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Knowledge, Uncertainty and Ignorance 
in Logic: Bilattices and beyond * 

George Gargov 

ABSTRACT. In the paper we present a survey of some approaches to the semantics of many­
valued propositional systems. These approaches are inspired on one hand by classical 
problems in the investigations of logical aspects of epistemic activity: knowledge and truth, 
contradictions, beliefs, reliability of data, etc. On the other hand they reflect contemporary 
concerns of researchers in Artificial Intelligence (and Cognitive Science in general) with 
inferences drawn from imperfect information, even from total ignorance. We treat the 
mathematical apparatus that has emerged recently: algebraic structures related to the new 
logical systems in the same way Boolean algebras correspond to classical logic. 

Keywords: bilattices, info-algebras, logical practices, knowledge, many-valued logics, set 
expansions, truth values, uncertainty. 

Introduction 

Judging from the vast numbers of papers published, it could be said that the interest 
in the study of reasoning has never been keener. Although there is a millennia old 
tradition in this field, only recently logicians have been joined hy cognitive 
scientists, specialists in artificial intelligence and information transfer, knowledge 
engineers, linguists, etc. in the pursuit of the ultimate goal: to find out how humans 
reason in order to distill some universal principles of effective reasoning and thus 
be able to design intelligent artefacts (that possess or at least simulate reasoning 
capabilities apparently characteristic of humans). 

• Editorial note. This is the last paper of George Gargov. It has heen found hy his 
wife in Gargov's computer. Probably this is an initial step for a book on hilattices, 
which George planned to write conjointly with Prof. Melvin Fitting. 
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Let us begin our very short survey of the basic intuitions behind truth values, truth­
table methods and semantical inference with an outline of the classical logical 
doctrine concerning reasoning. According to it logic deals with correct reasoning, 
this notion being explicated as referring to transformations of statements which, if 
applied to true ones, lead to true statements, hence the importance of truth values. 
The basic thesis of classical formal logic concerning truth values seems to be that in 
every epistemic situation a well-formed statement A is always assumed either true 
or false, but not both, although sometimes the exact truth value is (temporarily!) 
unknown. Moreover, the truth value of a compound statement is recoverable from 
its syntactic structure and the truth values of the components (although this might 
lead to enquiries about other epistemic situations). 

Thus (1) the problem of how the truth values are obtained is radically separated 
from the ontological problem of their existence; (2) the definiteness of truth values 
regardless of any difficulties in their actual establishing is assumed; and (3) in a 
sense perfect information about every conceivable (even remote) situation is 
postulated, independent from the state of the observer (the intelligent agent). 

For the formal implementation of the above doctrine one associates with an 
epistemic situation a truth assignment (a semantical evaluation function) v which 
assigns each statement A a definite truth value from the set {true, false}(v: 
Fml~ {true ,false}). For typographical reasons we use below I instead of true and 
0 instead of false. Assuming the usual interpretation of the classical connectives, 
i.e., assuming that all connectives are truth-funcional, this set (the smallest possible 
logical matrix) is the Boolean algebra 2 = <{0,1 ),/\,v,-,0,1>. Thus classical 
semantics is represented by some set H of homomorphisms into 2. The definition of 
semantic consequence relation: ri=A (where r is a set of statements, A - a 
statement) ifV'vEH (V'BEf(v(B) =I)=> v(A)=l), captures the basic intuition about 
sound inference: that it should transmit the truth forward, i.e. if all hypotheses of an 
inference are true (in a situation) then the conclusion should also be true (in the 
same situation). 

For reasoning involving intensional connectives (not truth-functional m 2) like 
modalities, tense operators, etc., a more sophisticated version is needed: 

Example 1 Here we allow many epistemic situations, or possible worlds, with 
several accessibility relations between them (but keeping them all binary): thus we 
can accommodate most of the unary intensional connectives (modal, temporal, 
deontic, etc.) and some of the binary ones such as conditionals, data connectives, 
etc. In this approach a frame F is a tuple <W,{ Ri} iE 1>, of which 

(I) W is a non-empty set of possible worlds; 
(2) R. are binary relations in W, i.e., R.~WxW. 

I I 

A model M (on a frame F) is a pair <F,cj>> where cj> is a truth assignment (valuation 
function), i.e. 

cj>: WxVar(L) ~ 2. 
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Knowledge, Uncertainty and Ignorance 197 

In a model M the function cp can be extended to a mapping cpM: Wx.L ~ 2 by the 

well-known truth conditions for different connectives, for example (writing M,w I= 
A instead of cpM(w,A) =I) 

M,wi=A."B iff M,w I= A and M,w I= B, or 

M,wi:::[].A iff 'v'w'(wR.w' => M,w'l= A), etc. 
I I 

Writing IIAIIM for {w: M,wi=A} we get a mapping of .£into the intensional algebra 

A(F) of the frame F (i.e. the algebra of all subsets of W <t.J(W),n,u, ... ,{D.}. 
1
>, 

1 IE 

where the intensional (e.g. modal, temporal, etc.) operations are defined as, e.g., 

D.z = {w: 'v'w'(wR.w' => w'eZ)}). II.IIM is a homomorphism: IIA/\BII = IIAIIniiBII, ... , 
I I 

IID.AII = O.IIAII. We denote IIAIIM = W by M I= A and the fact that for all models M 
I I 

based on F, M I= A , by F I= A. 
The important point for our exposition is that a possible worlds frame F is 
synonymous with an intensional (modal) algebra A(F), while a model M 
corresponds to a homomorphism of L into A(F), i.e. a member of Hom(.L,A(F)). In 
this way all connectives become in fact truth-functional, though in respect to 
another (more complex) logical matrix, in which the truth values are sets of possible 
worlds, traditionally called propositions. 

Given a class of such models there are at least three possibilities for defining the 
notion of semantic consequence. 

I. r l=o A iff 'v'M'v'we W('v'Be r(w I= B) => w I= A); 

2. r I= I A iff 'v'M('v'Be r(M I= B) => M I= A); 

3. r I= 
2 

A iff 'v'F('v'Be r(F I= B)=> F I= A). 

Expressed in algebraic terms these conditions become: 

I'. r l=o A iff 'v' A(F)'v'he H~Hom(.L,A(F))(h(/\ { B:Be r})$h(A)) 

2'. r I= I A iff 'v' A(F)'v'he H~Hom(.L,A(F))('v'Be r(h(B) = I)=> h(A)= I). 

3'. r 1=
2 

A iff 'v' A(F)('v' Be r (B is an A(F)tautology) =>A is an A(F) 

tautology). 

As is well known, the first of these consequence operations is the one suitable for 
reasoning in relational models, while the last is inherently second-order with all the 
ensuing difficulties (incompleteness, lack of compactness, etc.). In the present paper 
we concentrate on the second possibility, which is familiar mainly from the so­
called matrix approach in the study of many-valued logics [8, 61 ]. 

The above notions of the truth of a statement and semantic consequence can be 
questioned on several points. 
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l. The first goes back in time to the intuitionistic criticism of the classical approach 
to mathematical truth. It questions the rationality of assuming that one can always 
assign a truth value to a particular statement (and hold this as a methodological 
principle when dealing with still unsettled mathematical problems). Such a criticism 
leads to admitting statements which are undefined. Analyzing the notion of 
algorithm, in particular the statements one can make concerning their behavior, 
Kleene came up in [36] with the "strong Kleene truth tables" that included 
undefined as a third possibility, but even earlier Lukasiewicz had introduced the 
third value when investigating the status of statements about contingent future 
events (there is an obvious connection between these two concerns). This opened 
the door to considering the truth values as partial objects, to influence from the 
denotational semantics of programming languages, and to applications of fix point 
techniques (cf. e.g. [55]). For example in the theory of truth developed by Kripke 
[37] and others [ 15, 60] the fixed points of certain monotone operators on the 
family of all truth assignments were studied. The importance of the relation of 
"being more defined" and its connection with the "being more true" relation began 
gradually to emerge. 

2. Another point on which the classical view has been questioned is the contention, 
having its origin even before Aristotle, that no statement is both true and false (in 
one and the same epistemic situation). Arguments put forward by the like of Hegel, 
Wittgenstein, etc., seem to show that this is open to a discussion. Some recent 
publications give expositions of what can be done abandoning the view that 
"everything is consistent" and have spoken of the "consistency of the world" 
problem, cf., e.g. [42,44,47]. Nevertheless the assumption of such a consistency, 
equivalent to the well-known law of non-contradiction, is considered by the 
majority of logicians as the final and indisputable principle of logic beyond which 
there is absolutely no ground for a rational epistemic activity, cf. Lewis [39]. 

Philosophically speaking the consistency and completeness of knowledge are 
determined by its "correspondence" to the "outside world". Thus contradictions 
may be the result of: 

• defects in the correspondence, 
• defects in the knowledge, 
• defects in the world. 

Concentrating on defects in knowledge, it is an interesting problem what reasoning 
procedures can be developed in order to accommodate the possibility of 
contradictory statements. The simplest option is to permit statements to be both true 
and false and keep this as the only possibility beyond the classical assumptions. This 
leads to a picture where for a statement A and an epistemic situation we have just 
three ways with the truth value: A is only true; A is only false; A is both true and 
false. Formally this approach can be described by truth assignments into the set 
{ { 0], { 1 ), { 0,1 } ), as done by Priest in [ 43,44]. The corresponding consequence 
relation tolerates inconsistencies in the sense that there is no general way to infer 
logically all statements from a contradiction. 

D
ow

nl
oa

de
d 

by
 [

N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

] 
at

 0
2:

02
 0

1 
Ja

nu
ar

y 
20

15
 



Knowledge, Uncertainty and Ignorance 199 

Some features of the recent AI approaches to reasoning, where one studies default 
inferences (if information on certain parameters of the situation cannot be obtained 
in reasonable bounds of resources - time, computational space, etc., they are 
replaced by default values), the closed world assumption (only items that are 
explicitly mentioned exist) and other non-monotonic schemata of deriving 
conclusions, e.g. reasoning by truth in preferred models (the so-called pragmatic 
logics [5] in which a statement pragmatically follows from a set of premises, if it is 
true in all preferred models of the premises), prompted a renewed interest in the 
problems of dealing with inconsistencies. 

3. A further step is to combine the assumptions of partiality and contradictoriness. 
By this step we arrive at a class of assignments that have values in the set 
{ .l, { I }, { 0}, { I ,0} } . In this case the corresponding consequence relation is also 
contradiction tolerant. The arising logic with two designated truth values- { 0, I} = 
Both and {I} = True) is also well-known and has been extensively studied, e.g. by 
N. Belnap [6,7], etc. Recently this logic has found numerous applications in 
computer science - as a suitable basis for studying the semantics of the 
programming languages [I 6,20]. 

Truth-value spaces Along the path indicated by the above lines of criticism of the 
classical semantical schema we arrive at the notion of truth value space. The 
classical spaces (spaces for classical logic) were in general Boolean algebras with 
additional operators representing the intensional connectives occurring in the 
language. Early examples of non-classical spaces were the pseudo Boolean 
algebras, Post algebras, the unit interval [0, I] in fuzzy logic, etc. 

From the very beginning deviations from the classical scheme were justified by 
appealing to uncertainty of information (on the basis of which the decision to 
declare something true is taken), indefiniteness of data, vagueness (fuzziness) of 
notions, i.e. all kinds of imperfections in the available knowledge, or lack of 
suitable knowledge due to difficulties in understanding (subjective non­
significance), and even objective non-significance (as for example in Bochvar, cf. 
[I 4 ], who studied propositions in the foundations of mathematics that destroyed any 
theory they appeared in). 

The truth-value spaces that were used and are in use at present reflect in their 
internal structure different views and assumptions (philosophical, mathematical, 
logical, pragmatic, etc.) concerning truth and inference. But there seem to he some 
general features common to all known examples of truth spaces: they represent 
methods of evaluation of information, i.e., truth values of statements are determined 
on the basis of the available information. We can even in general identify them with 
the available relevant information (about the state of affairs described, or referred 
to by the statement). This information can be characterized in two ways: 

truth degree - reflecting the truth content of a statement. No doubt here we 
need a theory of truth (e.g., correspondence theory, or any other coherent view on 
how information is to be considered true, on the necessity of an external world, etc.) 
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but clearly truth degrees generate a partial order among truth values. Moreover it is 
rational to assume that the order is a lattice order. 

degree of knowledge - reflecting the definiteness of information, or the 
completeness of the knowledge about the truth value (this could involve an 
estimation how reliable the information is, indications whether we find it plausible, 
etc.). Again it is reason-able to assume a lattice ordering. 

An obvious way to make the truth value spaces from Example I more "realistic" is 
to admit either partial or contradictory models, or both. This has been done by many 
(see the historical survey in the Conclusion) and from different viewpoints, e.g. 
[1,6,12,13,35,42,47,57,59]. Recently Ginsberg [32,33] promoted a notion of a truth 
value space incorporating most the ideas discussed above. His bilattices (algebras 
with two complete lattice orders) were intended to combine model theoretic and 
computational advantages in treating reasoning with imperfect information: they 
could be used either as conventional logical matrices of as in denotational semantics 
- as a background for fixed point calculations (in the latter case truth value 
assignments do not presuppose the truth functionality of any logical connective- an 
important point for non-monotonic inference). 

Another way to account for the uncertainty of knowledge is to consider sets of truth 
values, e.g., set of propositions, as representatives of the "temporarily unknown" 
truth-value of a statement. We find analogous ideas in fields like fuzzy set theory 
and logic [2], probabilistic logic [9, 10,24], AI [49], many-valued logic [26,27], etc. 
Here we propose a codification of such uses in the notion of set expansion of a 
given truth value space. 

In our paper we treat in the spirit of Rasiowa and Sikorski [46] the mathematics 
(part 1) and logic (part 2 - for simplicity of presentation we restrict it to 
propositional languages) of two broad classes of truth value spaces: the bilattices 
and the set expansions. The many-valued logics determined by different subclasses 
of these depend on a number of parameters. One of the goals of the paper is to 
present a classification of the corresponding logics. 
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Knowledge, Uncertainty and Ignorance 201 

Part I 

ALGEBRAIC ASPECTS 

1 The general theory of bilattices 

The notion of bilattice (and the term itself) was first introduced by Ginsberg [32]. In 
general an algebra of the similarity type <2,2,2,2,0,0,0,0)> is called a hi lattice, if the 
two pairs of operations A, v and ®, $ define two lattice structures which, together 
with the pairs of constants 0,1 and .L, T, constitute two bounded lattices with 
respective orders ::;t and ::;k. Ginsberg in [32). as well as Fitting in [ 15, 16,18) 

require the two lattices to be complete, i.e., supX and infX to exist for any subset X 
(which implies their boundedness). 

We would not in general impose the condition of completeness in this paper, but 
results which hold only for such complete bilattices will be specially noted. Since 
there are several different definitions of basic notions available, we adhere to the 
approach of Fitting and first define the most general case: 

Definition 1.1 A pre-bilattice is a structure B = (B,::;t,::;k) where B is a non-empty 

set (of truth-values) and ::;t , ::;k are partial orders on B each generating on it the 

structure of a bounded lattice. The greatest and least elements of B with respect to 
::;k are denoted by T, .L while the greatest and least elements w .r.t. ::;t are I and 0. A 

pre-bilattice is non-degenerate (non-trivial) if all these four elements are different. 
The finitary lattice operations corresponding to ::;t are denoted by A, v, the 

operations corresponding to ::;k - by ® and $. The respective infinitary operations 

are denoted by: /\., v . n. and ~. 

In order to formally reflect the interplay between the truth-degree and the degree of 
knowledge we need more restricted classes of pre-bilattice structures. Fitting 
considered in [ 15] the class of interlaced bilattices. 

Definition 1.2 A pre-bilattice B is an interlaced hi lattice, if A and v are k­
monotone, while $ and ® are t-monotone. 

The meaning of these requirements is easily deciphered: we mstst that e.g. the 
conjunction of two better known (or more defined) statements is better known 
(more defined) than the original conjunction, etc. or that the truth content of a union 
of informations about two statements does not decrease with the increase of 
knowledge. 

In any interlaced bilattice the four constants 0, I, .L, and T are related as follows: 
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OEBI= T, 0®1=.1., 
Tvl.=l, TAl.=O. 

Example 2 The simplest non-degenerate billatice 4 is given in Fig. I (on the 
left). 

T T 

0 1 0 1 

j_ j_ 

t 

Figure l 
The simplest bilattice 4 and the bilattice of default logic D 

The bilattice 4 is an interlaced bilattice and moreover it is a sub-bilattice of every 
non-trivial bilattice. The bilattice on the right (the bilattice of simple default logic, 
cf. [32]) is an example of a useful bilattice which lacks the property of 
interlacedness, e.g. the k-operations are not t-monotone since in D: x = 0® I, instead 
of l. = 0®1. 

Example 3 The possible worlds example continued (Ginsberg [32], but before 
him many others, cf. the Conclusion). Here we deal with a generalization of 
Example I in that valuation functions cj>: WxVar(L)~2 defining models M on a 

frame F are replaced with mappings into 4. 

Let us first assume valuations to be partial functions into 2. This change leads to 
two notions of forcing: 

(I) positive 
M,w I=A when cj>M(w,A) =I, and 

(2) negative 
M,w=IA when cj>M(w,A) = 0. 
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Knowledge, Uncertainty and Ignorance 203 

Denoting by IIAII
1 

the set { w:M, wi=A} and by 11Aii
0 

the set { w:M, w=IA}, we have 

for each partial model M an evaluation of formulae A by pairs <IIAII 
1 

,IIAII
0

>. Note 

that total models are characterized by IIAII 
1 
= W\IIAJ1

0
, so for them IIAII

0 
is in fact 

redundant. Not so in the general case where we have only the restriction 
IIAII

1
1liiAIJ

0 
= 0 and thus the necessity to formulate separate truth conditions for =1, 

e.g.: 

M,w=l AAB iffM,w=l A or M,w=l B, 
M,w=l AvB iffM,w=l A and M,w=l B, 

M,w=l DA iff3w'(wR.w' and M,w'=l A). 
I 

Recalling the trick of viewing partial functions into 2 as total functions into ( 0, I ,J.} 
we can say that partial models are defined by a special class of mappings into 4, 
namely those omitting T. 

Now the next generalization step would be to interpret an arbitrary <)J: Wx~4 as 
defining a model. Fortunately one possibility is almost obvious: 

M,wi=A if I :5k cj>M(w,A), i.e., if <)JM(w,A) = I or <)JM(w,A) = T; 

M,w=IA if 0 :5k <)JM(w,A), i.e., if <)JM(w,A) = 0 or <)JM(w,A) = T. 

The corresponding pair of subsets of W - <IIAII 
1 

,IIAJI
0

> would be no more a disjoint 

pair in general, but the requirements for q, being a homomorphism determine the 

following combination laws for such pairs <U.V>: 
<U,V>A<U',V'> = <UnU',VuV'>; 
<U,V>v<U',V'> = <UuU',VnV'>; 
<U,V>®<U',V'> = <UilU',VIlV'>; 
<U,V>EikU',V'> = <UuU',VuV'>. 

The first components carry the positive information (about worlds in which a 
statement has to be accepted as true or forced), while the second components codify 
negative information (about worlds where the statement has to be accepted as false, 
or rejected). 

It is not difficult to check that with respect to the above operations the set of all 
pairs of subsets of W is a bilattice with constants I = <W,0>, 0 = <0,W>, J. = 
<0,0> and T = <W,W>, and with partial orders 

<U,V>:5 <U'.V'> if UcU' and V'cV; t - -

<U,V>:5k <U'.V'> ifU~U' and V~V'. 

We call this bilattice the frame bilattice of F and denote it by B(F) The parallel 
drawn in Example I can be now extended: generalized models on a possible worlds 
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frame F correspond on one hand to mappings into 4, but on the other hand - to 
homomorphisms into B(F). Such models are uniquely determined by two forcing 
relations I= and =I (these being completely independent from each other). 

The pairs constructionThis construction is a further generalization of the above 
possible worlds example (cf. again Ginsberg [32]). Consider two bounded lattices 
L

1
=<L

1 
,1\,v,O, I> and L

2
=<L

2
,1\,v,O,l>- we use the same notation for operations 

in both lattices since it will be clear from the context which lattice is referred to. 

Definition 1.3 On the Cartesian product L 
1 
xL

2 
one can introduce the following 

operations: 
<a,b>A<c,d> = <al\c,bvd>; 
<a,b>v<c,d> = <avc,bl\d>; 
<a,b>Etkc,d> = <avc,bvd>; 
<a,b>®<c,d> = <ai\C,bl\d>. 

Denote the resulting algebra by L
1
xL

2
. 

Lemma 1.4 L 
1
xL

2 
is an (interlaced) bilattice with 0 = <0, 1 >. 1 = < 1 ,0>, j_ = 

<0,0> and T = <1,1> and orders 
<a,b>5, <c,d> iff a5,c and d5,b, 

t 
<a,b>5,k <c,d> iff a5,c and b5,d. 

Proof: Conditions are easily checked.• 

Remarks I. If both lattices L
1 

and L
2 

are complete, then L
1
xL

2 
is a complete 

bilattice with infinitary operations defined as follows: 

1\{<a,b>:aE X, bEY}= <infX,supY}, V{ <a,b>:aE X, bEY}= <supX,intY>, 

O{<a,b>:aEX, bEY}= <infX,infY}, and I{ <a,b>:aEX, bEY}= <supX,supY>. 

2. The motivation of this construction is clear from the above 
example: the product of the two lattices codifies judgements concerning the status 
of a statement - an element <a,b> represents both positive information (by the 
component a - a degree of belief in the truth of the statement) and negative 
information (with b which represents a degree of belief against the truth of the 
statement, or a belief in the falsity of this statement). It is important to mention that 
since L

1 
and L

2 
can be in general quite different this construction supports the 

option that the beliefs jar and against can be incommensurable. 
3. Note that 4 = 2x2 and B(F) = A(F)xA(F). 
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Example 4 Besides the above examples, there is another relatively well known 
example - [O,l]x[O,l], where [0,1] is the unit interval viewed as a lattice with 
respect to the operations corresponding to the usual (linear) ordering of real 
numbers- min(a,b) and max(a,b). The bilattice operations are as follows: 

<a,b>A<c,d> = <min(a,c),max(b,d)>; 
<a,b>v<c,d> = <max(a,c),min(b,d)>; 
<a,b>EB<c,d> = <max(a,c),max(b,d)>; 
<a,b>®<c,d> = <min(a,c),min(b,d)>. 

