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FBST:

The Full Bayesian Significance Test (FBST),

first presented by Pereira and Stern in 1999, is

a coherent Bayesian significance test for sharp

hypotheses. Motivations:

- Better performance (more power, etc.);

- Simpler formulation (more/new applications);

- Theoretical Statistical properties;

- Logical (Compositionality) properties;

- Epistemological / Ontological consequences.

In several applications that motivated the FBST

it was desirable or necessary to use a test of

sharp (precise) hypotheses with the following

characteristics:
2



1- Give an intuitive and simple measure of sig-
nificance for sharp hypotheses, ideally, a prob-
ability defined directly in the original (natural)
parameter space.

2- Have an intrinsically geometric definition,
independent of any non-geometric aspect, like:
- The hypothesis (manifold) parameterization,
- The coordinate system on the parameter space,
i.e., be an invariant procedure.

3- Give a smooth measure of significance, i.e.
continuous and differentiable, on the hy-
pothesis parameters and sample statistics, un-
der appropriate regularity conditions.

4- Likelihood principle, i.e., the information
gathered from observations should be repre-
sented (only) by the likelihood function.

5- Be able to provide an exact procedure,
making no use of “large sample” asymptotic
approximations.

3



6- Require no ad hoc prior information that

could lead to judicial contention, like a positive

probability mass on a zero measure set, or a

belief ratio between hypotheses, etc.

7- Be able to provide a consistent test for a

given sharp hypothesis, in the sense that in-

creasing sample size should make it converge

to the right accept/reject decision.

8- Allow, (only) if desired, the incorporation

of previous experience or expert opinion via a

subjective prior distribution.

9- Provide a possibilistic support function.

10- Provide compositionality operations in

complex models.
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FBST - Full Bayesian Significance Test
Pereira and Stern (1999), Madruga (2003).

Bayesian paradigm: the posterior density, pn(θ),
is proportional to the product of the likelihood
and a prior density,

pn(θ) ∝ L(θ |x) p0(θ).

Hypothesis: H : θ ∈ ΘH ,

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}

Precise (sharp) hypothesis: dim(H) < dim(Θ),
relaxed notation: H, instead of ΘH.

Reference density, r(θ), interpreted as a repre-
sentation of no information in the parameter
space, or the limit prior for no observations,
or the neutral ground state for the Bayesian
operation. Standard (possibly improper) unin-
formative references include the uniform and
maximum entropy(s) densities, ∗ ∗ ∗
see Dugdale (1996) and Kapur (1989)
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FBST evidence value supporting and against

the hypothesis H, Ev(H) and Ev(H),

s(θ) = pn (θ) /r (θ) ,

ŝ = s(θ̂) = supθ∈Θ s(θ) ,

s∗ = s(θ∗) = supθ∈H s(θ) ,

T (v) = {θ ∈ Θ | s(θ) ≤ v} , T (v) = Θ− T (v) ,

W (v) =
∫
T (v)

pn (θ) dθ , W (v) = 1−W (v) ,

Ev(H) = W (s∗) , Ev(H) = W (s∗) = 1−Ev(H) .

s(θ) is the posterior surprise relative to r(θ).

The tangential set T (v) is the HRSS. Highest

Relative Surprise Set, above level v,

W (v) is the cumulative surprise distribution.

If r ∝ 1 then s(θ) = pn(θ) and T is a HPDS.

r(θ) implicitly gives the metric in Θ.
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Hardy-Weinberg genetic equilibrium,
see (Pereira and Stern 1999).
n , sample size, x1, x3 , homozygote,
x2 = n− x1 − x3 , heterozygote count.

r(θ) = p0(θ) ∝ θy1
1 θ

y2
2 θ

y3
3 , y =

[0,0,0] (uniform) or [−1,−1,−1] (max.ent.) ,

pn(θ | x) ∝ θx1+y1
1 θ

x2+y2
2 θ

x3+y3
3 ,

Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1} ,

H = {θ ∈ Θ | θ3 = (1−
√
θ1 )2} .
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Numerical Computations: ∗ ∗ ∗

- Integration Step, MCMC for W (v):

(dominates computational time)

g(θ), importance sampling density,

W (v) =

∫
ΘZvg(θ)g(θ)dθ∫
ΘZg(θ)g(θ)dθ

where

Zg(θ) = pn(θ)/g(θ) , Zvg(θ) = I(v, θ)Zg(θ) ,

I(v, θ) = 1(θ ∈ T (v)) = 1(s(θ) ≤ v) .

Precision analysis in Lauretto (2003).

OBS: We can get W : [0, θ̂] 7→ R at almost the

same computational cost of W (s∗) = Ev(H).

- Optimization Step:

ALAG, Augmented Lagrangian Algorithm

(dominates program complexity)

Multimodality: SA, Simulated Annealing
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Invariance:

Reparameterization of H (of h(θ)): Trivial.

