and (c) are necessary and sufficient for the lumpability re­
quirement while Eq. (a) is equivalent to property (14). This follows from the
fact that 1:"cs" s.,,(a) = ass.(a, t) in (14) is equivalent to 1:s'En.d;J here and
1:s,csI,sAa) = btl,(a, s) in (14) is equivalent to 1:SJE<1 a;ia) here. Combining
these two equations one gets from (14) that

1: csI,sAa) 1: cst,s,,.(a) = csI,sAa)
s I'

which is equivalent to the Eq. (a) here, Now Eq. (a), (b), and (c) above
uniquely determine the matrix A'(a) given the matrix A(a). Indeed for i < n,
k < n - 1 we have by (a) that

( 1: a;ia»(a;k(a) + a;,k+n-I(a» = a;,k+n-l(a) (15)
JE 7Ct

Using (b) and (c) we change this equation into the following equation, where
a;,k+n-l(a) is unknown and all the other values are known,

aln(a)(alk(a) + a;,k+n-l(a» = a;,k+n-l(a) (16)

or, by transposing the second left summand to the right-hand side we have
aln(a)alk(a) = a;,k+n-l(a) [1 - aln(a)] (17)

thus

d ( ) - () alk(a)I,k+n-l a - aln a 1 _ . ( )am a
Since 1 - aln(a) = 1:J<nalj(a) > alk(a), both sides of the equation are non­
negative. If aln(a) = 0, then a;,k+n-l(a) = 0 and if aln(a) = 1, then a;,k+n-l(a)
can be arbitrarily chosen provided that 1:~-;;,11 a;,k+n-l(a) = 1 and all the
summands are nonnegative. It follows if the values a;,k+n-l(a), i < n, k < n -
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1 are chosen according to (18) then the requirements (a), (b), and (c) are
satisfied, since the derivation of (18) is reversible and (15) implies also the fol­
lowing

( I; t4ia))(a;k(a) + t4,k+n-l(a)) = (1 - I; t4j(a))(a;k(a) + t4,k+n-l(a))
~Em SjE~

= t4k(a) + a;,k+n-I(a)

- ( I; a;la))(t4k(a) + a;,k+n-I(a))
Sj E n'!

= t4k(a) + a;,k+n-I(a) - a;,k+n-I(a) = t4k(a)

as required. As for the case i > n, it follows from (c) that the first n - I
entries in each such row must be equal to the corresponding entry in the nth
row and therefore by (18) this must be true for the full rows, i.e., the nth row
in A'(a) as determined by (c) and (18) must be duplicated n - I times. It
thus follows from the construction that the system A = (S', [A'(a)}) can be rep­
resented as a maximal interconnection of the two systems B = (TI, B(a, 1'1)})
and B' = (T2, [B'(a, 7rJ)}) where the elements of TI and T2are the blocks of 7r

and l' respectively and the matrices B(a, _I) = [bkl(a, -J] and B'(a,7rj) =
[b~r<a, 7rj )] are defined by

bkl(a, _I) = ~ dmp(a),
pEttt

and
b~l(a, 7rJ = ~ a~p(a)

PE'r1

Sk = 1'1 n 7rk' k, / = 1,2; i = 1,2 ... n - I

Sk = 7r j n 1'k; k, / = 1,2, ... , n - I; j = 1,2

One sees easily from the construction that if p is the partition p = ([sI1, ...
[Sn-I}, [snlsn2 ... S:-I}) then the system A' is equivalent to A when all states in
a block of A' are merged into a single state. I
Corollary 2.5: For each n-state Markov system A = (S, [A(a)}) there exist
n - I, 2-state systems Bi with state sets T j respectively and a partition p on
the state set T = T1 X T 2 X ••• x Tn-I of their maximal interconnection
C = (T, [C(a)}) such that if states of C belonging to the same block of pare
merged, then the resulting system is equivalent to the original given system A.

Proof: By Theorem 2.4 and induction. I
Example 15: Let A = (S, [A(a)}) be the 3-state system over ~ = [a, b} with

[I I I]"2" "4 "4

A(a) = -} -} -},
010

ro 0 1]
A(b) = li- 0 i

o 1. .:J.4 4

Using (b), (c), and (18) we construct the system A' = (S, [A'(a)}) with
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A'(a) = l: ::7j, A'(b) = l~ ~ ~ ~l
0100 0i0-i
0100 0i0-i

so that P = «(sll, (S2'((S/ sl}), and A' is equivalent to A if states s/ and sl are
merged. Let 7t = (7th 7t2) = «(SIS2}, (S3ISl}) and 't' = ('t'1't'2) = «(SIS/}, (S2 S32}).

Using these partitions and the method outlined in the proof of Theorem 2.4,
the systems B = (TI(B(O',7t))}) and B' = (T2(B'(0', 't'/)}) are derived where

B(a, 't'1) = [~~J. B(a, 't'2) = [~ ~J

[ 0 IJ [i "2"~IJB(b, 't'1) = 1 t' B(b l 't'2) = i ..
and

B'(a,7t t ) = [; :J. B'(a,7t2) = [~ ~J
B'(b,7t t ) = [~ ~J. B'(b, 7t2) = [~ ~J

EXERCISES

1. Let A = (S, (A(a)}) be an n-state Markov system and let 7t = (7t17t2 ... 7tk)
be a partition over S satisfying the lumpability condition. Let U be a stochastic
k x n matrix such that U = [UIj] and ul/ =1= °only if S) E ttt [note that U is
not unique]. Finally, let V be an n X k stochastic matrix such that V = [VIj]

and VIj = I if and only if St E 7t).
a. Prove that the system A = (7t, (UA(0') V}) is k-state Markov system where

the matrices UA(O')V represent the transition probabilities between the blocks
of 7t, i.e., A is the system derived from A if the states belonging to the same
block of 7t are merged into a single state.

b. Prove that for exery 0' E 1:, VUA(O')V = A(O')V.
c. Prove that for all x E 1:* UA(x) V = A(x) where by definitionA(O') =

UA(O') V and A(x) = A(O'I) ... A(O'k) if x = 0'1 ... O'k'
d. Let't' = ('t'l ... 't'k) be any partition on S. Let U be a Markov matrix

U = [Uti]' UIj =1= 0 if and only if s) E 't't and all nonzero entries in a row of U
are equal. Let V be a matrix defined as above for 't'. If for every 0' E 1:,
VUA(O')V = A(O')V, then 't' satisfies the lumpability condition.

e. Let P = (PI ... Pk) any partition on S such that there exists a Markov
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matrix U = [ui}] with ulj ;1= °only if S} E PI satisfying UA(a)VU = UA(a)
for all 0' E 1: (V is defined as before, for the partition p). Then for all
x E 1:*, UA(x) V = A(x) where A(a) = UA(a) V and A(x) = A(a l )··· A(ak ),

if x = 0'1 ••• ak •

2. Let (8, (A(a))) be the following 4-state system over 1: = (a, b}

l

o.2 0.3 0.3 0.2j lo.25 0.15 0.4 0.2 j

( ) 0.4 0.1 ° 0.5 (b 0.2 0.2 0.1 0.5
Aa= , A)=

0.1 0.2 0.4 0.3 0.3 0.45 0.1 0.15
0.3 ° 0.2 0.5 0.45 0.3 0.15 0.1

and let n be the partition n = «(SIS2}, (S3S4})' Prove that n satisfies the lump­
ability condition; find corresponding U and V matrices and define the system
(n, (UA(a)V)).

3. Let A = (8, (A(a)}) be the following 4-state Markov system over 1: =
(a, b}

l
O.2

A(a) = °
0.4
0.25

0.2
0.4
0.1
0.25

0.3 0.3 j° 0.6
0.4 0.1 '
0.25 0.25 lO.3 ° 0.7 °j

A(b) = ° 0.3 ° 0.7
0.08 0.12 0.32 0.48
0.06 0.14 0.24 0.56

and let n = «(SIS2}, (S3S4}), 'l' = «(SIS3}, (S2S4}) be two partitions on 8. Prove that
n satisfies the lumpability condition and that nand p satisfy the separability
condition. Decompose the A system accordingly in a cascade form.
4, Let A = (8, (A(a))) be the following three-state system over 1: = (a, b})

[

0.2 0.5 0.3]
A(a) = 0'3 0.55 0.15,

0.45 0.45 0.1
[

0.3 0.7 °]
A(b) = 0.06 0.38 0.56

0.14 0.62 0.24
Split the second state into two states so as to get a new system A' which can be
decomposed into a cascade product of two 2-state Markov systems.
5. Prove that the maximal interconnection of two Markov systems is a Markov
system, i.e., the next state of the interconnection depends on its present state
but not on its previous history.
6. Let A = (8, (A(a))) be the following 4-state Markov system over 1: =
(a, b}

A(a) = l: ~° t
1 1
4" 4"

Hj,
1 1
4" 4"

A(b) = l~ ~1 1
"3" lr

1 1
lr "3"

; ;j
If "3"
1 1
4" 4"
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Apply Corollary 2.5 to this system find the three corresponding 2-state systems
and find the three corresponding 2-state systems B io B2, and B3•

7. Let T I in Corollary 2.5 be T I = {tllo t I2}. Prove that the partition P in that
corollary can be written in the following form: P = (PI ... Pn) with Pi =
{(til' t21 ..• ti2 ti+ l

, ••• ,r-I
): ti+1 E Ti+ 1o ••• ,tn-I E Tn-a if j < n - I and

Pn-I = {(t llo t210 ... , tn- I,2)}' Pn = {(til' ... , tn-U)}.
8. Consider the following:

Definition: Two partitions 11: and 'I: for a system A = (S, {A(O')}) are a partition
pair if for each pair of blocks 1I:f and 'l:g , l:iE 'aai}(O') = l:iE'a akiO') for all
i, k E 1I: f n '1:/0 for each I such that 1I:f n '1:1 * 0 and for each 0' E ~.

a. Prove that if and only if 'I: satisfies the lumpability condition then ('I:, '1:) is
a partition pair.

b. Prove that for any partition '1:, (0, '1:) is a partition pair.

9. Prove that if a Markov system A is deterministic [its matrices are de­
generate] and 11: and 'I: are two partitions over S such that 11:' 'I: = 0, then these
partitions satisfy the separability·condition.

10. Prove the following:

Theorem: A Markov system with state set S is decomposable in a cascade
form if there exist partitions 11:, on, and 'I: on S such that

a. 11: satisfies the lumpability condition and 0" > 11:;
b. 11: and 'I: satisfy the separability condition;
c. (on. '1:, '1:) is a partition pair [see Exercise 8 for the definition of a parti­

tion pair].

Remark: The above theorem is a generalization of the "if" part of Theorem
2.1 taking care of the possibility of having a combinatorial gate [represented
by the partition on] between the output [Le., the state] of the first component
in the decomposition and the second component. Note that if on = 11: then
on· 'I: = 0 and (0,11:) is a partition pair [see Exercise 8] so that the third con­
dition of the theorem is superfluous.

11. Prove that if condition (c) in the theorem of Exercise 10 is deleted and the
requirement that also the partition 'I: satisfy the lumpability condition is added
then the system satisfying the changed conditions can be decomposed into a
Kronecker product of two systems.

12. Formulate and prove a theorem generalizing the theorem in Exercise 10
so as to include the possibility of decomposing a given system into a cascade
product of more than two smaller [Le., with fewer states] systems.

OPEN PROBLEM

Can every n-state Markov system be "embedded" in a nontrivial way into a
cascade type interconnection of systems which have a specific simple form?
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In other words, is there any theorem which can be proved for Markov
systems and which parallels in some way the Krohn-Rhodes theorem for the
deterministic case?

3. Bibliographical Notes

Operations such as "Kronecker product" or direct sum for matrices can be
found in any standard textbook, e.g., Mac Dufee (1964). Section 1 here is based
on Paz (1966) and Bacon (1964). Decomposition of deterministic machines has
been dealt with by many authors. An exposition of that theory (including the
Krohn and Rhodes (1963) theory) can be found in Hartmanis and Stearns
and Ginzburg (1968). Lumpability for homogeneous Markov chains has been
dealt with in the book of Kemeny and Snell (1960). Decomposition of
stochastic automata was first studied by Bacon (1964). The possibility of state
splitting for stochastic machines was considered first by Fujimoto and Fukao
(1966).

Theorem 2.4 and Corollary 2.5 here are based on Paz (1970b). Finally,
Heller (1967) considered some aspects of decomposition theory for stochastic
automata from the point of view of the theory of categories and a similar ap­
proach was undertaken by Depeyrot (1968) who studied various types of
decompositions, including some interesting particular cases. Additional ref­
erences: Gelenbe (1969a), Kuich and Walk (1966a), Kuich (1966).

C. WORD-FUNCTIONS

Let f be a function
f:I.*-+R (19)

where I. is a given alphabet and R is the set of real numbers. Functions of the
form (19) will be called word functions. There are at least three ways to relate
word functions to Markov chains. First, [see Definition 1.1 in Section I, C] if
an input-output relation [induced by an SSM] is restricted in a way such that
the input alphabet X contains a single letter and Y = I., then the resulting
function is a word function.

If f is induced by the SSM A = (S, n, (A(Y)}YEY' 11), then f(v) = n(A(v)l1
with v E y* = I.*, and the matrices A(y) have the property that ~y A(y) is
stochastic. This case has been dealt with in Section I, C, 1. In the next two
sections we shall consider two additional ways of relating word functions to
Markov chains.
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1. Functions of Markov Chains

a. Preliminaries
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Let (n, S, A) be a [homogeneous] Markov chain with [finite] state set S initial
distribution n and transition matrix A. Let I be a partition on S. We shall use
the following notations: the elements of S [states] are denoted by s, indexed if
necessary; sequences of states are denoted by u, indexed if necessary; elements
of I [blocks of the partition] are denoted by a, indexed if necessary; finally,
sequences of blocks of I are denoted by v, indexed if necessary.

The chain being discrete, s(t) and a(t) denote the state of the chain and its
corresponding block at time t and, for U= Sl ••• sJ and v = a l ••• ak' p(u) and
p(v) denote the probability that s(I) = Sl> ... , s(j) = SJ and s(I) E a l , ••• ,

s(k) E ak respectively. Let UIUl, VI Vl be sequences of states and symbols in S
and I respectively, U I = Sl ••• Si' Ul = s/ ... s/, VI = a l ••• ak' Vl = ai' ...
at'. Then p(UIS'Ul ) and p(vlIqvl ) denote the probabilities that s(I) = Sl>

... ,sU) = Si'SU + r + 1) = s/, , sU + r + j) = s/ and s(l) E a l , ••• ,

s(k) E ak' s(k + q + 1) E ([I', ,s(k + q + t) E at' respectively. A Mar-
kov chain and a function p(v) as above are stationary if P(S'u) = p(uS') = p(u)
and p(I'v) = p(vI') = p(v) respectively, i.e., if the probability of being in a
specific state at time t is independent of time. Any function p(v) as above with
domain I* [p(A) = 1, by definition] and range in the interval [0, 1] is called a
function of a Markov chain and the elements of I are its states. Trivially, a
Markov chain is stationary if and only if nA = n [if this is the case, then n is
called a stationary distribution for A] and a function of a stationary Markov
chain is stationary. [The converse is, however, not necessarily true.] If B is any
square matrix of the same order as A, then Bu,uJ denotes the submatrix of B with
rows in ai and columns in aJ• If eand 1l are lSI-dimensional row and column
vectors respectively, then eu, and 1lUJ denote the subvectors corresponding to the
elements in a i and aJ respectively. The symbol1l will denote as before an lsi-di­
mensional column vector all the entries of which are equal to one.

We shall prove now some simple properties of functions of Markov chains.
If (n, S, A) is a Markov chain and p is a function of it with state set I, then

1. p(vi IkVl) = ~.=u, ...u,P(VI vVz).

2. If in particular Vl is A, then

p(vlIk) = ~ P(~IV) = p(v l )

3. If v = a l ••• ai' then

(20)
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4. Denote A..,..,A..2.., ••• A..._, .., = A..,....., [thus A.,..., = A., .. A...,) and ll..,A..,...
= 1l..,...; A.....,11.., = 11.....,. Then,

(21)

5. If for some v, p(v) = 0, then for any v', p(vv') = 0.
Proofs are trivial and left to the reader

Remark: It follows from formula (20) above that there is a time lag between
a function p(v) when considered as an input-output relation with single input
letter [Section I,e] and same function when considered as a function ofa Markov
chain, e.g., p(a1 ( 2) = llA(a1)A(a2)11 in the first case and p(a1 ( 2) = 1l..,A..,..,11..,
in the second case. This difference is made clear when single symbols are
considered, for p(a1) = llA(a1)11 in the first case is the probability of having
output a 1 after the process was started and moved into a next state while
p(a1) = 1l.. ,11.., in the second case is the probability of having output a 1 to
begin with, even before the process moved into a new state. This time lag is
responsible for the differences between the results in the next section and the
parallel results in Section I,e,l.

b. The Rank ofa Function of a Markov Chain

Definition 1.1: Let p be a function of a Markov chain with state set [of p] I:.
Let a E I:, VI ... vk,vt' ... v/ E I:*. Then p..(v i ••• Vk; VI' ... v/) is the
k x I matrix [to be called a compound sequence matrix for f] whose ij element
is p(vjav/) and r(P,,(v l ••• Vk; vt' ... v/» is its rank.

Definition 1.2: Let p and I: be as in Definition 1.1. Then, for a E I:, the rank
of a [to be denoted by r(a)] is defined as

r(a) = sup [k=r(P..(v l • •• vj ; vt'· .. v/); j= 1, 2, ... ; V12 ••• ,vj , vt', ... ,v/ E I:*}
k

Thus r(a) is the maximal rank of a matrix of the form p..(v i ••• vj ; vt' ... v/)
if such a maximal rank exists; the rank of p [to be denoted by r(p)] is defined
as the sum of the ranks of its states.

In the following theorems we shall use some arguments very similar to the
arguments used in Section I, C. Some results, parallel to results proved in that
section, will be taken as granted here. The reader is refered to that section for
details.
Theorem 1.1: Letp and I: be as in Definition 1.1. For a E I:, r(a) < lalwith
the consequence that r(p) < lSI; where lal is the number of states in S belong­
ing to the block a when I: is considered as a partition on the state set S of the
underlying Markov chain.

Proof' Any compound sequence matrix p.. (v i ••• Vk; v/ .. , vk') is the
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product of two matrices: a left factor matrix G.. whose rows are the vectors
1lv,.. and a right factor matrix H.. whose columns are the vectors 'I.. v/ [see
(21)]. But the 1lv,.. are lui-dimensional vectors for any VI and similarly the 'I..v,'

are lui-dimensional vectors. Thus

r(P..(v1 ••• Vk; v/ ... v/» = r(G.. H..) < min(r(G..), r(H..» < 10'1
and r(p) = I;.. <}; r(O') < lSI·
Corollary 1.2: If 0' E 1: is a state of p such that 10'1 = 1 and r(O') =1= 0 [r(O') = 0
implies that p(vO'v') = 0 for any V and v' which means that the state can be
discarded], then r(O') = 1.

We shall need also the following:

Proposition 1.3: If 0' is a state of p such that r(O') = 1, then for any v, v' E 1:*
p(vO'v')p(O') = p(vO')p(O'v') (22)

Proof' Since r(O') = 1, we have that r(P..(J.., V; J.., v'» < 1 or

I
p(O') p(O'v') Idet . = 0

p(vO') p(vO'v')

from which (22) follows immediately. I
Remark: A function p of a Markov chain is called regular if r(p) = lSI. It

follows from Proposition 1.3 above that in the degenerate case where S = 1:
[the partition on S is trivial], i.e., if a Markov chain itself is considered as a
function of a Markov chain, this function is regular provided that all its states
are accessible [r(s) =1= 0 for all s E S].

c. Probabilistic Sequential Functions over ~*

In this section we shall consider probabilistic word functions over 1:* given
in some arbitrary way [i.e., not necessarily induced by Markov chains]. By
"probabilistic sequential functions" we mean word functions f with domain 1:*
satisfying the following conditions:

f(l) = 1

I; f(vO') = f(v), V E 1:*
.. <};

o<f(v) < 1, v E 1:*

(23)

(24)

(25)

If property (25) is not satisfied but properties (23) and (24) are, then the
function is called sequential. By "given" functions we mean functions such
that the values f(v) can be computed effectively [there exists an algorithm for
computing them] for every v E 1:*.

The rank of a (probabilistic) sequential function is defined as in Definition
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p".().) = p". (26)

(27)

Chapter II. Markov Chains

1.2 in Section b above, that definition being independent on the existence of
an underlying Markov chain for the given function. The following lemma
parallels Lemma 2.2 in Section I, e. The proof which is similar to the proof
of that lemma is omitted.

Lemma 1.4. Let lbe a sequential function of finite rank and let P,,(v1 ••• Vk;

v/ ... v/) be a given compound sequence matrix of maximal rank for 1 and
U E ~. Another compound sequence matrix of the same rank can be derived
from the given one having the form P,,(A, v2 ••• Vk; A, v2' ••• v/).
Definition 1.3. A [finite] pseudo Markov chain is a system (1l', S, A, ii) where
1l', S, and A are as in a Markov chain but 1l' and A are not necessarily stochastic
and ii is an lSI-dimensional arbitrary column vector satisfyiug the equation
1l'ii = 1.

For u = $1 ••• Sk E S* the values p(u) induced by a pseudo Markov chain
are defined as p().) = 1l'ii = I and P(SI ••• Sk) = 1l's,AS, s, ••• AS'_ls,iis, where
1l's" iis} are the Si and S} entries in 1l' and 1/ respectively and As:s! is the SiS} entry in
A [p(u) will be sometimes called a pseudoprobability.]

If ~ is a partition on the state set of a pseudo Markov chain, then a function
1 over ~* with state set ~ defined by I().) = I and l(u1 .•. Uk) = 1l'", A",,,, ...
A"k-I",ii". is called a function of a pseudo Markov chain.

We are now able to prove the following:

Theorem 1.5: Any [probabilistic] sequential function of finite rank is a function
of a pseudo Markov chain.

Proof' By the finite rank assumption and by Lemma 1.4, there exist, for
each U E~, regular matrices P,,()., v",' .. V",(,,); )., v~" .. v~.<tr) with k(u) = r(u).
We shall denote those fixed matrices by P", and use also the following additional
notations for u, 0 E ~ and v E ~*

P",,(v) = P,,(v)

[Note that P,,().) = P" as defined above.]

P,,;.(v) = P,,()., V,,2' ••• , V"k(,,); v); P,,;.().) = P,,), (28)

P),,,.(v) = PA).; v, VV~2' ••• , V~k(.); P),,,.().) = PM (29)

Thus P,,),(v) and P),(T.(v) are the first column and row of p".(v) respectively.
Using a procedure similar to the one used in Section I,e,3, one can prove

the following relations
(30)

To prove this we consider an arbitrary column, the jth one, in the relation
(30) which, by (28), has the form

(31)
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the ith element in (31) has the form

f(v~iOvav'a'v'~'J) = I: alj(ova)f(v"Jav'a'v~'J)

and (32) follows from the fact that

f(avla l
v~,J)

f(v"2av'a'v~'J)

=0
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(32)

(33)

f(v"k(,,)av'a'v~,J)
f(v~jOva) f(v~iOvav~i) ... f(v~lovav'a'~'J)

Since IP,,! *- 0, and one can develop the above determinant (33) according to
its last column and represent the last element in the column as a combination
of the others. Note that the coefficients of the combination depend on the three
variables 0, v, and a only [for fixed i and j] so that they can be denoted by
alj(ova). Equation 30 is therefore proved with A~v" = [ai}(ova)].

Consider again Eq. (30) with v = v', a' = A., and 0' = a. The resulting equa­
tion will be

or (34)

Equation (34) can now be used for computing the matrices A~". If we set
in (30) 0' = a, v'a' = A., we get the equation

P~Ava) = A~v"P" (35)
Replacing 0' = a' in (30) results in

P~",(vav'a') = A~v" P"",(v'a')
Using (35) in both sides of (36) gives

(36)

or (37)

Equation (37) can now be used for computing the matrices Av, Ivl > 2 from
the matrices A,,~.

Finally, the first column in (35) has the form

P~;.(va) = A~v"P"A (38)
Note that the first entry in P~;.(va) is f(Ova).

Let 1C" be a k(a)-dimensional row vector of the form 1C" = (10 ). Let 1C

be the r(f)-dimensional row vector 1C = (1C"I1C", ••• 1C"J where a, ak is
the sequence of elements of 1: ordered in some arbitrary but fixed order. Let
A be the ref) X r(f) matrix formed from the matrices A,,~

_lA~I"1 ... A"''''JA- .

A",,,, ... A".".
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Let fi be the r(f)-dimensional column vector fi = (P;'l' ... , P;.l)\ then, by
(38)

n6A6."ij" = (10 ... 0) A6."P"l = (10 ... 0)P6iva) = I(Ova)

and nij = L;"fta) = 1, so that I is a function of the pseudo Markov chain
(n, S, A, ij) above with lSI = r(f). I
Corollary 1.6: Let (n, S, A, ij) be a psuedo Markov chain as derived in Theorem
1.5 for a given function I of finite rank. Then Aij = ij and if I is stationary
[Le., L;"ftav) = I(v)] then nA = n. Let G" and H" be the matrices whose
rows and columns, respectively, are n. "and ij"., .' Then G" and H" are non-

a( tTl

singular having the same rank as P" (P" = G"H,,).

Proof" By (34), A6" = P6,,(a) P;', so that by (29) n6A6" = Pl6,,(a)P;' and
L;6n6A6" = (L;6PU,,(a))P;'. But if lis stationary then

L;6 PU,,(a) = L;ll(oa),f(oav:2), ... ,f(oav'"k("l))

= (1(0'),1(0''';''2)'''' ,f(av:k("))) = Pl""

Thus L;6n6A6" = Pl""P;' = n" and this implies that nA = n proving the
second part of the corollary. For the first part we have by (38) that P6ia)
= A6"P"l = A6"ij". Therefore,

L;"A6"ij" = L;"P6l(a) = L;,,(f(oa),f(v620a), ... ,f(V6k(6l oa)T
= (f(O),ftV620), . .. ,f(V6k(6l))T = ij6

This implies that Aij = ij. To prove the last part of the corollary, we remark
that the rows of G" and the columns of H" are r(a)-dimensional and, since
P"=G"H,, and P" is a nonsingular rea) x rea) matrix, G" cannot have more
than rea) rows and H" cannot have more than rea) columns and both matrices
must be nonsingular. This completes the proof. I

Consider again Theorem 1.1. It is clear that the theorem remains true if I
is a function ofa pseudo Markov chain. Combining Theorem 1.1 with Theorem
1.5 results in the following:
Theorem 1.7: A sequential function lover 1:* is a function ofa pseudo Markov
chain if and only if it is of finite rank.

d. Construction ofthe Underlying Pseudo Markov Chain

In order to be 'able to construct the underlying pseudo Markov chain for a
given function of finite rank f, one can use Theorem 1.5 provided that that the
matrices P" can be found for each 0' E 1: and provided that the values of the
function I can be computed effectively for the arguments contained in the
matrices P" and P6,,(a) (see (34)). In fact the function I is uniquely determined
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by its values contained in the matrices P6 and P6a(a) only. We shall show in
this section that the matrices Pa [and therefore also P6a(a)] can be determined
effectively if a bound is given on the rank of f If it is only known that f is of
finite rank but no bound is given for its rank, then the actual rank off cannot
be determined and the matrices Pa cannot be found in general. [See the remarks
at the end of Section I,C,3.] The matrices Pa for the bounded case can be
found by using the following:
Theorem 1.8: Let f be a sequential function of rank k and let a E 1: be one
of its states whose rank is k(a). A nonsingular matrix Pa = [f(viav/)] can be
found such that l(viav/) < 2(k - 11:1) + 1.

Proof' By Theorem 1.5, f can be represented as a function of a pseudo
Markov chain (n, S, A, ii) with lSI = k. Consider the set of all vectors of the
form nva [see (21)]. Those vectors are r(a)-dimensional row vectors and there­
fore, using a procedure similar to the one used in Section I,B,l [see Exercise
5 at the end of that section], one can find a basis for those vectors, nVla, ... ,
nVk(a)a such that l(v1a) < r(a), i = 1,2, ... , k(a). Let the matrix whose rows
are denoted by nv•a be denoted by Ga and r(Ga) = r(a). Using the same argu­
ment for vectors of the form '1av' which are r(a)-dimensional column vectors
one can find a matrix H a such that r(Ha) = r(a), its columns are a basis for
all the vectors of the form '1av [thus there are r(a) columns in H a] and any of
its columns fJav' has the property that l(av') < r(a). Consider the matrix GaHa.
It is an r(a) x r(a) square matrix of rank r(a) [since r(Ga) = r(Ha) = r(a)]
and therefore nonsingular. Its entries are of the form nv,a'lav!' = p(viav/).
Thus, GaHa is a matrix satisfying the requirements of a Pa matrix and its
elements p(viav/) have the property that l(viav/) = l(v/) + l(v/) + l(a) <
2r(a) - 1. But r(a) < r(f) - 11:1 + 1 [since r(f) = 1:aE};r(a) > r(a) + 11:1
-1] and therefore l(vav/) < 2(r(f) - 11:/ + 1) - 1 = 2(r(f) - 11:1) + 1. I
Corollary 1.9: If f is a sequential function of rank k and state set 1:, then the
values f(v) with l(v) = 2(k - 11:1 + 1) uniquely determine the function.