Elements of [O,l]x[O,l] generalize real numbers as degrees of membership to fuzzy 
sets (cf. [1,2,3)). Again the first component gives a (positive) degree of 
membership, while the second number measures a degree of (belief in) non­
membership. 

Since in the present paper the emphasis is on bilattices as logical matrices defining 
some logics and since in the majority of cases such logics are distributive we 
concentrate mainly on distributive bilattices. 

Definition 1.5 A pre-bilattice B is called a distributive bilattice if all 12 possible 
distributive laws (involving A, v, EB and ®)hold. 

Of course, the distributivity of a bilattice is a much stronger property than the mere 
distributivity of the two underlying lattices since it involves also their interaction. 
Thus distributivity is a consequence of specific hypotheses about the combinations 
of pieces of information contributing to the truth values, implying in particular that 
it is always possible to decompose contributions of the involved data according to 
the structure of the statement. In the bilattice D shown on Fig. I such a 
decomposition is impossible. 

Fact 1.6 (cf. [15)) If B is distributive, then it is interlaced. 

Proof In order to check, e.g., the monotonicity of A with respect to ~k we proceed 

as follows: assume x~kx' and y:S:ky' (i.e., xEBx' = x' and yEBy' = y'), then x'Ay' = 
(xEBx')A(yEBy') = (xAy)EB(xAy')EB(x'Ay)EB(yAy'), therefore XAY~kx'Ay'. In the rest of 

the cases we argue similarly. • 

Lemma 1.7 If L 
1 

and L
0 

are two distributive lattices, then B = L 
1
xL

0 
is a 

distributive bilattice. 

The easy proof is left to the reader. 

For distributive bilattices there is a nice representation theorem asserting the 
converse of the above lemma: 
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Theorem 1.8 (cf. Ginsberg [32])1f B is a distributive bilattice, then there exist two 
bounded distributive lattices L 

1 
and L

0 
such that L 

1
xL

0 
=B. 

The proof is of some interest with the notions introduced in its course, so we give it 
in full. 

Definition 1.9 Let B be a pre-bilattice. For xe B set 
(x)

0 
= xA.l, 

(x)
1 

=xv.l. 

Facts 1.10 In an interlaced bilattice B: 
I. the operations (x) 

0 
and (x) 

1 
are monotone; 

2. 0 5,t (x)
0 

5,t J. and J. 5,k (x)
0 

5,k 0; 

J. 5,t (x) 
1 

5,/ and J. 5,k (x) 
1 

5,k 1. 

Lemma 1.11 In a distributive bilattice B the following hold: 

1. (x) o(f)(x) 1 = x(x) o®(x) 1 = J. 

2· (x/\y)o = (x)o/\(Y)o(XAy) 1 = (x) 1/\(y) I 

(xvy)o = (x)O v(y)O(xvy) 1 = (x) 1 v(y) 1 

(xtfiy)o = (x)o(f)(y)o(x$y) 1 = (x) lfFJ(y) I 

(x®y)o = (x)O®(y)O(x@y) I= (x) 1Q?;<y) I 

Proof I. (x)
0

EB(x)
1 

= (xA.l)EB(xv.l) = ((xA.l)EBx)v((xA.l)EB.l) = 

= ((xE9x)A(.lE9x))v(xA.l) = (xAx)v(xA.l) = xv(xA.l) = x. 
(x)

0
®(x)

1 
= (xA.l)®(xv.l) = ((xA.l)®x)v((xA.l)®.l) = 

= (x®x)A(.l®x))v.l = (xA.l)v.l = .l. 
2. We check only a few samples, e.g.: (xEBy)

0 
= (xE9y)A.l = (xA.l)Ef>(yA.l) = 

= (x)
0

E9(y)
0 

or (xvy)
1 

= (xvy)v.l = (xv.l)v(yv.l) = (x)
1 
v(y)

1
. • 

Lemma 1.12 In a distributive bilattice B, for all x andy: 
I. y 5,t (x)

0 
implies (x)

0 
5,k y; 

2. (x) 
1 

5,
1

y implies (x) 
1 

5,k y. 
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Proof l. Assume y :s; (x)
0

, i.e. y :s; xAl., which implies y :s; x and consequently 
t t t 

xAy=y. Consider (x)
0

ffiy = (xAl.)ffiy = (xffiy)A(l.ffiy) = (xffiy)Ay = (xAy)ffiy = yffiy 

= y, that is (x)
0 

$k y. 

The same for (2).• 

Lemma 1.13 (x$y)
0

=(x)
0

A(y)
0
(x$y) 

1
=(x) 

1 
v(y) 

1 

(x@y)o=(x)o v(y)O(x@y) 1=(x) (''(y) 1 

Proof Note that (x)
0

A(y)
0 

:s;t (x)
0 

and by the previous lemma (x)
0 

:s;k (x)
0

A{y)
0

• 

analogously (y)
0 

:s;k {x)
0

A(y)
0

, so (x)
0

if>(y)
0 

\ (x)
0

A(y)
0

. 

On the other hand (x)
0 

$k (xVB(y)
0 

and (y)
0 

$k (x)
0

EB(y)
0

. so by the 

monotonicity of A one has (x)
0

A(y)
0 

:s;k (x)
0

ffi(y)
0

. Thus we get the equality we 

need. 

Similar arguments work for the rest of the cases. • 

Remark Note that (x)o = n { y:y :s;t X} and (x) l = ll! y:x :s;t y}. if the bilattice 

is complete and completely distributive. Thus (x)
0 

represents the essential negative 

information encoded in x, while (x) 
1 

represents the positive content of x. 

To continue the proof of the representation theorem we define two lattices L
1 

and 

L0 and establish that B is isomorphic to L
1 
xL

0
. 

Let L
1

=<L
1

,A
1
,v

1
,o

1
,t

1
>, where 

L
1
={(x)

1
: xEB}={x:x=(x)

1
} 

A 
1 

is A restricted to L 
1 

vI is v restricted to L
1 

01 = l. 
II = 1. 

Now, by Lemma !.II this definition is correct, L
1 

is indeed a bounded distributive 

lattice, and its partial order :s; coincides with :s; restricted to L . 
t I 

D
ow

nl
oa

de
d 

by
 [

N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

] 
at

 0
2:

02
 0

1 
Ja

nu
ar

y 
20

15
 



208 Journal of Applied Non-Classical Logics. Volume 9 - n° 2-3/1999 

Let, in the same spirit, L
0 

= <L
0

,1\
0

,v
0

,o
0

,I
0

>, where 

Lo=( (x)o:XE B }=( x:x=(x)o} 

"o is v restricted to L
0 

v 
0 

is " restricted to L
0 

00 = .l 
10 = 0. 

In the latter case note the reversal of the partial order and hence the interchange of 
the corresponding operations. 

Consider now L
1
xL

0
. Define a map f: B~L1xL0 by 

f(x) = <(x) 
1 
,(x)

0
>. 

Lemma 1.14 The map f is an isomorphism between Band L 
1
xL

0
. 

Proof Let us first check that f is a homomorphism. 
f(l) =<(I )

1 
,(I )

0
> =<I v.l, I".l> =<I ,.l> = < 1

1 
,0

0
> = I in L

1
xL

0
; 

f(O) = <(0)
1
,(0)

0
> = <Ov.l,O".l> = <.l,O> = <0

1
,1

0
> = 0 in L 1xL

0
; 

f(.l) = <(.l)
1 
,(.l)

0
> = <.lv.l,.ll\.l> = <.l,.l> = <0

1 
,0

0
> =.lin L 1xL

0
; 

f(T) = <(T)
1 
,(T)

0
> = <Tv.l,T 1\.l> = <1,0> = <1

1 
,1

0
> =Tin L 1xL

0
; 

f(xl\y) = <(xl\y)l'(xl\y)
0

> = <(x)
1
"(Y)I'(x)

0
"(y)

0
> = 

= <(x) I"I (y) l'(x)O v O(y)O> = <(x)l ,(x)o>"<(y) I ,(y)O> = f(x)l\f(y); 

f(xvy) = <(xvy)l'(xvy)
0

> = <(x)
1 
v(y)l'(x)

0 
v(y)

0
> = 

= <(x) 
1 
v 

1 
(y) 

1 
,(x)

0
"

0
(y)

0
> = <(x) 

1 
,(x)

0
>v<(y) 

1 
,(y)

0
> = f(x)vf(y); 

f(xEBy) = <(xEBy) l'(xEBy)
0

> = <(x) 
1 

EB(y) l'(x)
0

EB(y)
0

> = 

= <(x) I v(y) l'(x)o"Y)o> = <(x) I vI (y) l'(x)O v O(y)O> = 

= <(x)
1 
,(x)

0
>EB<(y)

1 
,(y)

0
> = f(x)EBf(y); 

f(x®y) = <(x®y) I ,(x®y )o> = <(x) I ®(y) I ,(x)o ®(y )o> = 

= <(x) I"(y) I ,(x)O v(y)o> = <(x)I" I (y) l'(x)o"o(Y)o> = 

= <(x) 
1 
,(x)

0
>®<(y) 

1 
,(y)

0
> = f(x)®f(y). 
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The map f is a bijection: f(x) = f(y) implies that (x)
1
= (y)

1 
and (x)

0
= (y)

0
; 

therefore, by the above lemma, x = (x)
1

Ef>(x)
0 

= (y)
1

EB(y)
0 

= y. On the other hand f 

is a surjective mapping, since <x,y> is the value off at xffiy. • 

A theory of homomorphisms Let us concentrate for a moment on homomorphisms 
of bilattices. In this sub-section we shall be concerned exclusively with distributive 
bilattices, so the term bilattice will mean a distributive bilattice, if it is not explicitly 
stated otherwise. 

If f: B~4 is a homomorphism, it generates four sets which are the pre-images of 
the four elements of 4 under f: 

-1 -1 
B

1 
=f (I);B

0
=f (0); 

-I -I 
BT = f (T);B j_ = f (1_). 

These are pairwise disjoint and their union is B. Define X 
1 

= B 
1 
uBT and x

0 
= 

B
0
uBT Clearly given the two sets x

1 
and x

2 
one can reconstruct the four pre­

images: 

Bl =XI \XO;Bo=Xo \XI; 

BT=X{'IX
0

;Bj_ =B\(X
1
uX

0
); 

Definition 1.15 Let B be a bilattice. A non-empty subset F of B is called a hi-
filter, if the following conditions are met: 

Fl. F is upward closed with respect to::;;, i.e., if xE F and x::; y, then yE F; 
t t 

F2. F is upward closed with respect to ::;k,i.e., if XE F and x::;ky, then yE F; 

F3. XAYE F iff XE F and yE F;F4. x®yE F iff xE F and yE F. 
A bi-filter is proper, if it is different from the whole B. 

Definition 1.16 A bi-filter is prime, if it is proper and has the properties:F5. 
xvyE F iff xE F or yE F;F6. xEf>yE F iff xE For yE F. 

Now, it is easy to check that x
1 

is a prime bi-filter for any homomorphism into 4. 

As for the situation with x
0

- it is captured by the next definition. 

Definition 1.17 
hold: 

A non-empty subset I of B is called a hi-ideal if the following 

I I. I is downward closed with respect to s , i.e., if xE I and y::; x, then ye I; 
t t 

I2. I is upward closed with respect to sk,i.e., if xE I and xsky, then yE I; 

I3. xvyE I iff XE I and yE I; 
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14. x®ye I iff xe I and ye I. 
Again we have the notion of a prime bi-ideal - a proper hi-ideal with the additional 
properties: 

15. v,ye I iff xe I or ye I; 
16. xEi3yE I iff XE I or ye I. 

For any homomorphism f:B~4. the corresponding x
0 

is a prime bi-ideal (easily 

checked). Let us note also the following obvious facts: 
I. IfF is a proper hi-filter, then l ,T E F but 0,1.. do not; 
2. If I is a proper bi-ideal, then O,T E I but I ,1.. do not. 

Lemma 1.18 Let X/' X
0 

be a prime hi-filter and a prime hi-ideal in B respectively. 

Such a pair determines a homomorphism!' B~ 4 such that F =X 
1 

, I =Xo. 

Proof' First we define in the way shown above four subsets of the hi lattice: B 
1
, B

0
, 

BT' and B l..- they form a partition of B. Then we set for an xe B: 

f(x) = i, if xeB. (i = 0, I, T, 1..). 
I 

To show that f respects the operations is a quite straightforward (but tedious) task­
one has to check a lot of cases, e.g., f(l..) = l..: since l.. belongs neither to X

1 
nor to 

x
0

, it is a member of B 1..· Let us consider one more case in detail: 

f(xvy) = f(x) v f(y). (*) 

Iff(xvy) = l.., then xvyeB l.. and neither x nor y can be in x
1 

(because so would be 

xvy), or both be in x
0 

(then so would be xvy); thus we have either xe B
0 

and 

ye B l.. or ye B 
0 

and xe B l..' In both cases (*) holds. 

If f(xvy) = I, i.e., when xvye B I' then x or y belong to X 
1
, but it is not the case that 

they both belong to x
0

, so if one of them is in BT the other has to be in B l..' or if 

one is in B 
1
, the other can be in B l.. or in B

0
, etc. In all cases (*) holds. 

In the same way one checks the remaining two possibilities for f(xvy). Other cases 
are treated similarly. • 

Lemma 1.19 Let X be a non-empty subset of B. [X]!= {x: 3x
1
, ... ,x , y(x

1
, ... ,x eX 

II ll 

and x
1

/\. ... /\.X ::;; y ::;;k x)} is he smallest hi-filter containing X. In case X has the 
n t 

following multiplicative property: 

V'x
1
, ... ,x eX(x

1
A ... AX ;t0andx

1
® ... ®x ;.d), 

n n n 
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[X]f is a proper hi-filter: 

Proof" Note first that [X]f= {x: 3xl' ... ,xn, y(xl' ... ,xnEX and x
1
® ... ®xn ~k y ~t 

x)}. Indeed, if x 
1
/\ .... /\X ~ y ~k x, then yffix = x and also (x 

1
/\ .... Ax )EBx ~ yEBx = 

n t n t 

x, thus (x 
1
/\ .... Axn)EBx ~t x. On the other hand (x 

1 
® ... ®xn) ~k (x 

1
/\ ... Axn)' so 

(x
1
® ... ®xn) ~k (x

1
A ... Axn)EBx ~t x. In the opposite direction: if x

1
® ... ®xn ~k y ~t 

x, then yvx = x and also (x 
1 
® ... ®xn)vx ~k yvx = x. On the other hand x 

1
/\. .. /\Xn ~t 

x
1
® ... ®xn, thus x

1
A ... Axn ~t (x

1
® ... ®xn)vx ~k x. 

Having the above alternative description, to check Fl - F4 is fairly easy, e.g., [X)f is 

clearly closed upward with respect to both orders, it has property F3 since 

x
1
® ... ®xn ~k y ~t x and x

1
'® ... ®xm' \ y' ~t z implies (x

1
® ... ®xn)A(x 1'® ... ®xm') 

~k yAy'~t XAZ, but (x
1
® ... ®\®x

1
'® ... ®xm') ~k (x

1
® ... ®xn)A(x

1
'® ... ®xm'); 

property F4 concerning® is treated similarly. 

Thus [X]f is a hi-filter that contains X, moreover the multiplicativity property of X 

implies that [X]f is proper since obviously then OiO [X]f If a hi-filter F contains X, 

then it must include also all finite conjunction and meets of elements of X and then 
by the upward closure it must contain X. Therefore [X]f is the minimal hi-filter 

extending X. • 

Lemma 1.20 If for an element x and a subset X of a bilattice B xe: [X]f, then there 

exists a prime hi-filter F such that [X]fb F and xJEF. 

Proof" The proof is standard: consider the family of proper hi-filters G extending 
[X]f and such that xe; G, it possesses the Zorn property, i.e. each chain of elements 

is majorized by an element of the family (the union of that chain is a suitable 
majorant), so there are maximal elements. Let F be one of them. F is prime: if 
yvzE F, then either y or z belong to F, otherwise we would have XE [Fu{ y} ]f and 

XE[Fu{z}]f i.e. x
1
®y ~k y' ~t x and x

2
®z ~k z' ~t x, for some x

1
,x

2 
from F; 

combining these inequalities we would get (x 
1 
®y)v(x

2 
®z) ~k y'vz' ~t x, and 

consequently (x 
1 
vx

2
)®(yvx

2
)®(x 

1 
vz)®(yvz) ~k y'vz' ~t x, but the former meet 

being a member ofF, we would finally have xE F- contrary to the assumption. The 
case of EB is similar. • 
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As an important corollary we obtain the existence of homomorphisms into 4 which 
map some prescribed subsets of B into I I ,T) while for a given element their value 
is outside that set. 

The existence of bi-ideals [X]. extending subsets of Band omitting certain elements 
I 

can be established in the same way. 

Theorem 1.21 (representation theorem for distributive bilattices) Any distributive 
bilattice B is embeddable in a product of frame lattices. 

Proof' Let W 
1 

be the set of all prime hi-filters in B, W 
0 

- the set of all prime hi­

ideals. Consider the lattices F 
1 
+ = <P(W 

1 
),n, u,0,W 

1 
> and F 

0 
+ = <P(W 

0
),n, u,0, 

w o>. Define for XE B: 

lxl
1 

=IF: F is a bi-filter and xeF}; 

lxl
0 

= I 1: I is a bi-ideal and xe F). 

Our claim is that the mapping f which assigns to x the pair <lxl
1
, lxi

0
> is a 

monomorphism into F 
1 
+ xF 

0 
+. This follows from a series of identities: 

lx"yl
1 

= lxl
1
nlyl

1
1x"yl

0 
= lxl

0
ulyl

0 
lxvyl

1 
= lxl

1 
ulyl

1
1xvyl

0 
= lxl

0
nlyl

0 
lx®yl

1 
= lxl

1 
nly1

1
1x®y1

0 
= lxl

0
nlyl

0
, 

lxEtlyl
1 

= lxl
1 
ulyl

1
1xEtlyl

0 
= lxl

0 
ulyl

0
, 

which are corollaries of the properties of prime bi-filters and bi-ideals. • 

Remarks I. Now that we have two set-theoretical representations - one 
as in the above theorem, the other obtained by applying Theorem 1.8 and then the 
Stone representation theorem to the two lattices in the product - a question arises as 
to their relations. It turns out that the two approaches are exactly equivalent: the 
lattices L

1 
and L

0 
from Theorem 1.8 and the two projections of the image of the 

monomorphism from Theorem 1.21 are isomorphic. 

2. Below we'll need sometimes another representation of the 
pre-images of a homomorphism f:B-44. Putting Y 

1 
= B 

1 
uB .l and Y 

1 
= B 

1 
uB .l' 

wehaveBT=Y
1
nY

0
;B

0
=Y

0
\Y

1
;B

1 
=Y

1 
\Y

0
;B.l=B\(Y

1
uY

0
). Y

1 
can 

be called dual prime hi-filter and Y 
0 

- a dual prime hi-ideal, where the two new 

dual notions have a common feature - they apply to downward closed with respect 
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Knowledge, Uncertainty and Ignorance 213 

to :s;k sets, otherwise a dual hi-filter has the properties Fl and F3, it satisfies a EB­

version of F3, i.e., xEBye D iff XED and ye D, and the prime dual bi-filters 
additionally satisfy: xvye D iff XED or ye D, x®ye D iff xED or ye D. The 
properties of dual bi-ideals similarly correspond to those of hi-ideals: they satisfy I I 
and 13, they have a ®-version of 13, while the prime bi-ideals also X/\YE J iff xE J or 
ye J, x®ye J iff xE J or ye J. Thus the theory of the dual notions turns out to be 
naturally dual to the theory of hi-filters and bi-ideals, leading in particular to a 
corollary concerning the possibility to homomorphically map a given subset of B 
into D

0 
= {.l, 1} of 4, while mapping another element outside D

0
. Finally let us 

remark that the complement of a prime bi-filter is a prime dual bi-ideal and vice 
versa. The same relation holds between prime hi-ideals and dual prime bi-filters. 

2 Negation, conjlation and other operations in a bilattice 

Besides the basic bilattice operations as a rule the truth value spaces actually in use 
contain additional operations - some of them are in fact indispensable, if one is to 
apply these spaces to problems of inference. 

Negation We start with the introduction of an operation which is 
usually present in a useful truth value space. In fact Ginsberg [32] included the 
existence of negation into the definition of bilattice. 

Definition 2.1 We say that the unary operation., in a bilattice 8 is a weak negation, 
if the following holds: 

I. x :s;t y implies .,y :s;t .,x 

2 < 0 ,. < . x _k y tmp tes .,x _k .,y. 

A bilattice has a pseudo negation, if in addition to the above two conditions a third 
one is satisfied: 

Fact 2.2 

3. X s;t .,.,X, 

If., is a pseudo negation in a bilatice B, then: 
-,f = 0, -,0 =I; 
-,..J... = ..l..., ., T = T. 

Remark The following examples of negation like-operations in [O,l]x[O,l]: 
., <a,b> = <•b,fla>, which are weak negations for all fl, • such that 0 < fl. • :::; I, but 

fl,. 
a pseudo-negation only for f1 = 1, • = 1, and for which ., < 1,0> = <0,f1> • <0.1 >, 

f-1,• 
show that conditions (I) and (2) do not suffice for the above facts. 

Definition 2.3 A bilattice has a negation, if (3) is strengthened to: 
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4. ••X =X. 