Reparameterization of Θ, (regularity cond.=

bijective, integrable, a.s.cont.differentiable)

ω = φ(θ) , ΩH = φ(ΘH)

J(ω) =
[
∂ θ

∂ ω

]
=

[
∂ φ−1(ω)

∂ ω

]
=


∂ θ1
∂ ω1

. . . ∂ θ1
∂ ωn... . . . ...

∂ θn
∂ ω1

. . . ∂ θn
∂ ωn



s̃(ω) =
p̃n(ω)

r̃(ω)
=
pn(φ−1(ω)) |J(ω)|
r(φ−1(ω)) |J(ω)|

s̃∗ = sup
ω∈ΩH

s̃(ω) = sup
θ∈ΘH

s(θ) = s∗

hence, T (s∗) 7→ φ(T (s∗)) = T̃ (s̃∗), and

Ẽv(H) =
∫
T̃ (s̃∗)

p̃n(ω)dω =

∫
T (s∗)

pn(θ)dθ = Ev(H) , Q.E.D.
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Confidence and Consistency:
V (c) = Pr(Ev ≤ c), the cumulative distribution
of Ev(H), given θ0, the true parameter value.
Let t = dim(Θ) and h = dim(H).
Under appropriate regularity conditions,
for increasing sample size, n→∞,

- If H is false, θ0 /∈ H, then Ev(H)→ 1
- If H is true, θ0 ∈ H, then V (c), the confidence
level, is approximated by the function

Chi2
(
t− h,Chi2−1 (t, c)

)
.
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Alternative approaches:
- Empirical power analysis, Lauretto (2004);
- Decision theory, Madruga (2001);
- Sensitivity analysis, Stern (2004). ∗ ∗ ∗
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Comparative example:

Pereira, Stern, Wechsler (2005).

Independence in 2× 2 contingency table.

H : θ1,1 = (θ1,1 + θ1,2)(θ1,1 + θ2,1) .

Figure 2 compares four statistics, namely,

-Bayes factor posterior probabilities (BF-PP),

-Neyman-Pearson-Wald (NPW) p-values,

-Chi-square approximate p-values, and the

-FBST evidence value in favor of H.

D = x1,1x2,2 − x1,2x2,1 ,

Horizontal axis: D = diagonal asymmetry,

is the unnormalized Pearson correlation,

ρ1,2 =
σ1,2

σ1,1σ2,2
=
θ1,1θ2,2 − θ1,2θ2,1√
θ1,1θ1,2θ2,1θ2,2

.

Wish list:

- Full symmetry gives H full support.

- Ev(H) in continuous and differentiable.
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Samples “compatible with the hypothesis”, hav-

ing no asymmetry, are near the center, incom-

patible samples are to the sides.

The envelope curve for the FBST e-values, is

smooth (differentiable) and therefore level at

its maximum, where it reaches the value 1.

The envelope curves for the p-values take the

form of a cusp, i.e. a pointed or broken curve.

NPW p-values have, at the top of the cusp,

a “spike” with symmetric samples, but having

different outcome probabilities, “competing”

for the higher p-value.

Collateral effect of the artifice that converts an

epistemic question about H (in the parameter

space), into a predictive question about X (in

the sample space, conditional on H).

“increase sample size to reject”.
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Decision-theoretic, Orthodox Bayesian view:

“Gambling problems embrace the whole of

(decision) theoretical statistics.”

Epistemic questions about H are questions on

How to Gamble on an H0 against an H1.

Standard procedure is Jeffrey’s test:

- Gives a positive (ad hoc) mass to (sharp) H;

- Lindley’s Paradox, unavoidable consequence:

“increase sample size to accept”.

Dubins and Savage (1965):

The unacceptability of extreme (sharp) null hy-

potheses is perfectly well known; it is closely

related to the often heard maxim that science

disproves, but never proves, hypotheses...

The role of extreme (sharp) hypotheses in sci-

ence and other statistical activities seems to

be important but obscure.
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In (a less) orthodox decision theoretic Bayesian

approach, a significance test is legitimate if

and only if it can be characterized as an Accep-

tance (A) or Rejection (R) decision procedure

defined by the minimization of the posterior

expectation of a loss function, Λ.

FBST loss function, Madruga (2001), based

on indicator functions of θ being or not in the

tangential set T :

Λ(R, θ) = a I(θ /∈ T ) , Λ(A, θ) = b+d I(θ ∈ T ) .

Note that Λ depends on the observed sam-

ple (via the likelihood function), on the prior,

and on the reference density, stressing the im-

portant point of non separability of utility and

probability, see Kadane (1987).
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Nuisance parameters and Model Selection:
see Basu (1988), and Pereira and Stern (2001).