Proof' The matrices Pa can be found using only values f(v) with l(v) < 2(k
- 11:1) + 1 and the matrices P6a(a) have entries of the form p(v6/oav:J) with
l(v6/) and l(v:J) smaller or equal to r(O) and r(a) respectively. Thus l(v6/0av: J)

< r(a) + r(c5) + 2 < 2(k - 11:1 + 1). But the matrices Pa and P6a(a) unique­
ly determine the function f [see Theorem 1.5] and this completes the
proof. I

e. Equivalent Functions

Definition 1.4: Let.,{{ = (n, S, A, ii) and.,{{' = (n', S', A', iii) be two pseudo
Markov chains and let 1: and 1:' be two partitions on Sand S' respectively such
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that 11:1 = 11:'1. .A and .A' are equivalent with respect to 1: and 1:' if there is a
one-to-one mapping if>: 1: -1:' such that f(v) = !'(v') for all v E 1:*, v' E 1:'*.
Where f and f' are the functions with state sets 1: and 1:' respectively induced
by.A and .A'; if v = 0'1 .•• O'k> then v' = 0'/ ... 0'/ and if>(0'/) = 0'/; if v =
A, then v' = A.

Theorem 1.10: Let.A, .A', 1:,1:' be as in Definition 1.4. Let H be a matrix
the columns of which are a basis for the set of all vectors of the form tl"v and
let H be the matrix [1: = [0'1 •• 'O'k}]

[

H'" ]H= H", 0

_ 0 H".

then .A and .A' are equivalent with respect to 1: and 1:' if there exists an
lS'I x lSI matrix X and a one to one mapping if>: 1: -1:' such that:

(I) X"',, =1= 0 only if 0" = if>(0') where X"',, is the submatrix of X with rows
corresponding to the block 0" E 1:' and columns corresponding to the block
0' E 1:; (2) 1t' XH = 1tH; (3) XAH = A'XH; (4) ij' = X;;.

Proo!' (I) and (2) imply that

(5) 1t'",X",,,H,, = 1t"H"
(I) and (3) imply that

(6) X""A"6H6 = A''''6,Xn H6
(I) and (4) imply that

(7) ;;6' = Xn ;;6
Now flO'I .. , O'k) = 1t",;;",...". = 1t",A",,,, .,. A"._,,,.;;,,•. Using (5) and ob­

serving that ;;",...". is a linear combination of the columns of H", we have

Using (6) and observing that ;;",...". is a linear combination of the columns of
H", and repeating as many times as necessary we have

= 1t'"" ... "..tl~. = f'(O'/ ..• 0'/)
by (7). The proof is complete.

Remark: Theorem 1.10 provides us with a sufficient condition for equivalence
of two functions of different pseudo Markov chains. In fact, one can prove
[see Theorem 1.12 below] that the conditions of the above theorem are also
necessary if the chain .A with partition 1: over its state set resulted from a
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construction as in the proof of Theorem 1.5. If the matrix H in the conditions
(2) and (3) of Theorem 1.10 is ignored, then a weaker set of sufficient con­
ditions for equivalence results. These weaker conditions are summarized in
the following:

Corollary 1.11: Let A, AI, 1:, 1:' be as in Definition 1.4. A and AI are
equivalent with respect to 1: and 1:1 if there exists an lS'I x lSI matrix and a
one-to-one mapping rp: 1: -+ 1:1 such that: (1) X"." *" 0 only if a l = rp(a); (2)
7CIX = 7C; (3) XA = AIX; (4) fl' = Xii.

Consider the following problem: Given a probabilistic sequential function f
of finite rank k, is this function representable as a function of a [true] Markov
chain? If yes, then find an underlying Markov chain.

Using Theorem 1.5 we can find an underlying pseudo Markov chain such
that fis a function of it over some state set. We can try now to use Theorem
1.10 or Corollary 1.11 replacing A or AI by the psuedo Markov chain above
and trying to find another true Markov chain which will satisfy the require­
ments of the theorem or its corollary.

Let conditions (1)-(4) of Theorem 1.10 be considered as equations, with A'
replaced by the pseudo Markov chain found by using Theorem 1.5, and A,
X, and rp variables. If the given function is a function of a true Markov
chain, then a solution to those equations must exists with A, 7C stochastic and ii
having all its entries equal to one. This follqws from the following:

Theorem 1.12: Let A, AI, 1:, 1:' be as in Definition 1.4. If A and A' are
equivalent with respect to 1: and 1:' and AI is a pseudo Markov chain derived
as in Theorem 1.5, then A and AI satisfy the conditions (1)-(4) of Theorem
1.10 for some matrix X.

Proof' By (34) [see proof of Theorem 1.5] P6,,(a) = A~" P" where A6/ are
submatrices of the matrix A'. As A and A' are equivalent we have also that
P" = [f(v"lav~J)] = [f1(v"lav~J)] = P/ [f and f' denote the functions corre­
sponding to A and AI respectively] so that P" = G"H" where G" and H"
are as in Corollary 1.6 and P6,,(a) = G6 A6"H". Thus G6 A6"H" = P6,,(a) =
A~"P" = A~"G"H". Let H be a matrix as in the formulation of Theorem 1.10
and let G be a matrix constructed in the same way from the matrices G". Then
the above equation implies that GAH = AIGH and this is condition (3) in
Theorem 1.10 with G replacing X and satisfying (1) in that theorem.

Now
7C"H" = 7C,,('l"V',,1 ... 'l"v'",{tr») = (f(av~l) ... f(av~k("»))

By the construction of 7C' in Theorem 1.5, 7C/ is a vector with first entry equal
to one, all the other entries being equal to zero. Therefore, 7C/G/ H/ = 7C/ P/
= (f'(av~I)' .. f'(av~k("»))' Sincef = f', TCH = 7C IGHverifying (2) of Theorem
1.10.
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Finally, rJu' = (f'(a) .. . I'(v"k("p)T by the definition of rJ,,' and

G"rJ" = fx~' l. ~ (f(u) ... f(v.".,u»)'

V"k(,,)" j
and this completes the proof for I = I'· I

It follows from Theorem 1.12 that if no solution exists to the conditions of
Theorem 1.10 considered as equations, with vii' the pseudo Markov chain
derived as in Theorem 1.5 for the given function and vii a variable true
Markov chain, then the given function is not a function of a true Markov
chain. Conversely, any solution to the above four equations with the given
restrictions provides an underlying Markov chain for the given function. Un­
fortunately the use of Theorem 1.10 with its conditions considered as equations,
as above, is not practical in general for there are too many free parameters
involved [the rank of vii', the matrix X, the partition 1:, the matrix H, etc.].
On the other hand if the roles of vii and vii' are interchanged, i.e., the con­
ditions of Theorem 1.10 are considered as equations; with vii known and
derived as in Theorem 1.5 and vii' an unknown Markov chain then The­
orem 1.10 is equivalent to its Corollary 1.11. This follows from the fact that
in this case H is a nonsingular matrix for every a E 1: [see Corollary 1.6] so
that H is nonsingular and can therefore be deleted from both sides of conditions
(2) and (3) in that theorem. These considerations together with Corollary 1.11
and Theorem 1.12 lead also to the following:

Theorem 1.13: Let I be a probabilistic sequential function 01 rank k. Let Ji
be the pseudo Markov chain with partition 1: over its states such that I is its
function as found in Theorem 1.5. I is a function of a true Markov chain with
k states if and only if the conditions of Corollary 1.11, when considered as
equations with vii = vii or vii' = vii the other chain involved being variable,
admit a solution such that the matrix X is nonsingular.

Proof is left to the reader.

f. Examples

We conclude this subsection with some examples in which we shall make use
of Corollary 1.11 to solve some particular cases.

Example 16: Let I be a probabilistic sequantial function of rank k and let
vii = (n, S, A, fj) be some underlying pseudo Markov chain with partition 1:
over S, as derived in Theorem 1.5. If all entries in A are nonnegative, then I
is a function of a true Markov chain with k states.
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Proof" We remark first that all the entries in fi are positive, for they have
the form !(V"ia) and if for some i and a, !(V"ia) = 0 then P" has its ith row
equal to zero [the entries in the ith row of P are of the form !(v"iav~J)] which
is impossible since P" is nonsingular. Let now X" be a square diagonal matrix
with ith diagonal entry equal to (f(V"ia»-1 and let X be the [nonsingular]
matrix

lXU
1

• 0 J
X= .

OX"'
Then Xfi = 11', 11' is a vector all the entries of which are equal to one. Let A'
be the matrix A' = XAX- I and let 'Il' = 'IlX- I

• Then all the entries in 'Il'- and
A' are nonnegative; since, by construction, X and X-I are diagonal and non­
negative, 'Il is nonnegative and so is A by assumption. Furthermore, 'Il'11'
= 'Il' Xfi = 'Ilfi = I ['Il11 = I by the definition in Theorem 1.5] and A'11'
= A' Xfi = XAij = Xii = 11' [Afi = fi by Corollary 1.6] and therefore 'Il' and
A' are Markov matrices [since 11' is a vector all the entries of which are equal
to one]. It follows from Corollary 1.11 that the pseudo Markov chain .A with
partition 1: is equivalent to the true Markov chain .A' = ('Il', S, A', 11') with
same partition 1:. I

Example 17: Let f, .A, and 1: be as in Example 16. Let £'U be the set of
all vectors of the form fi"v' and let £'u+ be the set of all r(a)-dimensional row
vectors 'IlU such that 'Ilufi"v' > 0 for any fiuv' E £'u. If, for every a E 1:1 £'u+

contains a finite set of vectors 'Ill" ... 'Il;(,,) such that every very vector in £'u+

can be expressed as a nonnegative combination of them, then! is a function of
a true Markov chain.

Proof' We remark first that if 'Ilt, ... ,'Il;(,,) is a set of vectors satisfying the
condition stated above then also the set kl'lll", ... ,k,(u) 'Il;(,,) satisfies that con­
dition with k h ••. ,k,(,,) an arbitrary sequence of positive constants.

Let Xu be the t(a) x r(a) matrix with ith row equal to k"i'llt where the
kuis are positive constants chosen so as to have k"i'llt11u = 1. To prove that
such a choice is possible, we must prove that 'Ilt11u > O. Indeed, 'Ilt11" > 0 by
assumption and if 'Ilt11" = 0, then 0 = 'Ilt11" = 'Ilt I:011uo which would imply
that 'Ilt11"o = 0 [for 'Ilt11o" >0] and by induction 'Ilt11"v = 0 for any element
11"v' We would have in particular that 'Ilt H" = 0 where Hu is the nonsingular
matrix as defined in Corollary 1.6 this implying that 'Ilt = O. It follows that
a matrix X" as above can be constructed and X"11,, = 11/ where 11/ is a column
vector with all its entries equal to one. Consider now a vector of the form
k"I'Ilt A"o' This vector belongs to £'0+, for k"i'llt A,,011ov = k"i'llt11"ov > 0,
and can therefore be expressed as a nonnegative combination of the vectors
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k6I x/. One can thus construct a matrix A:6, such that XuAu6 = A:6X6 where
the ith row of A:6 is the vector of the coefficients of the nonnegative com­
bination of the rows of X 6 corresponding to the row ku,xt AU6 in the left-hand
side of the equation. Finally, Xu is in £'u+ [for xu11uv > 0] and therefore can
be expressed as a nonnegative combination of the rows of Xu in the form
Xu = xu' Xu with xu' nonnegative.

Let X be the matrix with diagonal blocks Xu, the other entries being zero;
let A' be the matrix whose uo blocks are A:6 ; let x' = (x:, ... x~J and
11'T = (11':. ... 11:~)T with ~ = {u t ••• Uk}' It follows from Corollary l.ll that
the resulting chain is equivalent to the given one with respect to~. But the
resulting chain is Markovian since 11' has alread the required properties (all its
entries are equal to one), x', and A' are nonnegative with X'11' = x'X11 = X11
and A'11' = A'X11 = XA11 = X11 = x' so that x and A' are stochastic. I

Example 18: Let vIt = (x, S, A, 11) be the pseudo Markov chain with

0.5 0 0 0 0.5

0 -0.4 0 0 1.4

A= 0 0 0.5 0 0.5

0 0 0 -0.3 1.3
0.25 0.084 0.25 -0.078 0.494

o 0
o 0
0.3 0

-0.5 1
o 1

o
o
0.7

1.5

o

0.3
-0.55

o
o
o

S = {St, S2' ••• ,ss}, x = (0.25 0.03 0.25 -0.03 0.5) and 11 = (l 1 1 1 IF.
Let ~ be the partition ~ = [(StS2}, {S3S4}, (ss}} = roc, p, y} over S. We show first
that the resulting function I is a function of a true Markov chain. To prove
this fact we use Corollary 1.11 and the argument used in the previous example.
Let X be the (regular) matrix

0.7
1.55

X= 0

o
o

Then X11 = 11 and one verifies easily that the equations x = x'X and X A = A'X
can be solved for x' and A' with nonnegative entries [the reader is urged to
complete the computations]. It follows that the chain vIt' = (x', S, A', 11) is
Markovian [the same argument used in the previous example will prove this].
If the partition ~ is as before [for the given vIt chain], then the resulting func­
tion I' [identical to the given one] is a function of a true Markov chain.

Consider now the partition 1: = [[StS2S3S4}, [ss}} = [0, y} over S. The induced
function j is again a function of a true Markov chain the vIt' chain: for the
blocks of 1: can be constructed by merging blocks of~. [This implies that
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Corollary 1.11 can be used for the partition 1: with same matrix X and the
resulting underlying chain vii' will be the same as before.] To compute the
actual values of j one can use a 4-state pseudo Markov chain.,ii = (ft, S, A,;;)
instead of the given one vii with JIi derived from vii by merging the state SI

and S3, i.e., ft = (0.5 0.03 -0.03 0.5),

lO.5 0 0 0.5 J
_ 0 -0.4 0 1.4
A= o 0 -0.3 1.3

0.5 0.084 -0.078 0.494

S = [Sl'fZS3S4},;; = (1 1 1 Wand the partition 1:' will be 1:' = ((SISZS3}, (S4}}
= (0, y}. The function j induced by M with partition f is equal to the function
induced by .if with partition 1:' because the states SI and S3 have the same
distribution in vii [the pseudo probability ofa sequence ofstates is not changed
if the state SI is replaced by state S3 or vice versa in the sequence], and they
are both in the same block of 1:.

We find now r(j). Clearly, r(f) = r(O) + r(y) = r(O) + 1 for y is a single
state block [see Corollary 1.2], and by Theorem 1.1, r(O) < 10/ = 3. To find
the actual value of r(O) we compute the values j(on) for n = 1,2, ... 5:

[
(O.5Y-

I

0 0 j [IJ
f(OI) = (0.5 0.03 -0.03) 0 (-0.4)1-1 0 1

o 0 (-0.3)/-1 1

= 0.5(0.5y-1 + 0.03( -0.4y-1 - 0.03( -0.3)/-1

= 0.5(0.5)'-1 + 0.3« -0.4)1-1 - (-0.3)/-1)

resulting in

f(OI) = 0.5, 0.247, 0.1271, 0.6139 and 0.031775

respectively for i = 1,2... 5. Let Po be the compound sequence matrix based
on the sequences VI = vt' = A, Vz = vz' = °V3 = v/ = oZ, then

[

0.5 0.247 0.1271]
Po = 0.247 0.1271 0.06139

0.1271 0.06139 0.031775

which can easily shown to be nonsingular. Thus, r(O) = 3 and r(j) = 4.
We shall complete this example by showing that j, although a function of a

5-state true Markov chain is not a function of a true 4-state markov chain. To
prove this, we use Theorem 1.13. If J is a function of a true 4-state Markov
chain, then by Theorem 1.13 [r(j) = 4 as proved above and .Ji is a four state
pseudo Markov chain] we would have that XA = A'X for some stochastic A'
and X nonsingular of the form
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x = [X6 0 ]o X y

Thus, X6A66 = A~6X6 or X6A66Xii = A~6. A66 and A~6 being similar matrices,
their traces must be equal. But the trace of A66 is negative by the definition
of A and the trace of A~6 cannot be negative for A' is assumed to be stochastic.
Thus J cannot be a function of a 4-state Markov chain and the proof is
complete.

Remark: Example 18 shows that functions of true Markov chains may exist
such that the number of states of the underlying Markov chain is strictly bigger
than the rank of the corresponding function. One may ask now whether there
exist functions of finite rank which are not representable as a function of a true
Markov chain. Fox (1967) and Dharmadhikari (1967) [see also Heller (1965)]
showed, by examples, that the answer to the above question is positive. The
examples of Fox and Dharmardhikari are too involved to be reproduced
here, moreover, their proofs seem to be incomplete. For additional aspects of
functions of Markov chains, the reader is referred to the following exercises
and the bibliographical notes which follow.

EXERCISES

1. Prove the properties (1)-(5) of a function of a Markov chain given in Sub­
section 1, a.

2. Prove Lemma 1.4.

3. Let 0 < al < a2 ... < an-k+1 < 1 be a sequence of numbers and define
the n x n matrix M = [mlj] as follows

=0

= (1 - aJ)/(k - 1)

= (1 - al)/(k - 1)
n-k+1= (2(k-l)-n + I: al )/(k-l)2
I~I

if 1 < i, j < n - k + 1 and i *- j

if 1 <i,j< n - k + 1 and i = j

if 1 <j< n - k + 1 < i < n
if 1 <i<n-k+ 1 <j<n

if n - k + 1 < i,j < n

Let .A = (S, n, M) be a Markov chain with lSI = n, n an n-dimensional
vector all the entries of which are equal to i and M is as above. Finally, let
1: be the partition 1: = {{SI ... Sn-k+I}, {Sn-k}, ... ,{sn}}. Prove that the function
f of the Markov chain.A with partition 1: over S is such that r(f) = nand
compute the value of the determinant of P,,(v i ••• Vn-k+l; VI' ••• V~-k+I)' where
VI = v/ = A,VI = v/ = (11-1 for i > 1 and (1 is the first block in 1:, for f
4. Let fbe a function of a Markov chain with state set 1: = {(11}. Letl be the
function l(v) = f(v) where for any V = (1i1(11, ••• (11.; v = (11•••• (11,. Prove
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that if the underlying Markov chain for f is stationary and its initial distribu­
tion has only positive values, thenJ is a function of a Markov chain.

5. Let f be a function of a pseudo Markov chain of finite rank, with state set
1: = [a,O} such that rea) = 1. Then Ii compound sequence matrix P" [see (27)]
of maximal rank for f can be chosen such that all the entries in P" have one
of the forms, f(aaka), f(aak), f(aka), or f(ak).

6. Let f be a function of a true Markov chain of finite rank with state set
1: = [aa. Prove that any matrix P", [see (27)] of maximal rank for f can be
expressed as a finite sum of nonnegative matrices of rank 1.

7. Let f be a sequential function of finite rank and let .A = (n, S, A, fi) be a
pseudo Markov chain as derived in Theorem 1.5 for f Prove that another
pseudo Markov chain .A' for f can be found such that.A' = (n', S, A', fi')
with fi' = (1, 1, ... , I)T, A'fi' = fi' and n'fi' = 1 [i.e., the vector n' and the
matrix A' are "pseudo stochastic" with row sums equal to one].

8. Let.A, vI(', 1:, 1:' be as in Definition 1.4 and assume that.A and.A' are
equivalent with respect to 1: and 1:'. In addition assume that lSI = rank f
where f is the function induced by.A (or .A') with partition 1:. Prove that
there exist two matric.es B, e such that B is lSI x lS'I e is IS'I x lSi, B·e = I
where I is the lSI x lSI unit matrix and A = BA'e.
9. Let f be a probabilistic sequential function over the state set 1: = [at}
such that rea,) < 2 for every atE 1:. Then f is a function of a true Markov
chain.
10*. Let fbe a function of the Markov chain.A = (n, S, A, 11) with state set
1: = [a;}.

Prove the following relations:
a. P",A(l:ko-lat,l:ki-I ... atnl:kn-lat .) = (Ako)",,,, (Ak i)", ", ... (Ak.-I)", ", P",

n+ 1 12 nn+l ~+1

[See (28) and other definitions in Section l,a]
b jlYal:ko- la l:k,-1 ... a l:kJ - 1a) = n (Ako) ... (Ak J) n• \. it ij a aau Ut

j
6',6

c. f(vl:" V') converges as n - 00 for every v and v' if and only iff(v"tal:"av~J)
converges as n - 00 for every a, aE 1:, and every i and j.

d. f(vl:"v') - f(v)f(v') as n - 00 for every v and v' ifand only iff(v"lal:"av~J)
- f(v"ta)f(av~) for every a, a, i, and j

e. A" converges as n - 00 if and only if f(vl:"v') converges as n - 00 for
every v and v'
11 *. A sequential probabilistic function f, f: 1:* - [0, 1], is termed "mixing"
if f(vl:" v') - f(v)f(v') as n - 00 for every v and v'. Prove the following:

Theorem: Let fbe a sequential probabilistic function of finite rank and mix­
ing. Let gm be the function derived from fby the definition

gm(al, ... at.) = f(a"l:ma" l:m
••• at.l:m)
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Then there exists an integer m* such that gm is a function of a true Markov
chain for any m > m*. I
11. Let f, .H, and 1: be as in Example 16. Prove that I is a function of a
true Markov chain if the following condition holds true. For any a E 1:, a
finite set of r(a)-dimensiona1 row vectors lt1" ••• lt~(..) can be found such that

1. It'''11.. > 0, i = 1,2, ... ,k(a), a E 1:.
2. It''' A..6 can be expressed as a nonnegative combination of the vectors It/

for every a and 0 E 1:.
3. It.. can be expressed as a nonnegative combination of the vectors It''' for

every a E 1:.
12. Find the true Markov chain equivalent to the pseudo Markov chain in Ex­
ample 18 with the partition 1: and the matrix X as given in that example.

OPEN PROBLEMS

1. Find an algorithm for ascertaining whether a given probabilistic sequential
function of rank k is a function of a true Markov chain.
2. Find an algorithm for ascertaining whether a given function of a true
Markov chain of rank k has an underlying true Markov chain with only k
states.
3. Provided that the conditions given in Example 17 or in Exercise 11 above
are known to hold true for a given function I [e.g., this would be the case if
rea) < 2 for any state a ofI-see Exercise 9 above] give an algorithm for find­
ing the actual underlying true Markov chain.
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havior of cloud cover (based on statistical data taken in the Boston area they
proved that the stochastic process involved can be represented as a function of
a Markov chain but not as a Markov chain); Dharmadhikari (1963a, b,
1965, 1967) considered various aspects of the problem and gave some suffici­
ent conditions for a sequential function to be a function of a Markov chain;
Carlyle (1967) considered a special case. Finally some new additions to the
theory have been achieved by Heller (1965) and Depeyrot (1968). The section
presented here is based mainly on the work of Gilbert (1959) with additions
and some of the exercises based on the subsequent work. Thus Gilbert is to be
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credited for the basic ideas underlying the theorems and corollaries 1.1-to 1.9,
with some clarifications by Dharmadhikari who is to be credited also with the
Examples 17,18 and Exercises 9 and 10. Theorem 1.10 and its corollary 1.11
is new. Theorems 1.12 and 1.13 are a generalization of a theorem of Gilbert
who is to be credited also with Exercise 3. Exercises 5 and 6 are due to Fox.
Finally Exercise 11 is similar to a theorem of Heller. Additional reference:
Burke and Rosenblatt (1958).

2. Function Induced by Valued Markov Systems

A theory of input-output relations was developed in Section I, C. In the light
of that theory, functions of Markov chains can be considered as output rela­
tions, since, if I{v) is such a function, then the value I{v) can be interpreted as
the probability that the word v is the output of a given Markov chain. In this
section we shall develop a theory of word functions which can be considered
as input relations derived from nonhomogeneous Markov chains.

a. Valued Markov Systems

Definition 2.1: A valued Markov system is a 4-tuple {1t, S, {A{eT)}, {'1I}IE z) where
(S, {A{eT)}) is a Markov system, 1t is a probabilistic vector of dimension lSI and
{'11} is a finite set of lSI-dimensional arbitrary column vectors [the entries in '11
are arbitrary real numbers]. With every i E Z the function ft over 1:*, induced
by the valued Markov system is defined as ft{u) = 1tA{u)'11 with u = eTl •.• eTk

E 1:* and A{u) = A{eT1) ••• A{eTk ). ftC).) = 1t'11 by definition. The functions
ft{u) will be called input (word) functions.

The values of the input functions ft{u) can be interpreted as expectations or
costs, since, denoting by '1IJ the jth entry in '1/ we have that ft{u) = 1:1t/U)'1IJ
and 1tJ{u) is a probability [the probability that the Markov system when started
with distribution 1t will end scanning the word u in state j]. If the values '11}
are either 0 or 1 the ft{u) can be interpreted as a probability [the probability
that the system when started with distribution 1t will end scanning the word u
in one of the states sJ such that '1IJ = 1].

Input functions ft{u) induced by valued Markov system differ from the func­
tions considered in the previous section in that they do not satisfy necessarily
the relations (23) and (24). In addition, although input functions can be in­
duced by input-output relations, the correspondence is not always one to one.
Thus, let A be an SSM, given in the Moore form, A = (S, X, Y, {A{X)}, A)
[see Definition 2.1 in Chapter I] with initial distribution 1t. Define the valued
Markov system (S, 1t, {A{x)}, ('1Y}YEY) with X = 1:, Z = Y and t(yl = 1 if and
only if A{sl) = y. It is easily seen that the input functions Iy induced by the
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valued Markov system can be defined in terms of the input-output relation in­
duced by the SSM with

fiu) = I; P,,(vy!u),l(u) > 1.
l(v)~l(u)-I

On the other hand, it may happen that two nonequivalent input output rela­
tions induce the same input function. This is shown by the following.

Example 19: Let A = (S, X, Y, {A(x)}, A) and A' = (S, X, Y, {A'(x)}, A)
be two SSM [with common S, X, Y, and A] such that X = {O, I}, Y = {a, b},
S = {SH S2, S3' S4}, A(sl) = A(S2) = a, A(S3) = A(S4) = b,

A(O) = A'(O) = l~ ~ ~ :j
i 0 0 t
tOO ~

A(l) = l~ ~ ~ ~j' A'(l) = l~ ~ ~ ~j
!OOt 1000

O!!O 000 I
and some initial distribution n = (t 0 0 !). The two resulting input-output re­
lations are not equivalent, e.g., pA(ablll) = t, but pA'(ablll) = O. On the other
hand, for any v, Y, and u one finds easily that

I; p,,(vYlu) = nA(u)l1y = t = nA'(u)l1y = I;p,,'(vYlu)
v v

so that the resulting input function is the same.
The above considerations show that input-word functions cannot generally

be reduced, in a unique way, to other type of word functions discussed before
and therefore a specific theory will be developed for them. On the other hand
many of the properties of input functions are similar to properties of the other
types of functions, and so are many proofs to related theorems. In all such cases
we shall omit those proofs, leaving them to the reader.

b. Generalized Events and Their Rank

In deterministic automata theory an event E is understood to be a subset of
the set of all words over a given alphabet. Such an event can be represented
by its characteristic function fAfAu) = I if u E E and fE(U) = 0 otherwise].
We shall agree to term such an event as a O-I-event the term being a name for
both the event and its characteristic function with values either zero or one.
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Extending this terminology, any word function will be called an event and a
set of word functions will be called a generalized event.

Definition 2.2: Let Eg = {f.}.EZ be a generalized event, and let U!>"" Uk'
ut', ... ,U/ E 1:*; nl, ... , nl E Z. Then P(u l , ••• , Uk; (ut', n!), ... , (u/ nl» is the
k x I matrix [to be called a compound sequence matrix] whose ij element is
(f.,(u/u/» and its rank is denoted by r(P(u!> ... , Uk; (ut' n l ), ••• , (u/ nl»)'
Definition 2.3: Let Eg be as in Definition 2.2, then r(Eg) (the rank of the gen­
eralized event Eg ) is defined as

r(Eg) = sup {k = r(P(u!> ... , uj ; (ut' n1), ••• , (u/ nj»)};
k

j = 1,2, ... ; u!> ... , Uj ' ut', ... ,u/ E 1:*; n!> ... , nj E 1:}
[Thus r(Eg) is the maximal rank of matrix of the form P(u!> ... ,u j ; (u'!n!), . .. ,
(u/n j » if such a maximal rank exists.]