Fact 2.4 In a bilattice with negation ..., the de Mogran laws hold: 
5. •(XAy) = •X V 'Y 
6. •(XV)') = •X A •y 

and..., distributes over k-operations: 
7. •(x$y) = •x<lhy 
8. •(x@y) = •x<8hy. 

In the case of complete bilattices the above identities have infinitary counterparts: 

5'. •1\X = V-,x (where •X = {•x:xEX}) 

6' . ..., Vx = J\..,x 
7'. -,l)( = L•X 
8'. ·ITX=IT•X. 

Example 5 An important class of bilattices with negation is formed by the 
bilattices of the kind LxL (for any bounded lattice L), where ..., is defined as 
follows: 

•<a,b> = <b,a>. 
It can be easily checked that the operation ..., just defined is indeed a negation. Note 
that L need not necessarily have a negation itself, but it is possible to introduce a 
negation in its square due to the horizontal symmetry of LxL. 

Remark The equations of 2.2 show that in 4 ..., is not only a pseudo negation, 
but a "real" de Morgan one. In a generalized possible worlds models the truth 
conditions for ..., are: 

M,wl= •A iffM,w=l A; 
M,w=I•A iffM,wl= A. 

Again, for distributive bilattices with a negation a nice converse of the above holds 
- one can prove the following representation theorem: 

Theorem 2.5 If B is a distributive bilattice with negation, then B = LxL for a dis­
tributive lattice L. 

Proof We need only to supplement the proof of Theorem 1.8 with an argument 
dealing with negation. Observe first that : 

•(x)
0 

= •(x/\..l) = •xv•..l = •xv..l = (•x)
1 

•(x)
1 

= •(xv..l) = •X/\•..l = •x/\..l = (•x)
0 

Thus..., maps L
0 

into L
1 

and vice versa. Moreover the following holds: 
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Lemma 2.6 --. is an isomorphism of L
0 

and L r 
Proof. Check using de Morgan laws. • 

Now take an isomorphic copy of L
0 

- L and consider a map f defined as in the 

proof of Theorem 1.8 but with values in L (by identifying elements of L
0 

and L
1 

with their counterparts in L). This f is an isomorphism of B and LxL with respect to 
the negation, too: if f(x) = <a,b>, then f(--.x) = <(--.x)

1
,(--.x)

0
> = <•(x)

0
,•(x)

1
> = 

<b,a> = --.<a,b> = •f(x). • 

So the presence of a negation in a distributive bilattice B indicates a vertical 
symmetry in B which allows its representation as a square of some lattice and even 
as a sub-bilattice of a frame bilatice (as mentioned e.g. in Ginsberg's [32]). The 
same result can be obtained by applying the theory of homomorphisms to bilattices 
with negation, where the crucial observation is that for a bi-filter F the set --.F = 
{ --.x:xE F) is a bi-ideal and vice versa. 

Conjlation Fitting considered in [15] an operation, which seems to have 
appeared initially in Visser [60] inspired by his approach to the truth-values gaps 
and gluts theory of Kripke and others (cf. [37,60]). It relates to a possible vertical 
symmetry of a billatice just as the negation is associated with horizontal symmetry. 
In [ 19] Fitting used a term convolution for the operation, but we stick to the original 
name. 

Definition 2.7 A mapping- of a bilattice B into itself is called a conflation, if: 
I. x :::; y implies - x :::; - y; 

t t 

2 < . I' < . . x _k y tmp tes- y _k- x, 

3.-- X= X. 

Example 6 Bilattices of the kind LxL (for a lattice L having a negation - ), 
where - is defined as follows: 

- <a,b> = <-b,-a>. 
provide the most important class of examples. Note that in such bilattices --. and -
commute: 

Fact 2.8 

---. <a,b> =- <b,a> = <-a,-b> =--. <-b,-a> =...,- <a,b>. 

In a bilattice B with conflation: 
-I= 1, -0 = 0, 
-J.= T, -T=L 

The operation - is a dual counterpart of -, with respect to ::;k and ::;t' as the 

following identities show: 
4.- (x/\y) =- x 1\- y 
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5.- (xvy) =- x v- y 
6.- (x(f>y) =- x ®- y 
7.- (x®y) =- x (f)- y 

When B is complete we have: 

4'. -1\X = 1\-X (where -X= {-x:xeX)) 

5'.-VX= V-x 
6'. -I.x = -nx 
T. -nx = I.-x. 

Theorem 2.9 (Fitting).// B is a distributive bilattice with a negation and a 
conflation that commute, then B = LxL for a distributive lattice L with a negation 
(a de Morgan lattice). 

Proof Since B has a negation, L
1 

and L
0 

are isomorphic (and give us the required 

L). We need an operation - in L to play the role of a negation. To this end we 
define for an element aE L (a can be taken to belong to L

1 
without loss of 

generality): 
-a=(- ..,a)

1
. 

We claim that- is a negation in L, i.e. a~ b implies -b ~-a and --a= a. Indeed the 
anti-monotonicity w.r.t.:::; is clear and the double negation law follows from the fact 
that - and .., commute. • 

In bilattices with conflation two notions become available which also figure most 
prominently in applications: 

Definition 2.10 Let B be a bilattice with conflation. 
I. An element xE B is a consistent truth value, if x :s;k- x; 

2. XE B is exact , if x = -x. 

The meaning of these definitions becomes clearer when we consider our favorite 
examples. Let us note first that in bilattices of the kind LxL <a,b> is consistent iff a 
~-b and an exact value has the form <a.-a>. In the possible worlds models truth 
conditions for- look as follows: 

M,w I=- A iff M,w :;tl A; 
M,w =1- A iff M,w l:;t A. 

Thus an element <U.V> of B(F) is consistent, if UrN = 0, i.e., when there are no 
worlds to simultaneously force and reject the given formula; <U.V> is exact if U = 
W \ V, i.e., the formula is (classically) forced exactly when it is not rejected. In 
[O,l]x[O,l] conflation is defined by- <a,b> = <1-b,l-a>, so <a,b> is consistent if 
a+b~ I, and <a,b> is exact, if a = 1-b. 
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The existence of conflation is not necessary for the notion of a consistent truth value 
to make sense in a bilattice: in LxL, where L is a pseudo Boolean algebra, an 
element <a,b> with aAb = 0 can reasonably be called consistent, although <a,-a> 
lacks some of the properties of the exact values (due to the fact that - is only a 
pseudo negation). 

Let us remark also that the familiar consistency condition XA•X = 0 is rather strong 
in the bilattice setting. It entails not merely consistency in the above sense but also 
the fact that x is an exact value of a special kind: x = <a,b> with aAh = 0 and avb = 
I. Only in Boolean algebras is this condition equivalent to exactness of x. 

The proofs of the following two lemmata are omitted since they are relatively 
straightforward and moreover can be found in Fitting [ 15]. 

Lemma 2.11 In a bilattice with conflation: 
a) 0, I and .l are consistent, Tis not consistent; 
b) the set of consistent values is closed under A, v, and ® (and their 

infinitary counterparts in the case of a complete bilattice), but not under$; 
c) the sum of a k-directed family of consistent values is also 

consistent (k-directed means that any two members are majorized in $k by a 

member of the family). 
d) iff is a k-monotone operation which commutes with-, then the set 

of consistent values is closed under f 

Lemma 2.12 In a bilattice with conjlation: 
a) 0, I are exact, .l, Tare not; 
b) the set of exact values is closed under A, v (and their infinitary 

counterparts when the bilattice is complete), but not under tB or ®; 
c) all exact elements are consistent; 
d) for any operation f which commutes with conflation the set of 

exact values is closed under f 

Now it should be clear that bilattices with the two unary operations - and • possess 
two way symmetry - horizontal and vertical - allowing their representation as sub­
bilattices of possible world bilattices. In set based bilattices, which stem from 

Kripke models for languages with modalities D, 0 and possibly other intensional 
connectives, there would be more bilattice operations - as a rule they are k­
monotone and commute with contlation. 

External modalities Closely related to the notion of an exact truth value are the 
following two operations that can be defined in the presence of contlation. We call 
them modalities following a tradition in many-valued logic (cf. [27,54,56)). 

Definition 2.13 In a bilattice with contlation define: 
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•x = (x)
1 

1\- (x)
1
; 

+x = (x)
0 

v- (x)
0

. 

Note that these two can be expressed equivalently as: 
•x = (xv_i)A(- xvT); 

Fact 2.14 

+ x = (xA_i)v(- X/\ T). 

In a bilattice with • and f: 
.] = fi = 1 

~= f0= 0 
IIT=l, •T=O 
~=O,f..L=l 

Lemma 2.15 I. - • = •. - fx = fx; 

2. ••= ••=• 
f fx = ••x = fx; 

3 .• XAJ) = ·1\~f(XAJ) = fXAfJ 
.xvy) = ·v~ f(xvy) = fxvfy 
.x®y) = ·/\~ f(x®y) = fxvfy 
.x$y) = •v~f(x(By) = fXAfy 

If the billatice is with a negation commuting with -, then 
4. ..,. = f -.x. 

Proof Easy check. For example ( 1) is established by observing that 

Lemma 2.16 

- •x =- ((xv_l)A(-xvT)) = (- xvT)A{-- xv_l) = •x, etc. • 

1. •and fare t-monotone operations, but not k-monotone; 
2. for consistent truth values x, • ~ fx; 

t 
3. exact truth values can be characterized by the condition 

• = x (or, equivalently, fx = x); 
4. in a distributive bilattice 

X = (.I\ T) v(. XAi), 
-X= (.A..L)v( fX/\ T). 

Proof We check only the first identity of (4): replacing in the right-hand side •x 
and + x with their equivalent expressions from Definition 2.13 we get 

((xv_l)/\(- xvT)A T) v (((xA_i) v (-X/\ T))A_l) = 
= ((xv_i)/\ T)v((xA_l)v(-X/\0)) =(XI\ T)vOv(xA_i)vO = XA(Tv_i) = x . 

• 
Remarks I. Note that in bilattices of the kind LxL (where L is a de Morgan 
lattice) the operations have the following outlook: 

•<a,b> = <a,-a> 
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Knowledge, Uncertainty and Ignorance 219 

+ <a,b> = <-b,b>. 
Accordingly, in a possible worlds model the truth conditions for •A and +A take 
the form: 

M,w I= .A iffM,w I= A; 
M,w I= +A iffM,w :;t=l A; 
M,w=I•A iffM,wl:;t=A; 
M,w =I +A iffM,w =I A. 

In [O,l]x[O,l]: •<a,b> =<a, 1-a>, +<a,b> = <1-b,b>. 

2. Using the representations •x = (xvl_)A(- xvT) and +x = 
(xAl_)v(- XI\ T) one can show that ifF is a bi-filter, xe F iff •xE F; if D is a dual bi­
filter, XE 0 iff +XED. 
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3 Set expansions of lattices of truth values 

Let L be a bounded lattice L = <L, "· v, 0, 1>. Elements of L represent truth values, 
e.g., they can be elements of an abstract logical matrix, or sets of possible worlds, 
etc. We assume also any number of additional finitary operations o(x 

1
, ... , xn). For 

example, we could have unary operations like negation (in the case of de Morgan 
lattices and Boolean algebras), modalities, or a binary operation of implication 
when we consider Heyting algebras, etc. 

The basic idea explored in this section is to view subsets X, Y, Z, ... of L as new, 
"expanded" truth values. A set X could be said to embody the knowledge an 
observer has about the "real" truth value of a statement A, so IIAIIE X, where IIAII is 
the "real" truth value. Consequently, it can be envisioned as an infinitary disjunction 

V {IIAII = x:xE X} (cf. the Conclusion for a discussion). In this section we develop 

the algebraic aspects of such an approach. 

Internal operations Set expansions of lattices will be introduced step-by-step. As 
a first step we define a class of operations which are expanded counterparts of the 
operations in the basic algebra. 

Definition 3.1 The set expansion Lset of L = <L, "· v, 0, I, { oj) iE I> is an algebra 

based on the set of all subsets of L - p(L) and having the following internal 
operations: 

o(X1, ... ,Xn) = {o(x
1
, ... , xn):xkEXk' k=l, ... ,n}. 

where o(xl' ... , xn) is an operation ofL, e.g.: 

XA Y = { xAy:xE X,ye Y} 
XvY = {xvy:xeX,yeY} 
I= {I} 
0= {0}. 

and if, say, the lattice Lhasa negation- or a modality then 
-X = {-x:xeX} 

X= { x:xEX} 
The set expansion contains another pair of remarkable elements: 

T= 0, .i=L. 

These are called external constants of Lset in contrast to the internal constants 0, 1. 

Remark The internal expansions of the lattice operations reflect a certain 
view on the interaction of information about the truth values of components of 
compound sentences, namely on how the structure of the compound formula guides 
us as to the set of possibilities for its "real" truth value. Put briefly: individual 
possible truth values interact completely independently from each other (cf. also the 
Conclusion). 
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Below we list several elementary properties of the introduced operations. 

Proposition 3.2 I. XAY = Y AX, XvY = YvX; 
2. XA(Y AZ) = (XAY)AZ, 

Xv(YvZ) = (XvY)vZ; 
3. XAI =X, XvO =X. 

In the case when L is a say a de Morgan lattice we would have also: 
4. --X= X, 

-(XAY) = -Xv-Y, 
-(XvY) = -XA-Y, 

etc. 

Proof: The proof is easy: investigate the form of a typical element of the left-hand 
side and show that it can be transformed into an element of the right-hand side and 
vica versa. • 

Unfortunately not all identities concerning internal operations and valid in L are 

preserved in Lset. most notably the lattice laws of of idempotence, absorption and 
(if L happens to be distributive) distributivity. Let us look into this problem more 
closely. We start with a partial list of identities that are not in general preserved in 
the set expansion of a lattice L. 

Proposition 3.3 XAO = 0, Xv 1 = 1 do not hold in the set expansion of 2, while 
identities like XAX = X, XvX = X, XA(XvY) = X, Xv(XAY) = X, XA(YvZ) = 
(XAY)v(XAZ), Xv(Y AZ)=(XvY)A(XvZ), etc., can all be refuted in the set expansion 
of the four element Boolean algebra. 

Such observations lead to a question natural from the algebraic prospective: which 
identities in the above operations are preserved under set expansion? 

In order to formulate a partial answer we need some definitions and basic facts. 
Consider internal terms s, t, ... , i.e., terms built from variables v 

1
• v 

2 
•... , and 

symbols of internal operations and constants. Such terms can be evaluated both in 

the lattice L and the expansion L set. If an evaluation function v assigns to v. an 
I 

element Xi of .f.J(L) we write the value of a term s(v l'v
2

, ... ,v n) under v as 

s(X
1
,X2" .. ,Xn). An expression like s(a1' ... ,an), where al' ... ,anEL. should be 

understood in the same spirit. Note that for the value of an internal term 
s(X), ... ,Xn), if X. =T, then s = T, and vica versa- if all X. • T, then s • T. The 

I I 

variables occurring in a term t form a set Var(t). Call a term lean, if all its variables 
have single occurrences. 
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Let now K be a class of lattices. An equation s = t is a K-identity if it is valid in all 

members of K. A characterization of all Jtet identities in terms of K-identities can 

be obtained for certain classes of lattices. Clearly a J(SeLidentity is also a K­

identity: any valuation v for a lattice L is transformed into a valuation v * for Lset 

by putting v *(X) = { V{x)}, i.e. taking the corresponding singletons. This 
construction has the following property: 

v\s)={v(s)). 

Thus any refuted inK equation is refuted also in !(Set: v (s) •v (t) ~ v \s) •v * (t). 

Definition 3.4 An identity s = t is K-lean if there exist a substitution cr and an 

equation u = v such that s = uO', t = vO', u = v is a K-identity and both u and v are 
lean. An identity s =tis balanced, if Var(s) = Var(t). 

Definition 3.5 I. An inequality s :~; t is satisfiable in a class K of lattices if 
there is a lattice LE K and a valuation v into L such that v(s) :~; v(t). 

2. A family of inequalities { s. :~; t.). 
1 

is simultaneously 
I I IE 

satisfiable inK if there exist a lattice LEK and a valuation v into L such that v(s.) :~; 
I 

v(t.), for all iEI. 
I 

Theorem 3.6 Let K be a class of lattices such that any finite family of 
satisfiable in K inequalities is simultaneously satisfiable in K. Then the following 
two conditions are equivalent: 

1. s=t is a !(Set identity; 
2. s=t is balanced and K-lean. 

Proof' Lets= t be a balanced and K-lean identity. Note that, due to the fact that s 

=tis balanced, when evaluated in an expansion Lset sand t get values Tin exactly 

the same instances. Thus in order to check if s = t is an identity in Lset. it is 
sufficient to consider only valuations which do not have T in their range. 

With the above restriction we have the following representation of the values of 
terms, when s

1
(v

1
, ... ,vn) and t

1
(v

1
, ... ,vn) are lean: 

s1(Xl' ... , Xn) = {s 1(a 1, ... ,an):aiEXi), 

t 1(XJ'"'' Xn) = (t 1(a 1, ... ,an):aiEX/ 

Let now s
1 

= t
1 

be that K-identity of which s =tis a substitutional instance. Since 

s 
1 

= t 
1 

is an identity in L, the above two sets are equal, so s 
1 

and t 
1 

get the same 
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Knowledge, Uncertainty and Ignorance 223 

values in L set, but then as substitutional instances s and t also get the same values. 

Thus s =tis indeed a Jtet_identity. 

In the opposite direction we reason by contraposition: if s = t is either not K-lean or 

not balanced, then it is not a ~et_identity. It is immediately clear that a non­

balanced equation cannot be an identity in Lset. Thus we are left with the case of s 
= t being not K-lean, which means that any s

1 
= t 

1
, which is lean and of which s = t 

is a substitutional instance, is not a K-identity, i.e. s
1 

::;; t
1 

is satisfiable in K. In 

particular, if we consider the term s * obtained from s(v 
1 
, ... ,vk) hy assigning to 

consecutive occurrences of a variable v. different new variables v .
1
, v .

2
, ... , v. , we 

I I I 1mi 

get a family of satisfiable in K inequalities: 

{s*(v 11 , ... ,vkmk)"#t*:t*e T) 

Here T is the family of all lean terms t* obtained from t hy the procedure of 
replacing different occurrences of a variable v. by different variables v .. in all 

I U 
possible combinations. Clearly T is finite and the above family of inequalities has to 
be simultaneously satisfiable in K, so in some lattice Le K we have for some 
elements a .. : 

IJ 
* * s (a 11 , ... ,akm)::;; t ( .. ,aij"''). 

Let X 1 = {a1 J'"''almJ}, ... , Xi= {ail'"''aimi}, etc. The claim s(XJ' ... ,Xk)::;; t(XJ' 

... ,Xk) follows from the observation 

* s (all' ... ,akmk)~t(XI, ... ,Xk). 

* that s (a
11 

, ... ,akm)e s(X 1 , ... ,Xk), but 

• 
Remarks l. The property from Definition 3.5 is possessed by a variety of 
classes of lattices, e.g., any class of Boolean algebras containing arbitrary large 
finite Boolean algebras or some infinite ones, any class of pseudo Boolean algebras 
with the same restrictions, etc. 

2. A useful counterexample to a more liberal formulation of the 
above theorem is the class of all linear orders Lin, for which, e.g., X"X = X and 

XvX =X are Linset_ identities (since in a linear order Mb and avh equal either a 
or b). 

External operations Since the set expansion of a lattice is built up from sets of 
elements, it is only natural to introduce also the set-theoretical operations: 

XffiY= XnY, 
X®Y=XuY, 
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their infinitary versions I and n. as well as the relation 
X~k Y iff X;;;:>Y, 

In L set it is also possible to consider the complement of a set X: 

XC =L \X. 

With such additional operations (called external to contrast them with the previous 
class of operations) set expansions turn into truth value spaces similar to bilattices: 
~k represents ordering by degree of knowledge (the smaller the set, the more we 

know about the "real" truth value), ® and ® give us different combinations of 
information about this possible truth value - "accept anything" joining of the 
information in EB, and "consensus" reduction to the information common to both 
sets in®. 

The analogy is not perfect though, as will be seen below. Note that the constant T 
represents a kind of non-significance value capable of destroying any internal 
statement (thus the information leading toT is not simply contradictory, but rather 
senseless). 

Proposition 3.5 The internal operations are k-monotone, e.g.: 
X~kX', Y~kY' imply XvY~kX'vY', etc. 

Proposition 3.6 With respect to the introduced external operations Lset is a 
co-atomic, complete and completely distributive Boolean algebra (the algebra of all 
subsets of L with inverse inclusion) with least element ..Land greatest element T. In 
particular the following laws hold: 

(I{X.: iEI})®Y = I{X.®Y: iEI}, 
I I 

([]{X.: iEI})(f!Y = IT{X.$Y: iEI}, 
I I 

etc. 
Let us examine some of the relations between external and internal operations. 

Proposition 3. 7 
order: 

The following hold only as inequalities with respect to the k-

XAX~kX' XvX~kX, 

XA(XvY) ~k X, Xv(XAY) ~k X, 

(XAY)v(XAZ) ~k XA(YvZ), (XvY)A(XvZ) ~k Xv(Y AZ),etc. 

Lemma 3.8 In the set expansion of any bounded lattice we have: 
XA(Y®Z) = (XAY)gyXAZ), Xv(Y®Z) = (XvY)gyXvZ), 

and in general for any lean internal term s( ... ,X, ... ): 
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s( ... , Y®Z, ... ) = s( ... , Y, ... )®s( ... ,Z, ... ); 
with an infinitary version: s( ... ,ll{X.: iEI}, ... ) = ll{s( ... ,X., ... ): iEI}. 

I I 

As for $- we can claim only that (XvY)EB(XvZ)::;kXv(YEtlZ), (X/\ Y)Etl(X/\Z) 

::;kX"(YEBZ), s( ... ,Y, ... )®s( ... ,Z, ... )::;ks( ... ,Y®Z, ... ). For example the triple X= I, Y= 

0, Z = I shows the failure of an inequality opposite to the first one: YEBZ = T, so 
Xv(YEBZ) = T while (XvY)EB(XvZ) = I. 