Consider H : h(θ) = h(δ) = 0 , θ = [δ, λ] not a
function of some of the parameters, λ.

“If the inference problem at hand relates only
to δ, and if information gained on λ is of no di-
rect relevance to the problem, then we classify
λ as the Nuisance Parameter. The big ques-
tion in statistics is: How can we eliminate the
nuisance parameter from the argument? ”

maxλ or
∫
dλ, the maximization or integra-

tion operators, are procedures to achieve this
goal, in order to obtain a projected profile or
marginal posterior function, pn(δ).

The FBST does not follow the nuisance pa-
rameters elimination paradigm. In fact, staying
in the original parameter space, in its full di-
mension, explains several compositionality prop-
erties of the FBST.
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Let us analyze the relationship between the

credibility, or truth value, of a complex hy-

pothesis, H, and those of its elementary con-

stituents, Hj, j = 1 . . . k.

This is the Compositionality question

(ex. in analytical philosophy).

According to Wittgenstein,

(Tractatus, 2.0201, 5.0, 5.32):

- Every complex statement can be analyzed

from its elementary constituents.

- Truth values of elementary statements are

the results of those statements’ truth-functions

(Wahrheitsfunktionen).

- All truth-function are results of successive

applications to elementary constituents of a fi-

nite number of truth-operations

(Wahrheitsoperationen).
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In reliability engineering, (Birnbaum, 1.4):

“One of the main purposes of a mathemat-

ical theory of reliability is to develop means

by which one can evaluate the reliability of a

structure when the reliability of its components

are known. The present study will be con-

cerned with this kind of mathematical devel-

opment. It will be necessary for this purpose

to rephrase our intuitive concepts of structure,

component, reliability, etc. in more formal lan-

guage, to restate carefully our assumptions,

and to introduce an appropriate mathematical

apparatus.”

Goal: An analogy between the reliability of se-

ries / parallel structures and the likelihood of

composite hypotheses in HDNF, Homogeneous

Disjunctive Normal Form.
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Abstract Belief Calculus, ABC,

see Darwiche, Ginsberg (1992),

and Stern (2003).

〈Φ,⊕,�〉 , Support Structure,

Φ , Support Function, for statements on U.

Null and full support values are 0 and 1.

⊕ , Support Summation operator,

� , Support Scaling or Conditionalization,

〈Φ,⊕〉 , Partial Support Structure.

⊕, gives the support value of the disjunction

of any two logically disjoint statements from

their individual support values,

¬(A ∧B)⇒ Φ(A ∨B) = Φ(A)⊕Φ(B) .

�, gives the conditional support value of B

given A from the unconditional support values

of A and the conjunction C = A ∧B,

ΦA(B) = Φ(A ∧B)�Φ(A) .
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Support structures for some belief calculi,

a = Φ(A), b = Φ(B), c = Φ(C = A ∧B).

Φ(U) a⊕ b 0 1 a � b c� a
[0,1] a+ b 0 1 a ≤ b c/a Pr
[0,1] max(a, b) 0 1 a ≤ b c/a Ps
{0,1} max(a, b) 0 1 a ≤ b min(c, a) CL
{0..∞} min(a, b) ∞ 0 b ≤ a c− a DB

Pr= Probability, Ps= Possibility,

CL= Classical Logic, DB= Disbelief.

In the FBST setup, two belief calculi are in si-

multaneous use: Ev constitutes a possibilistic

partial support structure coexisting in harmony

with the probabilistic support structure given

by the posterior probability measure in the pa-

rameter space, see also Zadeh (1987).

See Klir (1988) for nesting prop. of T (v).
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FBST Compositionality:

Disjunction of (homogeneous) hypotheses

+ Possibilistic support structure ⇒
Maximization as composition operation:

Stern (2003).

Structures: M i = {Θ, Hi, p0, pn, r} .

Ev

 q∨
i=1

Hi

 = W

(
q

max
i=1

s∗i
)

=
q

max
i=1

(
Ev(Hi)

)
,

Onus Probandi, In Dubito Pro Reo, Presump-

tion of Innocence, and Most Favorable Inter-

pretation are basic principles of legal reasoning,

see Gaskins (1992).
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“The defendant is entitled to have the trial
court construe the evidence in support of its
claim as truthful, giving it its most favorable
interpretation, as well as having the benefit of
all reasonable inferences drawn from that evi-
dence.”

“The plaintiff has the burden of proof, and
must prove false a defendant’s misstatement,
without making any assumption not explicitly
stated by the defendant, or tacitly implied by
an existing law or regulatory requirement.”

A defendant describes a system (machine, soft-
ware, etc.) by a parameter θ, and claims that
θ has been set to a value in a legal or valid
null set, H. Claiming that θ has been set at
the most likely value must give the defendant’s
claim full support, for being absolutely vague
cannot put him in a better position.