Theorem 2.1: Let Eg be a generalized event induced by a valued (pseudo)
Markov system with lSI states. Then r(Eg) < lSI. [As before the prefix "pseudo"
means that the vector n and the matrices A(0) are not required to be
stochastic.]

Proof: Under the conditions of the theorem, every matrix of the form
P(u!, ... ,uj ; (ut' n!), ... , (u/ n) can be expressed as a product of two matrices:
a left factor matrix G whose rows are lSI dimensional vectors of the form n(u j )

and a right factor H whose columns are lSI-dimensional vectors of the form
tlOJ(u/).
Lemma 2.2: Let Egbe a generalized event of finite rank and let P(u!, ... , uj;
(ut'nt'), ... , (u/n) be a given compound sequence matrix of maximal rank
for it. Another compound sequence matrix of the same rank can be derived
from the given one and having the form

peA, ii2, ••• , iij; (ut' n!), ... , (u/ n)
Proof: Same as the proof of Lemma 2.2 in Section I, C and left to the

reader.

Theorem 2. 3: Let Eg be a generalized event of finite rank. Then there exists
a valued pseudo Markov system A such that Eg is identical with the set of in­
put functions induced by A.

Proof: [Some of the details in the proof, being similar to the corresponding
parts in the proof of Theorem 1.5, will be omitted.] Let peA, u2, ••• , Uk;
(ut' n!), ... , (u/ nk» be a compound sequence matrix of maximal rank for Eg
[such a matrix exists by the finite rank assumption and by Lemma 2.2]. We
shall denote this matrix by P. Consider the following determinant
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1 fn(u')
1

pl· =0
1

1 J.(UkU') (39)
---------1----
1.1 (UU/) .. · J..(UU/) I fn (uu')

The determinant being of order k + 1 is equal to zero for any variables u, u'
E I:* and n E I: [all the other factors appearing in the determinant i.e.,
Uh • •• 'Uk> u/, ... , u/, nh ••• , nk being constant and U1 = A.]

Developing the determinant according to its last column and dividing by IPI
we have

(40)

where the values a/(u) are the resulting coefficients depending on U only. Re­
placing U by U/U, U' by u'u/ and n by nj [u, u', and n are variables in (40)] we
have

or in matrix form

P(uu') = A(u)P(u')

where we have used the definitions

(41)

(42)

peA) = P and

and A(u) being the matrix of corresponding coefficients. Thus,

pea) = A(a)P or A(a) = P(a)P-l

and combining (42) and (43) we have

A(aa') = A(a)A(a'), A(A) = I

Consider again (40) and replace u by u/u and n by j. We have

fj(u/uu') = I: a/(u/u)!J(u/u')
I

(43)

(44)

(45)

Let I1JCu) be the column vector defined by I1j(u) = (!J(u1u), . .. ,fj(UkU))T, then
comparing (45) with (41), we can write (45) in the following matrix form

I1j(uu') = A(u)l1iu'), u, u' E I:*, i E Z (46)

But U1 = Aso that I1j(A) = (fj(A), ... ,!J(Uk))T and by (46), we have that

I1j(u) = A(u)l1j(A) = (!J(u), ... ,fj(UkU))T (47)

Define now the valued pseudo Markov system A = (n, S, {A(a)}, {11;}) where
lSI = k; A(a) are the matrices as defined in (43); n is the k-dimensional vector
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11: = (10 ... 0) and til are the k-dimensional column vectors defined by (47)
with U = A..

We have, for u = 0'1 ••• O'm (using (44) and (47)) that

1I:A(0'1), ... , A(O'm)tI/ = (100 O)A(O'I) ... A(O'm)tI/ = (1 0 ... O)A(u)l1/

= (1 0 O)tI/(u) = h(u) I
Combining Theorems 2.1 and 2.3 we have the following:
Theorem 2.4: An event Eg can be represented as the set of input functions in­
duced by a valued pseudo Markov system A if and only if Eg has finite rank.

The proofs of the following corollaries and theorems are similar to corre­
sponding proofs in the previous Section 1 and are left to the reader.
Corollary 2.5: Let A be a valued pseudo Markov system as constructed in the
proof of Theorem 2.3 for a given generalized event Eg of finite rank. Let G be
the matrix whose rows are 11:(u/) and let H be the matrix whose columns are the
vectors tlnJ(u/) with P = GH. Then G and Hare nonsingular. [The words
u/, u/ and the tlJ are the fixed words in the proof with P(Ul> ... , Uk; (u/ n1),

... , (Uk' nk)) nonsingular.]
Theorem 2.6: Let Eg be a generalized event of rank k. Then a nonsingular P
matrix as in the proof of Theorem 2.3 can be found such that P = [!nJ(u/u/)]
and l(u/u/) < 2k - 2, i,j = 1,2, ... , k

Corollary 2.7: Let Eg be a generalized event of rank k, then the values h(u)
with l(u) ::;; 2k - I uniquely determine the whole event.

It follows from Theorem 2.6 and its Corollary 2.7 that if, and only if, a given
generalized event is known to be of finite rank and a bound is given for its rank,
then an underlying valued pseudo Markov system can be constructed effec­
tively.

c. A Necessary Condition for Representahility

The following theorem provides a useful necessary condition for a given gen­
eralized event to be representable as a set of output functions of a valued
(pseudo) Markov system.
Theorem 2.8. Let Eg = {h}/EZ be a generalized event such that it can be rep­
resented as a set of input functions of a valued pseudo Markov system. Then
for every i E Z and u E I*, there exists a set of numbers Co, . .. ,Ck_1 such
that for every u', u" E I* the following equality holds

h(u'uku") = Ck_1h(u'Uk-1U") + ... + coh(u'u") (48)

If an underlying valued system can be found such that it is true Markov then

Co + C1 + ... + Ck- 1= 1 (49)
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Proof: Let A = (n, S, {A(o)}, {11;}) be an underlying system for Eg • The
matrix A(u) satisfies its minimal polynomial so that there exists numbers
bo, ••• , bk such that bol + '" + bk[A(u)]k = O. But [A(u)]k = A(uk) so that
the equation above can be put in the following form [after dividing by bk and
transferring the last term to the right-hand side].

col + '" + Ck_1A(Uk- l ) = A(uk
)

Multiplying each term in the equation by nA(u') to the left and by A(u")l1i to
the right we have

co];(u'u") + ... + Ck_1];(U'Uk-1U") = ];(uk )

If the system A is true Markov, then A(u) is a Markov matrix so that one of its
eigenvalues is equal to one. Inserting this eigenvalue into the minimal poly­
nomial we have

or Co + ... + Ck - l = I I

d. Equivalent Valued M~rkov Systems

Definition 2.4: Let A = (n, S, {A(a)}, {'li}iEZ) and A' = (n', S', fA' (a)},
{l1;'}iEz') be two valued (pseudo) Markov systems over the same alphabet 1:. A
is equivalent to A' if there is a one to one mapping ¢: Z ~ Z' such that];A (u)
=n;)(u) for every u E 1:*.

Given a valued [pseudo] Markov system A one can construct effectively [us­
ing a procedure similar to the one used in Section [I, B, 1], two matrices G and
H such that G has linearly independent rows of the form n(u) = nA(u), and
any row vector of the form n(u) is a linear combination of the rows of G; H
has linearly independent columns of form 'lieU) = A(U)'li' and any column vec­
tor of the form 'lieU) is a linear combination of the columns of H.

Using the above notations we can prove now the following:

Theorem 2.9: Two valued pseudo Markov systems A and A' as in Definition
2.4 are equivalent if there exists a matrix X of due dimensions and a mapping
¢: Z ~ Z' such that (1) n'XH = nH; (2) XA(a)H = A'(a)XHfor every a E 1:;
(3) 11~(i) = X'li for every i E Z.

Proof; The proof is left to the reader. [The method used in the proof of
Theorem 1.10, with due changes to meet the different definitions, will do.] I
Corollary 2.10: Two valued pseudo Markov systems A and A' as in Definition
2.4 are equivalent if there exist a matrix X of due dimensions and a mapping
¢: Z ~ Z' such that (1) n' X = n; (2) XA(a) = A' (a)X for every a E 1:; (3)
11~(i) = Xl1i for every i E Z.
Definition 2.5: A valued pseudo Markov system A is minimal if the rank of its
induced generalized event equals the number of its states.
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Lemma 2.11: Let A be a minimal valued pseudo Markov system. Then any
GA. and HA. matrix for A are nonsingular.

Proof: GA. H A. is a compound sequence matrix for A of maximal rank because
any other compound sequence matrix far A can be written in the form G' H'
where the rows of G' and the columns of H' are linear combinations of the
rows of GA. and the columns of HA. correspondingly. If follows that min(r(GA.),
r(HA.» > r(GA. HA.) = lSI. But GA. has lSI columns and HA. has lSI rows and
therefore r(GA.) <lSi, r(HA.) < lSI. Thus, r(GA.) = r(HA.) = lSI and both
matrices are nonsingular. I
Theorem 2.12: Let A be a valued pseudo Markov system with EgA. the corre­
sponding generalized event. Let A' be the minimal valued pseudo Markov sys­
tem as constructed in Theorem 2.3 for the given E/ [by definition A and A'
are equivalent]. Then a matrix X exists such that (1) nHA. = n' XHA.; (2)
XA(a)HA. = A'(a)XHA.; (3) '1/ = X'Ii.

The proof which is similar to the proof of Theorem 1.12 [with due changes
to meet the different definitions] is left to the reader.

Corollary 2.13: If the system A in Theorem 2.12 is minimal, then there exist a
nonsingular matrix X such that the necessary conditions of Theorem 2.12 can
be replaced by the following; (1) n = n' X; (2) XA(a) = A'(a)X; (3) '1/ = X'Ii'

Proof If A is minimal, then HA. is nonsingular [see Lemma 2.11] and can be
reduced in the conditions of Theorem 2.12. Furthermore, one can assume that
the matrix X in the proof of Theorem 2.12 is a G matrix for A [see the proof
of Theorem 1.12] which by Lemma 2.11 is nonsingular in this case. I
Corollary 2.14: Let A and A" be two equivalent valued pseudo Markov systems
such that A" is minimal, then there exist a matrix X and a one to one mapping
¢J: Z --+ Z" such that: (1) nHA = nil XHA.; (2) XA(a)HA = A"(a)XHA; (3)

'I~(i) = X'Ii'
Proof Let A and A' be as in Theorem 2.12, and let A" and A' be as in

Corollary 2.13 [with A replaced by A"]. Then nHA. = n' X' HA. for some matrix
X' and n' = nil X-I [X is Corollary 2.13 is nonsingular] so that nHA. =
nil X-I X' HA. Similarly, X'A(a)HA. = A'(a)X' HA. and A'(a) = XA"(a)X-I so
that X'A(a)HA= XA"(a)X-I X'HA or X-I X'A(a)HA = A" X-I X' HA. Finally,
'1/ = X' 'Ii and X-I '1/ = '1/' so that '1/' = X-I X' 'Ii' Where the elements of Z'
and ZII are rearranged if necessary so that the 'I~' and 'I;' vectors corresponding
to the same 'I. vector have the same index (n' = nil = n). I

As in the previous section Theorem 2.9 and its Corollary 2.10 can be used
for finding a valued true Markov system equivalent to a given valued pseudo
Markov system. For this purpose, the conditions of that theorem [or corollary]
will be considered as equations with one of the systems known the other being
required to satisfy the Markovian properties.
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The possibility of transforming valued pseudo Markov systems into valued
true Markov systems has practical significance, since the later systems can be
constructed in practice using relays, transistors, or other electrical devices [see
Chapter I, Section 3].

If the A' system in Theorem 2.9 is assumed to be known, then one can as­
sume that A' is also minimal, this additional assumption being justified by the
fact that the construction in the proof of Theorem 2.3 provides a minimal
equivalent system to any given system. In this case we have that the conditions
of Theorem 2.9 are not bnly sufficient but also necessary [see Corollary 2.14
above]. On the other hand the unknown system A has too many free param­
eters making the use of the theorem impracticable.

If the A system in Theorem 2.9 is assumed to be known, then the additional
assumption that A is minimal [bearing on Theorem 2.3 as before] will make the
conditions of Theorem 2.9 equivalent to the conditions of its Corollary 2.10,
for in this case H A is a nonsingular matrix. On the other hand, the conditions
of Corollary 2.10 are only sufficient conditions a fact which must be remem­
bered when one proves that they cannot be satisfied in some cases.

We shall give now a useful geometrical interpretation to the conditions of
Corollary 2.10 when considered as equations. Assume that the A system in
Corollary 2.10 is given and consider the conditions in the corollary as equations
to be solved for an unknown system A' subject to the restriction that A' is true
Markovian. As there is no restriction on the vectors 11/ in the definition of a
valued Markov system the third equation can be taken as a definition of the
vectors 11/ once the .other two equations are solved. If A is a matrix, denote by
C(A) the convex set of vectors generated by the rows of A. Then the equation
XA(a) = A'(a)X can be solved for a Markovian matrix A'(a) and given X if
and only if C(XA(a» s; C(X) for in this and only in this case each row of
XA(a) can be expressed as a convex combination of the rows of X and the prob­
abilistic vector whose entries are the combination coefficients will be the cor­
responding row of A'(a). Similarly the first equation is equivalent to the
condition that n E C(X). We have thus proved the following:
Theorem 2.15: The conditions of the Corollary 2.10 when considered as equa­
tions with the system A given can be solved by a valued true Markov system
if and only if there exist a matrix X such that (1) n E C(X); (2) C(XA(a» s;
C(X) for every a E ~.

We shall use now Theorem 2.15 to prove two additional theorems.

Theorem 2. 16: Let A = (n, S, {A(a)}, {11i}) be a valued pseudo Markov system
such that ~ Inil < 1 where n = (ni ) and if e/(a) = (ej(a» is the ith row in
A(a) then ~j \eij(a)1 < 1 for i = 1,2, ... , lSI. Then A is equivalent toa valued
true Markov system A' with state set S' and IS'I = 21SI.

Proof: Let X be the lSI x 21S1 matrix
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1 0 0
0 1 0

0 0 1
X=

-1 0 0
0 -1 0

o 0 ···-1

Let XA(a) = B(a) with rows el(a) = (efJ(a». Then el(a) = ±e/(a) for
somejsothatL;} lef;(a)l< 1. This implies that C(B(a» ~ C(X)andL; l1li l< 1
implies that also 1l E C(X) and the conditions of Theorem 2.15 are satisfied.
The number of states of the resulting valued Markov system will be equal to
the number of rows of X which is equal to 21SI· I
Theorem 2.17: Let Eg = [h}LEz be a generalized event of rank k. There exist
another generalized event E/ = [h'hE Z over the same alphabet 1: and a con­
stant c such that E/ is induced by a valued true Markov system with 2k states
and for any u E 1:* and any i E Z, c!(ulh(u) = h' (u).

Proof: Let A = (1l, S, [A(a)}, [nl}) be the valued pseudo Markov system con­
structed as in the proof of Theorem 2.3, for Eg • Note that lSI = k and 1l is the
k-dimensional vector 1l = (1 0 ... 0). Let Ae be a valued pseudo Markov chain
derived from A and defined as Ae = (1l, S, [A(a)}, rna) with A(a) = cA(a). If
[j;} are the functions induced by Ae , then clearly j;(u) = c!(U}h(u) for any i E Z
and any u E 1:*. Now choose the constant c so that Ae will satisfy the condi­
tions of Theorem 2.16 [the vector 1l = (l 0 ... 0) already satisfies these con­
ditions] which is of course possible. By Theorem 2.16, there exists a valued
true Markov system A' with 21S1 states and functions {h'} such that h' (u) =
j;(u) = d(ulf(u) for every i E Z and u E 1:*. I

Remark: Note that the scaling factor diu) depends on the length of the word
u but not on the word itself. On the other hand it is easy to see that the Theo­
rem 2.17 would not be true in general if the scaling factor is removed because
the values h(u), being induced by a valued pseudo Markov chain, may grow, in
some particular cases, beyond any bound when leu) increases while the corre­
sponding values ft' (u) being induced by a valued true Markov system, are
bounded.

EXERCISES

1. Prove that any function ofa finite (pseudo) Markov chain can be represented
also as an input function of a valued pseudo Markov system.
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2. Prove Lemma 2.2.

3. Prove Corollary 2.5.
4. Prove Theorem 2.6.
5. Prove Corollary 2.7.

6. Let A, A', A" be valued pseudo Markov systems such that A and A' satisfy
the conditions of Theorem 2.9 while A' and A" satisfy the conditions of Corol­
lary 2.10 [with A and A' in the corollary replaced by A' and A"]. Then A and
A" satisfy the conditions of Theorem 2.9 [with A' in that theorem replaced by
A"].

7. Let A and A' be two equivalent valued pseudo Markov systems. Prove the
following properties:

a. If A' is minimal then the number of states of A is greater than or equal
to the number of states of A'.

b. If both A and A' are minimal, then they both have the same number of
states.

c. If both A and A' are minimal, then the corresponding matrices A(a) and
A'(a) of A and A' have the same set of distinct eigenvalues.

8. Let Egbe a generalized event and let r([Egh) be the maximal rank of any
compound sequence matrix for Eg such that the values j;(u) making the entries
of these matrices have the property that leu) < k. Assume that for a given Eg

we have that for some integer k, r([Egh) = r([Egh+l) = ... = r([Egh+ J) = t.
Then either r(Eg) = t or r(Eg) > t + 2j.

9. Based upon Exercise 8 give an algorithm for finding r(Eg) when a given
generalized event is known to be of finite rank and a bound is given on its
rank.
10. Let A = (n, S, {A(a)}, {11i}) be a valued pseudo Markov system such that
n = (n;), n l > 0, I: ni < 1 and for any row C;i(a) = (C;u(a» in any matrix
A(a), C;u(a) > 0 and L:JC;ij(a) < 1. Then there exists a valued true Markov
system A' with lSI + 1 states and equivalent to A.

11. Let A = (n, S, {A(a)}, {11;)} be a valued pseudo Markov system such that
n = (ni ), 0 < ni < 1 and all matrices A(a) = [au (a)] have nonnegative entries
and L:!~l ai}(a) < 1. Then there exists a valued true Markov system A' with
2!S! states and equivalent to A.

12. If A and A' are two valued pseudo Markov system satisfying the conditions
of Corollary 2.10, with X*- 0, then corresponding matrices A(a) and A'(a)
have at least one common eigenvalue.
13. Let A = (n, S, {A(a)}, {11;}) be a valued pseudo Markov system such that
n = (n;), 0 < ni < 1 and the maximal eigenvalue, in absolute value, of any
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matrix A(a)AT(a) is less or equal than I/ISI. Then there exists a valued true
Markov system A' with 2 1S1 states which is equivalent to A.
14. Prove. that in Theorem 2.17 the valued true Markov system A' underlying
the generalized event E/ may be assumed to have the additional property that
all the entries tf;j in all the vectors tf/ of A' have the property: 0 < tf;j < I but
in this case the relation between the functions will be

f/ (u) = acl(u)!t(u) + b

for any u E :!:* and i E Z where a, b, c are constants.

15. Consider the following:
Definition: A word vector function is a function rp with domain :!:* and values
in the set of all n-dimensional real valued vectors, where 1:* is the set of all
words over a given alphabet:!:. A word vector function rp is realizable by a PA
[probabilistic automaton] if there exists a PA A = (n, S, {A(a)}, nF

) such that
for every x E :!:*, rp(x) = n(x) [tfF is a single vector having only 0-1 entries].
Prove the following:
Theorem: A word vector function rp is realizable by a PA if and only if the
following two conditions hold true.

1. For any x E :!:* and a E :!: if rp(x) = ~ (Xirp(X;), then rp(xa) = ~ (Xirp(x/a)
where Xl ... Xi E :!:* and (Xi are constants.

2. Let rp(xl ) ••• rp(x;) be any set of linearly independent vectors and let a E:!:.
There exist a stochastic matrix A(a) such that rp(x;)A(a) = rp(xia).

OPEN PROBLEMS

1. Find an algorithm for ascertaining whether a given generalized event E" of
rank k can be represented as a set of input functions of a valued true Markov
system.

2. Find an algorithm for ascertaining whether a given generalized event E" of
rank k can be represented as a set of input functions of a valued true Markov
system with k states.
3. Define, in a meaningful way, and study "output functions" induced by non­
homogeneous Markov systems with more than one letter in the alphabet :!:.

Bibliographical Notes

The exposition of Section 2 above is based mainly on the work of Carlyle and
Paz (1970), except for Theorem 2.8 which is a straightforward generalization
of a Theorem of Nasu and Honda (1968). It is to be mentioned also that a
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particular case of valued Markov system was introduced first by Page (1966)
and a restricted variant of Theorem 2.17 (see also Exercise 14 above) was
proved first by Turakainen (1968). Word vector functions (exercise 15 above)
were considered by Bukharaev (1965) Salomaa (1966) and Turakainen (1968).



Chapter 
Events, 
Languages, 
and Acceptors 

INTRODUCTION 

This chapter is devoted to probabilistic languages and events. The closure 
properties of those languages and events and their relation to regular events 
are studied. Some particular cases such as definite, quasidefinite, and exclusive 
events are investigated and the problem of approximating probabilistic events 
by nonprobabilistic ones is considered. 

A. EVENTS 

Although the abstract models to be considered in this chapter are particular 
cases of models discussed in the previous chapter, the problems to be investi­
gated are different and motivated by the approach of the mathematical logic 
discipline to parallel problems encountered in the deterministic case. The 
following notations will be used: An event is a single word function / o v e r an 
alphabet Σ [ / : Σ* - ^ r ea l numbers] with the following subcases: an event / 
is pseudo probabilistic if it can be represented as the function induced by a 
valued pseudo Markov system with a single vector in the set {/yj; A pseudo 
probabilistic event is an expectation event if the underlying system is a valued 
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c I — c 

Ic 1 - cJ 
A{a) = 

Then 

p{u) = πΑ{μ)η' = (c 1 - e) 

for all σ G Σ 

= c 
c l - ^ f l " 

Lc 1 - J L O . 

since Α{σ) are constant matrices and, therefore, A{u) = Α(σ), for any u e Σ*. 
[For the definition of constant matrices see the Preliminary Section.] | 

true Markov system; an expectation event is a probabilistic event if the under­
lying system has the additional property that all the entries of the (single) 
column vector are equal to 1 or 0. We shall write instead of η with F C S 
and the /th entry of equal to 1 if and only if s^ G F. Such a system will be 
called a probabilistic automaton. 

A probabihstic event / is a regular event if the underlying probabilistic auto­
maton is deterministic and the function / can assume only the values 0 or 1. 
The term regular event will be used both for the function / as above and for 
the set of words u such that /(w) = 1. [This abuse of language is made in order 
to simplify the notations and no confusion will arise as long as context is clear.] 

An event / is called constant if f{u) = c for all w G Σ* and c is a constant 
[real number]. The following operations on events are defined [any two events, 
when combined, are assumed to be defined over the same alphabet Σ ] : 

1. ( / ± g)(M) = f(u) ± g(u) for any u e Σ*. 
2. (fg)(u) = f(u)g(u) for any u G Σ*. 
3. (oif)(u) = 0(.{f{ü)) for any Μ G Σ* and α a real number. 
4. ( / V g){u) = m a x ( / (M) , g(u)) for any u G Σ*. 

5. ( / Λ g)(u) = min{f(u),g(u)) for any u G Σ*. 
6. f(u) = 1 - f(u) for any u G Σ*. 
7. /(w) = f(ü) where u = - - - if u = - - - σ,, e Σ*. 

Some additional operations will be considered later and defined in due 
place. 

1. Probabilistic Events 

By definition, the class of PEs [probabilistic events] contains, as a proper subclass, 
the class of regular events. In addition it also contains the constant events as 
proved in the following: 

Proposition 1.1. The constant functions f(u) = c with 0 < c < 1 are PEs. 

Proof: Let / be the function f(u) = c for all Μ G Σ* and 0 < c < 1. Let 
A = (π, S, {Α(σ)}, ψ) be an automaton over any alphabet Σ such that S = 
{1,2}; x = {c 1 - c); = (¿) and 
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Proposition 1.2: If / is a PE, then so is / . 

Proof: Let A = (π, {Α{σ% η^) be the underlying probabiHstic automaton 
(PA) for / . Let η he SL column vector all the entries of which are equal to 1. 
Let be the vector such that ψ + ψ = η. For any t/ e Σ*, we have that 
πΑ(ύ)(η^ + η^) = π{η)η — 1, since π{η) is a probabiHstic vector. Therefore, 
/(w) = n{uW = 1 - 7c(uW' Thus, A = (π, 5 , {Α(σ)}, η^) defines the function 
/ I 
Proposition 1.3: If / and G are PEs, then a l so /g is a PE. 

Proof Let A = (π, 5 , [Α(σ)}, ηη and Ä = (π\ S[Ä(G)}, ψ') be the respective 
underlying PA^ for / a n d G. Define A(^ Ä = {π<^π\8 x S\ {Α{σ) (χ) Α{σ)], 
r¡^ ®rf') where (χ) denotes the Kronecker product [see Definition 1.2 and 
Lemma 1.1 in Section Ι Ι ,Β , Ι ] . Then 

/ ^ n ^ ) - (TT (X) η'){Α{σ,) (Χ) Α\σ,)) · · · {Α{σ,) (χ) ^'(σ,))(/7^ (χ) //^Ο 

= (π^(σ,) . . . A{a,W){n'A\ad · · · A'{G,W') 

= fiu)G{u) where u = - " 

Since ^ (χ) is a PA, the proposition is proved. | 

Corollary 1.4: If / i s a PE and c is a number 0 < c < 1, then cf is a PE. 

Proof: Let G in Proposition 1.3 be g.* ^(M) = c and use Proposition 1.1. | 

Proposition 1.5: Let / g, A be PEs. Then the function fh + gft is a PE. 

Proof: Let Ä = « {^'(σ)}. ^''O and (π'', S'\ [Α\σ)1 η"^") be the 
underlying PAs. Define the PA Β as 

B = {Sx S' X S", TT (X) TT' (X) π'\ [Α{σ) (χ) ^ ' (σ) (χ) Α'{σ)1 

η' (Χ) //̂ ' (Χ) η'^' + η ' ^ η" (g) ^ Ο 

Note that if an entry in one of the two products of η vectors is equal to 1, then 
the corresponding entry in the second vector is equal to 0 [since η^" has a zero 
entry if and only if the corresponding entry in η^" is equal to one] and there­
fore the sum of the two vectors has only zero or one entries. 

Now, [η^ is an 151-dimensional vector with all its entries equal to 1] 

f^u) = (n(S)n'(S) n'')(A(u) ® A\u) (g) A'\u)W (8) Θ η'Ί 

+ (π ® (Χ) n'')(A(u) ® A^u) (χ) Α'Χύ))(η' (χ) η^' (χ) ^ Ο 

= (πΑ(Η)ηη (Χ) (πΆΧη)ΗΗ (χ) (π'Ά'Χη)ΗΗ 

+ {πΑ(η)ηη (χ) {πΆΧη)ΗΗ ® (η'Ά''{η)ΗΗ 

= f(u)Ku) + G(u)h(u) 

as required. | 
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CoroUary 1.6: L e t / i , , .f^, , . . h^he two sets of PEs such that Σι=ι K=\f 
where \f denotes the constant function with all its values equal to 1. Then 
Σ / ,Α, is a PE. 

Proof: The proof is a trivial extension of the proof of Proposition 1.5 and 
is left to the reader. 

Corollary 1.7: Let / i . . . be a set of PEs and let . . . be a set of numbers 
0 < of and Σ = 1· Then Σ ^ifi is a PE. 

Proof: Replace the functions A, in Corollary 1.6 by the constant functions 
A, = a,. I 

Theorem 1.8. Let / be a PE, then / is also a PE. 