Example 8 The simplest set expansion is 2set: it has four elements, all of them 
signature constants - 0, I, l. and T. With respect to 61, ®, and the complementation 

c 2set is a Boolean algebra, though with respect to v, " it is not even a lattice since 

T is a non-significance value. 2set can be considered with its internal negation -
(inherited from the Boolean algebra 2), it also has a sort of conflation operation -, 

related to c and the internal negation- by -X= (-X)c (by the way in this structure 

this equals -(XC)). In this way -I= I,- 0 = 0, -l. = T,- T = l. (just as a contlation 
should act), moreover we have X\ Y implies-Y \-X. 

Singletons and other curiosities in Lsetln this sub-section we present several 

examples of interesting defining possibilities in Lset.Let us start with the 
observation that some relevant properties of subsets of L can be guaranteed by 

simple equations in Lset, e.g., Xvl. = X defines all subsets of L that are upward 

closed; Xl\l. = X defines all subsets of L that are downward closed; XvX = X 
defines all v-closed subsets of L, i.e. subsets with the property a, bE X => avbE X; 
XI\X = X defines all /\-closed subsets, and in general o(X, ... , X) = X defines the 
sets that are closed with respect to the operation o. The meaning of the "bilattice 
projection operations" (x)

0 
and (x)

1 
may also be of interest, so we mention that 

(X)
0 

= Xl\l. is the downward cone of X; (X)
1 

= Xvl. is the upward cone of X. The 

combinations (X)
0

EB(X)
1 

= {y: 3x
0

,x
1
EX(x

0
::;y::;x

1
)} and (X)

0
®(X)

1 
= {y: 

3x
0

,x
1
EX(y::;x

0 
and x

1
::;y)} give us the so-called convex hull and cylinder of X, 

respectively. 

Using these observations one can give a definition of filters in L as the solutions of 
a simple system of equations: 

Xvl. =X (i.e. (X)
1
= X) 

XI\X= X. 
For ideals there is a dual system: 

X"l. = X (i.e. (X)O= X) 
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XvX=X 
In order to define prime filters and ideals one must use the operation of 
complementation and add to the above systems X"vX' = X' and X';,.X" = X' 
respectively. In the case of singletons {x}, {x)vl_ is the principle filter defined by 
x. It is easy to check that { x} v l_ satisfies the three equations characterizing a prime 
filter iff x is an atom in L. 

We may define singletons in L set as atoms in the lattice of set-theoretic operations, 
or, equivalently, as co-atoms in the ~k order, where 

X is a co-atom iff X'# T and V'Y(X~k Y => X=Y or Y=T). 

Singletons have the following characteristic properties: 
I1{Xi:iEI}~k{x} => 3i xi\{x};X =IT! {x}:X~k{x} }. 

Homomorphisms of set expansions General algebraic considerations suggest the 
importance of studying homomorphisms of set expansions and in particular 

homomorphisms into the smallest such algebra 2set. 

As turns out, if homomorphisms f:L set~ Mset should respect the infinitary k­
operations, i.e., f(I.{X.:iel}) = I.{f(X.):iei} and f(I1{X.:iei}) = IT{f(X.):iei}, 

I I I I 

then the rigid structure of the set expansions leaves no room for variety, as 
witnessed by the following facts: 

I. Homomorphisms isolate T. For a homomorphism f:Lset ~ Mset and a 

singleton { x} in L set one has { x} vI = I, so f( { x })vI = I which implies that f( { x}) 
,.,. T. Now using the representation X = rr { {X} :xE X} we get f(X) = rr { f( {X} ):xE X}. 
Thus if X'~-= T, then f(X) '# T. 

2. Source singletons are mapped into special partitions of the target singletons. 

If x '# y, then in L set { x} Ei1{ y} = T, so f( { x })Ei1f( { y}) = T. Thus different singletons 

are mapped into disjoint elements of Mset. moreover from rr { {X} :xE L} = l_, we 
get that rr { f( {X} ):xE L} = l_, so the restriction of f over the singletons generates a 
special partition of M: let P = f( { x }), then the family { P :xE L} is a partition of M 

X X 

of a special kind, i.e., besides x '# y => P nP = 0 and u { P :xE L} = M, we have 
X y X 

also P vP = P ; P AP = P , and in general P ( ) = o(P , ... , P ). 
X y xvy X y X/\Y 0 X, ... ,y X y 

Applied to homomorphisms of 2set this has the following effect: if L is different 
. set set 

from 1, then there are no homomorphtsms f2 ~ L . 

3. Epimorphisms are isomorphisms. Epimorphisms of set expansions map 
singleton onto singletons: if f(X) = { z} for a zE M, then having, for any xe X, 
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Knowledge, Uncertainty and Ignorance 227 

X$k{x} and consequently {z}$kf({x}), by the properties of co-atoms in Mset. {z} 

;:: f({ x }), but that, in view of (2) above, implies X = ( x}. Therefore there exist no 
epimorphisms of set-expansions except isomorphisms. Applied to homomorphism 

into 2set. which are all epimorphisms (since all elements of 2set are signature 
constants) the latter fact yields the following corollary: if L is d~fferent from 2, then 

. set set 
there are no homomorphtsms f"L ~ 2 . 

The external modalities If it is assumed that L is complete, then one can introduce 

in Lset a pair of unary operations: •x = {infX}; tX = {supX}. with the following 
elementary properties 

••x= ••x=•x 
•1=1 •0=0 
•T=l •1..=0 

++X=•+X=+X 
tl=l +0=0 
+ T =0 tl..=l 

These can be easily checked as well as the next proposition. 

Proposition 3.9 In the set expansion of a complete lattice L the following 
identities hold: 

.X®Y) = IIXAIIY, +(X®Y) = +XvtY, 
and their infinitary versions 

•IJfX.:iEI} = /\{ .X.:iEI}; 
I I 

• [J[X.:iEI} = V{ +X.:iEI}. 
I I 

For X, Y # T we have also: 
.XAY) = IIXA~. +(XvY) = +Xvt Y, 

and the infinitary (for X. # T) 
l 

•AtX.:iEI} = /\(.X.:iEI}; • V[X.:iEI} = V{ tX.:iEI}. 
I I I I 

If L is in addition completely distributive, then for X, Y # T 
.XvY) = .Xv.V, t(XAY) = tXAt Y, 

and the infinitary laws (for X.# T): 
I 

•Vrx.:iEIJ = vr m.:iEIJ; 
I I 

t/\[X.:iEI} = /\[ +X.:iEI}. 
I I 

If there is a de Morgan negation -among the internal operations. then 
-£ = t-X and -+X= .._X. 
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Unfortunately the complementation and $ behave rather erratically with respect to 
the external modalities.Having • and + the notion "X is a singleton" can be 
expressed as •x =X (which is equivalent to +X= X). 

Proposition 3.10 
follows: 

The set S of singletons in Lset can be characterized as 

(f) S={X:.X =X}= {X:+X =X} 

(2) Sis the set of co-atoms in Lset. 

Corollary 3.11 I. By the above we have in Lset_. 

.X= X iff X ;t Tand W(Xs;/~X = Yor Y= T). 

2. With the internal operations A, v restricted to it S becomes 
a lattice isomorphic to L. 

3 /r~ · L "d · h ' ' · Lset "d · h • J s=t 1s an -1 entity, t en s =t 1s an -1 ent1ty, w ere 

s' is sCJ,t' is ,a and the subsitution a assigns to a variable X the term .X. 

Info-algebras Here we try to algebraically define the "useful" part of the set 
expansions of lattices of truth values following the analogy with bilattices. Perhaps 
it is already clear from the results cited above that the operation Ei1 (together with 
the constant T) is the cause of most of the discrepancies between set algebras and 
bilattices. One way out of this is to drop EB and c from the signature (but keep T as 
some interesting applications involve such nonsensical values). 

Definition 3.12 An info-algebra A of a given internal signature (A,v, ... ,O,l) is 
a partially ordered set <A,:S;k> which is a complete lower semi-lattice. The least and 

greatest elements of A are .l and T respectively. The join operation is denoted by 0 
(its finitary version by ®). The algebra has the following properties: 

A I. Internal structure: 
1.1. internal operations are monotone with respect to s;k; 

1.2. s( ... ,T, ... ) = T for internal terms; 
1.3. s( ... ,O{X.:iel}, ... ) = O{s( ... ,X., ... ):iel}, for lean terms. 

I I 

A2. Singletons: 
2.1. the set of singletons a,b,c ... of A - LA is a distributive 

lattice with respect to the restrictions of" and v (and it is bounded by 0 and I); 

2.2. TI{Xi:iE I}:S;ka::::) 3i xis;ka; 

2.3. X= O{a:Xs;ka}. 
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Knowledge, Uncertainty and Ignorance 229 

Lemma 3.13 For an internal operation o(X
1
, ... ,X ) and a singleton a: 

n 
o(X

1
, ... ,X )5,ka ~ 3b

1
, ... ,b ELA(X.5,kb. (i=l, ... ,n) and o(b

1
, ... ,b ) =a). 

n II I I II 

Proof By 2.3 o(X
1
, ... , Xn) = o(ll{a:X

1
5,ka}, ... ,O{a:Xn5,ka}). Applying 1.3 we 

get o(X
1
, ... , Xn) = ll{o(b

1
, ... ,bn):X

1
5,kbi, ... ,Xn5,kbn). Now if o(X

1
, ... , Xn) 5,ka, 

then ll{o(b
1
, ... ,bn):X

1
5,kbi' ... ,Xn5,kbn)5,ka and using 2.2 we get the desired 

result. • 

It is not difficult to see that L set is an info-algebra. Conversely, any info-algebra A 
can be represented as a set expansion (with the restricted signature), namely as 

L set h 1 . A , as t e next emma pomts out. 

Lemma 3.14 Let A be an info-algebra, then A =LA set (as info-algebras). 

Proof The map f:A~p(LA) defined as f(X) = {a:X5,ka) is an isomorphism of A 

set 
and LA : 

f(o(X
1
, ... , Xn)) = {a: o(X

1
, ... , Xn)5,ka} = 

={a: 3b
1
, ... , b (X.5,kb. (i = l, ... ,n) and o(b

1
, ... ,b ) =a))= 

n 1 1 n 

={a: 3b
1
, ... , b (b.Ef(X.) and o(b

1
, ... ,b ) =a)= o(f(X

1
), ... ,f(X )); 

n 1 1 n n 

f(ll{X.:iEI}) ={a: ll{X.:iEl)$,ka) ={a: 3i X.5,ka) = ll{ {a: X.5,ka):iEI) = 
I I I I 

= ll{f(X.):iEl). 
I 

The rest of conditions are checked as usual. • 

Homomorphisms of info-algebras An interesting special case of the info-algebra 

homomorphims are the homomorphisms of info-algebras into 2set which exist in 
abundant numbers in contrast with the full set expansions. 

Lemma 3.15 Let fA ~ 2set be a homomorphism. The subset F of LA defined by 

the following stipulation: 
F ={a: f(a)ED 1}, where D 1= {T,J }, 

is a prime filter in LA" 

Proof Checking that F possesses the properties of a prime filter: 
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I. If ae F and a::;b, then be F: ae F means that f(a)e 0
1
, a::;b implies that avb =b. 

Consider avb = avb =b. Apply f and get f(a)vf(b) = f(b). In 2set the equation avb = 
b together with ae D 1 guarantees that beD 

1
, therefore f(b )ED 

1
. 

2. aAbE F iff ae F and be F: if aAbE F, then clearly by I. a, be F. Assume now 
that ae F and be F, which is equivalent to f(a)e 0

1 
and f(b)e D 

1
, that gives 

f(a)Af(b)E 0 1 (by the laws of 2set) and, since f is a homomorphism, f(aAb)e o
1
, so 

aAbE F. 
3. avbe F iff ae For be F: clearly, if ae For be F, then avbe F. In the opposite 

direction: if avbe D 1, then f(a)vf(a)e 0 1, but in 2set this guarantees that either 

f(a)E D 1 orf(b)E D I, i.e., ae For be F .• 

Lemma 3.16 Let A be an info-algebra of the minimal internal signature (A, v,O, I). 

Then the mapping f:A ~let defined from a prime filter Fin LA by first stipulating 

for the singletons: 
(i,ifaEF 

f(a) = ~ 
l 0, otherwise 

and then for arbitrary elements of Lset: f(X) = ll {f( a):X::;k a}, is a homomorphism. 

Proof" Clearly the constants 0, I ,l.,T are mapped correctly by f: f( 1) = I and f(O) = 
0 by the fact that F is a proper filter, f(l.) = l., since 1 ®0 = l. and f(T) = T trivially. 
Let us also note that for a, beL 

f(aAb) = f(a)Af(b); 
f(avb) = f(a)vf(b), 

since F is prime. To check if f(XA Y) = f(X)Af(Y) reason as follows: 
f(XA Y) = nr f(c): XA y::;kc} = nr f( (aAb }):X::;ka,Y::;kb l = 

= O{f(a)Af(b):X\a,Y\b} = O{f(a):X::;ka}A O(f(b):Y::;kh} = 

= f(X) " f(Y). 
Similarly we can establish that f(XvY) = f(X) v f(Y). As for the operation ®, we 
proceed as follows: 

f(X®Y) = O(f(c):X®Y::;kc} = O(f(a):X::;ka} ® O(f(b):Y::;kb} = 

= f(X)®f(Y). • 

Now we can formulate an effect of the above construction important for the logical 
developments below: 
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Knowledge, Uncertainty and Ignorance 231 

Lemma 3.17 If X~D 1 (= f',T}) in a minimal info-algebra A, then there is 

a homomorphismf:A -t let such thatj(X)~D 1 inlet. 

Proof Since Xe: D 1, there is an a with X:5k a and such that a '#. I, and we can find a 

filter F in LA which omits a. The homomorphism f:A -t 2set associated with this 

filter maps X either on 0 (if XnF = 0) or on ..l (when XnF '#. 0). Anyway, 
f(X)e: Dl' • 

It would be a natural next step to formulate a representation theorem for info­
algebras as sub-algebras of the set expansions of frame lattices. Along the lines of 

the results in the preceding sections one needs to define first the notion of 2set 

model on a frame F = <W, ... > as a mapping 4>: WxFml-t2
8
et where for each wEW, 

4>(w,A)E Hom(L,2set) for the minimal signature. IAI
1 

denotes the set (w: 4>(w, A) 

= I}, IAI
0

, IAI..l' IAIT have similar meanings. A singleton a in the frame F is a 

partition of W, i.e., lal
1 
= W \ lal

0
, in other words singletons are exact truth values. 

We write A:5<1>B if Vw(<j>(w,A) :5k <j>(w,B)). Now let IIAII = (a: a is a singleton in F 

. +set and A:5<1>a}. The idea is to establish that 11.11 IS from Hom(£, (F ) ). 

Disappointingly enough this is true only for the internal part of the language. 

. + set Lemma 3.18 The mapping 11.11 ts from Hom(LO' (F ) ), where L0 is the 

language without ®. 

Proof To begin with, note that IAIT '#. 0 iff IIAII = 0- that takes care of the 

situation when there are occurrences ofT in the valuations of A or B. Observe also 
that IA, .. ,BI

1 
= IAI

1
11IBI

1
, IAABI

0 
= IAI

0
uiBI

0
, IAvBI

1
= IAI

1
uiBI

1 
and 1Av81

0
= 

IAI
0

111B1
0

. Using these we can prove, e.g. IIAABII = IIAIIAIIBII: IIAABII = ( c: 

AAB:5<1>c}, but AAB:54>c means that 1c1
1 

;;;;? IAI
1
11IBI

1 
and 1c1

0
;;;;? IAI

0
uiBI

0
. Let now 

a, b be the singletons with la1
1
= cu1AI

1 
and lbl

1
= cuiBI

1
. It is easy to see that A:5<1>a 

and 8:54>b, and that a11b = c. Thus IIAIIAIIBII ;;;;? IIAABII. To justify the opposite 

inclusion note that if A:5<jla and B:5<jlb, then AAB:5<jlaAb. 

The case with v is left to the reader. • 
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Remark The above construction can be cast in a slightly different form in 
order to reveal its kinship to a very well-known idea in many-valued logic: the 
notion of supervaluations. 

Call a mapping 'If: WxFm1~2set a supervaluation for ell if: 

I. ell:$k 'If; 

2. 'If is exact, i.e. for variables p, 'lf(w,p)E ( 0, I}. 

Let IIAIIs = ( IAI
1 
'1': 'If is a supervaluation for ell}. The claim that IIAIIs = II All for 

AeFmi(LJ is easily justified by the fact that {IAI
1 
'I',IAI

0 
'I') is a singleton. 

The difference with the tradition lies in the way supervaluations are used: while 
c~stomarily the family of supervaluations for a given ell is converted into a valuation 

<jl, which in our case would look as follows: 
(j)(w,A) = T, if there are no supervaluations; 

and in the presence of supervaluations, 
r I if V''lf('lf(w,A) = I) 

<j>(w,A) = ~ 0 if V''lf('lf(w,A) = 0) 
l j_ otherwise, 

our usage avoids such a conversion and keeps the family of supervaluations as a 
new generalized truth value. 

External info-algebras An info-algebra A is called external , if two unary 
operations • and+ can be defined in A satisfying: 

I. •llfX.:iEI} = A(.X.:iEI}; 
I I 

2. +TI{X.:iEI} = V( +X.:iEI}; 
I I 

3. •a = +a= a, for singletons. 

All relevant properties of the external modalities in set expansions (as documented 
in Lemma 3.9) can be derived from the above definition (which presupposes that 
LA is a complete lattice). 

Remark As a general remark to the idea of set expansion: it should have 
become clear by now that admitting arbitrary sets of lattice elements as generalized 
truth values, insisting at the same time that this move is caused by incompleteness 
of information, uncertainty of data, or vagueness of predicates, etc., is somewhat 
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Knowledge, Uncertainty and Ignorance 233 

inconsistent: to define an arbitrary set X requires very detailed information about 
the individual members of X., which seems implausible in circumstances when one 
lacks the relevant knowledge. Thus restricted classes of such generalized truth 
values seem to be a more realistic way of modeling imperfect epistemic situations 
(see the Conclusion for a discussion). 

As an example of restrictions that arise from specific imperfections of data let us 
consider a frame F = <W, ... >where the available knowledge permits us to discern 
different possible worlds only up to certain equivalence relation ""• so the only 
subsets of W one "can be aware of' are unions of equivalence classes [w] = 
{ w':w,w'} with respect to the indiscernibility relation "" (called rough sets). For a 
set Vr;;;;W denote by V 

1 
the set { w: [w] r;;;;V} and let V 

0 
= { w: [w] nV :1= 0} -these 

are respectively the biggest rough set inside V and the biggest rough set including 
V. An observer having the above limitations can know the "real" truth value IIAII 
only to contain IIAII

1 
and to be contained in IIAII

0
, so any set between these two 

bounds would be a possible "real" truth value for him, i.e., the generalized 
interpretation of A would be {U:IIAII

1
r;;;;Ur;;;;IIAII

0
}. Note that in such a setting the 

existence of the operations • and • ts a natural consequence: 
.{U:IIAII

1
r;;;;Ur;;;;IIAII

0
} = IIAII

1 
and +{U:IIAII

1
r;;;;Ur;;;;IIA11

0
} = IIAII

0
. 

The next section is devoted to the algebraic study of such special subfamilies of the 
set expansions which lead us back to the realm of bilattices. 

4 Intervals 

Let us first review briefly the notion of an interval in a lattice L. Recall that a subset 
X ofL is called connected (or convex) if: 

x,yE X and x$;z$;y ::::} ZE X. 
A subset X is a closed interval in the lattice, if X = { x:a$;x$;b) for some a, bEL, in 
this case X is denoted by [a,b]. Note that a closed interval is a bounded set, and 
furthermore it is a bounded convex set. 

Generalized intervals In a bounded lattice L we can consider generalized (closed) 
intervals as pairs [a,b] where the condition for a proper interval a$;b does not 
necessarily hold. On the set of all generalized intervals one can introduce the 
following operations: 

[a,b]A[c,d] = [aAc,bAd] 
[a,b]v[c,d] = [avc,bvd] 
[a,b]®[c,d] = [aAc,bvd] 
[a,b]EB[c,d] = [avc,bAd] 
0 = [0,0] I = [I, I] 
.l = [0,1]T = [1,0] 
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[a,b]~t[c,d] if [a,b]A[c,d] = [a,b] 

[a,b]\[c,d] if [a,b]®[c,d] = [a,b]. 

Lemma 4.11. [a,b]®{b,d] is the smallest interval that contains [a,bf and [c,d] in 
case they are proper intervals, i.e. it is equal to [{a,b]u[c,d]]; 

2. if [a,b ]${ c,d] is proper, then it is the intersection of[a,b] and [ c,d/; 
3. [a,b]~t [c,d] iff a~ c and b~d; 

4. restricted to the proper intervals ~k is the i11verse inclusion ~-

Proposition 4.2 If L is a distributive bounded lattice, then the set of all 
generalized intervals in L equipped with the above operations (denoted from now 

on by L 
2

) is a distributive bilattice. 

In L 
2 

a contlation operation and the external modalities can be defined by: 
-[a,b] = [b,a] 
•[a,b] = [a,a] 
+[a,b] = [b,b]. 

In this way the notions of consistent and exact truth values become available in L 
2

. 

Let us observe that an element [a,b] is a consistent value in L 
2 

iff [a,b] is a proper 

interval, and also an element of L 
2 

is exact iff it is of the form [a,a]. 

Example 10 In the possible worlds example intervals can be simulated by two 
forcing relations 1= 1 and l=o with the suitable truth conditions: 

wi= 1AAB iff wi= 1Aandwi=IB; 

w l=oAAB iff w l=oA and w 1=08; 

the same for the disjunction, etc. For the external modalities one has: 

w 1= 1nA iff w 1= 1A; 

w 1= 1+A iff w 1=
0

A; 

w l=o•A iff w 1= 1A; 

w l=o•A iff w 1=0A. 