Proof: Let / be defined by the PA ^ = (π, 5 , [Α(σ)\ ψ), then / is defined 
by the pseudo probabilistic automaton (SPA) A^ = ({η^Υ, S, [Α^{σ)\ π ^ . To 
prove this let w = σ ι . . , σ̂ ,̂ Λβη 

f^\ü) = {^yA^{a,)^^^ A\akW 

= {πΑ{σ,) . . . Α{σ,)ψγ 

= nA{a,)'^^A{a,W=f{ü) 

We must prove that A^ has an equivalent PA. To this end, let Ζ be a 2'·^' χ | 5 | 
matrix whose rows are all |5|-dimensional vectors with entries zero or one. Then 
(η^Υ is a row oí X. In addition C{XA\a)) C C{X) [C{A) denotes the convex 
set of vectors generated by the rows of A]. This follows from the fact that 
multiplying a row of X by Α\σ) amounts to the summing up of some of the rows 
of Αί^{σ) [the rows of X have only zero and one entries]. But the rows oí Α^{σ) 
are columns of Α{σ) which is stochastic so that the resulting vector has all its 
entries between zero and one and therofore belongs to C{X), The conditions 
of Theorem 2.15 in Section II, C are thus satisfied and therefore there exists 
an SPA Ä = {π', S', [Α{σ)]η') such that A"^ is equivalent to Ä, \S'\ = π', 
and the matrices Α{σ) are stochastic, and η' = Χπ^ [by the construction in 
Corollary 2.10 of Section II, C]. Let X^^ be the /th column of X, let π == (π,) 
and define the following PAs derived from Ä: A, = (π', S', (Α'(σ)], X^'^) Each 
Ai is a PA because the vectors X^^^ have only zero and one entries. Let / ' be 
the PE induced by A^. Then, 

ΣnJ%u) = Σ7ls(π'A'(ü)X^^^) 

= π'Α'{μ) Σ n^X^^^ = π'Α'(η)Χπ^ 

= πΆ'(μ)η' = f^'{ü) = f^\u) =f(ü) 

But the f"s are PEs and therefore, by Corollary 1.7 also / is a PE. | 
Proposition 1.9: Let / and g be PEs and let A be the function defined as 
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h(ü) = 1 if f(ü) > g(u) and h(u) = 0 if /(w) < g(w). If A is a regular event, 
then / V g and / Λ g are PEs. 

Proof: One verifies easily that max( / , g) = fh + gh arid min( / , g) — β + gh 
so that this proposition is a particular case of Proposition 1.5. | 

Theorem 1.10: The class of PEs is not closed in general under the operations 
V and Λ . 

Proof: Let A = (n, S, [Α(σ)], π^) be the automaton such that: π = [a, ¿}, 

5 = (1, 2, 3, 4,) F = {1, 4}, π = ( i 0 i 0) and. 

A(ä) = 

Let nXu) and «¿(w) be the number of occurences of a and b respectively in the 

word u. It is easily verified that 

Thus 

i 0 0" "1 0 0 0" 

0 1 0 0 
. Αφ) = 

0 1 0 0 
. Αφ) = 

0 0 1 0 
. Αφ) = 

0 0 1 1 
_0 0 0 1_ _0 0 0 1_ 

= i if riXx) = n,(x) 

> ^ if nXx) < ritix) 

< i if nXx) > ni,(x) 

Let giu) be the constant event g{ü) = ^ for all u e Σ*. Then /^ (M) V g(u) 
and /^(w) Λ g{u) are not probabilistic events. In fact we shall prove that the 
above events are not even pseudo probabilistic [a class which includes the class 
of PEs]. Assume the contrary, then there exists a pseudo Markov system Β 
whose input function is V g so that for any integer k we have that 

f^ia'b'^^') = max(/^(a*&^^0, i ) = f\an^^') > ^ 

and for i <k 

/^(«^ftO = m a x ( / ^ ( o ^ ¿ 0 , i ) = i 

By Theorem 2.8 in Section II, C with u' = a'', u = b and u'' = A, there are 

constants CQ, . . . , ĉ t such that 

f^ia'b'^') = cj\a'b') + . . . + cj\a^b) + cj\a') 

implying that i < i Σ ? = ο Ct, while if u' = a'^^^u = b and u" = A we have, for 
the same set of constants depending on u only, that 

f\a'^^b'-') = c,f\a'^'b^) + . . . + Co 

or i = i Σ ? = ι which is impossible. V g is thus proved not to be a pseudo 
probabilistic event and the proof for Λ g is similar. | 
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2. Pseudo Probabilistic Events 

The class of SPEs [pseudo probabilistic events] includes, as a proper subclass, 
the class of PEs since the values of a PE / are bounded while the values of an 
SPE may increase beyond and bound. On the other hand, not every event is 
an SPE, this has been proved by Corollary 1.11. One can prove now in the 
same way as in the previous section that: 

1. The SPEs include all constant functions f = c where c is any real number. 
2. If / is an SPE, then so are / , / , and af where α is any real number. 
3. I f / a n d g are SPEs, then so i s / - ^ . 

The SPEs have also the following properties: 

Proposition 2.1: If / and g are SPEs then so is / + 

Proof Let / be defined by ^ = (π, S , [Α{σ)}, η) and g by Ä = {π', S ' , 
[Α{σ)], η'). Let A" be the system A" = (π", S " , [Α"(σ)], η") with S " = S u S ' , 
π" = (ππ') η" = (η'" η'Τ 

and 

Α"(σ) = 
Α(σ) Ο • 

L Ο Α'(σ)_ 

h(u) = 

one verifies easily that / ^ " = / ^ + / ^ ' . | 

Proposition 2.2: Let / and g be SPEs and let h be the event 

1 if f(u)<g(u) 

ίο if f(u)<g(u) 

If h is regular, then the events / V g and / Λ g are SPEs. 

Proof: Similar to the proof of Proposition 1.9. 

Proposition 2.3: The class SPE is not closed in general under the operations 
V and Λ . 

Proof: The proof is included in the proof of Theorem 1.10 for the functions 
/ and g used in the proof are PEs and therefore also SPEs while fVg and 
f A g where proved not to be SPEs. | 

Theorem 2.4: Let / be an SPE, there exists a PE g and constant numbers b, c, d 
with 0̂  > 0 and 0 < c < 1 such that dg(u) - b = c'^"^f(u) for any u e Σ*. 

Proof: Let A = (π, S , [Α(σ)}, η) be the underlying system for / We have 

Corollary 1.11: The class of pseudo probabilistic events (and therefore also 
the class of probabilistic events) is a proper subclass of the class of events. 
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Α"(σ) = 

proved already [Theorem 2.17 in Section II, C] that there exists a system 
A' = (π', S\ {Α\σ)}, η') such that the vector π and the matrices Α{σ) are sto­
chastic, and f'{u) = c^^"^f{u) for some constant c and any u e Σ*. Two 
additional transformations are needed in order to change η' so as to fit the 
definitions of a PA. Let Ä' be the system derived from A' defined as A" = 
(π', 5 ' , {Α'(σ)}, α(η' + h)) where δ is a column vector all the entries of which 
are equal to b, a and b being two numbers chosen in a way such that all the 
entries of the vector α{η' + b) are between zero and one. As α{η' + Β) has 
entries between zero and one, it can be expressed as a convex combination of 
a set of vectors [ηϋ such that the entries in any vector are either zero or one. 
Thus, α(η' + 6) = Σ ^í^í with α , . > 0 , Σ^ί= ^ 7. = (^υ) and either ηυ = 1 
or = O for all /. Let A^ be the PA A¡ = (π', 5 ' , {Α'(σ)1 η), then for any 
w G Σ* we have that 

Σ = Σ oii{n'Ä{u)n;) = n'A'iü) Σ α,;/, 

= π'Α{η)[α{η' + b)] = α{π'Α(μ)η' + n'Ä{ü)b) 

= af(u) + ab 

[since π'Α{μ) is a stochastic vector and all the entries in h are equal to ¿>]. Let 
g be the event defined as g{ü) = Σ It follows from Corollary 1.7 [the 

are PEs] that g is a PE. But g(u) = af(u) + ab = a&^"^f(u) + ab. Thus 
ö~^g(w) — b = d^"Y(ü) for any u G Σ*. Setting a~^ = d will complete the 
proof. It follows from the proof that α > 0 and therefore also > 0, while 
the constant c is 0 < c < 1. | 

EXERCISES 

1. Let / and g be PEs. Find a PE A such that A(w) > ^ if/(w) > g{u) and 
h{ü)<\iíf{ü)<g{u), 

2. L e t / b e a PE. Prove that the sets [u:f{u) = 0], {u:f(ü) > 0}, {u:f(u) = 1] 
are regular events. 

3. Let A = (π, 5 , {Α(σ)}, η') and Ä = (π', 5 ' , {^'(σ)}, η^') be PAs with 
^ η 5 ' = 0, and let A" = (π", 5 " , {^"(σ)], ;/^") be the ΡΑ defined by 
π " = (απ ^?π'), α, > Ο and α + j3 = 1; 5 " = .S U 5 ' , = ( ( ^ Τ ( ^ ^ ' ) Τ 
and 

~^(σ) Ο ~ 

Ο Α{σ)_ 

Show that /^"(w) = /^(w) + /^'(M) for all u e Σ*. 

4. Prove Corollary 1.7 using the construction in Exercise 3 above, and show 
that the resulting automaton is more economical [as to the number of its states] 
when the construction in Exercise 3 is used. 
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3. Bibliographical Notes 

Most of the material presented in this section appeared in the literature under 
various names and with variations. Thus Proposition 1.1 and Exercise 2 are 
due to Starke (1966b, c). Propositions 1.2 and 1.3 are due to Paz (1966), 
Proposition 1.4 and Exercise 8 should be credited to Bukharaev (1967), Pro­
positions 1.5-1.9 and Exercises 1 and 5 are from Nasu and Honda (1968), 
while Theorems 1.10 and 1.11 were given in a restricted form in Nasu and 
Honda (1968). 

Pseudo probabilistic events were studied by Turakainen (1968) who is to be 
credited for Propositions 2.1, 2.4, and Exercise 3. Many of the proofs are 
however new and some propositions are given here in a stronger version than 
the original. Zadeh (1965) introduced the concept of fuzzy sets generalizing 

5. Let A = (π, S, [Α{σ)}, η^) be a PA. Find an equivalent system Ä = {π', S', 
{Α'(σ)], η') such that π' has the form π' = (1 0 · · · 0), |5Ί = \S\ + 1, the ma­
trices Α(σ) are stochastic, the vector η' = (η/) has the property that 0<η/<\ 
for all I. 

6. Use the construction in Exercise 5 above in the proof of Theorem 1.8 to 
replace the use of Corollary 1.7 and show that the resulting PA for / is more 
economical [as to the number of its states] if the construction in Exercise 5 is 
used [even if the construction in Exercise 3 is used for proving Corollary 1.7]. 

7. Prove that any finite dimensional vector ζ = (ί,)?=ι such that 0 < < 1 
can be expressed in the form ζ = Σ ί ^ ι «ι^' where ζ' are vectors all the entries 
of which are 0 or 1 and a, >0,J^ai=l. Provide an explicit construction 
for the above decomposition. 

8. Prove: If / is a PE, then the functions gAu) = fiu'u) and ¥{u) = f(uu') 
for a fixed u' e Σ* and all w e Σ* are PEs. 

9. Prove that there are SPE / and g such that \ f — g\is not an SPE. 

10. Prove that if / is an SPE such that the matrices in the underlying system 
are doubly stochastic then a corresponding system defining / can be found with 
doubly stochastic matrices. 

OPEN PROBLEM 

Find a class of events, properly including the regular events and included 
[properly] in the class of PEs which is closed under union intersection and 
complementation. 
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B. CUT-POINT EVENTS 

1. Closure Properties 

Definition 1.1: Let / be an SPE and λ a real number. The set of words Γ ( / , A) 
is defined as 

nf,k) = [u:f{u)>X] 

and is called a general cut-point event (GCE). If / is a PE defined by the 
automaton A and 0 < A < 1, then Γ ( / , A) to be denoted also by T{A, A) is 
called a probabilistic cut-point event [PCE]. 

Using the theorems of the previous section, we shall now study the closure 
properties of PCEs and their relation to GCEs. In fact the first proposition 
shows that the two classes of events are identical. 

Proposition 1.1: The class of PCEs is identical to the class of GCEs 

Proof: The class of PCEs is clearly a subclass of GCEs. To prove the con­
verse, let Ε = [u :f(u) > A] be an event such that / is SPE. By Proposition 
A, 2.1 the function / = / — A is also an SPE and has the property that f(u) > 0 
if and only if f(u) > A. By Theorem A, 2.4 there is a PE g and numbers 
0 < c < 1, 0 < and arbitrary b such that (^^"ψ(η) = dg(u) - b for all 
w G Σ*. If ft = 0, then clearly the set [u : f'(u) > 0} is equal to Σ* or to φ 
and these events are PCEs as will be shown subsequently. If f ΦΟ, then 
E = [u :f(u) > A} = [w :f(u) >0} = [u : g(u) > b/d] where g(u) is a PE. 
Thus Ε isa. PCE and the proposition is proved. | 

Proposition 1.2: The class of regular events is a subset of the class of PCEs. 

Proof: If ^ is a regular event, then its characteristic function can be rep­
resented in a degenerate PA [see Section A, 1]. Thus there is a PE / such 
that Ε = T(f 0). I 

Proposition 1.3: The class of PCEs is not changed if the defining pseudo prob­
abilistic automata are restricted to have only degenerate initial distributions. 

Proof: By Exercise 5, Section A, 2. | 

Proposition 1.4: Let T(f A) be a PCE and let /¿ be a number 0 < μ < I, 
There is a PE g such that T(f A) = T(g, μ). 

the classical set concept. The events as introduced here are in fact fuzzy sets 
with the "universal" set being the set of all words over a given alphabet. 

Other related papers: Paz (1967c), Carlyle and Paz (1970). 
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Proof: If μ < λ, then μ = αλ with O < α < 1 and, using Corollary A, 1.4, 
we may use the FE g = af Clearly f(u) >Xif and only if g(w) > μ. If λ < //, 
then let g be defined as 

By Corollary A, 1.7 g is a PE and f(u) > λ if and only if 

as required. | 

Remark: The requirement that 0 < μ k necessary since any PCE of the 
form T(f, 0) defines a regular event [see Exercise 2, Section A, 2] and the class 
of PCEs properly contains the regular events. This fact will be proved later. 
Proposition 1.5: If is a PCE and is a regular event then Ε U R, Ε η R 
and Ε — R (meaning the set of words in Ε but not in R) are PCEs. 

Proof: Let Ε = T(f, λ) and R = T(g, 0) where g(u) is either 0 or 1 for all 
u e Σ*. Then fg is a PE by Proposition A, 1.3. It is easily verified that 
EnR = T(fg, λ) for fg(u) > Xif and only if /(M) > λ and giu) = 1. Con­
sider now the function fg + g. By Proposition A, 1.5 this function is a PE 
[the function h in that proposition is the function g here and the function g 
is the constant function with value 1 here]. If g{ü) > 0, then (fg + g)(u) 
= 1>λ. If g(u) = 0, then (fg + g)(u) > λ, if and only if f(u) > λ. It 
follows that T(fg + g,X) = Eu R, To complete the proof we note that 
Ε — R = Ε η R and ^ is a regular event. | 

The reverse of an event E, to be denoted by E, is defined in the usual way, 
i.e, É contains all the words " - σ,, such that σ,, - - are in E, We are 
now able to prove the following: 

Proposition 1.6: The class of PCEs is closed under the reverse operation. 

Proof: Let Ε be the PCE Ε = T(f λ). Then É= T(f, λ) because E = [u:u 
= σ, " · σ,,,σ,, - ' σ, e E] = [u:u = σ, " ' σ^, f(a„' .^σ,)>λ} = [u : u 
= σι ' " Gk,J(Gi '' · ak)> λ] and by Theorem A, 1.8 / is a PE. | 

Proposition 1.7: Let Ε = T(f, λ) be a PCE such that the set [u : f(u) = λ] is 
regular, then £ = Σ* - ^ is a PCE. 

Proof: Ε = T(f, λ) = [u : / ( i / ) > A]; therefore, É = {u :f(u)<X} = [u :f(u) 
>l-Xi = {u:f(u)>l-X}U{u: f(u) = I - λ] = [u :f(u) > I - A] U 
[u:f(u) = X\, I 
To complete the proof we use Propositions A, 1.2 and B, 1.5. 

Remark: In the proof of Theorem A, 1.10 a PE / i s given such that all three 
sets [x :f(x) > λ], [χ :f(x) < λ] and [χ :f(x) = λ] are nonregular for λ = i. 
Thus the condition of Proposition 1.7 does not hold true in all cases. 
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Α'(σ) 

Proposition 1.8: The class of PCEs is closed under the operation of finite de­
rivation. [The derivate of an event Ε with respect to the word u is the event 
D(E) = [u' : uu' e E}]. 

Proof: Let Ε be the PE induced by the PA ^ = (S, π, [Α(σ)1 η^). Let A„ 
be the PA Λ = (S, π(ύ), [Α(σ)1 η^) where n{u) = nA{u\ then T{f\ λ) 
= [w : π(η)Α(\ν)η'' > λ] =. {w : πΑ(Η\\;)η''>λ} = [w : uw e E}. It follows that 
DXE) is a PCE. | 

Proposition 1.9: Let be an event and assume that all the events of the from 
DXE) for l(u) = Kkm arbitrary fixed integer, are PCEs. Then Ε is a PCE. 

Proof: We shall prove the proposition for Ä: = 1; the proof in the general 
case is similar. We remark first that Ε={Ό„^^ D„(E)) U F where F is empty 
or contains the word e only,t and is therefore a regular event. Since PCEs are 
closed under union with regular events it suffices to prove that E' = \J„^^D„{E) 
is a PCE. Our second remark is concerned with the possibility of inducing a 
"delay" into a PA. Let A = (5, π, [Α{σ)\ η^) be a PA defining the event 
T{A, λ). Define the PA Ä = (S', n\ [Α{σ)1 η'") as follows: S' = S Ό s*, 
s* φ S; π' is the degenerate probabilistic vector having a 1 in its first entry 
only, the other entries being 0; F' = F and, finally, Α(σ) is the matrix 

"0 π 

LO Α(σ): 

It is easily verified that for any word u = - - e Σ*, l(ü) > 1, 

ρ'Χσ,σ, '"σ,)= ρ^{σ, · · · σ,) , Ρ^'(σ,) = p^(e),p^\e) - O 

Let f„^ be the characteristic function of the event σ^Σ*; as the σ,Σ* are regular 
events are PEs by Proposition 1.2. and Σσ.̂  Σ Λ . = Α = the constant func­
tion = 1 if l(u) > 1. Assume that D.^E) = T(A¡, λ); one may assume 
the same λ for all σ, because of Proposition 1.4. Finally, let A/ be the PA 
derived from the A¡ as above, i.e., ρ^'Χσ^ . . . σ^) = /?̂ (̂σ2 · · · σ^). We claim 
that E' = T(A, A), w h e r e = Tia^^^faJ""' [which is a PE by the Corollary 
A, 1.6]. To prove our claim we remark that for any word u with /(w) > 1 if 
Μ = σ,νν, then f^^u) = Ι ,ΛΧι / ) = 0 for j Φ i, and /^ '(w) = f^iw). Thus, for 
u = a^w, f\u) = f'^iw) with the result that u e Τ (A, λ) if and only if 
w G D^XE) or T(A, λ) = Ό.,,^σ^ϋΙΕ). This completes the proof. | 

Theorem 1.10: There are events which are not CPE. 

Proof: We define an event Ε over a single letter alphabet Σ = [σ] which is 
not a PE. Let WI, «2» · · · be a lexicographical enumeration of all nonempty 
words over a two letter alphabet A = [a, b]. Let χ be the infinite sequence of 

f T h e e m p t y w o r d will be deno ted by e instead of λ w h e n e v e r necessary in o r d e r to 
aviod confusion wi th t he cu t -po in t λ. 
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letters from Δ resulting from the concatenation of the words WJ, W J , . . . in their 
proper order [e.g., = a,U2 = b, 1/3 = aa, = ab, etc., and χ = abaaab · · ·]. 
Let x{n) denote the n\h letter in the sequence χ and define the event over Σ 

£' = {σ" : x{n) = a] 

then Ε is not a CPE. To prove this, assume the contrary. Thus Ε = T(f, λ) 
for some PE / and some cut point λ. This means that f(a") > λ for x(n) = a 
and / (σ") < λ for χ{ή) = b. By Theorem 2.8 in Section II, C, there exists a 
set of constants Cq, . . . , such that for any integer k 

Let 60 · · · 6 „ , 5Q '' 5„\>t two words in Δ* defined as follows: if Ct > 0, then 
€i = b and δι = a; if < 0, then 6^ = α and ¿, = b;€„ = a, δ„ = b. By the 
construction of the sequence x, there are integers k^ and ki such that 
x{k,)x(kx + 1) · · · + n) = €o'"€„ and x{k2)x{k2 + 1) · · · x(A:2 + « ) = 
(Jo · · · ¿„. It follows from that if > 0, then x{k, + /) = b and / (σ^^^Ο < A , 
and also x{k2 + i) = a and f{a^'^') > λ. If c,- < 0, then x{ki + i) = a and 
Ασ^'^') > λ and also x(k2 + i) = b and /(σ^^^') < A. x(ki + n) = aso that 

> λ, and x(Ä:2 + Λ ) = ¿ so that /(σ^'^") < λ. We evaluate now the 
formula (*) first for k = We have 

λ < / ( σ ^ ^ - ) = Σ cJiG'^^O < Λ Σ or Σ > 1 
1=0 1=0 i=0 

The inequality on the right follows from the fact that the values cor­
responding to positive coefficients are not decreased while the values / ( σ ^ ' ^ Ο 
corresponding to negative coefficients Ci [if there exist such coefficients] are 
decreased. On the other hand, evaluating the formula (*) for A: = we have 

λ > /((7^^^") = Σ cj(a'^'^) > λ Σ or Σ Ci < 1 
/=0 /=0 1=0 

since in this case the values f(a^'^") corresponding to positive coefficients [if 
there are such] are decreased and values /(σ**^") corresponding to negative 
coefficients are not decreased. Thus, 1 < Σ?= / /̂ ^ 1 which is impossible, and 
therefore the event Ε is not a CPE. | 

Remark: The reader familiar with the theory of abstract languages will find 
it easy to show that the event Ε defined above is context sensitive. It could 
not be context free, for any context free event over a single letter is also 
regular [this is a well-known fact] and regular events are CPEs. On the other 
hand, the only property of the sequence used in the proof of Theorem 1.10 is 
that any word of Δ* be a subsequence of x. Thus, by defining the sequence χ 
in a more complicated way, but still having that property^ it would be possible 
to find an event which is recursive, not context sensitive and not a CPE. 
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EXERCISES 

1. Let ^ be a given PA. Prove that the sets of words [u : = 0}, [u : p^(ü) 
> 0}, [u : p\ü) = 1} and [u : p^(u) < 1} are all regular sets. 

2. Let A he a, PA such that S contains two elements only and Σ contains one 
element only. Prove that T(A, A) is a regular set for any A, 0 < A < 1. 

3. Consider the following PA: ^ = (5, π, [Α(σ)], η') over Σ = [σι, ^ 2 ] , where 
S = {si, ^ 2 , . . ·»Ss]; π = (I 0 " · 0);η' = ( 7 / ) is defined by the requirement 
that 

Í1 if ζ = 4 

^' | o otherwise 

and Α(σ^) = [Uijia^)] is defined by the relations: 

= 088(σ,) = 018(^2) = 048(^2) = «68(^2) = ^Tsi^I) = «esí^I) = 1 

0 2 2 ( ^ 1 ) = ^ 7 7 ( ^ 1 ) = 6 , α25(<7Ι) = α73(σι) = 1 - 6 , 

Ö23(<^2) = 026(^2) = ^56(0-2) = 058(^2) = h 

034(0-2) = δ, 038(^2) = 1 - ¿, and α,/σ;^) = O 

in all other cases with 0 <€ < 1,0 < ¿ < 1. Let A be the number defined 
as A = <J/2. Describe explicitly the sets of words [u : f\u) > A], [u : /^(t/) = A] 
{u : /^(w) > A] and show that these sets are hot regular. 

4. Same as previous exercise with λ = ^ and the PA A = (5, π, [^(σ)), η') 
defined es follows: Σ[σι, ^ 2 ] , 5 = {^ I , . . . , Í^ ] , π = (1 O · · · 0 ) , = 1 if / = 5, 
and η' = O otherwise, 

α,2(σ,) = a^sia,) = α^^{σ,) = α^β{σ,) 

= α,^σ^) = 046(0*2) = 056(^2) = 066(^2) = 1 
022(σ,) = FL23(^L) = « 4 4 ( ^ 1 ) = 0 4 5 ( ^ 1 ) 

= «24(^2) = ^25(^2) = 034(0-2) 030(^^2) = i 

aij{<^k) = o in all other cases. 

5. Let A and Β be two PAs prove that the set of words [u : f\u) > f\u)] is 
a P C E . 

6*. Consider the following PA: .4 = {S, π, {Α{σ)1 η') over the alphabet 
Σ = . · · σ,,] where .S = [^j, 52] ^ and η' are arbitrary and the matrices A{a¡) 
are defined as 

and are such that for all / and α, + 6, 0, 1 and = üjbi. Prove 
that Γ (^ , A) is a regular set, for any cut-point A. 
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2. Regular Events and Probabilistic Cut-Point Events 

The following theorem, due to Nerode, is very useful and we shall have the 
occasion to use it many times. It serves as a characterization of regular events. 
[In order to comply with the common notation, we shall denote, from here 
and on, by x, y, z,..., words over an alphabet Σ.] 

Theorem 2.1: Let Í/ be a set of words the following three conditions are 
equivalent: 

1. C/ is a regular set. 
2. U is the union of some of the equivalence classes of a right invariant 

equivalence relation over Σ* of finite index. 
3. The explicit right invariant equivalence relation Ε defined by the con­

dition that for all x, y in Σ*, xEy if and only if for all ζ e Σ*, whenever xz 
is in U, yz is in U and conversely, is a relation of finite index. The index of 
the relation is the least number of internal states of any automaton defining U. 

1. Let Μ be an SSM [see Definition LI , Section I, A]. Let (w, i;) be a pair of 
words of same length over the input and output alphabets Ζ and Γ respectively 
of M. Let be a symbol in the output alphabet Y and let 0 < A < 1 be a real 
number. Let Α{μ) be the matrix A{ü) = Σι; A(v\u) [summation is over all ν 
with l(u) = l(v)] and let p^(y\u) denote the probability that the machine Μ will 
have y as its last output when the word u is fed into it. a. Prove that if the 
set of different matrices A(u), u e X* is finite then the set of words 

T(M,ly) = [u:p^(y\u)>X} 

is a regular set for any λ and y as above. 

b. Assuming that the set {A(u): w e Z*} contains at most m different elements, 
find the number of states of a minimal automaton defining T(M, λ, y). 

8. Prove that if in Exercise 7 the matrices A{x), χ e X SLTQ degenerate stoch­
astic [i.e., deterministic], then the set of words fw :p^(y\u) > λ] is regular for 
any y and λ as in that exercise. 

OPEN PROBLEMS 

1. Are PCEs closed under union, intersection, and complementation? 

2. Give a decision precedure for ascertaining whether a set of matrices [Α(σ)] 
generates only finitely many different matrices in the set A(u), u e Σ*. 
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The reader is referred to Rabin and Scott (1959) for the proof of this well-
know theorem. 

We shall need also the following combinatorial lemma due to Rabin [Rabin 
(1963)]. 

Lemma 2.2: Let ^ „ be the set of all «-dimensional probabilistic vectors [i.e., 
^„ = {ξ = (ξ^ΐ ξ. ^ O Σ ? = ι ζ i = 1}] and let ί/, be a subset of ^ „ such that for 
any pair of vectors ξ and ή in the inequality Σ ? = ι 1̂ / — ^ / l >€ [e isa, given 
positive real number] holds true. Then is a finite set containing at most 
k(e) elements where k(e) = (I + 2/ey-K 

Proof: Let ξ = (^,) be a point in and define the set of points in n-
dimensional space as νζ = [ζ = ( ζ , ) : < ζ„ Σ (C/ — ί,) = It is easy to 
see that each is a translate of the sGtv = [ζ = (ζ , ) : ζ,· > O, Σ d = ^ΙΆ-

Since ί is a probabilistic vector and ξι < ζ, for all / we have also that is 
a subset of the set of points = [ζ = ( ζ , ) : ζ, > O, Σ C, = 1 + ^/2}. A point 
C is an interior point in a set [relative to the V, set] if and only if ζ, > ξι 
for all /. Figure 16 exhibits the different sets defined above for /i = 3. ξ and 
r\ are two points in \J,. It follows from the definitions that two different sets 

and cannot have a common interior point. Assuming the contrary, if ζ 
is an interior point of both and v,, then ζ, > and ζ,· > r\i for all / and, 
therefore, % — r\\ < |C/ — + |Ci — ί,Ι for all /. This would imply that 

Figure 16. Geometrical representation of the sets Vξfor η = 3, 
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m 

Proof: Translating the equivalence Ε in Nerode's theorem [third condition] 
into probabilistic terms we have that x, y e Σ"^ are nonequivalent words if 
there is a word ζ such that p(xz) > λ and p(yz) < λ or vice versa. This 
means that π(χ)η^(ζ) > λ and π(y)η^(z) <λ or vice versa. It follows that 
[π(χ) — π(y)]η^(z) > 2 6 , since λ is isolated. Writing this inequality explicitly 
we have 

Σ\ξ>-ηΑ<Σ\ι:.-ηΑ + Σ\ζ>-ξΑ = { + γ = ^ 

which is impossible by the definition of the set U,. 
It is thus seen that the number of points in U, cannot be larger that the 

number of simplices which can be packed into the symplex V,, To get an 
estimate of this number let S(v^) be the volume of the symplex v^, then 
S(v^) = c(€/2)"~^ where c is a constant not depending on e. Similarly, s(V,) 
= c{l + e/2y~K Therefore, if k simplices can be packed into then 
kciejlf-' < c(l + (€/2)y-K Thus Ä: < (1 + ( 2 / 6 ) ) « " ^ and this completes the 
proof. I 

Remarks: One may prove that the set is finite in a much easier way by 
using the Bolzano-Weierstrass theorem, since the set U, can be shown to be 
bounded with no accumulation point under the measure Σ 1̂/1· On the other 
hand, the proof given here provides also a bound on the number of elements 
in U,, This brings up an open problem. The bound of the lemma is clearly 
not sharp and a sharper bound can be proved provided one can get an estimate 
for the "covering ratio" of the packing problem involved in the proof. In a 
more explicit way, consider the following problem: Let Κ be a simplex of side 
length a and let Vi be simplices of side length ft <C α and having the same linear 
dimension. Let k be the maximal number of simplices which can be packed 
into V and such that all the ViS are in a relative translated position one to the 
other [no rotation is allowed]. Provide an estimate to the ratio kS(Vi)/S(V), 
where S denotes the volume of the respective simplices. A solution to this 
problem will lower the bound of the lemma by the above ratio [which may 
depend on the dimension η of the involved simplices]. The next definition and 
theorem will provide a sufficient condition for a PCE to be a regular event. 