These conditions stem from the interpretation of mappings cj>(w,A) into 4 (viewed as 

22) as defining the forcing relations I= 1 and l=o by demanding that w I= 1 A if 

T~tcj>(w,A), i.e. if cj>(w,A)E 0 1, and that w l=oA if j_~tq>(w,A), i.e. cj>(w,A) E 0 0. 
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The relationship between L 2 
and LxL is clear in the presence of negation: L 2:: 

LxL by the map f(<a,b>) = [a,-b], but in general they are not isomorphic - an 
interesting example of this being pseudo Boolean algebras. 

Remark In a classical possible worlds model the above isomorphism 
determines the following equivalences: 

w 1= 1A iffw I=A and w l=oA iffw;eiA. 

Also [0,1]2 is just another representation of [0,1]x[0,1] (as was mentioned in [2]) 
since [0,1] is a de Morgan lattice. 

External bilattices A bilattice B is called external, if one can define two unary 
operations on B- • and +,having the properties listed in Lemmata 2.14 and 2.15 
(items 2 and 3). A different representation theorem for external bilattices can be 

obtained from the L 
2 

construction. 

Theorem 4.3 If B is a distributive external billatice, then it call be represented as 

L 
2 

for a distributive lattice L. 

Proof Take L to be { x: •x = x} = { x: + x = x}, i.e. the set of exact values, with 
the restriction of :5: on it. Clearly L is a distributive bounded lattice. Define now a 

t 

map f: B~L2 
by setting f(x) = [•x. + x]. 

The claim is that f maps B isomorphically onto L
2

. This is (or should be already) a 
routine check using the identities for • and +. • 

Note that if x is a consistent element of B (with respect to the contlation definable 
in B by means of (4) of Lemma 2.15) then •x :5: tx, so the generalized interval 

t 
corresponding to x is proper. 

Remark This theorem is useful in those cases where there is no de Morgan 
negation available in L. In particular it is applicable to pseudo Boolean algebras. 

Let us in conclusion describe a connection between certain elements of the set 
expansions of distributive lattices and the interval construction. To this purpose 

consider L set and the following map: 
f(X) = [infX,supX]. 
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Proposition 4.4 1. Restricted to elements of Lset different from T, f is an info­

algebra homomorphism into the set of consistent elements of L 
2 

when the 
underlying lattice is complete and completely distributive. 

2. Restricted to finite non-empty subsets of L. f is an info-

algebra homomorphism into the set of consistent elemellts of L 
2 

(here no conditions 
are imposed on L). 

Proof. Let us show for example that f(XvY)=f(X)vf(Y). 
It is easy to demonstrate (using either the complete distributivity or the 

finiteness of X and Y) that: 
inf(XvY) = inf{ xvy: xeX,yE Y} = inf{xvinfY: xeX} = infXvinfY; 
sup(XA Y) =sup{ XAy:xe X,yE Y} = sup{xAsupY: xe X} = supXAsupY, 

etc. 
Thus f(XvY) = [inf(XvY), sup(XvY)] = [infXvinfY, supXvsupY] = [infX, supX] 
v [infY, supY] = f(X)vf(Y). 

The other cases can be checked similarly. • 

So the map f is an info-algebra homomorphism of Lset \ {T) into the set of 

consistent elements of the billatice L 2. In fact it is a map onto since every proper 
interval is a non-empty subset of L and f is the identity over such subsets of L. 
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Part II 

LOGICAL ASPECTS 

It was pointed out in the Introduction that there are different ways to use bilattices 
as semantic tools. In this part we explore the possibility to treat them (as well as the 
info-algebras) in the traditional fashion of algebraic logic: as logical matrices 
semantically defining logical systems, i.e., as a generalization of the truth-table 
method used in the classical logic. 

Generalized matrices Let us recall some definitions and some basic facts from the 
theory of propositional logics (cf. [8,61 ]), restricted to our current needs, e.g., we 
presuppose only a finite number of finitary logical connectives. 

A propositional language Lover an infinite (countable in our case) set of variables 
Var(L) is an absolutely free algebra of some signature (with the above restrictions), 
freely generated by Var(L). We assume that the operations include conjunction and 
disjunction, the two constants 0, I and eventually other constants and operations o .. 

I 

The elements of this algebra are called formulae and form a set Fmi(L), so L = 

<Fmi(L),A, v, ... ,0, 1>. Reference to L will be dropped from now on, whenever 
possible. 

A mapping C: .(O(Fml)~p(Fml) is a consequence operation (note that this is the 
monotone case, as will be throughout this section), if the following conditions are 
satisfied for all subsets r, Ll of Fml: 

(I) r~C(r); 

(2) C(r) = qqr)); 
(3) r~il implies C(r)~ C(Ll). 

A consequence operation C is compact if for every r: 

C(r) = U { C(il): il~r and Ll is finite}. 

A generalized matrix M = <A, D, H> for Lis a triple where: 
I. A is an algebra similar to the language L- the truth-value space; 
2. D is subset of the truth-value space - the elements of D are the 

designated truth values; 
3. H~Hom(L,A)- its elements are called admissible valuations. 

A matrix M is called standard when H = Hom (.L,A). Every class of matrices K 

determines a consequence operation CK: 

AE CK(r) iff '<i 9.{ = <A,D,H>E K V'hE H (if h[r]~D. then h(A)E D). 
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For singleton classes { !i\{) we write simply C M As a rule instead of AE C K(r) we 

write rl=0· or just ri=A when there is no danger of confusion. 

A propositional logic S is a pair <L,C> where C is a consequence operation in the 
language L of S. A class K is called a semantics for the logic <L.C>, if C = C K 

Finitely-approximable logics S are characterized by a class of finite matrices, i.e. 
there is a class K of finite matrices which is a semantics for S. Finite logics (or 
finite-valued logics) are determined by a finite class of finite matrices. 

In this part we are planning to present a variety of logical systems arising from the 
truth spaces considered in the previous sections in a single unified framework by 
proving theorems of the following kind: the systemS is characterized by a class of 
algebras (bilattices, info-algebras, etc.), viewed as generalized logical matrices. 

Within this framework one is confronted with several choices which determine the 
logical system: 

• the choice of language, i.e., what bilattice or info-algebra 
operations should be considered logical, as opposed to others that are computational 
in character; 

• the choice of D- the distinguished truth values; 
• the choice of the class H- the admissible valuations, i.e. what types 

of homomorphisms are considered relevant. 

With respect to the first mentioned choice there are several approaches. The liberal 
approach is to consider all operations available in the investigated class as equally 
logical, so the propositional language is to have the same signature as the class 
itself, i.e. all operations have corresponding logical connectives. We are going to 
give several examples of this approach, e.g., the logic of all bilattices with all 
operations, the logic of info-algebras, etc. 

A second, more restrictive, approach is to put down criteria by which an operation 
can be judged to be logical or not. Let us formulate a few criteria as an example: 

I) A logical operation in a bilattice should preserve acquired 
information about truth values - assuming this, we arrive at the requirement of k­
monotonicity. Such a criterion excludes for example the contlation and the external 
modalities as candidates for logical operations. 

2) One may insist on conservativity of a logical operation in the 
sense that when applied to exact truth values it should yield exact values - this 
criterion excludes the k-operations EEl and ®, but admits contlation and the external 
modalities. 

3) An even less restrictive requirement is to demand the operations to 
preserve consistency, i.e., when applied to consistent truth values the operation 
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should give consistent truth values - the operations Ef) and contlation are excluded 
in this case. 

The problem with the set of distinguished truth values is in fact a version of the 
more general question of what conditions should be met in order to recognize a 
statement as "true". A first thing that comes to mind is that the intended meaning of 
the elements of bilattices, set expansions or info-algebras implies that I e D, so the 
simplest decision is D = { I } , i.e., to recognize as valid only such inferences that 
preserve the property of "being only true". But, besides being a not very happy 
choice technically, the restriction of D to {I} is not easily justifiable. In fact the 
inclusion ofT in every respect is just as rational. Thus a more reasonable choice of 
D would have I,T ED. In a bilattice though D should include with every member 
also all elements that are "truer" - this leads to the choice 

0
1 
= {x: T :::;t x}. 

Such a set of distinguished truth values emphasizes the postttve foundations to 
accept something as true; if we have all the reasons to accept a statement as true we 
do accept it. Another possible choice would favour elements that are not refutable, 
so we would have 

n
0 

= {x: ..1. :::;t x}. 

This time, if we have no reasons to refute a statement, we accept it. 

In set expansions 0
1 

and o
0 

can be viewed as the sets of elements X satisfying 

respectively '<dxe X( x= I) and 3xe X(x= I). Unfortunately the former definition 
leads to some technical complications and destroys the duality between the two 
choices. A naturally better option is o

0 
= {X:supX = I} -dual to {X:infX = I} (= 

01). 

Restrictions concerning the set of admitted homomorphisms can include such 
requirements as e.g.: 

• H is the set of all consistent valuations, i.e. functions whose range 
contains only consistent elements, or 

• H is the set of valuations into info-algebras that contain only finite 
sets in their ranges, etc. 

5 Logical systems related to bilattices 

Let us fix some terminology: if a logic is defined by a class of generalized logical 
matrices with no restrictions on the admissible homomorphisms we speak of a 
standard system, if H is restricted to the homomorphisms with consistent values, 
then we use the term consistent logics; if it contains only finite sets as values (this in 
the case of set expansions), then the logic is finitary. If the set D of distinguished 
truth values is Dl' we speak of positive logics, if it is 0

0
- we say that the logic is 
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negative. If the signature of the language and the algebras of the class coincide, we 
speak of a full logic, otherwise we use different adjectives showing which 
operations in the algebras have language connectives as counterparts. 

A general remark should be made at this point: formulae of the considered 
languages can be viewed as terms and equations A = B can happen to be identities 
in the classes of algebras determining the consequence operation. In such cases both 
AI=B and BI=A hold. The converse implication is not valid in general. 

The standard logics ofbilattices We start with the logic determined by the class of 
all distributive bilattices. The propositional language L is assumed to contain four 
propositional constants 0,1, l_,T and four binary connectives v, "· EB and®. It is to 
be interpreted in distributive bilattices viewed as standard logical matrices with D 

1 
= { x: T ~t x) as their set of distinguished truth values (thus we deal with the full 

positive standard logic). 

Lemma 5.1 The consequence operation I= determined by the above choices has 
the following properties: 

0. /fOE r, J..E r or AE r, then n= A 

n= 1; n= r 
1. n= A and n= B implies n= A/\B 

r, AI= Cor r, 81= C implies r, A/\81= C 
2. n= A or n= B implies n= Av8 

r, AI= C and r, 81= C implies r, A v81= C 
3. n= A and n= 8 implies n= A®8 

r, AI= Cor r, Bi= C implies r, A®Bi= C 
4. n= A or n= B implies n= AtBB 

r, AI= C and r, 81= C implies r, A$81= C 
(Here I is a set of formulae, A, B, C- formulae; we write I, A instead of lu{A), 
etc.) 

Proof' In order to check (0) - (4) assume that B is a distributive bilattice and 

hE Hom(L,B). 

For (0) note that no h maps 0 or j_ into D 
1
, that I and T are in D 

1 
and that if h maps 

I into D 
1
, then A being a member of I implies that h(A)E D I, too. Skipping (I) we 

consider now the more interesting second part of (2). Assume that I, AI= C and I, 
Bl= C and reason from the contrary to establish the conclusion. Assume that B is the 
bilattice providing the counterexample h which maps I and AvB into D 

1 
but 

h(C)~ D 
1
. Since B may happen to be unsuitable for our purposes (having elements x 

and y such that xvye D 
1 

while neither of them is a designated truth value), we 
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transfer this counterexample to 4 resorting to the fact that there is a homomorphism 
f:B~4 which maps D 

1 
into { I,T) (= D 

1 
of 4), but f{h(C)ht D 

1
. The composition h 

1 
= f;h is from Hom(£,4). Clearly hI maps rand AvB into D I' but hI (C)~ D I' Now 

by the assumption we have h
1
(A) and h

1
(B) outside { I,T). On the other hand 

h
1
(AvB) = h

1
(A)vh

1
(B), and we get a contradiction since in 4 the disjunction of 

elements outside { I,T) is outside { l,T), too. 

The establishing of (3) runs as follows: h maps r into D I' in particular h(A) and 

h(B) belong to D
1
, i.e., T~ h(A) and T~ h(B), but then by the monotonicity of® we 

t t 

have T~t h(A)®h(B). For the second part note that from T~th(A®B) it follows by 

monotonicity of EB, that TEBh(A)~ (h(A)®h(B))EBh(A) = h(A), i.e. T:5: h(A), and 
t t 

analogously T:5:th(B). 

Case ( 4) is similar to (2). • 

For the presentation of this and subsequent logical systems we choose sequential 
style calculi. For our purposes it is sufficient to adopt the view that sequents are of 
the form r 1- A, where r is a finite set of formulae, A - a formula. Thus our 
systems are inherently intuitionistic (having the restriction of single formula in the 
right-hand side). 

Definition 5.2 A sequent r 1- A is a basic sequent, or an axiom, if one of the 
three below hold: 

I. AE r. 
2. OE r or .iE r. 
3. A= I or A= T. 

Rules With each connective of L two types of rules are associated, governing asso­
ciation of formulae in the left-hand and the right hand side respectively: 

r,AI-C r, B 1- C 
(/\I-) 

r, A"B 1-C r, A"B 1- C 

r1-A; r1-B 
(I-/\) 
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r, A 1- C; r. B 1- C 
(vi-) 

r, AvB 1-C 

fi-A fi-B 
(1-v) 

fi-AvB fi-AvB 

f,AI-C f,BI-C 
(®1-) 

r, A®B 1-C r, A®B 1-C 

fi-A; fi-B 
(I-®) 

fi-A®B 

f,AI-C; r,B 1-C 
($1-) 

r, AffiB 1- C 

fi-A fi-B 
(I-$) 

fi-A$8 fi-A$8 

A sequent is provable if it can be derived from basic sequents by means of the rules. 

Lemma 5.3 If a sequent n-A is provable, then n =A. 

Proof· Induction on the height of the derivation tree of the sequent. For basic 
sequents see (0) of the previous lemma, the rest of the items there take care of the 
induction step. •· 

Remark The present formulation makes familiar structural rules such as 
weakening, contraction, and cut redundant in the sense that they are admissible 
rules in the system. In later systems formulated with the cut rule it is not always 
clear whether it is eliminalbe. 

Let r now be an arbitrary set of formulae. We define [f] as ( B:for some finite 
subset rOof r the sequent r 

0
1-B is provable). Call d a theory if [d] =d. The set of 

all formulae Fml is an example of a theory- the trivial theory. A non-trivial theory 
dis prime if AvBEd ~ AEd or BEd and AEl.1BEd ~ AE6 or BE6. 

Lemma 5.4 Let L1 be a prime theory, then the following hold: 
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0. T, IE .1, O,...LiE .1; 

i. AABE.1 iff AE.1 and Bet1; 
2. A vBet1 iff AE.1 or Bet1; 
3. A®Bet1 iff Ae.1 and Bet1; 
4. MJ1Bet1 iff Aet1 or Bet1. 

Lemma 5.5 if A iE [ r}, then there exists a prime theory t1;2T such that A tlt1. 

Proof' The argument is standard: the family of all non-trivial theories containing r 
and omitting A is a Zorn family and therefore has maximal elements. It is easy to 
show for a maximal element ~ that ~ is a prime theory, for example BvCE~ 
implies BE~ or CE ~ since if the contrary is assumed, we would have both [~.B] 
and [~. C] not in the family and so AE [~.B] and AE [~.C]. which easily implies that 
AE [~]. contrary to the assumption. • 

Theorem 5.6 if n=A, then Ae[r]. 

Proof' This is the so-called completeness property. In particular it means that if ri­
A is not a provable sequent, then it is not semantically valid (i.e. we use 
contraposition). Let A~ [r], then by the lemma above there is a prime theory ~ 
containing r and such that A~~. Having this ~ we can define a valuation h:~ 4 
mapping r into { l ,T} = D 

1 
and A outside D 

1 
thus showing that rl:t A. For 

example, if we set for a propositional variable p: 
roifp~~ 

h(p) = ~ 
ll ifpE~ 

and extend this to a homomorphism into 4, the by induction on the complexity of a 
formula B it can be shown that: 

h(B)EDI iffBE~. 

Indeed the induction steps are justified by the corresponding clauses of Lemma 5.4, 
e.g.: h(C/\B)E D l iff h(C)/\h(B)E D I iff (by the properties of 4) h(C)E D I and 

h(B)E D l iff (by the induction hypothesis) CE ~and BE~ iff C/\BE ~; h(CffiB)e D I 

iff h(C)EBh(B)eD
1 

iff (by the properties of 4) h(C)eD
1 

or h(B)eD
1 

iff (by the 

induction hypothesis) Ce ~or BeLl iff CEE>Be Ll, etc. • 

Remarks l. With the same success we might have used any other function h 
satisfying h(p)e D 

1 
iff pe ~.e.g., h(p) = .l if pe; Ll, h(p) = T if pe Ll. 

2. Note that 4 is adequate for the logic of all distributive bilattices, 

i.e. [r] = C 
4
+(r), where 4+ = <4, D 

1
, Hom(£,4)>. 
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3. Thus in fact the logic of all distributive bilattices is a finite (four­
valued) logic, it is compact, decidable and so on. 

The full negative standard logic of all bilattices (defined by matrices of the kind '13 = 

<B, D
0

, Hom(L,4)> with D
0 

= {x: ..L ::;t x} = {x: x::;k I}) is in its basic structure 

quite similar to the positive one. The new consequence operation has the properties 
from Lemma 5.1 with the following differences: in (0) T and ..L interchange places, 
and in (3) and (4) Efland® exchange places (for example instead of (3) one has rl= 
A and rl= B implies rl= AEflB and I, AI= C or I, Bl= C implies I, AEflBI= C). 
These properties are established now with a reference to the existence of 
homomorphisms into 4 mapping prescribed elements outside D

0
- a consequence of 

the theory of dual hi-filters. 

Corresponding changes have to be made in the rules and in the notion of a basic 
sequent: ri-A is an axiom in the new system iff (I)- (3) from Definition 5.2 hold 
with T and ..L interchanging places. The rules concerning Efl and ® undergo similar 
interchanges. This leads to changes in the properties of prime theories (Lemma 5.4, 
where in item (0) we have now ..L, IE~, O,Te~. and in items (3) and (4) Efl and 
®exchange roles) but the proof of the completeness theorem is just as simple as 
that of Theorem 5.6: 

[I]= C 
4

(1), where 4 = <4, D
0

, Hom(£,4)>. 

Thus the negative and the positive full standard logics of all distributive bilattices 
are k-dual versions of each other. 

The logics ofbilattices with negationLet us consider an extended language L which 
contains the unary connective -,, Correspondingly the relevant class of bilattices 
consists now of all distributive bilattices with negation. The sequent system for the 
full standard positive logic is obtained by adding to the basic system the rules for 
sequents containing negation. 

Rules for •: 

1,-,AI- C; r,-,BI- C 

I, •(A."B)I- C 
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(•vi-) 

(1-•v) 

(•®I-) 

(I-•®) 

( --,Ef>l-) 

(1--.®) 

Lemma5.7 

Knowledge, Uncertainty and Ignorance 

I,•AI-C I,•BI-C 

I, -.(AvB)I- C I, •(AvB)I- C 

11-•A; 11-•B 

II- -.(AvB) 

I,•AI-C I,•BI-C 

I, -.(A®B)I- C I, •(A®B)I- C 

11-•A; 11-•B 

11-•(A®B) 

I,•AI-C; I,•BI-C 

I, •(AEf>B)I- C 

11-•A 

II- -.(AffiB) 

I, A 1-C 

I,••AI-C 

11-•B 

II- -.(AffiB) 

II-A 
(1---,--,)----

If n-A is provable, then n =A. 

245 

Proof The proof is analogous to the proof of Lemma 5. I and makes use of the 
identities from Fact 2.4 and the proposition about homomorphisms of negated 
bilattices: ifF is a prime bi-filter in a bilattice with negation, then the pair (F,•F) 
determines a homomorphism into 4 (recall that --,f is a prime bi-ideal in this case).• 

Again we can extend the left-hand side of any unprovable sequent II-A into a 
prime theory .:1 with A~.:1. To the properties of prime theories from Lemma 5.4 we 
must add the following: 

5. •(AAB)E .:1 iff •AE .:1 or •Be.:1; 
6. •(AvB)Ei1 iff--,Ae.:1 and •Be.:1; 
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7. •(A®B)E~ iffoAE~ and •BE~; 
8. •(AEBB)E~ iffoAE~ or •BE~; 
9. -,-,AE~ iffAE~. 

Theorem 5.8 If n=A, then AE [r]. 

Proof The proof is similar to the previous completeness proof. Given a prime 
theory~ we define a function from Var into 4: 

rr, if pE ~,•pE~ 
II , if pE ~. •pe: ~ 

h(p) = i 0, ifpe:~,•pE~ 
l.l, if pe: ~. •pe: ~ 

For the extension of h to a homomorphism from Hom(£,4) we can show (with the 
help of the properties of prime theories) that the above is preserved for an arbitrary 
formula B: 

h(B) = 

rr, ifBE~,•BE~ 
II, ifBE~,·Be:~ 
~ 0, if Be:~. •BE ~ 
l.l, if Be:~. •Be: ~ 

The assumption that~ does not contain A guarantees that h(A)e: D 
1
, while h maps r 

into D 
1
. Thus fi= A is refuted (in the smallest possible bilattice with negation- 4) . 

• 
Remarks I. In view of Theorem 2.5 the above system is the full positive logic 
of all squares LxL. 

2. Again [r] = C 
4
+(f), where 4 is considered with its negation, so 

this logic is four-valued and hence all the familiar consequences: compactness, 
decidability, etc. 

The negative counterpart of the logic with negation can be obtained by adding to 
the basic negative system a family of rules for the negation k-dual to the family 
above, i.e. with EB and ® exchanging places, for example (1-•®) becomes now 

n- •B 

This system is complete with respect to 4. 
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The logics of external bilatticesLet us consider the class of all external hi lattices as 
logical matrices for a language containing • and + and study its full positive 
logic. Since the set of distinguished truth values is D 1 we have •AI= A and AI=•A. 

so the corresponding rules should be: 

r,AI-C ri-A 

r •• AI-C 

For + we have a bunch of rules (parallel to the rules concerning negation): 

r, +AI-C r, +BI-C 
( ·/"-) 

r, + (AAB)I- C r, + (AAB )I- C 

n- +A; n- +B 
(I-+ A) 

rl- +(AAB) 

r,+AI- C; r,+BI- C 
(+vi-) 

r, +(AvB)I- C 

ri-+A rl- +B 
(1-+v) 

rl- +(AvB) rl- +(AvB) 

r. +AI-C r, +BI-C 
( +$1-) 

r, +(A$B)I- C r, + (A$B)I- C 

ri-+A ri-+B 
(1-+$) 

rl- +(A$B) rl- +(AE&B) 

r, +AI-C; r, +BI-C 
( +®1-) 

r, + (A®B)I- C 
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rl- +A; rl- +B 
(1-+®) 

rl- +(A®B) 

r, +A 1-C r,.AI-C 
(.+I-) 

f, ++A 1-C f, ••A 1-C 

rl- +A 
(1-•.) 

rl- ++A 

Theorem 5.9 n-A is provable iff n=A. 

Proof' The correctness part is routine, for the completeness we note that prime 
theories A have here the following properties - additional to the ones from Lemma 
5.4: 

5' .• BELl iffBEA; 
6'. +(BI\C)EA iff tBEA and tCEA; 
7'. +(BvC)EA iff tBEA or tCEA; 
8'. +(B®C)EA iff +BEA or tCEA; 
9'. + (BEBC)E A iff t BE A and t CE A; 
10'. ••BEA iff.BEA; 
11'. t +BEA iff tBEA. 

Given a prime theory A we define a map h: 
rr, if.pEA,+peA 
It, if.pEA,tpEA 

h(p) = ~o, if•peA,tpeA 
l..L, if.peA,tpEA 

The extension of h to all formulae is easily shown to satisfy the same conditions 
with an arbitrary formula B instead of the variable p, so if Ae A, then h(A)e D I' 

while members of A (among them all BE f) are mapped to D 
1
. • 

Remark External bilattices are in fact of the kind L2, so the positive logic of 
generalized intervals in distributive lattices coincides with <.L,C 

4
,v, where 4 is 

viewed as the bilattice 22. 

For the negative logic • and • interchange roles, since we have the following fact: 
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A has a value in 0 0 iff +A is evaluated as I. 

Therefore the rules which have to be added to the basic negative standard logic of 
bilattices are: 

• rules for + to replace the rules for •: 

r,AI-C fi-A 
(+I-) (1-+) 

r, +AI-C n- +A 

• dual versions of the remaining rules, i.e., versions in which 
everywhere + and • change places, as well as $ and ®. For example such a rule 
would be: 

r .• AI-C r •• BI-C 

r, •<AEBB)I-C r. •<AEBB)I-C 

Adjusting the notion of a prime theory to the new inference system a proof of a 
completeness theorem is readily available along the lines of previous proofs: the full 
negative standard logic of external bilattices is<£. C _r>· 

The logics of de Morgan bilatticesAs pointed out in Section 4, if L is a de Morgan 

lattice, then L 2 = LxL. Thus the class of bilattices which are external and at the 
same time have a negation (we call them here de Morgan bilattices) defines logics 
that combine the features of the logics of both superclasses. In bilattices of the 
above kind, where negation and conflation commute, the two external modalities 
are interdefinable, so in order to axiomatize their full positive standard logic we 
choose a language with .., and • and treat the other connectives (like + or 
conflation -)as abbreviations. 

Here we encounter for the first time the effect of the fact that modalized formulae 
(i.e. formulae with one of the external modalities as the principle connective) 
assume only exact values, e.g., ·•B and •s cannot have simultaneously their truth 
values in 0

1
. Thus the positive system has an augmented notion of a basic sequent: 

fi-A is an axiom, if also ••BE f and .BE f, for some formula B. The rules are the 
rules of the basic logic plus the rules for .., and the two rules concerning •· The 
differences in the notion of axiom are reflected in an additional property of prime 
theories: 

if .BE£\, then ••Be: L\ . 
From a prime theory L\ we can obtain a valuation by the same definition as in the 
case of pure logic with negation: 
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rr, ifpE~,-,pE~ 
II, ifpe~.,p~~ 

h(p) = ~ 0, ifp~~.,pe~ 
l..l, if p~ ~. -,p~ ~ 

The proof that this extends to a full homomorphism has just one new moment - the 
case of.B: 

h(.B) =Tiff •Be ~and ,.Be~ (both sides are impossible); 
h(.B) = I iff •Be~ and -,•B~~ (note here that •Be~ iff Be~. 

and that Be~ implies -,•B~~; then use the induction hypothesis); 
The case h(.B) = 0 iff•B~~ and ,.Be~ and h(.B) = ..l iff•B~~ 

and -,•B~ ~ are checked similarly. Otherwise the proof proceeds in the same way 
as above. 

Remark The system we have just proven complete is also the positive logic of 
the probabilistic bilattice [O,l]x[O,l]. 

For the negative logic (i.e. the logic defined by 0
0

) it is more convenient to 

consider + as basic connective and • as an abbreviation. Consequently we make 
the following changes in the negative standard full logic of bilattices with negation: 

• extend the language; 
• extend the notion of axiom by adding the clause that ri-A is a basic 

sequent if for some B, { +B,-,+B}~r; 
• add the rules (+I-) and (I-+ ). 

For the system just described we have a completeness proof similar to the one 
above and exploiting the relations of modalized formulae and prime theories. 

The logics ofintuitionistic bilatticesOur next example of a logic will be the system 
defined by all bilattices of the kind LxL, where L is a pseudo-Boolean algebra, 
considered as standard logical matrices with D 

1 
= { x: T ~tx), i.e. the positive 

standard full logic. For the lack of a better name we call such bilattices 
intuitionistic. Let us recall that in pseudo-Boolean algebras there is a binary 
operation of relative pseudo-complementation a~b (which generates also a 
pseudo-negation -a = a~O). So in LxL we can consider alongside the negation -, 
some additional operations: 

<a,b>~<c,d> = <a~c.aAd>; 
-x = x~O (so that -<a,b> = <-a,a>); 
xHy = (x~y)A(y~x) (so that <a,b>H<c,d> = <aHc,(aAd)v(cAb)>). 

Note also that <a,b>E D 
1 

iff a= 1. 
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Remark We have chosen to lift the implication from the pseudo Boolean 
algebra to the corresponding intuitionistic bilattice by means of the above definition 
following one of the possible intuitions about forcing and rejecting an implication: 
it shoud be forced whenever forcing the antecedent guarantees that the consequent 
will be forced; it should be rejected in all cases when the antecedent is forced but 
the consequent is rejected. Accordingly we presuppose possible worlds models with 
truth-conditions as follows: 

w I= A~B iff Vw'(w5.w' and w' I= A ~ w' I=B); 
w =I A~B iff w I= A and w =I B. 

Let us warn the readers that the model here are intuitionistic, i.e., I= and =I are both 
monotone with respect to 5.: 

wi=A and w5.w' ~ w'I=A; 
w=IA and w5.w' ~ w'=IA. 

The signature of the language will contain A,V, ®, EB, and...,, the constants (of which 
all except 0 to be viewed as abbreviations), and also ~. - and H (the latter two 
viewed as abbreviations). For such a choice of connectives we have a nice property 
of the consequence operation: 

Lemma 5.10 ~is a suitable implication, i.e. r, AI= B iff n= A~B. 

Proof' Assume r, AI= B and that h: ~LxL maps r into D. Consider h(A~B) = 
h(A)~h(B) and let h(A) = <a,b>, h(B) = <c,d>. Note that if h(A~B) is not a 
member of D 

1
, then its first projection a~c :f. 1, so not a5.c and therefore not 

<a,b>~, <c,d>. Using the existence of prime hi-filters containing <a,b> but 

omitting <c,d> and the corresponding homomorphisms into 4 = 2x2 we can find an 
hI :~4 mapping r and A into D I' but keeping the value of B outside D 

1
. In the 

opposite direction we use the fact that in any pseudo Boolean algebra L, a~c = I 
and a = 1 implies c = 1. • 

Having a semantic consequence operation together with an implication suitable for 
it, one can use Hilbert style systems based on axioms and just one rule - Modus 
Ponens . In the present case we propose the following axiomatic system: 

0. All intuitionistically valid schemata for ~ and 0; 

I. AAB~A. AAB~B. A~(B~AAB) 

A~AvB, A~AvB, (A~C)~((B~C)~(AvB~C)) 

2. A®B~A. A®B~B. A~(B~A®B) 

A~AEBB, A~AEBB, (A~C)~((B~C)~(AEBB~C)) 

3. ••AHA 
•(A~B)HAA•B 
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-.(AAB)H-.A v-.B 
-.(AvB)H-.AA-.B 

4. -.(A®B)H-.A®-.B 
-.(AEBB )H-.AEB-.B 

Remark The first projection of any he Hom(L,LxL) is a homomorphism into 
L with respect to the "intuitionistic" part of the language (containing 0,1 and the 
connectives A,v.~ ). Thus a restricted formula A is a bilattice tautology iff it is an 
intuitionisic theorem. 

To check that all axioms are bilattice tautologies is a routine matter. Let us give 
only one example: -.(A~B) H AA-.B. Let h(A) = <a,b>, h(B) = <c,d>, then 
h(-.(A~B)) = <aAd,a~c>, so when h(-.(A~B))E D 

1 
one has aAd = I. Therefore 

h(A)eD
1 

and h(-.B)eDI" Conversely, h(AA-.B)eD
1 

implies a= I, d = I, and 

consequently h(-.(A~B))EDr 

Among the theorems of the system are all truth-table equivalences for the constants, 
e.g. -. T H T, etc. We mention also -.-AHA, which shows an interesting interaction 
of the two negations in the system 

Theorem 5.11 
bilattice tautology. 

The proposed system is complete, i.e., A is a theorem if A is a 

Proof' Let us consider the set W of all prime theories ,1 ordered by set-theoretical 
inclusion as an intuitionistic frame F (the canonical frame). On F we define a 
model: 

,11= p iff pe,1 
,1 =I p iff -.pe ,1 

By induction on the complexity of a formula B one can prove the important truth 
lemma: 

,11= B iff Be,1 
,1 =I B iff -.Be ,1 

Take the implication as an example. Prime theories ,1 have two features relating to 
~: BE ,1,B~CE ,1 => CE ,1, 

V ,1'::2,1 (BE S=>CE S) => B~Ce ,1, 
The first is obvious, the second is established by the familiar trick of extending a 
theory which does not contain B~C to a prime theory containing B but not C. 
Assume now that ,11= B~C. This implies V ,1':2,1(,1'I=B=>,1'I=C), so by the 
induction hypothesis VS;;;:2,1(BeS=>CeS) and B~Ce,1. If B~Ce,1, then 
V ,1':2,1(BE ,1'=> Ce S) and using the induction hypothesis V ,1';;;:?MSI=B=>SI=C), 
i.e. ,11=B~C. 
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As for =1, we reason as follows: il=IB~C implies ili=B and il =IC which is 
equivalent modulo the induction hypothesis to BA....,CE il. But by the axioms 4 (since 
if EHE

1 
is a theorem, then E and E

1 
are simultaneously in or out of a theory) 

....,(B~C)E il. In the opposite direction the fact that ....,(B~C)E il implies that 
BA....,CE il, so BE il and ....,ceil and so ili=B and il=IC, which gives us the desired 
il=IB~C. 

Having the truth lemma we can define easily a homomorphism which refutes A as a 
tautology. Since A is not a theorem there is a prime theory il such that A~ il. Let 
h(B) be <IIBII

1
,11BII

0
>, where IIBII

1 
= {il: ili=B} and IIBII

0 
= {il: il=IB}. Clearly 

IIAII 
1 

::1:- W, so h(A)~ 0
1
, thus A is not a tautology in the bilattice B(F+), where F+ is 

the pseudo Boolean algebra of all cones in F.• 

Remark 1. This is the first example of a logic which is not finite, but only 
finitely approximable (as can be established by means of a filtration method, but we 
leave this aside for lack of space). 

2. The implication is also a first example of a connective which is 
not extensional in the sense that the truth conditions for it do not concern only the 
current possible world (classical modalities have similar behavior). 

3. Considering formulae as terms we can claim now that the 
following are equivalent: 

(a) A= B is an identity in the class of all intuitionistic bilattices; 
(b) AHB and ....,AH....,B are both theorems of the system. 

The negative version of the above logic can be obtained by k-dualizing the system 
(which is not quite a trivial enterprise in this case): first of all we need a operation to 
play the role of ~ in the changed circumstances.To this end we propose a kind of 
dual implication x ~ y with the following definition: 

<a,b> ~ <c,d> = <bvc,-bAd>. 
The intuition behind it: A ~ B is assertable in a situation if the available knowledge 
is either enough to assert the consequent or enough to reject the antecedent; A ~ B 
has to be rejected by the available information if it guarantees that the antecedent 
will never be rejected and rejects the consequent. More formally, in intuitionistic 
relational models: 

wl= A ~ B iff w=IA or wi=B; 
w=l A~ B iff '\fw'(w~w· :::::> w'::~:-IA) and w'=IB. 

Lemma 5.12 The operation ~ is a suitable implication. 
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Proof· • A, A c) Bl= B: let h(A) = <a,b>, h(B) = <c,d>. h(A)e D
0 

iff b = 0, h(Ac} 

B)e D0 iff -b"d = 0, but clearly this implies d = 0, so h(B)e D
0

. 

• AI=B implies I= A c) B: if A c) B is not a tautology, then for some 
bilattice and some valuation h, h(A c) B)i: D

0
, i.e. -b/\d :1= 0; in pseudo Boolean 

algebras the latter is equivalent to not d~b and therefore not <a,h>~, <c,d>- we can 

find a dual prime bi-filter defining an appropriate homomorphism into 4 which 
would contradict the fact AI=B. • 

After changes in the language where now c) is a basic connective instead of~. we 
have to change the axiom schemata: groups (0), (I) and (3) retain the same form (c) 

replacing ~) while the schemata in groups (2) and (4) are dualized, i.e. EB and 
® exchange places. The resulting logical system is complete and finitely 
approximable. 

The logics of the external intuitionistic bilattices The class { L 2: L is a pseudo 
Boolean algebra} defines logical systems different from the ones just discussed. The 
signature of the class contains, besides the external modalities • and •, an 
implication ::J lifted from the underlying lattice to the bilattice by means of the 
following definition: 

[a,b]::>[c,d] = [b~c,a~d]. 

Such a choice can be explained by the intuition of necessary and possible truths 
(represented respectively by the left and right boundaries of the generalized 
intervals): b~c represents faithfully the cases when an implication is necessarily 
true, while a~d gives the cases of possible truth. In intuitionistic possible worlds 
models this intuition is rendered by the following truth conditions concerning the 
two forcing relations I= 1 and 1=0: 

w 1= 1A::>B iff V'w'~w(w'l=oA =>w'I= 1B); 

w l=oA=>B iff V'w'~w(w'I= 1 A => w'I=0B). 

Let us start with the full standard positive logic. Abbreviating •x::>y as x~y (with 
the hope that this will not cause confusion with the pseudo Boolean algebra 
operation), we have 

[a,b]~[c,d] = [a~c,a~d], 
and the following fact:~ is a suitable implication. In view of this fact we present a 
Hilbert style axiomatization. Modus ponens is the only inference rule and the axiom 
schemata are grouped as in the previous case: 

0. all intuitionistically valid schemata in the language of -7 and 0. 
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2. A®B--?A, A®B--?B, A--?(B--?A®B) 
A--?AEtlB, A--?A®B, (A--?C)--?((B--?C)--?(AEBB--?C)) 

3. .AHA 
.(A::::>B)H( + A--?.B) 
+ (A::::>B)H(.A--?+ B) 
+ (AAB)H( + AA +B) 
+(AvB)H( +Av+B) 
+•AH.A 
++AH+A 

4. +(A®B)H+Av+B 
+(AEtlB)H+AAtB 

Let us list some theorems of the system: 

.(AAB )H.AA.B 

.(AvB)H.Av•B 

.(A®B)H.Av•B 

.(A®B)H.AA.B 

Theorem 5.13A formula A is a theorem iff it is a tautology in the class of all 
external intuitionistic bilattices. 

Proof' Consider A which is a theorem - it is easy to check that A is a tautology. If 
A is not a theorem, then one can find a prime theory not containing A. The prime 
theories of the present logic ordered by inclusion form the canonical frame F of the 
system. The canonical model on F is defined by the map cjl(l1, p) that assigns to each 
prime theory and a variable an element of 4 in the following way: 

$(11, p) = 

fT, if.pEI1,+pel1 
I I, if.pEI1,+pE11 
~ o, if•pel1,+pel1 
ll., if •pe 11, • pE 11 

It is already routine to check that cjl(l1, p) extends to a homomorphism of the full 
language into 4 with the same properties as above - this is based on the features of 
prime theories which augment those from Theorem 5.4 and from Theorem 5.9 
(concerning --?) with clauses for::::>: 

•<B=>C)E 11 iff '<:1 l1';;;;1l1 c • BE 11·~ •cE S); 
+(B::::>C)EI1 iff'<;/11';:;;111 (.BES~ tCES). 
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In the bilattice (F+)2 the formula A cannot be valid since it is not forced 
everywhere.• 

Remark The completeness theorem allows us to describe identities in the 
class of all external intuitionistic bilattices: A = B is such an identity iff •AH•B 
and +AH+B are theorems. Since the logic is decidable (this is a corollary of its 
axiomatizability and finite approximability, the latter can be established by a 
filtration method) we have a decision procedure for testing identities. 

A suitable implication for the negative logic of external intuitionistic bilattices is 
+A::JB: 

• [a,b]::J[c,d] = [b~c.b~d]. 
Since xE D

0 
iff its right boundary is 1, it is easy to see that the necessary changes to 

be made in the positive system in order to obtain the negative one are: 
• replace everywhere ~with the new implication; 
•leave groups (0) and (l) otherwise unchanged; 
• dualize the rest, i.e. interchange + and •. as well as Et> and®. 

The logics of Boolean bilattices In this subsection we treat very briefly the class of 

bilattices of the kind LxL or L2 (where L is a Boolean algebra). Here the whole 
variety of different implications introduced up to now reduces to two specimen: 

.,.xvy ( = x~y = •x::Jy) and 

.,+xvy ( = x=>y = +x::Jy). 

For the posttlve logic we take a language with the basic bilattice connectives 
(including negation) and the former implication (which is obviously suitable). The 
axiom system is obtained from that for intuitionistic bilattices by the addition of a 
single new schema - the Peirce formula: ((A~B)~A)~A. Note that the external 
modalities are definable: 

•x = .,_x (-xis x~O); +x = ., • .,x. 

The negative logic is formulated with the latter implication - it is obtained in the 
same way from the negative logic of intuitionistic bilattices: by adding the Peirce 
formula. 

Remark Almost any other way of extending the basic logic from intuitionistic 
to classical would do. 

6 Logical systems related to info-algebras 

Info-algebras lack the symmetries of bilattices and consequently the logical systems 
determined by classes of info-algebras lack many of the nice properties of the 

D
ow

nl
oa

de
d 

by
 [

N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

] 
at

 0
2:

02
 0

1 
Ja

nu
ar

y 
20

15
 



Knowledge, Uncertainty and Ignorance 257 

bilattice logics. Nevertheless info-logics display some interesting features and we 
devote this section to the study of several examples. 

The standard positive logic of all info-algebras Our basic system will be based 
on a language which includes the operations A,v,® and has 110 propositio11al 
constants. We restrict the language in this way with simplicity of presentation in 
mind (the addition of the constants does not change the results but complicates the 
system of rules and the proofs). We consider the info-algebras as standard matrices 
with the set D 1 = { T,l } as the set of distinguished truth values. Let us point out that 

this semantics has the following property: there are no tautologies in the language, 
i.e. for no formula A, 01= A (e.g., for any A one can always find a valuation h with 
h(A) = .l). 

Call a formula internal, if ®does not occur in it. A set r is internal, if all its 
members are internal formulae. The systems will have as basic sequents expressions 
of the form n- A, where AE r. The rules concerning v and ®are the same as in the 
bilattice case. Conjunction though poses a problem: while (1-A) is OK, the rules (AI­
) are not correct when interpreted in info-algebras (because of the possibility to 
assign AAB a value in D

1 
keeping the value of A outside D 1, as for example is the 

case with the valuation h defined for p and q as h(p) = T and h(q) = 0, so 

h(pAq)E D 1 but h( q)~ D 1 ). Therefore we have to put up with weaker rules (AI-t 

+ (AI-) 

r,AI-C 

r, AAB 1-c 

r,BI-C 

r, AAB 1-c 

where the plus sign marks the restriction on the type and variables of the formulae 
which appear in the bottom sequents: A is internal and Var(A);;;;;>Var(B), for the left 
rule and B is internal and Var(B);;;;;?Var(A), for the right one. Such a weakening calls 
for additional compensatory rules. In the first place we need the cut rule: 

ri-A; r,AI-B 
(Cut) 

n-B 

but also the following distributivity rules: 

r, (AAC)v(BAC)I- D 
(A vi-) 

r, (AvB)ACI- D 
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(1-tw) 
fi-(AvB)AC 

f, (AAC)®(BAC)I- D 
(A®I-) 

f, (A®B)ACI- D 

(I-A®) 
fi-(A®B)AC 

f, (AAB)ACI- D 
(AAI-) 

f, (AAC)ABI- D 

(1-AA) 

Lemma 6.1 The resulting system is correct: if n-A is provable, then n =A. 