Definition 2.1: Let ^ be a PA. The outpoint λ is 6-isolated with respect to A 
if \P^(x) - λ\>€ for all χ e Σ*, for some e > 0. 

Theorem 2.3: If λ is an e-isolated outpoint for a PA A, then there exists a 
deterministic automaton Β such that T(A, λ) = T(B). 1ΐ Ahasn states, then 
Β can be chosen to have m states where 
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elements. Nerode's equivalence is thus shown to be of index <k, which 
exceedes the minimal number of states of a deterministic automaton defining 
the given PCE. | 

Remark: The above theorem, due to Rabin (1963), is clearly one of the most 
interesting theorems in the theory of PCEs. The following is a quotation from 
Rabin's original paper and it shows its motivation for introducing the concept 
of an isolated cutpoint. 

"Let ^ be a PA and 0 < λ < 1. Given a tape χ e Σ*, we devise the 
following probabilistic experiment Ε to test whether χ e T(A, λ). We run χ 
through A a large number Ν of times, and count the number m(E) of times 
that A ended in a state in F, If λ < m(E)/N, we accept x; otherwise we reject 
it. Because of the probabilistic nature of the experiment, it is of course possible 
that we sometimes accept χ even though χ φ T(A, λ), or reject it even though 
X Ε T(A, λ). By the law of large numbers, however, there exist for each χ such 
that p{x) Φ λ and each 0 < 6 a number N(x, e) such that 

In other words, the probability of obtaining the correct answer by the experi­
ment Ε (consisting of running χ through A N(x, e) times and counting successes) 
is greater than 1 — e. 

To perform the above stochastic experiment we must know N{x, e), which 

ΣΜχ)-π^(γΜ'>2€ (*) 

but 

Σ (πχχ) - UiiyM' < Σ (7ti(x) - π^(γ)Υ max η^'(ζ) 

+ Σ(7^Αχ))-π^(γ))- min ; ; / (z ) 

= Σ Χ ^ . Μ - 7ti(y)y (max / /Α^) - min ;/,^(ζ)) 

< Σi(7ti(x) - ni(y)r = i Σ . Mx) -

by using repeatedly an argument similar to that used in the proof of Proposition 
A, 1.3 in Chapter II and by the fact that 0 < 77,-̂ (2) < 1 for all /. 

Combining this with the previous inequality (*) we have that, for non-
equivalent words X and y, the following inequality holds 

2e < i Σ / Mx) - πΜ or Σ / Mx) - π . ^ Ι > 46 

Thus the set of all vectors of the form π(χ) such that every two vectors in the 
set are nonequivalent is a set of the form U^, in Lemma 2.2 and this implies 
that this set is finite with 
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depends on |/?(jc) — λ\. Thus we actually have to know p{x) in advance if we 
want to ascertain whether χ e T(A, λ) with probability greater than I ~ € of 
being correct. Once we know p(x), however, the whole experiment Ε is super­
fluous. 

The way out is to consider values λ such that \p(x) — λ\ is bounded from 
below for all χ e Σ*. 

It is readily seen that there exists an integral valued function Ν(δ, e) such 
that for an isolated λ and any χ e Σ*, 

Pr(E\X<^^^xenA,X))>l-e 

Thus the proposed stochastic experiment for determining whether χ e T(A, λ) 
can be performed without any a priori knowledge of p(x). This fact makes it 
natural to consider isolated cut-points." 

It is to be noticed here that in Rabin's argument above the testing procedure 
requires that the number N(x, e) be determined before the experiment begins. 
If this requirement is removed, then we do not have to know P(x) in advance 
for ascertaining whether χ e T(A, λ) with given probability. This fact follows 
from the following theorem due to Darling and Robins (1968). 

Theorem: Let x^, ^ 2 , . . . be a sequence of independent variables with JP^jc, = 1) 
= (1 + δ)/2, PlXi = - 1 ) = (1 - δ)/2, ~ 1 < á < 1, so that ^,(χ,) = δ [Ε 
denotes here expectation]. Let be the hypothesis that δ > 0, and H- the 
hypothesis that <5 < 0. For an arbitrary given 0 < 6 < 1, there is a test of 

versus Η' such that if Τ denotes the sample size of the test, then 

1. Ρ , ( Γ < ο ο ) = 1,3ΐΙδ:7^0, 
2. P^(accept Η') < e, all δ > 0; P/accept / / ^ ) < €, all δ<0. 
3. Es(T) < oo, all δ^Ο, 

Since one may always assume that λ = ^ [see Proposition 1.4], the above 
theorem shows that there is a testing procedure for a word χ to ascertain 
whether p{x) > ^ [H^: = 1 if Λ: is accepted at the ith trial and Xt = —1 if 
X is rejected at the ith trial]. The testing procedure is finite with probability 
1 [(1) in Darling and Robins theorem] and does not depend on δ(=\ρ(χ) — λ\) 
but only on the required degree of reliability e. The only assumption still 
necessary is that P(x) Φ λ. 

It is also worth mentioning that to decide whether a given cut-points λ is 
isolated or not is an open problem which seems to be as difficult as the problem 
of deciding whether a given PCE is regular. Moreover the condition of Theorem 
2.3 is only a sufficient condition for the PCE to be regular. This last fact will 
be proved latter [see Corollary 3.4]. 
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EXERCISES 

1. A cut-point λ is weakly isolated for a PA A if \p(x) — A| > 6 or p(x) = λ 
for all X e Σ*. Prove that if A is a weakly isolated point for A, then the event 
T(A, λ) is regular. 

2. Two PAs A and Β are mutually isolated if |/7^(x) - p^(x)\ > λ for all 
X e Σ*. Prove that if A and Β are mutually isolated, then the event Ε = 
[χ: p^(x) > p"(x)} is a regular event. 

3. Let Ε = (Ei) be a partition of Σ*. Ε is called regular if there are only 
finitely many blocks in Ε and all ^,s are regular events. Prove: Any regular 
partition Ε = (Ei) of Σ* can be represented in the form Ei = T(A, A,) where 
^ is a PA. Conversely, if ^ is a PA such that the set of values [p^(x): χ e Σ*} 
is finite, then the set of events [x: p'*(x) = k¡\ form a regular partition of Σ*, 
where ki... ,k„is the set of all difl*erent possible values p'*(x). 

4. Prove that the bound of Lemma 2.2 can be improved for AI = 2 so that 

A:(.)<4 + ¿ 
in this case. 

4. Prove Theorem 2.3 for the following case: The automata A are allowed to 
have nonrestricted final vectors = (ηι^) [i.e., /y/ may assume any real value 
and is no longer restricted to the values 0 and 1], and in addition, the cut-point 
λ is also allowed to assume any real value, all the rest of the components of A 
remaining as in the original definition. Prove that for this case the bound of 
Theorem 2.3 is k(€) = (1 + (d/le))"-' where d = max, / / / - min, ŷ,̂ . 

5. A cut-point λ is semiisolated for a PA A if p\x) — A > 6 for all χ such 
that p^(x) > A or else A — p\x) > € for all χ such that p^(x) < A. Prove 
Theorem 2.3 with the term "isolated" replaced by the term "semiisolated" and 
give a new bound for this case. 

OPEN PROBLEMS 

1. Give a decision procedure for ascertaining whether a cut-point A is isolated 
for a given PA. 

2. Give an algorithm for finding all isolated cut-points of a given PA. 

3. Give a sharp bound for Theorem 2.3. 

3. The Cardinality of PCEs and Saving of States 

Theorem 3.1: The class of PCEs is nondenumerable. 
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Proof: Let Σ = {0, 1} and define ^ to be the PA 4̂ = ({^o, -^ι], ^i 7^) 
where π = (1 0); ψ = (?); 

"1 0" "i f 
^ ( 0 ) -

Λ i. 0 1. 

It is easy to prove that for jc = σι · · · σ,,, p\x) = .σ^ · · · σι where .σ^ · · · σ, 
is an ordinary binary fraction [see Exercise A, 5.6 in Chapter II] and p"^ is the 
function induced by A, Thus the set of numbers {p{x): χ e Σ*] is dense in the 
open interval (0, 1) for the given PA A. Let and be two cut-points 
0 < < ^2 < 1, then T{A, A,) Φ T(A, Aj) for there is a word χ such that 
p^(x) > λι and p^(x) < Aj. This follows from the density of the values p^(x). 
Thus the set of different T(A, A)s coincides with the set of different As which is 
not countable [the As are real numbers in the interval (0, 1)]. This completes the 
proof, since the class of PCE contains the events of the form T(A, A) above. | 

Remark: It follows from the above theorem that there must be nonregular 
events representable in finite state machines [context free, context sensitive, 
etc.] which are representable in PAs. On the other hand, the proof of Theorem 
3.1 is existential. We shall however exhibit in the following examples explicit 
nonregular events, some of them context free, which are represented in a PA. 

Theorem 3.2: Let A be the PA defined in the proof of Theorem 3.1. The event 
T(A, A) is regular if and onlf if A is a rational number. 

Proof: The class of PCEs is closed under the reverse operation [Proposition 
1.6] and so is the c l a g ^ r e g u l a r events. It suffices therefore to prove that an 
event of the form T(A, A) is regular if and only A is a rational number, where 
T(A, A) is the reverse of T(A, λ) = {x = - σ^: ,σ^-'σι> A] or T(A, A) = 
[x = Cr · .σ^ " ' σ^> λ]. Assume first A to be a rational number, i.e., 
A = A1A2 · · · A :̂A;t+i · · · h+m where λ^+ι · · · Â +̂m is the recurring period in 
the expansion of A. [One may always assume that the expansion of a rational 
number has a recurring period: for one can add the recurring period / to a 
finite binary expansion.] A finite automaton Β defining T(A, A) in this case can 
be defined as Β = (S,SQ,M,F) where S = [SQ...s^^m^x], Σ = {0, 1 ] , F = 
{•ŷ +m+i} and the function Af is the function 

7 = 0,1 

if j — X¡ for 
i < k + m - 2 

[i = k + m — I 

for 

for 

i < k + m - I 

i>k + m 

if j=.0:^X^] 

if ; = 1 ^ A J 

if j = h 2 

It is easily verified that the above automaton defines the event T(A, λ) as 
required [the reader is urged to draw a state graph for the automaton B], 
proving that T(A, λ) is a regular event for rational λ. Assume now that λ is 
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( Ay+i · · · A y+;t if Ay+fc > A / + ; t 

Then either .Ai · · · Ay Α , + ι · · · Xi+k > X and .Ai · · · Ay Ay+i · · · Ay+;t '< A in the first 
case (Xi+k > Xj+k) or . A j - · -A,. Ay+i* · -Xj+k > X and . A i - · -A^ A^+i · - - X^ < X in 
the second case. Thus the word z,.y distinguishes between the words = Ai · · · A, 
and Xj = Xi " ' Ay for any / and j Φ i . It follows that Nerode's equivalence 
is of infinite index for the event T{A, A) and the event is therefore not a regular 
event. This completes the proof. | 

Corollary 3.3: For any integer η there are regular events requiring at least an 
« - S t a t e deterministic machine for their realization but can be represented in a 
two-state PA. 

Proof: The set of deterministic automata with w-states or less is finite but 
the set of events T{A, A) as defined in Theorem 3.2 with A a rational number 
is infinite and any two such events are different [this fact is included in the 
proof of Theorem 3.1]. Thus, there must be events of the form Γ(^4, A) , A 
rational requiring more than w-states for their deterministic realization. 

Corollary 3.4: There are regular events representable in PAs with a nonisolated 
cut-point A. 

Proof: As mentioned before the set of values p^(x) for the automaton A 
defined in Theorem 3.1 is dense in the interval (0, 1). The events T{A, A) , A 
rational, are therefore regular although the cut-point A is not isolated. | 

Remark: Theorem 3.2 provides a class of explicit nonregular events rep­
resentable in PAs Corollary 3.3 shows that it is sometime possible to save 
states [in exchange for precision] by representing a regular event in a PA. 
Corollary 3.4 shows that the condition of Theorem 2.3 is a sufficient but not 
necessary condition for regularity. In connection with Corollary 3.3 it will be 
interesting to find out what is the exact price [in time and/or precision] one 
has to pay in exchange for the saving of states. 

Remarks on Equivalence and Reduction of States:^ It is easy to see that 
most of the state theory developed in part 1 of the book for SSMs goes over 
to PAs after some small changes are introduced in the basic definitions and 

t T h i s sect ion assumes k n o w l e d g e of C h a p t e r I of t h e book . 

an irrational number λ = . A i A j · · XkX^+i · ·. Consider the infinte sequence 
of symbols Ai A2 · · · A/ · · · Ay · · · where the λ β are the consecutive digits ap­
pearing in the expansion of A. N o two different suffixes- of the above sequence 
of the form Α , Α , + ι · · · , AyAy+j - - - i < j can be equal, since otherwise the 
sequence of digits A^A/+i · · · Ay_i would recur periodically in the expansion of 
A, a contradiction to the fact that A is not a rational number. Let then k be the 
smallest integer such that A +̂̂ t ^ ^j+k for given / < / Let z,y be the word 
defined as 

Í A / + 1 · · · Xf+fc if Xi+k > Ay + ;t 
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statements [e.g, the first column in H"^ will be η' and not η, etc.] Thus one 
can define reduced and minimal PAs, covering of PAs' accessible states, con­
nected PAs, equivalent distribution for PAs etc, and prove practically all of 
the theorems proved for SSMs with regard to these notions. In addition a new 
notion of equivalence can be introduced for PAs. Consider the following two 
definitions: 

Definition 3.1: Two distributions π and ρ are equivalent for a PA ^ if 
πη'{χ) = ρη'(χ) for all χ e Σ*. 

Definition 3.2: Two distributions π and ρ are 2-equivalent of order k for a PA 
A if πη'(χ) >λ<=^ ρη' (χ) > λ for all χ G Σ* with 1(χ) <k. π and ρ are λ-cqm-
valent if the relation above is true for all χ G Σ*. 

Two distributions which are equivalent are ipso facto A-equivalent [of order 
k] in other words equivalence is a [proper] refinement of A-equivalence. It 
follows therefore from Theorem 3.2 that both types of equivalence may be of 
infinite index. 

There are gedanken experiments for deciding whether two distributions π 
and ρ are equivalent [see Theorem B, 2.1 Chapter I for SSMs]. This is however 
not true for PAs as the following theorem shows. 

Theorem 3.5: There is a PA and a number λ such that for any integer k there 
are at least two λ-equivalent distributions of order k which are not A-equivalent. 

Proof: Let Ε be the event over Σ = [0, l], Ε = [x = · · · σ^: .σι · · · 
> λ,λ = .10100100001 · · ·], i.e., the binary expansion of λ consists of all the 
terms of the form 0^ 1, /: = 0, 1 , . . . , ordered according to the magnitude of 
k. Then Ε is representable in a PA as in Theorem 3.2 and therefore Ε is also 
a [nonregular, since λ is irrational] PCE. Consider the two words 

= 101 · · · 100 . . . 01 and y ,̂ = 101 · · · 10 · · · 010 
k k 

As proved in Theorem 3.2, these two words are not equivalent, but one sees 
easily that the shortest ζ such that either x^z e Ε and y^z φ Ε [or vice versa] 
is 

2 = 0 . . · 01 
k 

Thus Xk and are A-equivalent of order k and this proves our theorems. | 
We come now to the problem of merging of states. If two degenerate dis­

tributions [or states] are equivalent for a PA A, then the two states can be 
merged to get a new equivalent PA with fewer states [see Theorem B, 2.4 in 
Chapter I]. Is there any parallel procedure for ^-equivalence? In other words, if 
by some means we would be able to find out that two degenerate distributions 
are A-equivalent [as mentioned before this question is not decidable by gedan­
ken experiments], would this enable us to get another PA with fewer states 
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which is A-equivalent to the original one [meaning that for any initial distri­
bution of the original PA there is a A-equivalent distribution for the second 
PA and vice versa]? The answer to this problem is negative in general and is 
explained in the following argument. 

Consider again the set of vectors = {^(^): x e Σ*] considered now as 
points in «-dimensional space. These points are included in the «-dimensional 
simplex ^ ( « ) = [π : π is an «-dimensional probabilistic vector.) The hyperplane 
containing all the points π{χ)ψ = λ divides into two subsets = {π(χ): 
π{χ)η^ > λ\ = [π{χ): π{χ)η'' < λ] so that π(χ) e if and only if 
X e Ί(Α, X). The merging of two extremal points in ^ ( « ) means geometrically 
a projection, along the line connecting those two points, of the «-dimensional 
simplex SP(n) into the (« — l)-dimensional simplex ^{n — 1). Unless the line 
connecting the two merging points is parallel to the hyperplane {π \nif — A] 
it may happen that a point in will have its projection in the set of 
the (« — l)-dimensional space. A situation like that in Figure 17 may occur 
where both words x^ and x^ are accepted, but if the states and ^ 2 are merged 
then the resulting automaton Ä will accept jCj and reject ^ 2 . 

Figure 17. Geometricol interpretation of merging of states for 
PAs with outpoint. 

We conclude this section by an example showing that PAs over an alphabet 
Σ containing a single letter may still induce a nonregular PCE. 

Theorem 3.6: There exists a 3-state PA A over an alphabet Σ = [σ] containing 
a single letter and a cut-point λ such that T(A, λ) is a nonregular event. 

Proof: Consider the PA defined as follows: S = π = (00 ΐχη^ = 
(οοιγ 

ΓΙ O i ] 

Α(σ) = with λ = ^ 
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wheret 

and Ü, V are the conjugates of u and ν respectively. Writing formula (1) in a 
trigonometric form we get 

d3f(σ)-J-^=cp-sin(nθ + γ) (2) 

where c = \u\, ρ = \v\, γ = arg(w), and θ = arg(v). Thus, if and only if 
- π / 2 < mo + α < π/2, then é.fia) > 4/11 or σ"» ε T(A, λ). We shall need 
here 

Lemma 3.7: If θ is rational in degrees [i.e., θ = 2πr where r is a rational 
number], then the only rational values of cos Ö are 0, ± 1. If Ö is irrational 
in degrees, then any subinterval of (0, 2π) contains values of the form mO 
(mod 2π). 

The proof of this lemma, involving algebraic number theory, is omitted here 
and can be found in Niven (1956). 

Checking our θ for the condition of the above lemma we find that cos θ 
= Re λ/\λ\ = J which implies that θ is irrational in degrees. Let and a'"' 
be two words in T(A, λ) such that ηι^θ + γ = a, + y = β, —π/2 < α, 
β <π/2 and assume that ce < β. Then there is such that π/2 <γ + (ηί2 
+ ma) ö < π/2 + (β — ά ) /2 by the second statement of Lemma 3.7. It 
follows that y + (mi + m^) θ < π/2 — (β - α) /2 . Thus φ Τ(Α, λ) 
while σ'̂ '̂ '"^ ε Τ(Α, λ). We have proved that any two words in T(A, λ) [this 
set is infinite by the second statement in Lemma 3.7] are nonequivalent accord­
ing to Nerode's equivalence [Theorem 2.1] and Nerode's equivalence is there­
fore of infinite index. This completes the proof. 

Remarks 

1. Note that the cut-point λ used in Theorem 3.6 is a rational number. 
Thus the regularity or irregularity of events of the form T(A, λ) is not connected 
to the rationality or irrationality of λ as one may guess from Theorem 3.2. 

f W e use h e r e t h e no t a t i on ν for e igenvalues in o rde r t o avoid confusion w i t h t h e cu t -
poin t no ta t ion λ. 

The eigenvalues of Α(σ) are 1, (t + ít^V7)» ( i — í'tWO» each having 
multiplicity 1. [The reader is urged to verify the computations.] Determining 
the corresponding row and column eigenvectors and using formula (4) in 
Section II, A, 5, we find that 

= 1 + wv- + tiv- (1) 
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2. Theorem 3.6 provides an example of a PA over a single letter alphabet 
inducing a nonregular event. This is, however, not true in general; in other 
words there are many cases where such a PA defines a regular event. See Ex­
ercises 1Θ-13 after this section for more details on PA over a single letter 
alphabet. 

3. The example in Theorem 3.6 also provides an explicit case of a non-
context-free event representable in a PA. This follows from the fact that all 
context-free events over a one letter alphabet are regular and the event in 
Theorem 3.6 is not regular and therefore not context free. 

EXERCISES 

1. An "m-adic two state P A " is a 2-state PA ^ = (5 , π, [Α(σ)1 η^) over the 
alphabet Σ = { 0 , 1 , . . . , /w — 1} where 

m — i 

A(i) = 
m 

I 

m 

m - i - l i+l 
m m 

/ = 0, l , . . . , m — 1 

n = {\ 0); 

G Σ*, then p^{x) = .σ^ σι, this being an Prove that if χ = 
ordinary w-adic fraction. 

2. Prove that if the symbol 1 is removed from the alphabet of the 3-adic PA, 
then the set of values {p^(x): χ G Σ*, Σ = [0, 2]} is a nowhere dense set 
[Cantor's discotinuum]. 

3. Prove that Theorem 3.2 is true for Aw-adic automata. 

4. A number u is called accessible by a PA ^ if there is a word χ G Σ* such 
that p^(x) = u. Prove that if λ is a rational number which is not accessible 
for the PA A in Exercise 2, then T{A, λ) is a nonregular set for that A. 

5. Let A be the 3-state PA over Σ = {0, 1 , . . . , w — 1} such that π = (1 0 0) 

~ 1 m — i — 1 i 
tn m m 

0 1 0 

_ 0 0 1 

Prove that T{A, A) is the event {x = · • · σ*.: .σι • · • σ^> λ). 

6. Let 0 be a real valued function over Σ* such that φ(ε) = 0 is the empty 
word] and for all χ,σ & Σ*, 

and ^(0 = 
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<Κσχ) = α(σ)φ(χ) + b{a) 

where α{σ) + bi&) < 1. Prove that any event of the form [x: φ(χ) > λ] can 
be represented by a 3-state PA with cut-point λ. 

7. Same as Exercise 6, but φ(χσ) = α(σ)φ(χ) + b(a) and the PA has 2 states. 

8. Let ^ be a a mapping from symbols in Σ to words in Σ* and extend ψ to 
Σ* by the requirements 

ψ(e) = e, ψ(χσ) = ψ{χ)ψ{σ) 

Let Σ = { 0 , 1 , . . . , m — 1} and denote by .ψ{χ) the w-adic expansion where 
the symbols in ψ{χ) are considered as digits [.^(e) = 0]. Prove that the event 
[x: .ψ(χ) > λ] can be represented in a 3-state automata with cut-point λ. 

9. Prove that if in Exercise 8 the function ψ has the property that ψ(ί) = χ, 
with l(Xi) = A: for a fixed number Λ > 1 and all / G Σ, then the event [x: .ψ(χ) 
> λ] is not regular if and only if A is an irrational number of the form 
η = .ψ(σι) . . . ψ(σ^) · · · . 

10. Prove that a 3-state PA ^ = (S, π, Α(σ), η^) over a single letter alphabet 
defines an irregular event if and only if (1) πΑ{σ) Φ π, (2) Α{σ) has an imagi­
nary eigenvalue with argument irrational in degrees, and (3) the cut-point λ is 
equal to lim„^oo öi"̂  [which "lim" always exists if (2) is satisfied and is in­
dependent on /] if F = and is equal to lim„_.^ öi"̂  + lim^^oo fl/í if 

11. Prove that the number of nonregular events of the form T{A, λ) where A 
is a given /i-state PA over a single letter alphabet is < «. 

12. Prove the following theorem: 

Theorem: Let v4 be a PA over a single letter alphabet. Let Vj,..., v, be the 
eigenvalues of Α(σ) such that |vi| = · · · = \v\ = 1 and let v^, . . ·, Vp+, be 
the eigenvalues of A with maximum absolute value such that \Vj,\ = - - - = 
\Vj,+g\ < 1 and such that Σtitlv'^ωiJk(m) Φ 0 for all m > m^, where is 
some integer and 0),;̂ ^ is as in formula (4) in Section II, A, 5 [Xk in that formula 
is replaced by Vk here]. If argv^,argv^+i, . . . , a rgv^+^ are all rational in 
degree then T{A, A) is a regular event for any λ. 

13. Prove the following corollary to the theorem in Exercise 12: If a PA A as 
in Exercise 12 has all its eigenvalues with rational arguments then T{A, λ) is 
regular for any λ. 

14. Prove that if a PA ^ over a one letter alphabet has only real eigenvalues, 
then T{A, λ) is regular for any A. 

15. Prove that any 2-states PA A over a one letter alphabet defines a regular 
event T{A, λ). 
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OPEN PROBLEMS 

1. Find a decision procedure for checking whether any two given distributions 
for a PA are A-equivalent for a given λ or prove that the problem is not decid­
able. 

2. Provide a procedure with the aid of which one will be able to find a PA Β 
with a minimal number of states such that the event T{B, λ) for some λ equals 
a given event T{A, μ). 

4. Particular Cases 

a. Exclusive PCEs 

The class of events to be dealt with in this section is properly included in 
the class of PCEs and properly includes regular events. In addition they have 
most of the closure properties regular events have. 

Definition 4.1: An event of the form [x:x e Σ*, p^(x) Φ λ] where ^ is a PA 
and A is a real number 0 < λ < 1 is an exclusive PCE and is denoted by 
the notation T^(A, λ). 

Proposition 4.1: The regular events are properly included in the class of ex­
clusive PCEs. 

Proof: It is clear that any regular event can be represented in the form 
Τφ{Α, 0) where ^ is a deterministic automaton [see the proof of Proposition 
1.2]. On the other hand, for the PA given in Exercise 1.4, we have that 
T^(A, ^) is the complement of the event Ε = [x:x G Σ*, χ = c^^'^Oia^, 
/w > 0} which is not a regular event. Regular events being closed under com-
plimentation we have that Τφ{Α, | ) is not regular and this completes the 
proof. 

Proposition 4.2: The class of exclusive PCEs is properly included in the class 
of PCEs. 

Proof: Let TJ^A, λ) be an exclusive PCE. By Proposition A, 2.1 there is an 
SPE such that for all words χ e Σ*, p^(x) = p^(x) - λ so that T^(A, λ) 
= T^(B,0). Let C be the pseudo probabilistic automaton C = B(g)B (see 
definition in the proof of Proposition A, 1.3). As in the proof of Proposition 
A , 1 . 3 , / 7 ^ ( x ) = / 7 ^ ( Λ : ) / ^ ( Λ : ) f o r a l l x G Σ * . Thus Γ^(5 ,0) = r ( C , 0). Now using 
Proposition 1.1 we have that there is a PA D and a cut-point μ such that T(C, 0) 
= T(D, μ). This proves that any exclusive PCE is a PCE, since T(D, μ) 
= T^(A, λ). To prove that inclusion is proper, let A be the PA defined in 
in Exercise 1.4. Then T(A, ^) = [ai'^ajai" :m<n} so that the event Ε = 
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[ai'"a2<Ti": < λ] is a PCE. We will show that this event is, however, not an 
exclusive PCE. Assume the contrary, then there is a PA J? such that Ε = 
Τφ{Β, \) [by Proposition 1.4 λ may always be assumed to be equal to \ ] , Using 
Theorem 2.8 in Section II, C with w = <Τι we have that there is a sequence of 
numbers Cq, Cj, . . . , such that Σ?=ο = 1 and for the words u' = σι"σ2 
and u'' = e [the empty word] the following equality holds true: 

ρ\σ,"σ2σ,") = c„.,p^(a,"a2a,"-') + · · · + c.p^a.'^a^a,) + CoP^(a,"a2) 
But the words 0^020^''',..., 0^02 are not in Ε and therefore their probability 
by Β is \ . This implies that ρ^{ο^σ2θ^) = \ Σ?=ο Ci = h which contradicts 
the fact that p^{p^020^) Φ ^ since 0^020χ G E, The proof is complete. | 

Theorem 4.3: The class of exclusive PCEs is closed under union. 