Proof' The proof is by straightforward checking. The only more exciting rules to 
treat are the additional distributivity rules, since most of them do not correspond to 
identities in the info-algebras. Let us do as an example the (Av)-rules. For (A vi-) it 
is sufficient to establish that (AvB)ACI=(AAC)v(BAC). Take a valuation h such that 
h((AvB)AC))E D

1
. If the value is T, then at least one of h(A), h(B) or h(C) is T, but 

then h((AAC)v(BAC)) = T, too.For the other possibility, let the value be I. This 
means that (avb)Ac = I for any aE h(A), bE h(B), cE h(C), and implies c = I and avb 
= I. But then for a typical member of h((AAC)v(BAC))- (aAc 

1 
)v(bAc

2
)- we have 

(aAc 
1 
)v(bAc

2
) = avb = I. For (1-Av) we have to check whether (AAC)v(BAC)I= 

(AvB)AC- but this is easy: skipping the case of occurrence ofT, we consider a 
typical member of the left-hand side (aAc 

1 
)v(bAc

2
) = I and moreover (aAc)v(bAc) 

= I for any a,b,c from the appropriate sets. Applying the distributive law in the 
underlying lattice we obtain (avb)Ac = l for a typical member of the right-hand 

side. • 
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Remark A slightly more sophisticated counter-example involving A = p®q 
and B= p for which AABI:;tA (as witnessed by the assignment h(p) = T, h(q) = 0) 

shows that the restriction to internal formulae in (AI-)+ is indeed necessary. 

The next technical lemma is left entirely to the diligent reader (its proof relies on 
such provable sequents as A®BI-A; A®BI-B; A,BI-A®B; 
AA(B®C)I-(AAB)®(AAC); (AAB)®(AAC)I-AA(B®C), etc.). 

Lemma 6.2 For any r there exists an internal r O such that [ r of = [ r]. 

The lemma shows that questions of the type "Is rl- A provable?" can he reduced to 
the same questions about internal formulae and sets of internal formulae. 

Here is another list of provable sequents- to be used in the lemma that follows: 

AABI- AvB, AABI- BAA, 
AA(BAC)I-(AAB)AC, (AAB)ACI-AA(BAC), 
((AAC)A(BAC))ADI-((AAB)AC)AD), 
( (AAB )AC)ADI-( (AAC)AB )AD, 
((AAC)v(BAC))ADI- ((AvB)AC)AD, 
((A v B )AC)ADI-( (AAC)v(BAC) )AD. 

The space permits one proof as an example: 
AABI-AAB 
-------(1-v) 

AABI-(AAB )v(BAB) 

-------- (1-AV) 
AABI-(AvB)AB 

AvBI-AvB 
+ -----(AI-) 

(AvB)ABI-AvB 
-------------------- (Cut) 

AABI-AvB 

Unfortunately the derivations known to the author depend crucially on applications 
of the cut rule, so the cut elimination property of the above system is an open 
problem. 

Lemma 6.3 For internal formulae B
1 
. ... , B A, if B

1
, .... B 1- A is provable, 

n, · 11 

then B 
1

AC, ... , B nACI- AAC is also provable, for any C. 

Proof" By induction on the height of the derivation tree. The case of axioms is 
clear, so we need to check the induction step, proving that if the top sequent in an 
application of a rule satisfies the above property, then the bottom sequent also 
satisfies this property. The notorious fate of such proofs notwithstanding, we 
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present just a sample of the simplest cases. In general the derivations use (Cut) and 
depend on the provable sequents shown above. 

Let Bl' ... , Bnl- A be obtained by an application of (1\l-)+, i.e. Bn = B/\0, 

Var(B);;;Nar(D) and 

B
1
, ... ,BI-A 

(/\I-t. By the induction hypothesis: B 
1
/\C, ... , B/\CI-A/\C is 

B 
1
, ... , B nl- A provable. 

But then the following is a proof of what is needed: 

+ -------- (1\l-) 

(/\1\l-) 

Let us also consider the case when the last applied rule is (I-/\). Now A = A 1/\A2 
and the application is: 

By the induction hypothesis: B 
1
/\C, ... , B n/\CI- A 

1
/\C and B 

1
/\C, ... , B n/\CI- A

2
/\C 

are provable. But then 

------------------ (l-1\) 

-------------- (l-1\/\) 

and we are done. 
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One more rule as the last applied one: (AAI-). In this case B n = (B I"B
2

)AB
3 

and by 

the induction hypothesis B 
1
AC, ... , ((B 

1
AB

3
)AB

2
)ACI- A I"C is provable. The 

following derivation gets the desired result: 

B I"C, ... , ((B 
1
AB

3
)AB

2
)ACI- A I"C; (B l"B

2
)AB

3
)ACI-(B t"B

3
)AB

2 
)AC (see above) 

------------------------(Cut) 

The rest of the cases are left to the reader. • 

Theorem6.4 If n=A, then AE[r]. 

Proof" We follow an already familiar path with some minor deviations: assuming 
without loss of generality that A and rare internal and Are r, we find a maximal 
theory ll among the theories that extend r and omit A. Such a theory need not be 
prime, but it still does the job because it turns out to be relatively prime, namely 
with respect to the class of internal formulae built up from the propositional 
variables occurring in A. 

Call the variables of A significant. A significant formula B is such that 
Var(B)~Var(A). 

Lemma 6.5 For significant internal formulae Band C: 
I. BACEL! iff BEL! and CEL!. 
For any formulae Band C: 
2. BvCEL!iffBEL!orCEL! 
3. B®CEL!iffBEL!andCEL!. 

Proof" The establishing of (2) and (3) is routine. Let us check (I) which differs 
from the standard case. If BEll and CEll, then by (I-A) BACE ll. In the opposite 
direction: if BACE ll, then by one of the listed provable sequents BvCe ll and so 
either B or C belong to ll. Let Bell. Now, Cre ll means that Ae [ll,C], so for some 
internal formulae D 

1
, ... , D mE ll: 

D 1, ... , D m' Cl- A is provable. 

Applying Lemma 6.3 we get that D 
1
AB, ... , D m"B, CAB I- AAB is also provable. 

All formulae of the left-hand side are from ll. Thus AABE ll. Since B is significant, 
AABI-A is provable, so AE ll - a contradiction with the assumptions on ll. 
Therefore Cell, too. • 

Having a theory ll with the above properties we can define a function h: Var ~ 2set: 
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r I, if p is significant and pE Ll 
h(p) = ~ 0, if p is significant and p~ Ll 

l T, if p is not significant 

Note first that the extension of h to a homomorphism ~2set maps all internal 
insignificant formulae to T. For significant ones it can be established by induction 
that 

h(B) =I iff BELl. 

To conclude the proof of the completeness theorem we note that A is significant and 
so h(A)~ D 1, while all members of rare mapped onto an element of D 1. • 

Remarks I. Again we have found a simple algebra adequate for the system -

the logic of all info-algebras coincides with the logic of 2set. 

2. The admission of the constants 0, I, T, .1 to the language while not 
changing the rules will necessitate changes in the notion of a basic sequent. Axioms 
will have to include also ri-A where one of the following holds: 

I. A is an internal formula with an occurrence ofT; 
2. A= I; 
3. o, .ler; 
4. A= BAC and {OAB, OAC, .lAB, .lAC) n f:;t 0. 

3. The full standard negative logic of info-algebras, defined by 
choosing as distinguished truth values D0 = {X: IE X} poses the first major setback 

to our program: this logic is not anything like a dual to the above system. Let us 

start with the observation that the info-algebra 2set is not adequate for this 

particular consequence relation any more: for example AvAI=A in 2set, but not so 
in the set expansion of the four element Boolean algebra (with elements a,b :;t 0, I) 
as shown by the valuation h for which h(A) = {a,b}~D0 while h(AvA) = 

{ a,b, I } E D
0

. This and similar counterexamples demonstrate the incorrectness of 

several rules, e.g., (1-v) or the distributivity rules. Although the logic can be 
axiomatized and shown to be finitely approximable (but not finite) we leave that 
matter to another paper. The problem lies in the origin of the "nice" properties of 
the elements of D 1 and D

0
- in the former case infX =I is equivalent to XeD 1, 

while in the latter supX = l (the "real" dual) is weaker than Xe D0. Below we 

consider several systems with the weaker condition on D0. 
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The positive logic of info-algebras with negation Consider now the class of info­
algebras with underlying de Morgan lattices. Its full positive standard logic is an 
extension of the system in the previous sub-section: 

• the language has an additional connective-; 
• the notion of basic sequent is augmented to incorporate a restricted 

version of the Duns Scot law: ri-A is an axiom, if A is internal and also BA-BEr, 
for some formula B with Var(B)~Var(A); 

• new rules concerning -, are added, taken from the bilattice case -
some of them verbatim as (-AI-), (1--A), (1--v), (-®1-), (1--®), but the rule (-vi-) 
has a new outlook: 

f, -AA-B 1-C 
(-vi-) 

r, -(AvB) 1- C 

Lemma 6.6 The resulting system is correct. 

Proof" The correctness of the new rules is obvious. As for the new axiom: if 
h(BA-B)E o1, then h(B) = T and therefore for some variable p, h(p) = T, because, if 

h(B) is non-empty, then it has members aA-a which cannot be I. Since 
Var(B)!;;Var(A) and A is internal, h(A) = T, also. • 

Lemma 6.7 For any set rthere exists an internal r
0 

such that [r of= [r]. 

Lemma 6.8 If B [' ... , B nl- A is provable, then B 
1
/\c, ... , B nACI- AAC is also 

provable (under the same conditions as above). 

Proof· The induction step now requires checking of the added rules. Let us do an 
example in which the last applied rule is (-vi-). In this case B = -(BvD) and by 

n 
the induction hypothesis B 

1 
AC, ... , ( -BA-D)ACI-AAC. The following sequent is 

provable: -(BvD)ACI-(-BA-D)AC. Applying (Cut) we get B
1
AC, ... , -(BvD)ACI­

AAC- the desired result. 

All other details are left to the reader. • 

Theorem 6.9 If n =A, then A E [ r]. 

Proof" Once again we can assume without loss of generality that we deal 
exclusively with internal formulae. Let in particular A be an internal formula such 
that AIIO [f]. Just as in the proof of Theorem 6.4 we can d r to a maximal 
theory <1, for which r~L1 and AIIOL1. This theory turns out to be relatively prime with 
respect to internal significant formulae, i.e. to formulae B with Var(B)~Var(A). 
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Note now that in this case: p is a significant variable implies pA-pli!O f.., because 
pA-pE f.. would mean that A is also from f.. (recall that pe Var(A) and A is internal). 
Otherwise we have to add to the properties of relatively prime theories (from 
Lemma 6.5) some clauses concerning the negation (B,C- significant): 

4. -(BAC)Ef.. iff -Be f.. or -Ce~ (B,C- internal); 
5. -(BvC)e~ iff -Be~ and -Ce~; 
6. -(B®C)e f.. iff -Be~ and -Ce f.. (in fact not needed in the proof); 
7. --Be f.. iff Be f... 

From f.. we can define a mapping h by setting h(p) = T for insignificant variables 
and for significant ones: 

r 1, ifpe~,-pe:~ 
h(p) = ~ 0, if pi!: f..,-pE ~ 

l.i, ifpe:~,-pli!Of.. 

Clearly the extension of h to a homomorphism assigns T to insignificant internal 
formulae B, while for the significant ones by induction on their complexity one can 
prove: 

h(B)eD1 iff Be~ .• 

The positive logic of intuitionistic info-algebras Our final example in this section 

will be the logic determined by the class of all info-algebras Lset where L is a 
pseudo-Boolean algebra. In this case the language has an internal operation of 
implication:::> and an internal pseudo-negation - (-A= A:::>O). The system extends 
the basic info-algebra logic with rules for the implication and an additional class of 
basic sequents similar to the case of info-algebras with negation: ri-A is an axiom, 
if A is internal and also B,-Be r, for some formula B with Var(B)~Var(A). 

The rules for:::> include: 

ri-A; r, BI-C 

f,A:::>BI-C 

with the restrictions: C is internal, Var(A)~Var(C) and a series of distributivity 
rules which compensate the absence of any suitable (1-:::> )-type rule : 

f, (C:::>A)A(C:::>B)I- D 

r, C:::>(AAB)I- D 
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II- (C:::>A)/\(C:::>B) 
(I-::>/\) 

fl- C::>(A/\B) 

r, (A:::>C)/\(B=>C)I- D 
(::>vi-) 

r. (A vB):::>CI- D 

fl- (A:::>C)/\(B::>C) 

(1-:::>v) 
11-(AvB):::>C 

r. (C:::>A)®(C:::>B)I- D r, (A:::>C)®(B:::>C)I- D 

(::>®1-) 
r, C:::>(A®B)I- D r, (A®B):::>CI- D 

fl- (C::>A)®(C::>B) fl- (A::>C)®(B::>C) 

(I-=>®) 
fl- C::>(A®B) fl- (A®B)::>C 

r, (A/\B)::>CI- D 

(::>::>1-) 
r, (A:::>B):::>CI- D 

(1-:::>:::>) 
II- (A:::>B):::>C 

A list of useful provable sequents would contain, e.g., B, B:::>CI-B/\C, -(B:::>C)I­
--B/\-C, --B/\-CI--(B::>C), -(BvC)I--B/\-C, -B/\-CI--(BvC), -Bv-CI--(B/\C), 
etc., besides sequents like C:::>(A®B)I-(C::>A)®(C:::>B), (C:::>A)®(C:::>B)I-C::>(A®B), 
(A®B)::>CI-(A:::>C)®(B::>C), (A::>C)®(B=>C)I-(A®B):::>C, etc., needed to show that 
just as in the previous cases one can concentrate exclusively on internal formulae 
when dealing with problems of derivability and semantic consequence: an analog of 
lemmata 6.2 and 6.7 holds here, too. A counterpart of lemmata 6.3 and 6.8 also holds 
for the present case. Thus in the proof of the completeness theorem we tread a 
familiar path. 
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Theorem 6.10 The positive logic of intuitionistic info-algebras is complete with 
respect to the semantic consequence relation. 

Proof" We need the construction of relatively prime theories used in the previous 
two proofs. Starting from a unprovable internal sequent n- A one can find a theory 
A0 maximal among theories containing r and omitting A. A0 has three nice 

properties with respect to significant formulae B, C: 
I. Bt\CE A iff BE A and CE A; 
2. BvCE A iff BE A or CE L1; 
3. if BE A and B:::)CE A, thenCE A. 

For (3) recall that B, B:::)CI-Bt\C is provable, so if BEA and B:::)CEA, then Bt\CEA. 
For significant Band C this implies CEA. 

Now we define a frame (in fact a generated subframe of the canonical frame) F = 
<W, ~ >, where W = {A: A0~A and A is relatively prime w.r.t. the significant 

formulae}. Thus the elements of W satisfy (l) - (3) above. The pseudo-Boolean 

algebra F+ of all cones in W (with operations avb,anb,a~b and -,a=a~0) will be 
used in the spirit of Lemma 3.18: setting 

rr, ifpEA,...,pEA 
II, ifpEA,...,p~A 

ljl(A,p)= iO,ifp~A,...,pEA 
Lt. ifp~A • ...,p~A 

we extend ljl(A,p) to a member of Hom(L
0

, 2set); having this$ we are able to define 

a mapping 11.11 by 
IIBII ={a: IB1 1 ~a, IBI0 ~.,a}, 

where IBII = {AEW: ljl(A,B) =I}, IBIO = {AEW: ljl(A,B) = 0), and then to prove that 

when restricted to significant formulae 11.11 is a homomorphism into (F+)set, 
establishing thereby the fact that rl:;tA since r~A for all members of W (thus for 

BE r one has IIBII = { W) = I in (F+rt or liB II = T) but obviously II All :;t { W), since 
A~A0. We need to check whether: 

l. IIB"CII = IIBIIniiCII; 
2. IIBvCII = IIBIIuiiCII; 
3. IIB:::)CII = IIBII~IICII. 

Leaving (l) and (2) to the reader, we treat the third equality: let us for example 
prove that IIBII~IICII~IIB:::)CJI, i.e., that bE liB II and cE IICII => b~cE IIB:::)CII. To this 
end we first demonstrate that IB:::)CI 1 ~ b~c, in other words that 

lj>{A,B:::)C) = I => L11= b~c . 
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We reason from the contrary: let q>(il,B:::>C) = I but ill;t b~c. thus 3il';;2il(il'l=b and 
il'l;tc). Now il'l=b implies -Be: il', while il'l;tc implies Ce: K Therefore we can 
extend [6', B,-C] to an element of W - il". Since d!;;;Ll" we have B::>CEil" -
together with Be il" this yields { C, -C) ~il". This is a contradiction since C is 
significant. 

Our second problem is IB::>Ci
0

!;;;; ...,(b~c), i.e., whether 

q>(il,B::>C) = 0 ~ill= ...,(b~c). 
Reason as follows: assuming the contrary, i.e., that q>(il,B::>C} = I but ill;t...,(b~c). 

Now we have a 6';;2il such that il'l=b~c. Recalling that -(B::>C)i---BA-C is 
provable and that q>(il,B:::>C) = 0 forces -(B:::>C)E il, it is clear that one can produce a 
il";;26' such that BE il", -Ceil" which would obviously contradict the fact that 
il"l=b~c. 

The opposite inclusion is established by similar reasoning. • 

7 Finitary, consistent and other restricted systems 

We devote this section to the study of logics which arise when in the general 
algebraic scheme for the consequence operation the set of admissible valuations 
Hom(L,A) is replaced by smaller families H of homomorphisms. 

Finitary logics of info-algebras As a first example we treat classes of 
generalized logical matrices based on info-algebras with H = { h: h(A) is a finite set 
for all A}. Clearly any finitary map h: Var~A can be extended to a unique 
homomorphism he H. 

The positive finitary logic of all info-algebras coincides with the logic of all info­
algebras (presented above). The interesting news here is the possibility of treating 
without complications a negative version of the logic, which is defined by the set of 

distinguished truth values D- = {X: supX = I}, i.e., D- consists of the elements 
{x

1
, ... , xm} of A for which x

1 
v ... vxm = 1. 

For the axiomatization of the logic we need the following: 
• the notion of an axiom taken unchanged from the positive case; 
• we keep the rule (Cut); 
• the rules for conjunction are taken without any restriction; 
• (vi-) is the same, but examples like pl;tpvq (consider h(p) = I, h(q) 

= T) show that (1-v) is not correct and has to be altered to a weaker rule: 

fi-A fi-B 

fi-AvB fi-AvB 
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where we have familiar requirements - Var(B)s;Var(A) and A is internal, for the 
left rule, and Var(A)s;Var(B) and B is internal- for the right; 

• as should be expected the new rules for ® are dual to the previous ones: 

r, A 1- C; r, B 1- C 
(®1-) 

r,A®B 1-C 

ri-A r1-B 
(I-®) 

ri-A®B ri-A®B 
• the added distributivity rules concern vas a main connective: 

r, (AvC)A(BvC)I- D 

r, (AAB)vCI- D 

rl- (AvC)A(BvC) 
(I-VA) 

rl- (AAB)vC 

r, (A vC)®(BvC)I- D 
(v®l-) 

r, (A®B)vCI- D 

rl- (AvC)®(BvC) 
(1-v®) 

rl- (A®B)vC 

r, (AvB)vCI- D 
(vvl-) 

r, (AvC)vBI- D 

rl- (AvC)v(BvC) 
(1-vv) 

rl- (AvB)vC 

One can easily check now that for each formula A there is a finite set of internal 
formulae {D

1
, ... , Dm} for which AI-D

1
® ... ®Dm and D1® ... ®Dmi-A. This fact 

together with the corresponding semantic one: AI=D 
1 
® ... ®D m and D 

1 
® 

... ®D I=A reduce problems of provability of sequents and consequence relations to 
m 
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such problems in the domain of internal formulae: ri-A iff for some i, ri-D., ri=A 
I 

iff for some i, ri=D .. 
I 

Lemma 7.1 The resulting system is correct: if n-A is provable, then n=A. 

Proof' Standard. When checking for example the correctness of (vi-) we need the 

proposition about homomorphisms into 2set defined by prime filters F in the lattice 
underlying a given info-algebra and the fact that such homomorphisms map any set 

X with supXe F into D- (because of the finiteness of X). • 
The proof of the completeness theorem mimics the proofs offered above: if ri-A is 
not provable (assume without loss of generality that they are both internal) extend r 
to a maximal theory A omitting A. Call a variable p significallt , if it occurs in an 
internal formula Be A. For A we have: 

I. BACE A iff Be A and Ce A (for any formulae B and C); 
2. BvCe A iff Be A or Ce A (for significant internal B and C); 
3. B®Ce A iff Be A or Ce A (for any formulae B and C). 

While (I) and (3) are routine, (2) needs some attention- the implication from left to 
right depends on the unrestricted rule (vi-) and is standard; the converse implication 
is checked as follows: assume Be A, then if Ce A, we have BACe A and in view of 
the provability of BACI-BvC, so we are done. If Cf,!; A, then since C is significant, 
there is an internal formula D with Var(C)s;;;Var(D) such that DeA and 
consequently BADE A. On one hand: 

(1-v)-

BADI-(BAD)vC; (BAD)vCI-(BvC)A(DvC) (provable sequent) 
----------------------(Cut) 
BADI-(B vC)A(DvC) 

On the other hand BvCI-BvC 
-------(AI-) 
(BvC)A(DvC)I-BvC 

and applying (Cut) again, we obtain BADI-BvC which is what we need. 

Defining for variables p: 
r I, if p is significant and peA 

h(p) = i 0, if p is significant and p(l!; A 
l T otherwise, 

and extending it to a homomorphism from Hom(L,2set), we can see that for 
significant internal formulae B: 
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BELl iff h(B)E D-. 