Proof: Let TJ^A, λ) and TJ^B, μ) be two exclusive PCEs. As in the proof 
of Proposition 4.2, there are pseudo probabilistic automata C and D such that 
TM, A) = nc 0) and T^B, μ) = T(D, 0) with if(x) > 0, p%x) > 0 for all 
X G Σ * . Then T(C + D,0) = T(C, 0) U T{D, 0) where C + Z) is the auto­
maton defining the function p^^^(x) = pF{x) + p^{x) [see Proposition A,2.1]. 
By Proposition 1.1 there is a PA Ä such that T{Ä, ν) = T(C + D, 0) = 
T^A, λ) u T^B, μ) for some cut-point ν and, as follows from the proof of 
that theorem, P^'(JC) > ν for all Λ: G Σ * so that T(A', v) = T^(Ä, ν) as re­
quired. I 

Theorem 4.4: The class of PCEs is closed under intersection with exclusive 
PCEs. 

Proof: Let T(A, λ) and T^B, μ) be SL PCE and an exclusive PCE respec­
tively. Then there are automata A' and B' such that T(A, λ) = T{Ä, 0) and 
T^B, μ) = ΤΑΒ', 0). It follows that T{A(gB'®B', 0) = T(A, λ) η T^B, μ). 
By Proposition 1.1 there is a PA C and a cut-point ν such that T(A0B' 
(X) B', 0) = T(C, v) and this completes the proof. | 

Proposition 4.5: The class of exclusive PCEs is closed under intersection. 

Proof: One can assume that T^A, λ) = T^Ä, 0), and similarly T^B, μ) 
= Τ AB', 0) so that TM' (8) B'^ 0) = Τ Μ, λ) η TAB, μ). | 

EXERCISES 

1. Let ^ be the ΡΑ in Proposition A, 1.10. Prove that the event T(A, ^) is not 
an exclusive PCE. 

2. Prove that the event [0"l":n = 1, 2 . . .} is not an exclusive PCE. 

3. Define the event T=(^ λ) = [x : χ e Σ * , p^(x) = λ} for a given PA and a 
cut-point λ. Prove that the class of events of the form Γ=(^, λ) is closed under 
union and intersection and includes the regular events. 
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OPEN PROBLEM 

Are the events T^{A, λ) included in the class of PCE and, if yes, is the in­
clusion proper? 

*. Definüe PCEs 

Definition 4.2: A PA ^ is weakly fc-definite if and only if for any Λ: G Σ* with 
/(x) > k and any initial distributions π and fi\ we have that p/{x) = Ρρ\χ\ 

Proposition 4.6: If ^ is a weakly ^-definite PA and ζ = ^̂ jc is a word in Σ* 
with /(jc) > Κ then p^{z) = p^{x\ 

Proof: ΡΛΖ) = ηΑ(γ)Α(χ)η' = η(γ)Α(χ)η' = ρ^,(χ) = ρ^χ) [ρ^^χ) is in­
dependent on the initial distribution since l{x) > k], | 

Corollary 4.7: If ^ is a weakly definite PA, then T{A, λ) is a definite PCE for 
any cut-point. 

Proof: It follows from Proposition 4.2 that the set of values p^{x) is finite 
[it is smaller than or equal to the difiierent values in the set {p^{x): l{x) < k]] 
and for any ζ = yx, l(x) > k and any λ, p\z) = so that p^{z) > λ if and 
only if p^ipc) > A. | 

Proposition 4.8: A PA >4 is weakly A:-definite if and only if for any word 
X G Σ* with l{x) > k the vectors n{x) and p{x) are equivalent for any initial 
distribution π and p . 

Proof: If π{χ) is equivalent to p{x\ then pj^x) = π{χ)ψ = p{x)if = Pp{x) 
by Definition 3 .1 . Conversely, Ίί pXx) = Pp{x) for all JC G Σ* with l{x) > k 
then, for any yeΣ* and χ G Σ* with l(x) > /: we have that p„(xy) = Ppixy)* 
But p„(xy) = n(x)n^(y) and p,(xy) = pixWiy), Thus for all y e Σ*, π(χ)η'(γ) 
= pixWiy) which implies that π(χ) and p{x) are equivalent vectors. | 
Corollary 4.9: If 4̂ is a weakly ^-definite PA, then for any χ G Σ* with 
/(x) > k the rows of the matrix A{x) considered as distributions are equivalent 
one to the other. 

Proof: Any row in a matrix A{x) can be written in the form π(χ) where π 
is a degenerate stochastic vector. | 

Remark: The converse of Corollary 4.9 is also true and is left as an exercise. 

f F o r t h e purpose of this definit ion it is a s sumed t h a t A does n o t h a v e a n a pr ior i fixed 
initial d is t r ibut ion. 

4. Prove that the event [0" 1": η > 1] can be written in the form T={A, k) 
where ^ is a PA with cut-point λ. 
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Definition 4.2: A PA is A:-definite if it is weakly /^-definite, but is not weakly 
{k — \) definite. It is definite if it is k-definite for some k> 0. 

It follows from the above definition and from Proposition 4 .8 that if and 
only if a PA is ^-definite, then any two vectors π{χ) and p{x) with l{x) > k 
are equivalent, but there are two nonequivalent vectors π{χ) and p{x) with 
l{x) = k - L 

As in the case of SSMs one can define, for a given PA A, a matrix / /^ such 
that its columns are a basis for all column vectors of the form η^(χ), χ e Σ* 
[see Section Ι,Β,Ι). The first two columns ofH-* will be and η^^[Γ = S — F], 
The procedure for constructing H"^ will be exactly the same as that used for 
constructing Η and the rank of a PA ^ will be defined as rank A = rank H^, 
[This rank is always less or equal than the number of states of Α.] As the 
columns of / /^ are a basis for the set of vectors η^(χ) we have that two vectors 
π and ρ are equivalent initial distributions for A if and only if (π — />)/Γ^ = 0. 
We are now able to prove the following: 

Theorem 4.10: Let ^ be a PA. If A is Ä:-definite, then k < rank A — L 

Proof: The proof is almost the same as the proof of Theorem 4 . 1 1 in Section 
ΙΙ,Α. As in that proof, we define the set of matrices K' = [A(x): l(x) = /} [to 
avoid ambiguity we use here the notation K' instead of H' there] and the linear 
spaces V = [v = (v,) :^Vi = 0], 

VK^ = [Σ ViA(x); Vi e V, A{x) e K!, r = 1, 2 , . . . ] 

so that all the statements (a)-(d) in the proof of Theorem 4 . 1 1 in Section ΙΙ,Α 
are still true. As for statement (e), we change it to the following statement (e'): 
If the PA is /^-definite, then the space VH^ is the nuUspace of /f̂  [i.e., 
dim VH'' = η — dim A, where η is the number of states of A]. 

To prove this statement, assume it is not true. Then there is a vector of the 
form ϋ = ViA(Xi) such that ν, e V, JC, e Σ*, /(x,) = k and ϋΗ^^ Φ 0. This 
implies that at least one of the summands ViA{x¡) has this property, i.e., there 
is 3, di e V and a matrix A(Xi) such that /(x,) = k and ViAix^H"^ Φ 0. Let 
Vi = (Vij) with Yi"j=i'^ij = 0» then setting J^"=i'^u = — Σ?=ι^*7 = ^ [c^O 
necessarily] we define the two distributions π = (KJ) with Uj = v^/c and ρ = {p¡) 

with = Kvl/c. It follows that (l/c)(7C —/?).4(x)/i'^ = M W ^ ^ ^ 0 or 
{π(χ) — pix))!!'^^^ this implying that n{x) is not equivalent to p{x) although 
l{x) ~ k, and this is a contradiction. 

Continuing the same way as in the end of the proof of Theorem 4 . 1 1 in 
Section ΙΙ,Α we have a sequence of decreasing numbers 

« - 1 = dim KA:° > dim VK^ > - - dim VK" = η - dim/T^ 

Hence, A: < dim/f^ - 1. | 

Corollary 4.11: If the rank of a Ä:-definite PA A equals the number of its 
states, then k<n — \ and the matrices A{x) corresponding to words χ with 
l(x) > k are all constant matrices. 
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c. Quasidefinite PCEs 

Definition 4.3: A PA ^ is quasidefinite if and only if for any 6 > 0 there is a 
number k{€) such that for all x e Σ* with l{x) > k(€) and any two initial 
distributions for A, π, and /?ΐ, \p„(x) — Pp(x)\ < €. 

Proposition 4.12: If ^ is a quasidefinite PA, then for any e > 0 there is a 
number k(€) such that for all χ e Σ* with l(x) > k{e) and any G Σ* we 
have that \p/{yx) - Pn(x) I < ^. 

Proof: p/iyx) = Pn(y)(x) and \p„iy)\x) - ΡΛΧ)\ < ^ by definition. | 

Proposition 4.13: A sufliicient condition for a PA 4̂ to be quasidefinite is: For 
any 6 > 0, there is a number k(€) such that for all χ with 1(χ) > k(€) and any 
two initial distributions π and ρ for A, \\π(χ) — p(x)\\ < e, [If π = (π^ is a 
vector then | |π| | = Σ Ι̂ /Ι·] 

Proof: If ||π(Λ:) - p(x)\\ < e, then 

\PÁX) - PÁx)\ = Ηχ)η'- p(xW\ 

= ΚΦ) - P(xW\ < Μχ) - ρ(χ)\\ < e 

since the entries in η' are either 0 or 1. | 

Proposition 4.14: If and only if the condition specified in Proposition 4.13 
holds for a PA A, then the corresponding systerr (.S, [Α{σ)]) is a weakly ergodic 
Markov system [see Definition 3.2 in Section II,A]. 

t F o r t h e pu rpose of this definition it is a s sumed t h a t A does n o t have a n a pr ior i fixed 
initial d is t r ibut ion. 

Proof: The first statement of the corollary is evident. As for the second 
statement, any two rows in a matrix A(x) with l{x) > k considered as distri­
butions are equivalent, but no two different distributions π and ρ can satisfy 
the equation (π — /?)//^ = 0 if rank H-^ = η [i.e., H"^ is a nonsingular matrix]. 

EXERCISES 

1. Prove that if the rows in any matrix A(x% l(x) > A: of a given PA A are 
equivalent one to the other, then ^ is a weakly Ä:-definite PA. 

2. Let ^ be a ^-definite PA. Prove that there are two distinct distributions for 
A which are j-equivalent [two distributions π and ρ are j equivalent for a PA 
A if p/(x) = Pp^x) for all χ with 1(χ) < J] where y = 1, 2 , . . . , Ä: - 1. 

3. Let ^ be a definite PA, then the matrices Α(σ) are all singular. 

4. Prove that if the set of matrices {A{u): u e X*} in Exercise 1.7 is a k-
definite set, then the event T{M, A, y) is definite. Find the order of definiteness 
of T(M, A, y) in this case. 
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Proof: It follows from Proposition A, 1.4 in Chapter II that for any fixed 
word X G Σ*, 

||π(χ) - p{x)\\ = ||(π - p)A{x)\\ < \\π - ρ\\δ(Α(χ)) < 2δ(Α(χ)) 

since ||π — /?|| < 2 for any two stochastic vectors π and p. On the other hand 
there are indices /j and ¡2 such that δ{Α(χ)) = ΣΑ^ίυΜ ~" ^ω(χ)Υ and if π 
and ρ are the degenerate vectors having a 1 in the /1 and ¡2 entries respectively, 
then ||(π - p)A(x)\\ = ΣΑ^Φ) - = 2 Σ . Κ Α ) - α^χ)Τ = 2δ(Α(χ)) 
so that, for the specific vectors ρ and π as above, \\n(x) — p(x)\\ = 2δ(Α(χ)), 
It follows that limji^^)^^\\n(x) — p(x)\\ = 0 not depending on the choice of π 
and ρ if and only if Ιΐΐηι^^)^^δ(Α(χ)) = 0. | 

Remark 1: It is easy to verify that the condition of Proposition 4.13 is not a 
necessary condition for quasidefiniteness; on the other hand the condition is 
decidable, by Proposition 4.14 and Section II,A Corollary 4.6 and Theorem 
4.7. More precisely we have the following: 

Theorem 4.15: Let ^ be a PA. If for every e there is a number k = k(€) such 
that \\π(χ) — p(x)\\ < € for any distributions π and ρ and any χ e Σ* such 
that l(x) > k(e), then the system (S, [Α(σ)}) satisfies the condition H2 of some 
order less or equal to ^ ( 3 " - 2"+* + 1) where \S\ = « [see Definition 4.4, Sec­
tion ΙΙ,Α]. 

Remark 2: It is easily verified that the PA used in the proof of Theorem 
3.1 is quasidefinite. This shows that the class of PCE which can be defined by 
quasidefinite PA is nondenumerable. The concept of quasidefiniteness is thus 
a proper generalization of the concept of definiteness. 

We shall consider now quasidefinite PAs with isolated cut-point. 

Theorem 4.16: If 4̂ is a quasidefinite PA and λ is an isolated cut-point for it, 
then T(A, λ) is a definite [regular] event. 

Proof: λ being an isolated cut-point, there is € such that \p^(x) — λ\>€ 
for all X e Σ* and some e > 0. Since A is quasidefinite, there is a number 
k = k(€/2) for the above 6 > 0 such that \p(yx) - p(x)\ < e/2 for all ΧΕΣ* 
with l(x) > k(€/2) and all j G Σ* [see Proposition 4.12]. We have therefore, 
for all X with l(x) > k(e/2) and all y e Σ*, that p(yx) > A if and only if 
p(x) > λ. It follows that T(A, λ) = U, U U2 where C/I = {x: l(x) < k(e/2), 
p(x) > λ] and U2 = [x:x = yz, l(z) > k(e/2), p(z) > λ}. But is a finite set 
and therefore definite, and U2 can be written in the form U2 = Σ* Κ where V 
is the finite set F = {z: /(z) = k(€/2), p(z) > A). Thus U2 is definite and, since 
definite events are closed under union, we have that also T(A, A) is definite. | 

Remark: It is worth mentioning that the conditions of Theorem 4.16 may 
serve as a characterization of definite events, for the following converse of that 
theorem is also true. 
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otherwise 
[ l - q 

If x G Σ* is a word Λ: = · · · σ^, r < A: and / is the state / ^ ( f t , . . . , fe), 
then β^/σι . . · σ^) = (1 — βΥ for j = ( 6 , . . . , 6, σ ι , . . . , σ^). If Λ: G Σ* is a 
word Λ: = σι · · · σ;̂  and / is any state then, a , /σ ι · · · σ̂ )̂ = (1 — for 
j = ( ( T J , . . . , a^y If x,y e Σ* are words such that χ = · · · σ̂ ,̂ then for 
y = ( σ , , . . . , σ^), and for any state /, 

au(y^) = t a,(y)aAx) = a^x) t a,(y) = (1 _ 6 )^ . 1 = (1 _ e)' 

It follows that if χ e Ε then p^(x) >(l —ef [if r < k, then ( 1 — 6 ) ' ' 

> (1 — 6 ) * ] and we may choose 6 so small as to have the value (1 — 6 ) * as 
close to 1 as wanted [the number k is given a priori and depends on Ε only]. 
Let 6 be such that (1 — 6 ) * > | and let λ = i. For any word x, if χ ^ E, 
then p^(x)<i [the machine will enter a state not in F w i t h probability at least 
f in this case] so that λ is isolated. Moreover, the above considerations show 
that Ε = T(A, A). Finally, all the entries in the matrices Α(σ) are positive and 
this implies that the set (.S, ^(σ)) is a quasidefinite set [the H2 condition of 
order 1 is satisfied in this case]. | 

EXERCISES 

1. Prove by an example that the condition of the Proposition 4.13 is not neces­
sary for quasidefiniteness. 

2. Provide a full proof for Theorem 4.15. 

Theorem 4.17: Any definite event can be represented in the form E= T(A, λ) 
where ^ is a quasidefinite PA and λ is an isolated cut-point for A, 

Proof: Given the ^-definite event Ε = Σ* U U V with U and V finite and 
length of all words in U equal to k [any definite event can be written in this 
form) we define the FA A = (S, π, [Α(σ)], F] over the alphabet Σ as follows: 
Let Σ ' = Σ U ¿, 6 ^ Σ, then 

k 
S = . . . , ( 7 „ . . . , σ , ) : G Σ, 0 < /· < /:] 

i.e., the states are /:-tuples of symbols in Σ ' and only A:-tuples of the above form 
are in 5. If |Σ| = m, then \S\ = I +m + + -- - + = q and there is a 
1-1 correspondence between the states in S in the words in Σ* with length 
<k. The initial distribution π is the degenerate distribution having a 1 in the 
entry corresponding to the state ( ¿ , . . . , b). The set of final states F contains 
all the states corresponding to words in (7 U K. Finally, the transition matrices 
are defined as follows. If / is the state (TI, . . . , τ^), then 

I - € if 7 = (T2, . . . ,T; t^) 
e 
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5. Approximations 

We know already that the cardinality of PCEs [over the real numbers] equals 
the cardinality of the continuum [Theorem 3.2] and therefore there must be 
PCEs which are not definable by any type of deterministic automaton [all 
deterministic machines, including Turing machines, are denumerable]. On the 
other hand we know also that if the cut-point λ is isolated, then the resulting 
PCE is regular [Theorem 2.3]. This raises the suspicion that probabilistic 
automata may reduce to deterministic automata when compared in a weaker 
form, allowing for approximations in the vicinity of the cut-point. To make 
this notion explicit we introduce the following: 

Definition 5.1: Let ^ be a PA inducing the PE / over Σ* and let Β be any 
finite state machine [Turing machine, linear bounded, etc]. Β e-approximates 
A if there is a function φ with domain B{sq, x) [B{sq, x) denoting the configu­
ration of Β after the word χ has been scanned from the initial state s ¿ \ and real 

values such that 

\Κχ)-φ{Β{8..χ))\<^ 
Definition 5.2: An event Ε [understood here as a subset of Σ*] e-approximates 
a PCE T{A, λ) if 

{E--nA,k))KJ{E--ñAJ))^[x:xG Σ Μ / ( χ ) - λ | < 6 } 

where / is the event [here understood as a function] induced by A, 

It is easy to prove that, in the above sense, PAs [the matrices and vectors 
defining A have real entries] are approximable by Turing machines, this being 
a consequence of the fact that Turing machines can "compute" within any 
preassigned e the values of a function f(pc) induced by a PA. The above de­
finitions will therefore enable us to compare the nondenumerable set of PAs 

3. Let Ä be a vector all the entries of which are equal to λ,0<λ < 1, and 
let A be a PA with number of states equal to the dimension of X. λ is an 
isolated vector for A if there is a number <5 > 0 such that 

{Α{χ)η'-λ){Α{χ)η'-λ)>δ^ 

for all Λ: e Σ* where the product is the ordinary scalar product of vectors. 
Prove: If λ is an isolated vector for a quasidefinite PA A, then the event 

T{A, λ) is a definite [regular] event. 

4. Prove that if 4̂ is a two state PA such that no matrix Α{σ) equals the matrix 
[o ?] or [? J ] , then ^ is a quasidefinite PA. 

5. Prove that if >4 is a PA such that all the entries in all the matrices Α{σ) are 
positive, then ^ is a quasidefinite PA. 
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a. ^'Approximation by Finite Automata 

Definition 5.3: Given a PE / and 6 > 0, an 6-cover induced by / is a finite 
set [Ci%Q where the C are sets of points in the interval [0, 1] satisfying the 
following requirements: 

1. Uf=oQ = K : / ( x ) = (i,x e Σ*]. 

2. ξ,Λι eQ=> \ξι - ξ2\ < 6 , / = 0 , 1 , . . . , A:. 

3. For any / and z, there is j such that C,z ^ Cj where C^z is defined as the 
set Qz = [ξ :f(xz) = ξ, f(x) e Q]. 

Theorem 5.1: Given a PE / and 6 > 0, / is 6-approximable by a finite auto­
maton Β if and only if there exists a le cover induced by / . 

Proof: Let {C,]^o be an 6-cover for / . Define the deterministic automaton 
Β as follows. The states of Β are Q , . . . , Q . Let CQ be the first set such that 
f(e) G Co, then the initial state of Β is Cq. The transition function of Β is 
defined by the relation 

B(Q,a) = Cj if da^Cj 

and j is the smallest index satisfying the relation. Finally, set 0(C,) = 
i [ s u p í . c t í + inf^.e.^]- We prove first, by induction, that for any x G Σ*, 
fix) G B(so,x): 

i. For X = e, the statement follows from the definition of B . 

ii. Let Λ: be a word with l(x) = t and assume that f(x) e B(so, x) = Ct. 
Then f{xa) G = B{SQ, χσ) by the definitions of and B , and this proves 
the statement. | 

We have, therefore, that for any Λ: G Σ* 

- 0(5(5o, x))\ = \f{x) - i [ s u p , . c . i + Ίηί,.α.ξ] < e 
by the fact that f(x) e B(so, x) = C, and the second property of the € cO|Ver. 
Assume now that / is 6-approximable by a deterministic automaton Β with 
state set = { ^ 0 , . . . , Sj,}. Define the sets 

Q = [ξ:f(x) = ζ, B(s,x) = s;\ 

It is easily verified that the set C, thus defined is a le cover as required. 

Definition 5.4: Given a PCE Ε = T(A, A), an 6-cover induced by the auto-

[or cut-point events defined by them] with denumerable sets [e.g., Turing 
machine and events defined by them]. Some particular cases will be considered 
in the following subsections. 
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maton A with cut-point λ is a finite set {C,}f=o where the Q are sets of points 
in the interval [0, 1] satisfying the following requirements: 

1. Uf=oQ = { í : / ^ x ) = í , x G l * } . 

2. Either C^ ^[ζ:ζ>λ - €]οτ d ^[ξ:ξ < λ + e], 

3. For any i and z , there is j such that CiZ ^ Cj where CjZ is defined as in 
Definition 5.3. 

Theorem 5.2: A PCE Ε = T(A, λ) is 6-approximable by a regular event 
E' = T(B) if and only if there exists an 6-cover induced by the automaton A 
with cut-point A. 

Proof: The proof is similar to the proof of Theorem 5.1. The final states 
of Β will be the Q satisfying the relation 

€^^[ξ:ξ>λ-€} I 

Proposition 5.3: Let / be a PE. If / is 6-approximable by some finite auto­
maton B, then for any λ, the CPE T(A, λ) is 6-approximable, where A is the 
PA defining / . 

Proof: The final states of Β will be defined to be the states Si such that 
φ(5ι) > A [see Definition 5.1]. For any χ e Σ*, \f(x) - φ(Β(5ο, x)\ < e and if 
φ(B(so, x)) > λ meaning that χ e T(B), then f(x) > λ - e. If 0(5(^o, χ))<λ 
meaning that χ φ T(B), then f(x) < A + 6. | 

Proposition 5.4: Let / be a PE defined by a PA ^ such that for any A the CPE 
T(A, A) is 6-approximable by an event Τ(Βχ) where 5^ is a finite [deterministic] 
automaton, then there exists a finite automaton Β which 6-approximates A. 

Proof: Divide the interval [0, 1] into k equal parts hy k — I points A i , . . . , 
A^_i[Ao = 0,λ^= 1] such that X¡ - A,_i < 6 , / = 1, 2 , . . . , A:, and let 
/ = 0, 1,. . . , A: — 1 be the corresponding 6-approximating automaton for 
T(A, λι). Define the machine Β as follows. Β = (S, Sq, M) [F is immaterial 
here] with 

S = fe.(Ao), ί , χ Α Ο , . . . , í / . (A,_0): Sißj) e 

M((SiXXo), SiXXi),..., 5,XA;t-i)), σ) 
= σ ) , . . . , Μ,,,Χί/,, σ)) 

with Β,, = (S,„ 5o(A,), F,) and S,, = [^/A,)]. Set 

φ(5) = 0 ^ A o ) , . . . , SiXX,.d) = max {A/ s M ^ Pxi 

Thus, 0(5(^0, x)) = Ay implies that χ e T(B;,,J and χ φ T{Bx,J which im­
plies that fix) > Ay - 6 and f{x) < Ay+i + 6 < Ay + 3 6 . It follows that 
m{so,x))-Ax)\<2€, I 
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Remark: Any PE / induced by a PA A can be transformed into a PCE 
T(A, A) for a cut-point λ. It follows from the above two propositions that / is 
e-approximable if and only if the derived PCEs T{A, λ) are e-approximable 
for any cut-point λ. 

b. A Counterexample 

Consider the following PA ^ = (π, 5 , {Α{σ)}, η') over Σ = {0,1} with 5 = 
[s^5iS2S,},n = (l O 0 0) and 

η' = A(0)^ 

O 
i 

O 
O 

^(1) = 

o 
O 

o 
o 

By straightforward computations one can prove the following relations: 

if 

if 

if 

if 

x = 0", n = 0, 1 , 2 , . . . , 

χ = 0 " · 1 0 " Μ , . . . , 0 " Ί , 

and there is i with «, = 0 

x = 0" -10" ' l , . . . , 0 " " l , 

x = 0 " ' 1 0 " ' l , . . . ,0"10"'*', 

[0" is the empty word.] 

nj^0j=l,2,...,k 

nj>0,j=l,2,...,k 

> 0 

where p{x) is the (1 ,1) entry in A(x). 
Consider now the PE defined by A,p*, and let T(A, λ) be the PCE, with 

A = f 
We have that 

T((p',X)) = [x:p^(x)>i] 

It follows from the above inequalities that Τ((Α, λ)) for λ = ^ is the set of 
words X such that χ is empty or χ begins with a zero, ends with a one, and 
contains no subword of two or more consecutive ones. It is easily verified that 
this set of words is a regular set [there exists a finite automaton accepting it] 
and therefore it is e-approximable [even for e = 0] by a finite automaton. 

We shall show now that there is a λ such that T(A, λ) is not e-approximable 
by a finite automaton with the resuh that the function is not approximable 
either, this following from Präposition 5.3. 

Let Xn" be the word x„'" = (0" 1)"*. One can prove, again using straight for­
ward computation, that 
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Thus \im„^^p\x„'^) - 1 for fixed m > 0, while \\m^^^p\xj^) — ^ for fixed 
n> 0, Now let λ be a real number ^ < λ < 1, say A = | , and let 6 be a real 
number 6 < i and suppose that T(A, λ) is 6-approximable for the given λ and 
e. Let the approximating machine have k states. Choose «o so great that 

ρ^(χΖ)>λ + € for 1 , 2 , . . . , ^ + 1 

The first k + 1 applications of the input sequence x„, must send the approxi­
mating machine Β through a sequence of states ô, ̂ i,..., s^+i, which are all 
final states of B. But Β has only k states so that Sj = Si for some i <j <k + 1 
so that all the tapes of the form xZm= 1 , 2 , . . . will be in T(B). Thus Β 
cannot 6-approximate since there is awq with p\xZ') < λ — e, i.e., 

while xZ e T(B) and x^' φ T(A, λ). The following are direct consequences 
of the above example: 

1. There is a PCE which is not approximable by a regular event. 

2. There is a PE which is not approximable by a finite [deterministic] auto­
maton [this follows from Proposition 5.3]. 

3. The PCE given in the above example with cut-point λ = ^ is 6-approximable 
by a regular event, but the underlying PE, is not 6-approximable. The two 
concepts of approximation are not equivalent. 

4. The class of PCEs strictly includes the class of regular events even if com­
parison is based on 6-approximation and not strict equivalence. 

5. There exists a PE / and e such that there is no 6-cover induced by it. 

6. There is a PCE, T(A, λ) and e such that there is no 6-cover induced by it. 

6. Some Nonclosure and Unsolvability Results 

The following notation will be used in this subsection: 
An RPA is an PA such that all the entries in the vectors π and in the 

matrices Α(σ) are rational numbers. 
An ISA is an SPA such that all the entries in the vectors π, η and in the 

matrices Α{σ) are integers. 
A P-event is an event Ε which can be represented in the form Ε = T(A, λ) 

where A is an RPA and λ is a rational number. Thus any P-event is a PCE. 
An E-event is an event Ε which can be represented in the form 

E=^{x:f\x)=nx)] 

where A and Β are RPA and and are the PEs induced by them. 
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A D-event is an event Ε which can be represented in the form 

E=[x:f\x)^f\x)} 

where A, B, and β are as above. 

Lemma 6.1: Every F-event can also be represented in the form 

where C is an RPA and every Z)-event is an exclusive PCE (see Section 4.a) 

Proof: Set f(x) = if\x) + i f\x) = \ + i(f^(x) - f\x)\ then use 
the construction in the proofs of Propositions 1.1, 1.2, and 1.5 in Section A 
to show that C can be chosen to be an RPA under the conditions of the 
lemma. | 

Lemma 6.2: The set of P-events is equal to the set of events which can be 
represented in the form T{A, λ) with A an ISA and λ an integer. 

Proof: Any event of the form T{A, λ) with A an ISA and λ an integer is a 
P-event. This follows from the construction involved in the proofs of Proposi­
tion 1.1 and of the propositions and theorems on which that proposition is 
based. To prove the converse let Ε = T(A, A) be a given P-event. One proves 
easily (using a construction similar to the one used in the proof of Theorem 
A.2.4) that Ε can be respresented also in the form Ε = T(A\ 0) where Ä is an 
SPA but the entries in its matrices and vectors are still rational numbers. Let 
m be the absolute value of the smallest common multiple of all the denomi­
nators of all the entries in all the matrices and vectors of A' and let A'' be the 
SPA derived from A' by multiplying all its matrices and vectors by m. A" is 
an ISA by construction and /^(Λ:) > 0 for every χ e Σ*. Thus T(A, A) = 
T(A\ 0) = T(A'\ 0) as required. | 

Theorem 6.3: The set of P-events is closed under complementation. 

Proof: Let Ε = T(A, A) be a P-event. Then, as in the proof of the previous 
lemma, Ε = T(A\ 0) where Ä is an ISA, i.e., the values f^Xx) are integers for 
every χ G Σ*. Thus ^ = {JC :/^'(JC) > 0] and É = [x :f\A) ^ 0} = {JC : 
f^\x) < 1} for the values f^\x) are integers. If ^ ' = (5 , π, {Α(σ)1 η), let 
Ä' = (S, π, [ΑΧσ)}, -η). Α" is an ISA and Ε = [χ :/^"(JC) > 1} which is a 
P-event by Lemma 6.2. | 

Corollary 6.4: The set of j^-events is a proper subset of the set of P-events. 

Proof: By Lemma 6.1 every £'-event, E, can be represented in the form E= 
[x :f\x) = ^] with A an RPA. Thus É = [x \f\x) Φ i) = E\ Now Ε = 
T^(A, ^) is an exclusive PCE with A an RPA and using the construction used 
in the proof of Proposition 4.2 one proves that E' is a P-event so that, by 
Theorem 6.3, É' = Eis also a P-event. That the inclusion is proper follows by 
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an argument similar to the argument used in the proof of Proposition 4.2. This 
part of the proof is left to the reader. | 

Lemma 6.5: Let E, - T(A, A) be a PCE (not necessarily a P-event) and let 
E, = Τ{Β, 0) be a regular event and let c be a symbol c φ Σ. Then E,cE, 
and E,cE, are PCE. 

Proof: LetA = {S, π, [Α{σ)}, η"·) and let Β = (Q, ξ, [Β(σ)}, η"·), where the 
vector ξ and the matrices Β(σ) are degenerate stochastic. Let |5 | = nt and 
\Q\ = n. Construct the following PA, C,C^ {K, ζ, {€(σ)}, η^') where = 
»i + n + 1 

'Β{σ) 0 0 

C{a)= 0 Α{σ) 0 

.0 0 1_ 

C = ( Í 0 0 · · · 0), ί/"· = (0 · · · 0(ti^'Y Of and 

Q(c ) 

C(c) = 

with 

Cic) = 
(0 if s, eF2 

otherwise 

Ο π Ο ) 

( 0 · . · 0 1) 

It is left for the reader to verify that T{C, λ)^ E, cz E,. Thus, E^ cz E, is a 
PCE. In addition 

E.cE, = E,cE, 

which implies by Proposition 1.6 that E¡ cz E, is also a PCE. | 
If is a set of words, then E* denotes the star closure of Ε and is defined as 

E* = {JE' with E" = [e], Ε = Ε'-' Ε. 
ί=0 

Lemma 6.6: Let Σ = {α, b\ The set of words 

E=^{ar b{a*b)* Ö ' ^ Ä : / C > 0} 

is a PCE. 
Proof: Consider the following SPA A = (S, π, {Α(σ)}^, Σ, η) with 5 = {^i, . . . , 

^9], π = α i O . . . 0), ;/ = (O . . . O 1 - ir and Α(σ) = Μ σ ) ] with 

an(ä) = α^η{α) = a^eiä) = a^nia) = 0 2 2 ( 0 ) = « s s í ^ ) = i 

aAd) = 0 5 7 ( a ) = h « 7 7 ( 0 ) = a^iia) = ^ 9 7 ( 0 ) = 1, 

Uif^d) = O in all other cases and 
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= E,U a"" b(a *b)*a *b = E^ U E^ 

with E2 a regular event. 
Using an argument similar to the one used in the prcx>f of Corollary 6.4 one 

can easily prove that is a P-event and therefore a CPE. By Proposition 1.5 
E, is also a CPE (since E, = E^E2 and E2 is regular). | 

Lemma 6,7: Let E^ be defined as in Lemma 6.6. The events Ε,Σ* and E* are 
not CPEs. 

Proof: If an event Ε = T(A, X) is a CPE, then, by Theorem 2.8 Section II, 
C, for every word χ e Σ* there are constants C o , . . . , Ĉ , such that for any 
y e Σ* the following equations hold true 

C„f^(xy) + C„.J^(x"-' y)+'" + C,f\y) = 0 (*) 
+ C„_i + · · · + Co = 0 ( . . ) 

Assume now that Ε,Σ* is a CPE Ε,Σ* = T(A, λ). Then satisfies the above 
property. Let χ = a. For this χ some of the coeficients in (*) are positive and 
some are not. Let C /^Q, , . . . , be the positive coeficients, and let y = 
bä'ba^' · · · . Then f\a^y) > λ if and only if G i.e., if and only 
if j has one of the values /„ /j^. * ^ Jk-

Multiplying (**) by λ and substracting from (*) we get 

Cm^y) - A) + · · · + C^ny) - A) = 0 ( . . . ) 

This leads to a contradiction since by the above argument, f\x^ >') — A > 0 if 
and only if Cy > 0 which would imply that the left-hand side of (***) is strict­
ly positive. Thus ^ , Σ * is not a CPE. The proof that E* is not a CPE is 
similar, but y = b(a^'b)(a%y · · · (a^'by in this case. | 

Definition 6.1: Let Σ and Δ be two alphabets and let Ψ be a mapping Ψ : Σ—• 
Δ*. The natural extension of Ψ of the form Ψ(β) = e and for χ = · · · σ̂ ^ 
G Σ*, Ψ(χ) = Ψ(<ΤΙ) · . · Ψ((7 J G Δ* is called a homomorphism from Σ* into 
Δ*. Given a homomorphism ψ : Σ* Δ* and an event Ε Ε Σ*, ^(E) is the 
event Ψ ( ^ ) = [yGA*:y = Ψ(χ) , xeE], (e here is the empty word.) 

Theorem 6.8: The set of CPEs is closed neither under concatenation nor under 
concatenation closure nor under homomorphism. 

an{b) = a,,{b) = a^¿b) = α^βφ) = a,,(b) = αφ) = ajb) = ajb) = ^ 

a,,{b) = a,,(b) = αφ) = αφ) = αφ) = 1 

αφ) = O in all other cases. 

It is left for the reader to verify that the following relation holds 

E, = [ x : n x ) = 0} 
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Proof: E, in Lemma 6.6 is a PCE and so is Σ* (any regular event is a PCE) 
but by Lemma 6.7 and E* are not CPEs. This proves the first two 
statements of the theorem. Now, by Lemma 6.5 Ε,αΣ* is a PCE. Consider 
the natural extension of the following homomorphism: Ψ(α) = a, Ψ(ό) = b, 
Ψ(c) = e. Then Ψ(^,ίΓΣ*) = Ε, Σ* which is not a PCE. This completes the 
proof. I 

Remark: It is well known that regular events are closed under the above 
operations. 

Exercises 6.9: Let Ε be the event consisting of the set of all words a'b a^'b a"' 
b * " a^'b such that ί,Κχ,,.,,κ^ are nonnegative integers and, for some / 
{0 < t <,r), i = Κχ + K2 — ' Kf, Prove that Ε is context-free [see Ginzburg 
(1966)] but is not a CPE (compare with Theorem 1.10). 

Definition 6.2: (Ginzburg, 1966) A generalized sequential machine (GSM) is 
a 6-tuple A = (S, Σ, Δ, ^ o , M, N) where S, Σ, A are finite sets (representing the 
states, input, and output symbols, respectively) Sq is an element of S (the initial 
state) Μ is a function M : 5 χ Σ 5 (the next state function) and Λ'̂  is a 
function N: S χ Σ -> Δ* (the output function). 

The functions Μ and Ν are extended by induction to 5 χ Σ* by defining 
for every state s every word ΧΕΣ* and every σ G Σ 

M(s, e) = s, N(s, e) = e 
M(s, χσ) = M{M(s, x), σ), N(s, χσ) = N(s, x)N(M(s, χ),σ) 

The mapping : Σ* A * defined by Ψ^(Λ:) = N(so, x) where Ν is the 
output function of a given GSM is called as GSM mapping. 

Theorem 6.10: Let be a GSM-mapping : Σ* -> Δ* and let f be a PE 
f : Δ* [0,1] . The product o f defined as o f(x) = /^(Ψ^(χ)) for 
Λ: e Σ* is a PE, i.e. there exists a Ρ A C such that = o/̂ : Σ* -> [0, 1 ]. 
If Β is an RPA, then C can be chosen to be an RPA. 

Proof: Let A = (5 , Σ, Δ, So, M, N) and Β = (Q, π, {Β(δ)}^,^, η'") with 
|5Ί = m and \Q\ = n. Define the PA C = (K, ξ, {C(a)], .^, 7/^0 as follows: 

K = S X Q, \K\=mx n, ξ = (π 0 0 · " 0) 
(n-í)m 

η^' is a column vector consisting of η equal /w-dimensional subvectors every 
such subvector equal to η^. For each σ G Σ C(a) is a square matrix of order 
m X η consisting of n^ blocks Cpg(a), p,q = 1,2,... ,n, each block Cpg(a) SL 
square matrix of order m defined as follows: 

^ ^ ίΒ(Ψ^(σ)) if M(s„a) = s, 

[a zero matrix of order m otherwise 

If Ψ^(σ) = e, then Α(Ψ^(σ)) = B(e) = I = the unit matrix of order m. It is 
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Μ(ν,σ) = 

Ν(ν,σ) = 

ΛΤ(ν,σ) = 

left to the reader to verify that C as defined above is a PA (and if Β is an RPA, 
then so is C) and that it satisfies = o as required. | 

We are now able to establish some connections between CPEs and a 
certain type of context-free language. Familiarity with formal languages [e.g., 
Ginzburg (1966)] is a prerequisite for the following lemmas and theorems. 

Definition 6.3: A context free grammar G = (K, Σ, P, 0(we use here the nota­
tion t for the start symbol, t e V — Σ, instead of σ which stands for an element 
of Σ) is deterministic linear (DL) if the productions in Ρ satisfy the follow­
ing requirements. 
(i) Each production has the form ν αξη or the form ν -> 6 with v, Í G F — 
Σ; a, beΣ, u e Σ*; (ii) if two productions VJ a^x, Vz azy, V I , V2 e K—Σ, 
fli, a2 e Σ; X, y e [e] U (V — ΣΣ* are such that v, = V2 and a^ = Ö2, then 
also X = y, 
A language L cz Σ* is DL if it is generated by a D L grammar. 

Lemma 6.11: Every DL language is an E-event and therefore a PCE. 

Proof: Let L be a DL language generated by the grammar G = (K, Σ, P, t). 
Let Λ be the GSM ^ = (5, Σ, Δ, /, M, N) such that 5 = (K - Σ) U ( / , d), 
fd φ Κ; Δ = Σ and the definitions of Μ and Ν are given by : 

ξ, if V σξΗ e Ρ for some « G Σ* 

/ if v - > a G P or if v = / 

d otherwise 

Ü if V σξα G Ρ for some u e Σ* 

e otherwise 

Let AG' be another GSM AG' = (S, Σ, Δ, t, M, N') Thus AG' differs from 
only in the function which is defined as 

i f v = / 

otherwise 

Let ^2 be the finite automaton AG = (S, Σ, t, M, F) where F = {/} c: 5 , and 
all the other elements are as in AG. 

Let Li = Γ(ν4σ, 0), Li is a regular event by definition. Let χ = x^Xz e Li 
where Xi is the subword of minimal length of χ such that ΛΓ, G L I . If Xi = 
ö'iö'2 · · · (T« then, by the definition of Mi, the following productions are in P : 

ί - ^ σ ι < ί ι ί / ι , <ίΐ a2(Í2«2, . . . , ζκ-2-^<^κ-ΐζκ-1, L - 1 - ^ ( ^ K 

It follows that χ = x^Xz e L if and only if X2 = - " u^. In addition 
it follows from the definitions of Ν and If that Ψ ^ ^ ( χ ι Χ 2 ) = WiW2 · · · w^_i 
while Ψ^ο'(^^^^) = Thus X G Li implies that χ = x^Xz e L if and only if 
X2 = wi . . . w,_i or Ψ^^'(χ) = Ψ^Ο(Λ:). L e t / ^ be the RPE induced by the m-
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adic, /w > 3, PA (see Exercise 3.1) with ^(1) = A{a) and A{2) = A(b) and all 
the other symbols in the alphabet of A are deleted. 

Let be the reverse of which is an RPE by the costruction in the proof 
of Proposition 1.6. It follows from Theorem 6.10 that Ψ^^ o ^ g,' and Ψ ^ Ό 

=g2 are both RPEs. Moreover, it follows from the above considerations 
that if Λ: G Lj, then Λ: G L if and only if gi(x) = giix)- It is clear, from the 
definition of A¿ that if χ G L I , then χ e L. Therefore, in order to complete 
the proof, one has to modify the functions g/ and gi to and g2 so that 
gi(x) = g/(x) if X e L„i=l, 2, but g,(x) Φ giC^) if Λ: ^ L,. Now L^ is 
regular. Let h be the RPE such that h{x) = 1 if Λ: G Li and h{x) = 0 other­
wise. Set gl = g^' y h and g^ = g¿ Λ h. By the construction in the proof of 
Proposition A. 1.9, g^ and g2 are both RPEs. One verifies easily that gj and gj, 
satisfy the above requirements and the proof is complete. 

Lemma 6.12: Let E^ and E^ be two DL languages oyer the alphabets Σ ι 
and Σ2 respectively Σ^ η Σ2 = 0. Let 5 be a letter δ φΣ,υ Σ^. Then Ε,δΕ^ 
is an Ε event (and therefore a CPE). 

Proof: We shall prove the Theorem for Σ ι = {a, b] and Σ2 = [α', b'}. The 
proof for the general case is similar. By Lemma 6.11, we can construct two 
RPEs for E^, g^, and g2 such that χ G ^1 if and only if gi(x) = g2(x). Taking 

in the proof of that lemma to be the RPE induced by the 9-adic PA will 
cause gi{x) and g2(x) to have the following properties: 

a. gi(x) = 1 (if JC G Li, where L^ is as in the proof of Lemma 6.11 for the 
given DL language, including the case χ = e) 
or 

gi(x) = . 6162 - e^>0 with 6, = 1 or 6, = 2 
in any case 0 < gi(x) <, 1. 

b. g2(x) = 0 (if X φ Li as above, including the case χ = e) 
or 

gj^x) = .€1 - ' < I with 6i = 1 or 6/ = 2 
In any case 0 g2(x) < 1. 

Similarly we can construct two RPEs for E2, gi and g2 such that χ e E2 if 
and only if g / ( x ) = g2(xy We shall choose this time to be the RPE induced 
by the 9-adic PA, but A(a') = A(3) and A(b') = A(6). g / and gi ' will have 
the properties: 

a. gi'(x') = 1 or g / ( x O = 6, = 3 or = 6 
0 < g / ( x O 1 

b. g^{x) = 0 or g2'(xO = . 61 . . . e „ e, = 3 or 6, = 6 

0 ^ g 2 ' ( : c O < l 
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We shall extend first the functions g^gz, gigz to the functions Aj, hi. A/, hi 
such that the domain of the new functions will be (Σ U Σ' U δ)*, by adding 
to the underlying PA of each function unit matrices of due dimension for 
all symbols not included in the original domain of the specific function. 

We construct now the RPEs (Corollary A.1.7)^(Ai + A/) = v^i and + 
hi) = Ψ2. Finally, let χ be the characteristic function of the regular event 
Σ*δΣ'* = Ε (i.e., χ(χ) = 1 if Λ: G and χ(χ) = 0 otherwise), and set g = y î V 
g' = ψ^ f\ χ, g and g' are RPEs [Proposition A. 1.9] and g{x) = gXx) if and 
only if x G i^, i.e., if and only if χ has the form χ = ζδγ, ζ G Σ* , j ; G Σ'* 
and ψι(χ) = ψ2(χ\ which happens if and only if Ηγ{ζδγ) + Η/(ζδγ) = 
h2{zδy) + h2(zδy). This is equivalent to gi(z) + g/(y) = giiz) + gi'iy) which 
is equivalent by properties (a), (b), (a'), and (b') to the equations g^z) = giiz) 
and gi(y) = giiy) which hold true if and only if ζ G 1̂ and y e E2. Thus 
X G Ε^δΕ2 if and only if g{x) = g'(x) and ΕιδΕζ is therefore an jE'-event. | 

The lemmas proved above will be used now to prove some undecidability 
results for CPE. Some of the subsequent results and their proofs are similar to 
the ones used in the theory of context-free languages and will be omitted (see 
e.g., Ginsburg, 1966, Chapter 4). 

Lemma 6.13: Consider the following languages: 
For Σ = [a, b, c, a, b\ c \ if χ G {a, 6, c}*, let x ' be the word derived from 

X by replacing every occurrence of a letter in by its primed counterpart, thus 
x ' G {d,b\cr. 

Define = [xcydy'cx' :x,y e. {a, Let χ = ( x i , . . . , x„) and y = 
{yu · · ·» λ ) denote n-tuples of nonempty words in {a, 6}*. Define 

L(x) = {a^- 6 . . . bcxi,'" Xí,:K>1, 1 < iJ < n] 

L(x, y) = L(x) ¿L(yO, y' = (y/ , . . . , 

AU three languages, L„ L(x) and L(x, y) are Ε events for any given χ and y 

Proof: L, is generated by the DL grammar 

G = ([t,ξ,a,b,c,d,a',b\c% {a,b,c,d,a',b\c% P, 0 

where P = {t-^ ata', t btb', t -> αξο', ξ αξα', ζ bζb', ξ d). There­
fore, by Lemma 6.11, is an jF-event. L(x) is generated by the DL grammar 
G = ([t, ^ 0 , . . . , i„, a, b, c], [a, b, c], P, t) where Ρ = {tαξ„ ξο αξ„ ξ, -> 
αξ2,..., ξ„-ι - > αξ„, ζο->€, ξ^-^bζQX^, Í 2 - ^ bξQX2, ,,.,ξ„-* bζoX„} and there­
fore L(x) is also an Ε event. As for the language L(x, y) one can use the 
same proof as the one used for Lemma 6.12 with replaced by in the 
definition of the functions gi and g2 in order to show that L(x, y) is an E-
event as well. 

Lemma 6.14: L(x, y) η L, is an .^-evenf for given χ and y and it contains no 
infinite constext-free language. 
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Proof: ^-events are closed under intersection (see Exercise 4 . a .3 ) . The second 
statement is known (see Ginsburg, 1 9 6 6 ) . | 

Lemma 6.15: Let τ be the homomorphism τ : {a, b, c, d, a', b', c'Y [a, b]* 
defined by τ{α) = ab, τφ) = a^b, x{c) = a'b, x{d) = (^b, τ(α') = a'b, τφ') = 
a^b, T(CO = a'^b. Then T ( L ( X , y) η L,) for given χ and y is a P-event and it 
contains no infinite context-free languages. 

Proof: One can easily construct a GSM mapping : [a, b}* -> [a, b, c, d, 
a'b'c'}* such that Ψ^(Λ: ) = if τ{γ) = χ and Ψ^(χ ) = e otherwise. By Lemma 
6 . 1 4 , L(x, y) η L, is an ^-event and therefore (by CorroUary 6 . 4 ) , a P-event 
of the form T(B, λ) with Β an RPA. By Theorem 6 . 1 0 , g = Hf^of^ is an 
RPE . t For X Ε [a, b}*, if χ = τ(γ) for some y then g(x) = f^C^^x)) = f\y) 
so that g{x) > A if and only if χ 6 T ( L ( X , y) η L,). Let χ be the characteristic 
function of the regular event [ab, a^b,,,, ,a'^b]* and set g' = g Λ Xg' is an 
RPE having the property that T ( L ( X , y) η L , ) = r(g', λ). The second state­
ment of the lemma is well known (see Ginzburg, 1 9 6 6 ) . | 

Lemma 6.16: Each of the following is recursively unsolvable for arbitrary 
L(x, y): (a) whether L(x, y) Π L, is empty, (b) whether T [ L ( X , y) η L,] is 
empty where τ is as in Lemma 6 . 1 5 . 

Proof: This result is well known (see Ginzburg, 1 9 6 6 ) . | 

Theorem 6.17: Let Σ contain at least two elements. It is recursively unsolvable 
to determine for arbitrary P-events T(A, λ) over Σ (a) whether T(A, λ) is empty 
(b) whether T(A, λ) = Σ * (c) whether T(A, λ) is regular and (d) whether 
T(A, λ) is context free. 

Proof: By Lemma 6 . 1 5 , T ( L ( X , y) Π L , ) is a P-event and it can be proved 
that it is either empty or infinite (see Ginzburg, 1 9 6 6 ) . Therefore Lemma 6 . 1 6 
implies, (a). Σ * — T ( L ( X , y) Π L,) is a P-event (Theorem 6 . 3 ) which implies 
(b). Furthermore, T ( L ( X , y) Π L , ) is regular (and therefore also context free) 
if and only if it is empty, by Lemma 6 . 1 5 . Therefore Lemma 6 . 1 6 implies also 
(c) and (d). | 

Exercise 

By Lemma 6 . 1 5 , T ( L ( X , y) Π can be represented in the form T ( L ( X , y) η 
L,) = [x : P(x) > λ} for some RPE p. Let q be the RPE q(x) = i for all χ G 
Σ * . Trove: ρ A q and /? V ^ are RPEs if and only if T ( L ( X , y) η L , ) is empty. 
(This implies that it is recursively unsolvable to determine, for arbitrary RPE's 
ρ and q over Σ * , with | Σ | > 2 ( 1 ) whether /? V ^ is an RPE, ( 2 ) whether 
ρ Aq ism RPE.) 

f A n R P E is a P E g<= such tha t the unde r ly ing P A , c, is a n R P A . 
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Α(α) = A(b) = i f 
1 0 

and let be the PE defined by A. 
Prove that A is not quasidefinite but p"^ is 6-approximable for any 6 > 0 by 

a finite [deterministic] automaton. 

3. L e t / b e a word function and consider a relation P, induced by / over Σ*, 
as follows: xP,y if and only if for all ζ e Σ* \f(xz) - f(yz)\ < e (thus xP,y 
implies that \f{x) - f(y)\ < e), 

a. Prove that P, is symmetric reflexive and right invariant. 
b. Prove that any word function / which is 6-approximable by a finite auto­

maton induces a relation of finite index. 
c. If the word function / is defined by a PA, then the relation P^ is of finite 

index k with 

where η is the number of states of the PA defining / . 

4. Let / be a word function and λ a cut-point. The relation R^ induced by / 
and λ is defined as follows: xR,y if and only if for any ζ G Σ* \f(xz) — λ\> e 
and \f(yz) — λ\> e implies that f(xz) > A if and only if f(yz) > A. 

Prove: 
a. The relation P, defined in Exercise 3 above is a refinement of the relation 

R, here. 
b. If / is induced by a PA, then for any A and e > 0,R, is of finite index. 
c. If the event Ε = [x: f(x) > A] is 6-approximable by a regular event then 

R, is of finite index. 

5. A cut-point event Ε = [x: f(x) > A], where / is a word function, is quasi-
definite if for any 6 there is an integer k(e) such that for any Λ: with l(x)>k(€) 
and any >' e Σ* we have that χ e Ε implies that f(yx) > A — 6 and χ φ Ε 
implies that f(yx) < A + 6. 

EXERCISES 

1. A word function / is called quasidefinite if it has the following property: 
For any 6 , there exists an integer k{€) such that for any χ with l{x) > k{€) the 
inequality \f{x) — f{y)\ < e holds, where y is the /:(6)-suffix of x. 

Prove that any quasidefinite function is 6-approximable by a finite automaton 
[for any given e]. 

2. Let A = (π, 5 , {Α(σ)1 ψ) be a PA over Σ - [a, b] with S = [so, s¿ π = (1 0) 
= (η^Υ and the transition matrices are 

"1 01 
0 1 
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A(a) = 
1 0" 

0 1 
A(b) = 1 i" 

Li f J 
w i t h ^ = r ( ^ ^ ) . 

6. Prove that if / is a quasidefinite function [see Exercise 1] then any cut-point 
event of the form Ε = [x: f(x) > λ] is e-approximable by a regular event. 

7. Prove that any quasidefinite cut-point event [see Exercise 5] is 6-approxi-
mable by a regular event. 

OPEN PROBLEMS 

1. Characterize the word functions which are e-approximable by push down 
automata. 

2. Characterize the events which are 6-approximable by context free languages. 

3. Is the class of PCE e-approximable by context free languages? 

7 . BIBLIOGRAPHICAL NOTES 

Probabilistic cut point events were introduced in the literature by Rabin 
(1963). Some subsequent and other ideas involved in the study of those events 
can be found also in the M.Sc. Thesis of Paz (1962) done in Jerusalem. 

The source papers for the material given in this section is listed below. (It is 
to be mentioned here, however, that some of the theorems and many proof are 
new due to the unifying exposition.) Bukharaev (1964), [see also Bukharaev 
(1965, 1967,1968)]: Theorems 1.8 and 1.9. [The above paper also includes an 
example for Theorem 1.10 but that example is much more complicated than 
the one given here and is mentioned there without proof. The author of this 
book was not able to convince himself that the example of Bukharaev actually 
works.] 

Nasu and Honda (1968): Theorem 1.6, Exercises 1.5 and 2.2. [This paper 
also contains some generalizations of the topics included in Section 4,c]. Page 
(1966): Exercise 2.4 and the considerations concerning the impossibility of 
merging equivalent states in automata defining cut-point events (Figure 17). 
Page also introduced the generalization from PCEs to pseudo probabilistic cut-
point events Paz (1966, 1967d, 1970a, c): Theorems (Lemmas, Corollaries) 1.5, 
1.7, 1.10, 3.2, 3.4, 3.6, 3.7, 4.2, 4.8, 4.9, 4.10, 4.11, Sections 4,b and 4,c. 

a. Prove that if / is a quasidefinite function [see Exercise 1] then the cut-
point event Ε = [x: f(x) > λ] is quasidefinite for any λ, 

b. Prove that the converse of the above statement is not true by considering 
the function induced by the PA = (π, S, [Α(σ)}, η') with π = (1 0) = (η')^ 
Σ = [a, b] and 
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Exercises 1.2, 1.7, 1.8, 3.1, 3.12, 3.13, 4.2, 4.3. Rabin (1963): Teorems 1.2, 
2.2, 2.3, 3.1, 3.3, 4.17 (private communication, Rabin proved also a weaker 
version of Theorem 4.16), Exercise 3.2 and our proposition 5.4 here is some­
what related to Theorem 5 in Rabin (1963). Salomaa (1965, 1966, 1967): 
Exercises 1.11, 3.5, 3.6, 3.7, 3.8, 3.9. Starke (1966a, c): Exercises 1.1, 1.3, 1.4, 
2.1, 2.3. Turakainen (1968) Theorems 1.1, 1.4, 1.5, Section 4.a, Exercises 1.6, 
3.10. The following are three additional recent works relevant to the subjects 
considered in this section: Flachs (1967), Yasui and Yajima (1969), and Tura­
kainen (1969-b). See also: Rose and UUian (1963), Even (1964), Kfoury and 
Liu (1969), Paz (1967c). 