To nonsignificant formulae h assigns T. All members of r get values which are 
"true". Consider our formula A- either it is significant and then its value is 0, or it 
is non-significant and then its value is T. Anyway A is not "true" according to h. 
Thus we have established: 

Theorem 7.2 The logic is complete: if n=A. then AE{r]. 

The finitary logics of the class of external info-algebras coincides in fact with the 
finitary logics of all info-algebras (in a language extended with • and+) since finite 
sets X have always supX and infX. Now we can identify D 

1 
with {X: •x = I } and 

D0 with {X: +X = I}. Thus the positive finitary logic extends the basic info­

algebra systems with all the rules concerning • and+ from the positive hi lattice case 
(the list before Theorem 5.9). The correctness of the additions follows easily from 
the fact that modalized formulae cannot have T as value. For the proof of 
completeness we need the machinery of relatively prime theories developed above, 
but fortunately there are no unexpected complications. 

The negative logic extends the basic finitary negative system with the k-dualized 
versions of the just cited rules and can be proven complete with respect to the 
finitary info-algebra matrices with D0. 

Consistent logics Under the term consistent we understand here logical 
systems that are defined semantically by classes of matrices with the following 
requirement on H~Hom(L,A): the values in the range of any hE Hare consistent. 

In the bilattice case this means that in general only classes of bilattices with 
conflation are considered (with the exception of the case of the class of intuitionistic 
bilattices where the notion of consistency makes sense even without the contlation), 
while in any info-algebra consistent are all elements different from T. The 
restriction causes changes in the language of the logics: T and EB are dropped for 
obvious reasons, contlation is not considered for the same reasons. 

In view of the above remark the basic positive consistent logic for bilattices is the 
logic of all external bilattices (in a language without T and EB, with D 

1 
shrunk to 

{ I } ). It is easily checked that all consistent assignments validate nAI= +A, so an 
addition is needed to the rules: 

+ (cons) 

fl- .A r, +AI-C 

n- +A r .• AI-C 

It turns out that this is sufficient to obtain a complete logical system. In the proof (as 
well as in the following proofs) a role similar to the role of 4 is played by 3 = 
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<{O,l,..l},A, v,®, 0,1>: if ri-A is not provable, then it can be semantically refuted 
in 3. 

The negative consistent logic of all external bilattices is obtained by similar 
deletions and additions: 

• the language is restricted, the unnecessary rules dropped; 
• new rules are added: 
ri- +A r, .AI-C 

(cons)-
r, tAl-C 

The next example are the logics of de Morgan bilattices. Here the situation is quite 
similar - we have to add the consistency rules to the suitably restricted versions of 
the original logical systems. Let us note that in the positive case the effect of the 
added rules can be alternatively achieved by extending the notion of an axiom to 
include also: ri-A is a basic sequent if also { B,..,B )s;;;r for some formula B. 

As for the external intuitionistic bilattices: their consistent logics are obtained by 
adding the axiom schema •A ~+A. 

Let us consider now the class of all intuitionistic bilattices as logical matrices with 
H = the consistent valuations (here this means that if h(A) = <a,b>, then aAb = 0). 
They define a positive logic which is axiomatized by adding the scheme 
..,A~(A~B) to the original system (formulated in the restricted language). 

It is interesting to observe how the change from positive to negative affects the 
formal outlook of the systems: the negative consistent logic of intuitionistic 
bilattices is axiomatized by adding the law of excluded middle: Av..,A. 

Remark Dropping ®from the language, too (i.e. considering the usual set of 
logical connectives), we arrive at a famous logic -the logic of strong, or 
constrictive, negation- invented by Vorob'yev and Nelson [41, 62]. Thus we have 
another completeness proof for this logic (cf. also the Conclusion). 

In the info-algebra situation the consistent valuations validate rules as (AI-), as well 
as (1-v) in the negative case, without any restrictions (so in the corresponding 
consistent logics the distributivity rules are redundant). Thus we have the following 

Proposition 7.3 The posirtive consistent logic of all info-algebras coincide 
with the positive consistent logic of all bilattices; the negative finitary consistent 
logic of info-algebras coincides with the negative consistent logic of all bilattices. 
The same is true for the case of algebras with negation. 

The only difficulty we encounter here is when the consistent logic of external 
intuitionistic bilattices is compared with the consistent logic of set expansions of 
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pseudo-Boolean algebras. It is not known whether these two coincide. The problem 
lies in the fact that the mapping f defined in Proposition 4.4 is not a homomorphism 
with respect to the intuitionistic implication and for example f( t (A~B)) = 
f(•A)~f( +B) does not hold. 

Majority logic We conclude our exposition with an example of a semantics 
brought about by considerations in the spirit of the probabilistic treatment of 
plausibility of propositions. Recall that in the probabilistic framework a statement A 
is considered plausible, if p(A)~a, for some fixed number a (for example a= 0.5 or 
a= 0.95) and where pis a probability distribution, i.e. p:~[O, 1]. 

Let L be a bounded linear order. Consider in the class of bilattices LxL the 
following set of designated truth values: 

Dmaj = { <a,b>: a~b}. 

The intuition behind Dmaj is related to the view that in circumstances when all data 
is comparable with respect to truth-content it is reasonable to assume something as 
true if the positive arguments outweigh the negative ones. It seems that this idea is 
in direct correlation with the so-called majority principle. Stated somewhat vaguely 
the majority principle insists that, if the majority of the outcomes of a process are 
favorable (on some linear scale!), then the process as a whole is to be assumed as 
favorable. Imagine for example a group of experts giving opinion on the truth of a 
statement. According to the majority principle if the experts who believe the 
statement true are more than those who reject it, then it is rational to assume that the 
proposition is true or at least plausible. 

Almost immediately one can see that such a semantics is at conflict with logical 
inference as we know it. The well-known lottery paradox (cf. Kyburg [38]) 
demonstrates that by an example of a finite set of highly plausible statements whose 
conjunction is not only implausible, but simply false. Nevertheless, there are some 
intriguing moments in the majority semantics which we want to describe briefly (a 
restricted version of the semantics - a classical language interpreted in [O,l]x[O,l], 
was studied in [3]). 

Although there are difficulties with the axiomatization of the logic, the notion of 

tautology admits a nice syntactic characterization. Let us note first that 4maj = <4, 

Hom(.L,4),Dmaj > is a characteristic matrix for the majority logic, so the notion of a 
tautology is decidable. 

Call a variable or a negated variable a literal, a disjunction of literals - a clause, a 
conjunction of clauses- a proposition, a sum of propositions- a datum. It is easily 
provable that any formula is equivalent to a product of data (using the facts about de 
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Morgan bilattices). Call two literals opposite if they have the form p and •p; two 
clauses c 1 and c2 are connected if they have a common variable (say p) occurring 

in opposite literal in the two clauses (say ...,pin c
1 

and pin C2). 

The proof of the next lemma is very similar to the one that can be found in [3] so 
we omit it. 

Lemma 7.4 /.A clause is a majority tautology iff two opposite literals occur in it. 
2. A proposition is a majority tautology iff all its clauses are majority 

tautologies and they are pairwise connected. 
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CONCLUSION 

Let us first briefly recapitulate our findings, namely the logics we have axiomatized: 
• the standard full (positive and negative) logics of all distributive bilattices, 

i.e. of all algebras of the form L1xL2 when Ll'L2 are distributive lattices; of all 

distributive bilattices with negation, i.e. of all LxL where L is a distributive lattice; 

of external bilattices, i.e. of all L 
2

, where L is a distributive lattice; of de Morgan 

bilattices, i.e. of all LxL (= L 
2

) where L is a lattice with negation; of all 
intuitionistic bilattices, i.e. of all LxL, where Lis a pseudo-Boolean algebra; of 

external intuitionistic bilattices, i.e. of all L 
2

, where Lis a pseudo-Boolean algebra; 

of Boolean bilattices, i.e. of all LxL (= L 
2

) where Lis a Boolean algebra; 
• the standard positive full logics of all info-algebras, all info-algebras with 

negation, all set expansions of pseudo-Boolean algebras; 
• the finitary logics (positive and negative) of all info-algebras, all info­

algebras with negation, etc. 
• the consistent versions of all the systems mentioned above. 

All these logics are new - a fact due mainly to the presence of new connectives: 
®, ®, etc., but even in the case of a language containing only traditional operators 
some systems appear in print for the first time, in particular the systems related to 
intuitionistic semantics. 

8 Historical Survey 

Our aim here is to point out examples of the three main constructions discussed in 
the preceeding sections: 

• the bilattice construction (which appears either as L1xL2 and different 

subspaces or in the form of generalized relational models); 
• the set expansions; 
• the interval construction (which also has two forms: algebraic- subspaces 

of L 
2 

and relational -models with two forcing relations). 

We want to demonstrate that the ideas behind these constructions were manifest in a 
variety of fields and brought to life by different background intuitions. Another 
purpose of the survey is to test the classificational power of these constructions by 
trying to present known semantics and logical systems as particular cases of the 
families studied in the present paper. 

The fundamental bilattice construction It is difficult to date the first occurrence of 
this construction, but at least it should be placed no later than the important 
examples below. 
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The logic of strong negation This is a logic that has its roots in the intuition shared 
by constructivists like Markov, Nelson, etc. (cf. [41]) that there is an essential 
difference between refuting a sentence by reductio as absurdum on one hand, and 
by constructing a counterexample on the other. The latter method gives rise to a 
new notion of a negation - a strong one (since it implies the former ordinary 
negation). Vorob'ev [62] was the first to axiomatize the idea presenting a calculus 
which extended the intuitionistic propositional logic with axioms concerning the 
new unary connective. Rasiowa developed in [45) an adequate algebraic semantics 
for Vorob'ev system: special de Morgan lattices (the quasi Boolean algebras of the 
Polish tradition) called N-lattices. Later Monteiro continued these investigations in 
[40] giving a representation theorem for N-lattices. Nevertheless up to the middle of 
the seventies there was no satisfactory semantics from the view-point of the 
constructive intuitions. Then (simultaneously!) Vakarelov [57) and Gurevich [35) 
published papers which contained similar (but not identical) models for the 
Vorob'ev calculus: Vakarelov gave an algebraic pairs construction (actually the 
consistent part of an intuitionistic bilattice LxL), while Gurevich worked with 
Kripke models with two independent forcing relations, one for asserting and one for 
strongly rejecting a statement - essentially again the consistent part of a frame 
intuitionistic bilattice. Vakarelov also considered a relational semantics (anticipated 
in [40)) in an attempt to capture the idea of a counterexample. Recently the pairs 
construction was again used in investigations of N-lattices (Sendlewski [52)). The 
classical logic of strong negation (i.e. the consistent logic of all Boolean bilattices) 
is an extemsion of Kleene's three-valued consequnece relation. Moreover it 
coincides with Lukasiewicz' theree-valued logic, since Lukasiewicz' implication is 
definable as (A~B)A(..,B~..,A). Actually, when ® is present the system of 
connectives is functionally complete in 3 (by a result of [54] Lukasiewicz' 
implication and the constant J. are already complete, but J. = x~hx in 3)- this was 
noted in [58). 

Generalized Kripke modelsKamp's paper [) was one of the first to discuss in details 
the logic of partial Kripke frames. There one can find a completeness result 
concerning the basic logic of such frames. This logic is in fact the consistent logic 
of all frame bilattices in a language without the knowledge connectives and 
coincides (depending on the connectives under consideration) with .... 

An important later development - Veltman's Data Semantics [59], incorporated 
general models based on frames F = <W;~> with ~ a partial order where all chains 
have top elements. Veltman's language included A,v,..,,~ and two unary 
connectives called may and must respectively. Truth conditions for A,v,.., were the 
usual ones (cf. Example 3) while the truth conditions for ~ coincided with those 
for the intuitionistic implication of Theorem 5.11. For may and must he set: 

wl= mayA iff 3w'(w~w' and w'I=A); 
w=l mayA iff Vw'(w~w·~w'l:tA); 
wl= mustA iff Vw'(w~w·~w':tiA); 
w=l mustA iff 3w'(w~w· and w'=IA). 
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Introducing 0 as the ordinary modality related to ~ and considering the frame 
bilattice B(F) Veltman's operations have the following algebraic definitions: 

x~y = 0(..., •xvy); 
mayx=•Ox; 

mustx = tOx. 
Veltman admitted only valuations that assigned stable sets, i.e. cones, to variables 

which was rendered by Oh(p) = h(p). Thus Veltman's logic is in fact a bilattice 
modal logic determined by a particular class of frames (with the relevant restrictions 
on the admissible valuations). 

The set expansions In an early attempt Vakarelov [56] explored certain schema 
for obtaining relative semantics, later developed and applied to various nonclassical 
systems in [26,27 ,30,31 ,58] . Put very briefly, the schema consisted in the 
following: take a propositional language L and let Lt be any other language with 
counterparts to all the connectives of L (and possibly some additional ones). 
Assume that Sem is a semantics for L1, i.e. that for se Sem we may in principle 

decide whether a formula a is true at s (denoted by sl=a) or not, transfer Sem to 
formulas of L by means of (finite) sets of L1 formulae using interpretation functions 

i which assign to each L formula a set of L1 formulas, the following condition being 

satisfied: if o(AJ, ... ,An) is a connective of L. then i(o(AJ, ... ,An) = {o(aJ, ... ,a11 ) : 

akEi(Ak). k=l, ... ,n}. Let /nt denote the set of all interpretation functions and lnt0 -

the set of those interpretation functions which do not contain the empty set in their 
ranges. Call a pair (s,i) interpretation index. Formulae in L can be evaluated at an 
index according to one of the following rules (but there certainly are other 
possibilities for evaluation, some of which were considered in [30, 31), among them 
the majority strategy according to which A is accepted, if the majority of members 
of i(A) are true): 

A is true 1 at (s,i)iff'dae i(A) sl=a; 

A is true0 at (s,i)iff3ae i(A) sl=a; 

For r - a set of £-formulae and A - an £-formula say that A is an (Sem, lnt) 
n 

consequence of r (n= 0, 1 ), if for all indices (s,i), if all BE rare true at (s,i), then 
n 

A is also true at (s,i). There are several intuitions behind the schema. For example, 
n 

truth 1 can be associated with the notion of disambiguation (treated by Lewis in 

[39]): a proposition is assumed true, if all its possible disambiguations are true. In 
general disambiguations are formulated in a language different from the original 
one, but on the other hand they follow closely the structure of the proposition 
disambiguated. For truth

0 
one has the notion of justification : a statement may be 

considered true iff there is at least one true justification of this statement (cf. 
[30,31]) . The justifications of a statement can be formulated in a completely 
different language, but the conditions upon the interpretation functions presuppose a 
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very strict correspondence between the propositional structure of a statement and 
the structure of its justifications. 

When applied to the classical propositional language (equipped with the ordinary 2-
semantics) the schema gives consequence relations related to some three- and four­
valued logics (cf. [28]). For instance (Stma,Jnt0)

1 
is Kleene's original three-valued 

consequence relation (coinciding with Lukasiewicz' for the basic language, cf. 
[56]), in [26] it was proved that (Stma.lnt0)

0 
is the consequence operation of the 

three-valued logic of Priest [48]. (Stma.lnt)
1 

and (Stma.lnt)
0 

were studied in [28] 

where the corresponding logics were formalized in a natural deduction style. 

Discussion of the intuitions behind sets of truth values The notion of sets of truth 
values as generalized truth values has same origin as the bilattice construction: "X 
is the generalized truth value of A" means nothing more than "all we know at 
present is IIAIIE X". Maximal possible knowledge corresponds to singletons, 
defective (contradictory, nonsensical) knowledge leads to an empty set of possible 
truth values. On this path we are immediately confronted with the problem: how are 
the sets of possible values X, Y, Z given? For example they can be thought as given 
directly (enumerated, etc.) or they can be "represented" by certain conditions 
defining the sets (these conditions are usually restrictions on the possible truth 
values). Now the question arises as to the language in which such conditions are 
formulated, how are they verified, etc. Although quite important, especially in 
applications, we leave their detailed analysis aside due to lack of space. 

We can think of the information concerning the X's as of a family of restrictions 
(primitive restrictions) on the elements of the sets. The consensus approach would 
combine two families of restrictions in such a way that all restrictions that do not 
appear in both families would be dropped, so we would be left with only the 
restrictions common to X and Y. Now this guarantees that we get XuY as a result. 
A similar argumentation for the intersection though is not so conclusive - perhaps 
this is the cause of the troubles with Etl in the algebraic treatment of set expansions. 
Such difficulties show that the unrestricted notion of a set of truth values is not the 
suitable generalization in treating defective information. 

Intervals The idea of an interval in a truth space as a representation of 
the current knowledge about the truth value can be viewed as a specialization of the 
above arbitrary set expansions. It appears that quite similar justifications for the 
introduction of intervals can be traced in a variety of approaches to reasoning with 
imperfect information. Below we list some recent examples: 

Algebraic approaches Garcia, Moussavi and Font developed in [21, 23] a logic 
based on an algebraic semantic described in Fitting [ 19] as reflecting intuitions 
about two kinds of unknowns: one representing "temporary lack of knowledge 
which is expected to be resolved within the system's time-space bounds" and the 
other- a permanently unknown truth valued (for some reasons). In [ 19] the resulting 
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algebra is given as the consistent part of 32, but actually in [21] the authors 

introduce their values as elements of the set expansion 3set. It is an interesting 
exercise to compare their reasons for dropping the set { 0,1 } out of the truth space 
with the arguments for considering set expansions in general. 

Probability approachesUnder this title we classify attempts to represent the 
uncertainty/plausibility of knowledge and inference by assigning a probabilistic 
measure to statements, the so-called probability distributions, with the idea that the 
greater the probability p(A) of a proposition, the more plausible it is, etc. (for a 
systematic modern exposition cf. Chapter 5 of [25]). Many thought that a unique 
value is not realistic and turned to probability intervals discussed by Dempster [I 0] 
and Shafer [53] among others. In Gardenfors [24] we find the note that the two 

limiting probabilities p*(A) and p *<A) must be interconnected with the following 

relation: 

* p*(A)=l-p (•A). 

thus a version of the rule •[a,b] = [1-b,l-a]. 

Earlier, some people working in fuzzy set theory felt uneasy with the possibility to 
know the exact numerical value which a fuzzy predicate assigns to a particular 
object, so among the proposals for a more quantitatively realistic picture was the 
idea of interval valued fuzzy sets - functions assigning to elements of a domain E 
not numbers but open intervals (a,b)~[O,l] (cf. e.g., [2] where the isomorphism 

between the consistent parts of [O,l]x[O,l] and [0,1]2 
was mentioned). 

In the same vein, but in another field -AI:, Sandewall [49] proposed to consider 
intervals of real numbers [a,b] as representatives of what we know about the truth 
value of a proposition evaluated by "fuzzy" methods. He also explicitly defined the 
k-order as inverse set inclusion. 

On a more qualitative level intervals appear also as the so-called conditional objects 
(cf. e.g. Dubois&Prade [ 11]) as in the tradition of treating uncertainty via 
conditional statements, conditional probabilities, etc., cf. [9,34]. A conditional 
object in a Booleam algebra of statements is a syntactic construction bla with an 
incomplete semantics: bla is meant to convey that, if a is true, then b is also true, 
but is undefined, if a is false. In the cited works one can find a partial ordering of 
conditional objects: bla :5; cld iff a11.b$c11.d and ...,avb$-,cvd (and other properties as· 
well) pointing to the interpretation: 

bla = [a~~.b, •avb], 
under which the order of conditional objects is just the interval t-order. 

Intervals and possible worlds models In [28] a family of intuitionistic three-valued 
logics was studied arising from Kripke semantics based on models with two forcing 
relations - one included in the other. These were in fact the logics of the consistent 
parts of the external intuitionistic bilattices (in a restricted language). 
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In another instance of Kripke models with two forcing relations. Pequeno and 
Buchsbaum considered in [45] the logic of epistemic inconsistency with a semantics 

which turns out to be a version of the bilattices of the kind L 
2 

where L is a Boolean 
algebra. Their possible worlds models have the forcing relations I= . and I= 

mm max 
and their language has the connectives /\,V,•,c:),and ? - a unary connective. While 
1\,V, and ..., have a familiar interpretation, c) and ? satisfy the following truth 
conditions: 

wl= . Ac:)B iff wl;t A or wl= . B; 
mm max mm 

wl= Ac:)B iff wl;t A or wl= B; 
max max max 

wl= A? iff 3w'(w'l= A); 
max max 

wl= . A? iff Vw'(w'l= . A). 
min min 

In algebraic terms the semantics of Pequeno and Buchsbaum boils down to 

interpretation in the frame bilattices (or in general bilattices of the kind L 
2 

where L 
is a Boolean algebra) with the usual understanding of 1\,v, ..., and [a,b] c) [c,d] = 

[b~c.b~d], thus xc:)y = •txvy (a familiar operation); [a,b]? = [Da, Ob], where D 
and its dual 0 corresponds to the universal binary relation WxW. Pequeno and 
Buchsbaum admit only valuations that assign to variable exact truth values, i.e. 
values of the form [a,a]. Their definition of validity of a formula in a model: MI=A 
iff Vwl= A, implies that the logic is an extension of the negative exact logic of 

max 
all frame bilattices B(F) with the universal modality- because x? is definable in the 

bilattice language, e.g. as (Dx" T)v(Ox/\1.) or as (Ox) 1 EB(0x)0. 

Final remarks In the previous sections we described the nearest to the 
classical propositional logic possibilities for logical systems where the information 
manipulated is not complete and consistent. These simple many-valued logics are 
all based in fact on the same picture on which the classical logic rests: statements 
have their truth values determined according to their structure. 

Of course among the most important problems of this domain in logic are the 
problems of how to "use" the lack of knowledge (partiality, contradictions, etc.) 
once it has appeared in an epistemic endeavor, and how to justify the rationality of 
the inference rules employed, assuming that they are satisfactory in their 
effectiveness aspect. They are still very far from a satisfactory solution. 
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