After a first example of a linear bounded language which is not a CPE has 
been found by the author of this book (Theorem 1.10) and distributed as a 
private communication (1969) Nasu and Honda used Paz's idea and gave an­
other example of a context-free language which is not a CPE (their language 
is given here as Exercise 6.9 and was also distributed as a private communica­
tion (1970)). Using the language of Nasu and Honda as a starting point Tura­
kainen (1970a, b) managed to prove the nonclosure properties of CPE given in 
section 6. Thus Section 6 up to and including Theorem 6.8 is based on the 
works of Turakainen (1969b, 1970a, 1970b). The rest of that section beginning 
from Exercise 6.9 and on is based on the work of Nasu and Honda (1970). 
See also Schützenberger (1962). 



Chapter IV 

Applications 
and 
Generalizations 

INTRODUCWON 

This part contains an extended survey of most known papers dealing with 
applications and generalizations of probabilistic automata theory. 

There have been some attempts to apply the theory of probabilistics auto­
mata to other disciplines. These attempts are however still in the begmning 
stages. We choose therefore to supply the reader with an extended bibliography 
including explanatory remarks as to the nature or direction of the intended 
application or generalizations. 

A. INFORMATION THEORY 

One of the motivations for studying probabilistic sequential machines [see e.g. 
Carlyle (1963a)] was the fact that communication channels (Shannon and 
Weaver, 1968) can be represented as stochastic sequential machines. The 
topics studied in connection with the theory of information using probabilistic 
machines are: probability structure of channels-Carlyle (1963a, b), Onicescu 
and Guiasu (1965), Thomasian (1963), Wolfowitz (1963); encoding and de­
coding of finite state channels-Ott (1966a, b), Viterbi (1967), Guiasu (1968) 
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Β· RELUBELITY 

When a deterministic automaton has some unreliable elements then its external 
behavior is probabilistic, thus, another motivation for studying probabilistic 
automata was the reliability problem. In connection with this aspect, the reader 
is referred to Von Neuman (1956) and Rabin (1963). An additional interesting 
reference can found in the book of Cowan and Winograd (1963). Many 
authors working in reliability theory have attempted to construct reliable net­
works using unreliable components but the resulting network was always of 
the "definite" type. Cowan and Winograd showed that this is not a coincidence. 
They showed that, as a result of the axioms imposed on the network and the 
unreliable behavior of its components, the resulting probabilistic automaton 
satisfies the conditions of the Theorem 4.16 in Section ΙΙΙ,Β of Rabin and 
therefore the reliable network must be definite. Additional relatted bibliography: 
Arbib (1965) Harrison (1965) Tsertzvadze (1966) Germanov (1966). 

C. LEARNING THEORY AND PATTERN RECOGNmON 

Still another motivation for studying stochastic automata was the possibility of 
using them as models of learning and pattern recognition systems [e.g. Tsetslin 
(1961), Schreider (1962), Bruce and Fu (1963)]. The model used by Tsetslin 
consists of a deterministic automaton subject to a probabilistic training 
process. The input to the deterministic automaton is random and represents 
the reaction of a medium ("teacher") to the performance of the automaton. 
Two inputs are possible, 1 (representing a penalty) and 0 (representing a 
nonpenalty) and the medium will insert its next input to the automaton in 
a random way, the probability of a penalty or nonpenalty depending on the 
present state. Let {i/}?=i be the set of states of the (deterministic) automaton 
and let pt be the probability of receiving a penalty in state Si. The auto­
maton is called expedient if its expectation (in the long run) for receiving a 
penalty is less than the average of the pß. It is easy to see that the model 
corresponding to the above description is a probabilistic automaton with a 
single letter in the alphabet (the i-th row of its single transition matrix is the 
convex combination of the /-th rows of the transition matrices of the determin­
istic automaton corresponding to the inputs 0 and 1 respectively, and the 

Viterbi and Odenwalder (1969). Other related references: Blackwell et al. 
(1958) Huffman (1952) Fano (1961) Shannon (1957), Paz (1965), Souza, 
et al. (1969). 
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coefficients of the combination are pt and 1 — p,). Tsetslin who initiated the 
study of expediency (as explained above) of deterministic automata in random 
media was followed by many authors who extended and generalized its ap­
proach, allowing for changes in the transition probabilities induced by con­
trolled learning, and using reinforcement algorithm: Bush and Mosteller (1955) 
Bruce and Fu(1963), Tsertsvadze (1963), Varshavskii and Vorontsova (1963), 
Fu and McMurtry (1965), Fu and McLaren (1965), Vorontzóva (1965), 
McMurtry and Fu (1966), and Fu and Wee (1967). Other related biblio­
graphy: Suppes and Atkinson (1960), Braines and Svechinsky (1962), Krulee 
and Kuick (1964), Vaisborg and Rosenstein (1965), Sklansky (1966), Fu 
(1966, 1967), Wee and Fu (1969), Gelenbe (1969b). 

D. CONTROL 

It occured to several authors that control systems [e.g. Eaton and Zadeh 
(1962)] can be modelized by stochastic machines, with input symbols repre­
senting commands, after some additional structure is added to take care of the 
costs associated with the transitions between the states. In this representation, 
a policy is a function associating commands to the states of the system and the 
policies are characterized by their expected costs. Some results in control 
theory, using this interpretation can be foundl in the works of Page (1965) and 
Arbib (1966). Other related bibliography: Zadeh (1963b); Screider (1962); 
Pospelov (1966), Kaiman (1968), Kaiman, et al. (1969). 

Ε. OTHER APPLICATONS 

A connection between stochastic automata and the problem of time sharing in 
computer programming has been established by Kashiap (1966) and the theory 
of functions of Markov chains has been used by Fox and Rubin (1965) for 
statistical inference (for evaluating the cloud cover estimation of parameters 
and godness of fit based on Boston data). See also Lewis (1966). 

F. EXTENSIONS AND CONNECTIONS TO OTHER THEORIES 

Probabilistic extension of Turing machines have been studied by De Loeuw et 
al. (1956), Santos (1969), and Ellis (1969). Probabilistic extensions of context 
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free languages have been considered by Salomaa (1969-b) and Ellis (1969). 
Probabilistic extension of time variant machine has been studied by Turakainen 
(1969a). Tree automata with a probabilistic structure have been studied by 
Magidor and Moran (1969), Paz (1968a), and Ellis (1969). Some properties of 
fuzzy automata similar to properties of probabilistic automata have been 
established by Santos and Wee (1968) and by Mizimoto et al (1969), an 
approach to stochastic automata and systems, from the point of view of the 
theory of categories can be found in the works of Heller (1967) and Depeyrot 
(1968) finally, some connections with dynamical programming has been 
established by Feichtinger (1968) [see also Howard (I960)]. Additional refer­
ences.: Wing and Demetrious (1964), Warfield (1968), Tou (1968), Li and Fu 
(1969). 
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Answers and
Hints to
Selected
Exercises

SECTION I, A.I

La.

A(vlu) = [;:} l1(vlu) = [:J
n(vlu) = (t, i), ft(vlu) = (t, t), p,,(v, u) = .~

Lb.

(vlu) = [~J
p,,(vlu) = 0 = p,,(aball00)

A(vlu) = [~ ~J.
ft(vlu)-not defined,n(vlu) = (0,0)

5.a. 9/16
5.b. 87/128
6. A(all) has negative entries.

A(bll) has entries bigger than 1.
A(aIO) + A(bIO) is not a stochastic matrix.
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SECTION I, A.2

Answers and Hints to Selected Exercises

5.a. p,,(abblO10) = O.

5.b. q(aIOll, bb) = 1/4m + 1/2n, where (m, n) is the initial distribution.

5.c. r(allI01) = tim + tn.

7.

I(Ola) = [~ ~J. lOla) = [~ ~J

SECTION I, A.3

2.

A(O) ~ 1[~
1

!] H[~
0

~]H[~
1

![ +rt[~
0

!]0 1 0 0
0 0 0 0

A(l) ~ i[~
0

~] H[!
0

~JH[~
0

~11 0 1
0 0 1 O~

121 =6

A= [~
1 1 1 0

~J.
4" lr n
5 0 0 1

etc.
lr 4"

4. IWM11 = 10; IwM'1 = 5.

SECTION I, B.t

2.

l::~J
I t i
I t i

3. Hint: Let M be a machine over an input alphabet X with IXI = m - I
where m is the number of colums in the given matrix H, and output alphabet
IYI = 2, define the matrices A(ylx) as follows: A(ydxj ) has its first column
equal to the ith column of H all its other entries being zero and A(Yzlxj ) has
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its first column such that with all the entries in the other columns zero
A(Yllx/) + A(yz!x/) is stochastic.

SECTION I, B.2

1. Reduced form:

-} 0]to,
t 0

A(y,lx) ~ [~ I 1]If "If

t t
3 3
If "If

Minimal form:

A(Yllx) = [: ~J. A(Yzlx) = [l :J
(-h 0 0 *) is a distribution which is equivalent to the distribution
(t t t t)·
5. Given that It = ~r=1 aJfl' ~r=l aJ = 1, aJ> 0 we have that 1t(1 - aJ =
~r"l aJfJ or It = ~J"'l [aJ/(1 - aJ]fJ [since It is not extremal 0 < 1- a j < 1]
and

~~=1, ~>O
J"'/ 1 - a/ 1 - a/ -

1La. Hint: Let F denote the given flat and let ao be an element of F; prove
that the set U = {a - aa: a E F} is a linear space.

b. Hint: Define the equivalence Rover f!lJn-nRp {=} nHM = pHM where
n, p E f!IJn-' Show that R is right invariant and the set of equivalence classes
is closed under convex combinations. Show also that each equivalence class is
closed under convex combination of its elements. The rest of the proof is
straightforward.

SECTION I, B.3

1. All the rows of HM are different vertices of the lSI-cube and no vertex of
the cube is a convex combination of other vertices.
3. M* >M,Ml:M*.

8. Let V/ represent the ith row in HM, then the faces are: {VI> vz}, {vz, V3}, {V3, V4},
(vs, VI}, {vs, vz}, {vs, v3}, {vs, v4}, {VI' Vz, vs}, {VI> V4, vs}, {v4, V3, vs}, {vz, V3, vs},
(VI> VZ, V3, v4}, (VI' Vz, V3, vs}. The faces containing two or three vertices above
are simplexes.
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11. HM has two columns one of them having all its entries equal to 1; there­
fore, there are two rows in HM such that all the other rows are convexly de­
pendent on those two rows. The theorem follows from Theorem 2.8 in the
previous section.

SECTION I, B.4

3. M* > M, Ml: M*.

SECTION I, B.6

2. Yes.

3.

: : ~J
100
000

3.b. The trivial machine M* with a single state and such that A*(OjO) =
A*(Ojl) = A*(OI2) = 1, A*(lIO) = A*(III) = A*(l12) = 0 satisfies the con­
ditions.

5. Proof: Let hi,," ., him be m linearly independent rows of HM. As rank
HM = m, all the other rows of H M are linearly dependent on hi" ... ,him' Let
e(ylx) be a row in a matrix of M. There is a vector e'(Ylx) having nonzero
entries only in columns corresponding to the indexes il> ... , im [the entries in
e'(Ylx) may assume now negative values or values bigger than 1] and such that
e(ylx)HM = e'(yjx)HM, since e(ylx)HM is a vector which represents a linear
combination of the rows of HM.

Using an argument similar to the one used in the proof of Theorem 2.3 we
see that the machine M', defined as the machine derived from M by replacing
all vectors e(Ylx) in the matrices A(ylx) by the corresponding vectors e'(Ylx),
is state equivalent to M and all the columns in the matrices A'(Ylx) corre­
sponding to indexes other than il>' .. ,im are zero columns. The machine M'
can now be reduced to an equivalent m-state machine Mil for only the states
corresponding to the indexes il> ... , i m are accessible in M'.
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SECTION I, B.7

1.a.

[

-} 0 t OJ
1 1 0 0

G(M.,,)= "2" "2"

i itO'
i 0 t i

[1 7 7jIf If

1 1 0
WH,,,) = "2

1 3 1
4" "2"

1 1 3"2" 4"

213

2. Consider formula (28). The number of linearly independent rows in [[(lM,,,)]
equals rank WM,,,) therefore there must be at least that many rows in KM* so
that rank M* > rank WM,,,>.

4. x* = (t, t)

A*(OIO) = [; ~J. A*(110) = [: ~J
A*(Oll) = [~ ;J. A*(1/1) = [~ :J

5.

A'(OIO) ~ [i 0

H A'(lIO) ~ [~
1

~]
"2"

1 0"2

0 1
"2"

A'(OII) ~ [;

0

H A'(lll) ~ [~
3

~]
4"

3 04"

3 04"

x* = [t 0 }]
No further reduction is possible in this case.

6.

HM~ li 1lj1 0o 1 = WM,,,)

o 0
and there is no convex polygon inside the unit cube with less than four
vertices in two dimensional plane which covers the unit cube [the rows of HM,
ignoring the first coordinate].
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SECTION I, C.2

Answers and Hints to Selected Exercises

1. By definition pOIA) = 1 and any compound sequence determinant of order
2 is equal to zero. Thus

I
P(AIA)

p(vlu)

or p(vv'juu') = p(vju)p(v'lu').

SECTION I, C.3

p(v'lu') I-0
p(vv'luu')

3.

[ 1 -fIrrJ
p = -fo- -/0-' Q = [7 1J

n = [-Ar -fIrrJ,

4.b. It is easily seen that AM(V), for any v E y* has the form

[~ 0 ~]
where a > 0 so that 11M(v) = AM(V) 11 is a column vector whose first entry has
a positive and < 1 value for any v E Y*. As the sum of the matrices AM(O) +
AM(1) has row sums equal to 1, this is true also for the sums

L: AM(v) so that L: p"M(a) = 1.
v:l(v)~k v:l(v)~k

The required statement is proved now by induction on the length of v. For
l(v) = 1, the proof results from straightforward computation. We consider now
p"M(1V) andp"M(Ov) for l(v) = k.

p"M(lv) = nA(1)11(v) = [-t --fo -/o-J[; ~ ~][:~:~1
tOO c(v)
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thus, 0 < p"M(1v) < p"M(1) < 1. Considering now the value p"M(Ov), we have
that

0] [a(v)]o b(v)

--t c(v)

= t ta(v) - -lo i-b(v) - -lo tc(v)

It is clear from the definitions of the matrices that either both b(v) and c(v) are
> 0 or both values are < O. In the second case, p"M (Ov) > O. In the first case
p"M(V) = ta(v) - -lob(v) - -loc(v) > 0 by the induction hypothesis. There­
fore,

ta(v) > -lob(v) + -loc(v)

or
t ta(v) > t -lob(v) + t -loc(v»i- -lob(v) + t -loc(v)

or
p"M(OV) > 0

It follows thatp"M(Ov) > 0 andp"M(1v) > O. But I:vp"M(OV) + p"M(1v) = 1;
and, therefore, both values are also < 1.

4.c. Hint: Use eigenvalue considerations.

9. Hint: Use the nulity laws of Sylvester and the fact that the ranks of the
spaces of the vectors n(vlu) and l1(vlu) grow strictly when lev, u) grows or else
the ranks do not grow any more.

10. Hint: Use Exercise 9.

SECTION II, A.I

4.d. Let P = (Pu) be the matrix such that Pu = t if j = i or j = i + 2 and
Pu = 0 otherwise. Show that o(pn) = 1 for n = 1,2, ... but limn~= d(pn) = O.
4.e. d(P) = 0 implies that P is constant.
6. Let E be the matrix all the rows of which are equal to some row of P then
Q = P - E = P - RP where R is a matrix having a column of ones all the
other columns being zero columns. Now use Corollary 1.5.

11. Use induction. If n = 2, then

IIAIAz- AIA211 < IIAIAz- AIAzl1 + IIAIAz- AIAzII = II(AI - AI)AzII
+ IIAI(Az- Az)II < IIAI - AIIIIIAzII + IIAdlllAz- Azil < 2f

by Exercise 10 and by the assumption.
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12. liP - Pi.II = liP - RPII < 2o(P) by Corollary 1.5 where R is a matrix
whose io column is a column of ones, the other columns being zero columns.
Thus o(P) > tilP - pi.ll. On the other hand 20(P) = SUPi. liP - Pi.II which
proves the second part of the exercise.

13.a. o(P) = 0 implies that P is constant and an infinite constant matrix can­
not be doubly stochastic.
13.b. A matrix P is doubly stochastic if and only if A and AT are both stochastic.
If P and Q are doubly stochastic, then PQ is stochastic and (PQ)T = QTp Tis a
stochastic matrix because QT and p Tare stochastic.
l3.c. One proves easily that EP' = E thus lIP' - Ell = liP' - EP'II <
o(p') ~ O.

13.d. If the statement is not true, then for some 0 < £ < t- there is n such
that o(p') < £ < t. There is k such that for given io, I:J=I pi:] > 1 - £. But
for any io, and i

k
II: pi:) - pij)I< o(P') < £
J=I

This implies that I:J=I pij) > 1 - 2£, i = 1,2, ... or

but
00 k

I: I: pi'} = k,
i=1 J=I

a contradiction.

14. Use the fact that if Q = lim._oo P' then PQ = QP = Q.

SECTION II, A.2

3.

IlnP. - nil < IlnHm• - nil + IlnHm• - nP.11
IlnHm• - nP.11 = IlnHm.•-IP. - nP.11

= II(nHm•• - 1- n)P.11 < IlnHm.•-1- nil
Thus,

IlnP. - nil < IInHm• - nil + IlnHm,.-1 - nil ~ 0

4.

IIP.p.p.-IP.- I ... PIPI - p.-IP.- I ., . PIPIII
< o(p._IP._ 1 ••• PIP1) < o(P.-ao(P.- I ) ••• o(P1)~ O.

This implies that lim._oo p.p.p.-1P.- 1 ••• PIP! = S exists [since the infinite
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sequence of products is bounded]. That S is constant follows from the fact that
c5(S) = lim.~~ c5(P,P,P'_ 1 ••• PIP!) < lim.~~ c5(p,P'_ 1 ••• PI) = 0

5. See Exercise 4.d in Section II, A.1.

6. See Exercise 4.a in Section II, A.I.

13. Hint: Use Exercise 4 in this section.

SECTION II, A.4

4. S = {SIl"" s.}, Sjr = Si+1 for i = 1,2, ... , n - 2 and s._lr = {s.. SI},

s.r = SI'

9. Hint: Show that at most 2' states can have a common consequent of order
n.

10. Let Pbedefinedas follows: P= [Pi/] withp.1 = lin, P•• = 1- (lIn), Pi! = °
otherwise. It is easy to see that y(P) = Iim.~~ P.I = 0, but the first column of
P has all its entries different from zero.

11. See Exercise 4.d in Section II, A.1.

12. The matrices (lin) I;::'=I pm are stochastic and a~y sequence of stochastic
[therefore bounded] matrices has a convergent subsequence. It suffices to show
that all the convergent subsequences have the same limit. Let nil nz, ... , n j

be a subsequence of integers such that Q = lim'J~~ (lln j ) I;;::~I pm exists. Then
QP = PQ = lim (lin) I;;::~1 pm and the two limits are equal, since they differ
by the terms p'J+llnj , Pln j which tend to zero when n j ~ 00. Similarly, for
any n, Q = QP' = P'Q which implies that Q = QR = RQ for any limit R of
another subsequence of averages of matrices. Using the same argument one
finds that R = QR = RQ or R = Q.

15. See Exercise 12 above.
17. By Exercise 16, the equations

(XI'" x.)[I - P] = 0; I; XI = 1 (*)

have a unique solution. Thus det [I - P] = 0 and [I - P] has rank n - 1.
The system of equations (*) can be shown to be equivalent to the system

(XI' •• x.)[I - [P - I1er]] = er

where 11 denotes a column vector with all its entries equal to 1 and er is the
rth row of P. Thus det [I - [P - I1er]] *- 0 and both parts of the exercise
follow.
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18.

Answers and Hints to Selected Exercises

[
2 1 2]"5" "5" "5"
2 1 2
1) 1i ,-

2 1 2
,- 1) ,-

21. Let Q = limn~= pn. Then Q is constant and QPk = 0 for all k. Let
1t = (1tJ be a row of Q, then 1t11/ = 1tT • Thus the vectors 11/ all satisfy the
equation of the (n - I)-dimensional hyperplane 1t I X I + 1t2 X 2 + ... + 1tn X n

= 1tT •

22a.

b.

[

i 0 0 i]o 1 1 0
A = "2"2 ,

o i i 0
i 0 0 i

[

I ~ 00]
1 1 0 0

B= 2 "2

o 0 i i
o 0 ~ i

y(AB) = 1 > 0, y(Ak) = y(Jk) = 0

[

i ~ 0 0] [i i 0 0]o 1 1 0 1 1 0 0
A- 2"2 B= "2 "2

-000 l' iiOO
000 I 0 0 i i

y(AB) = 0, y(Al) > 0, y(B2) > 0
23. It follows from the assumption that PQn '" P. There is n such that Qn is
scrambling so that also PQn is scrambling and also P is scrambling.

25. Let Qx = limn~= A(xn), then

IIA(yx) - Qxll
< jIA(yx) - A(x) II + IIA(x) - Qxll
= IIA(y)A(x) - A(x)11 + IIA(x) - QxA(x)11

< 20(A(x)) + 20(A(x))

which tends to zero with n.

26. If P = [Pij] is a matrix of order n such that Pij 01= 0 for j = i and j =
i + I only then P satisfies H 2 of order n - I, which is minimal.
28. Use Exercise 4.

29. Use Theorem 4.9.

30. Use Exercise 4.9.

31. Use Exercise 4.10.
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6. Hint: Use Exercise 5 and induction on the length of x.
7. For any 2-state matrix P(u) = [Pij(u)], one can prove that

[
Ul(U) Uz(U)] [UzCU) -UzCU)]

P(u) = + AP

u1(o') uzCu) -u1(u) uz(u)

where uI(u) = PZ1(u)/(PuCu) + PZI(U», uzCu) = 1 - uI(u). Under the as­
sumptions uI(u) and uz(u) are independent of U and therefore,

P(uIUZ) = [UI Uz] + APCcn)AP (C1l)[ U
z -uz]

U1 Uz -UI U

since limk_~ AP(,TI) AP(",) ••• AP(",) = 0, the limiting matrix is

9. As in Exercise 8, we have that the limiting matrix is

[
UI uz] . [Uz - uz]+ hm 1tAP

'
UI Uz Ul -UI

SECTION IT, B.1

6. Using the ordinary probability laws, resolve first the probability of the
state of the whole system, given the present and past, into the probabilities of
the next states of the separate systems A and B given the same, then use the
Markov property of the two systems to eliminate the dependence on the past,
and then combine back, proving that the resulting probability for the whole
system depends only on its present situation.

SECTION II, B.2

1.b. The matrix VU has stochastic submatrices in its diagonal parts with
rows and columns corresponding to the same block 1t{ of 1t and, because of the
lumpability condition, every column in the matrix A(u)V has all the entries
corresponding to the same block 1t{ equal one to the other. This implies that
VUA(u)V = A(u)V.
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1.c. Use the property 2.1.b proved above.

1.d. As in 2.1.b the matrix VU has stochastic submatrices in its diagonal
parts with rows and columns corresponding to the same block '!tj of '!t, more­
over the rows of those submatrices are equal. This fact together with the con­
dition that VUA(o')V = A(a)V implies that all the entries in a column of
A(a)V corresponding to the same block '!t j of '!t are equal one to the other
which implies the lumpability condition.

2.

~ [0.5 0.5J
A(a) = 0.3 0.7'

~ [0.4 0.6 J
A(b) = 0.75 0.25

3. The system A is equivalent to the cascade product of the two systems

B = ('!t, {B(am and C = ('r, {C(i, 0'))

with

and

[
0.4 0.6J

B(a) = 0.5 0.5' [
0.3 0.7J

B(b) = 0.2 0.8

[
0.5 0.5J

C(l, a) = ° 1 '

C(l, b) = [~ ~J.

[
0.8

C(2, a) = 0.5

[
0.4

C(2, b) = 0.3

0.2J
0.5

0.6J
0.7

4. The system A is equivalent to the cascade product of the systems B =
(T1{B(am and C = (T2{C(s, am with T1= {SIS2}, T2 = {Sl'S2'} when the
states (SI S2') and (S2' s/) of the composite system are merged at the output and
the transition matrices of Band C are defined as follows

[0.4 0.6 J [0.3 0.7J
C(Sl> b) = [0~2 0~8JB(a) =

0.25 ' B(b) = 0.2 0.80.75

[0.5 0.5 J [0.4 0.6J [0.3 0.7J
C(Sl> a) = 0.75 0.25 ' C(S2' a) = 0.6 0.4 ' C(S2' b) = 0.7 0.3
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5. Let P" be a compound sequence matrix of maximal rank for f The entries
in P" are of the form f(viav/): Assume that there is some 0 in Vi and let
VI = wioakl where ki is some integer [including 0 in which case aO = A] and
WI is a word. Then, f(viav/) = f(w;f)ak1v/) = (f(w/j)/f(EJ»f(oak1av/) [by
(22)] one can replace therefore the sequence VI by the sequence oak. without
affecting the nonsingularity of the compound sequence matrix [the factor
f(wiEJ)/f(o) multiplies all the entries in the ith row of P and it is assumed that
f(o) -=1= 0]. If there is no symbol 0 in Vi> then VI = akl. To complete the ex­
ercise one uses a similar argument for the columns of P".

6. Let at> considered as a block of the partition 1: over S contain the states
S11' SI" ... ,Sik(1) where k(i) is the rank of a l • Consider the partition 1:' which
is the same as 1:, but the block at of 1: is split into k(i) blocks containing the
states SI) as their single elements. Let f' be the function corresponding to the
new partition 1:'. Then f(vaiv') = 1:j~rf'(VSiJV'). But the compound sequence
matrices whose elements are of the form f'(vs l ) v') are of rank 1 = rest,).

7. As in Example 16 one can always find a nonsingular diagonal matrix X
satisfying the condition ii' = Xii and then define A' = XAX-I n' = nX-1
with n'ii' = nX-1 Xii = nii = 1 and A'ii' = A'XI1 = XAii = Xii = ii'.

8. Let G, H, G', H' be the G and H [see the proof of Theorem 1.12 for de­
finitions) matrices corresponding to.A and.A' respectively. .A and .A' being
equivalent we have that GH = G'H' and GAH = G'A'H'. But rank f = lSI
and therefore G and Hare nonsingular so that A = G-IG'A'H'H-I and
G-1G'H'H-1 = G-1GHH-1 = I. Let now B = G-1G' and C = HH-I.

9. Prove that the conditions in Example 17 are satisfied for this case.
12. Use Exercise 9 above.

SECTION II, C.2

7.c. It follows from Corollary 2.13 that XA(a) = A'(a)X for a nonsingular
matrix X. If f is an eigenvalue for A(a) then A(a)eT = feT for some vector e
and therefore A'(a)XeT = XA(a)eT = fXeT which proves that f is an eigen­
value for A'(a) with eigenvector XeT

• Similarly, if f is an eigenvalue for A'(a)
with row eigenvector e, then eXA(a) = c;A'(a)X = feX so that eX is a row
eigenvector for A(a) with same eigenvalue.



222 Answers and Hints to Selected Exercises

8. Use the Sylvester inequalities for matrices.

10. Let X be the unity matrix with an additional all zero row. Show that
the conditions of Theorem 2.15 are satisfied for this matrix X under the con­
ditions of the exercise.

11. Let X be the matrix whose rows are all 21S \ vectors of dimension lSI
with entries zero or one. Show that the conditions of Theorem 2.15 are satis­
fied for this matrix X under the conditions of the exercise.

12. See Exercise 2.7.c.
13. Let t be the maximal absolute value of the eigenvalues of a matrix AAT.
It can be shown that t satisfies the inequality (eA, eA) < we, e) where e is
any row vector and (e, e) denotes the scalar product of e bye. Let X in
Theorem 2.15 be the matrix with 2[SI rows, its rows being all possible ISI­
dimensional vectors with entries either 0 or 1. Let e be a row of X, then
(eA, eA) < (I/ISj)(e, e) < 1, for (e, e) < [SI. This proves that the conditions
of Theorem 2.15 are satisfied.

SECTION III, A.2

1. h = ~ I + ~ g = ~ + -HI - g).

5. Change the matrices A(a) into (/SI + 1) x (lSI + I) matrices with first
column an all zero column and first row of form (0, 11:), the remaining lSI x IS/
diagonal submatrix of A'(a) being equal to the matrix A(a).

9. Express I1- gl in terms of the operations "V" and "1\" and use Pro­
position 2.3.

SECTION III, B

5. Use Exercise 1 in Section III, A.2.

7. Let u = a 1 ••• ano u' = at'· .. am' and define the following equivalence
relation R: uRu' if and only if (I) nA(a! ... a.-I) = nA(a l ' ••• am-t'); (2)
A(yla.) = A(ylam') for all y E Y. R is right invariant, of finite index and
PM(ylu) > A if and only if PM(ylu') > A..

The reader will find additional hints and answers by consulting the biblio­
graphical notes associated with each section.
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