A : θ ∈ Θ and⇒ Ev(A) = 1, it is tautological.
B : θ ∈ {θ̂} ⇒ Ev(B) = 1, for T = ∅.
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Conjunction of (homogeneous) hypotheses
+ Independent structures ⇒
Mellin convolution as composition operation:
Borges and Stern (2005).

Structures: Mj = {Θj, Hj, p
j
0, p

j
n, r

j} .

Ev

 k∧
j=1

Hj

 = W (s∗) =
⊗

1≤j≤k
W j

 k∏
j=1

s∗j
 ,

Given two random variables, X and Y , with
distributions G1, G2 : R+ 7→ [0,1], the Mellin
convolution, G1⊗G2, is the distribution of the
product Z = XY , see Springer (1979),

G1 ⊗G2(z) =
∫ ∞

0

∫ z/y
0

G1(dx)G2(dy) =

∫ ∞
0

G1(z/y)G2(dy) .

Ev(H), W (v) and ⊗:
Truth value, function, operation.
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Fig.1,2: W j, s∗j, and Ev(Hj), for j = 1,2;

Fig.3: W1 ⊗W2, s∗1s∗2, Ev(H1 ∧H2) and

bounds: Ev(H1) ∗ Ev(H2) and 1− Ev(H1) ∗ Ev(H2).

Fig.4: M3 is an independent replica of M2,

Ev(H1) < Ev(H2), but Ev(H1 ∧H3) > Ev(H2 ∧H3).
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Compound H in Homogeneous

Disjunctive Normal Form, (HDNF)

+ Independent (j) structures ⇒

Structures: M(i,j) = {Θj, H(i,j), p
j
0, p

j
n, r

j} .

Ev(H) = Ev
(∨q

i=1

∧k

j=1
H(i,j)

)
=

maxqi=1 Ev
(∧k

j=1
H(i,j)

)
=

W

(
maxqi=1

∏k

j=1
s∗(i,j)

)
, W =

⊗
1≤j≤k

W j .

If all s∗ = 0 ∨ ŝ, Ev = 0 ∨ 1, classical logic.

HDNF does (does not) cover the cases:

- No: General heterogeneous structures.

- Yes: Conditionally independent models,

(Nested Dirichlet, Bayes Networks).
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Inconsistency or Sensitivity Analysis:

For a given likelihood and prior density, let, η =
Ev(ΘH , p0, Lx, r) denote the value of evidence
against a hypothesis H.

Let η, η′, η′′ . . . denote the evidence against H
with respect to a set of references, r, r′, r′′ . . .,
or priors, p0, p

′
0, p
′′
0 . . ., or scaled posteriors,

{p1
n, p

γ′
n , p

γ′′
n . . .}, 1 > γ′ > γ′′ > . . .0, corres-

ponding to virtual sample sizes {1n, γ′n, γ′′n . . .}.

The degree of inconsistency of the value of
evidence against a hypothesis H, induced by a
set of references, {r, r′, r′′ . . .}, can be defined
by the Inconsistency index

I
{
η, η′, η′′ . . .

}
=

max
{
η, η′, η′′ . . .

}
−min

{
η, η′, η′′ . . .

}
This intuitive measure of inconsistency can be
made rigorous in the context of paraconsistent
logic and bilattice structures.
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The degree of inconsistency for the evidence
against H induced by multiple changes of the
reference can be used as an index of impre-
cision or fuzziness of the value of evidence,
Ev(H) , that can be interpreted within the pos-
sibilistic context of the partial support struc-
ture given by the evidence.

Some of the alternative ways of measuring the
uncertainty of the value of evidence Ev(H),
such as the empirical power analysis, have a
dual possibilistic / probabilistic interpretation.

The degree of inconsistency also has the prac-
tical advantage of being inexpensive. When
computing the evidence, only the integration
limit, i.e. the threshold s∗, is changed, while
the integrand, i.e. the posterior density, re-
mains the same. Hence, when computing Ev(H),
only a small computational overhead is required
for the inconsistency analysis. In contrast, an
empirical power analysis requires much more
computational work than it is required to com-
pute a single evidence.
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Numerical Examples:

For the HW model we use as uninformative

reference the standard maximum entropy den-

sity, that can be represented as [−1,−1,−1]

observation counts.

For the sensitivity analysis we also use the uni-

form reference, represented as [0,0,0] observa-

tion counts, and intermediate “perturbation”

references corresponding to [−1,0,0], [0,−1,0]

and [0,0,−1] observation counts.

The examples in Figure 2 are given by

sample size factor and proportions,

[x1, x2, x3] = n ∗ [1,2,1] ,

where the HW hypothesis is true, and

[x1, x2, x3] = n ∗ [1,1,2] ,

where the HW hypothesis is false.
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Bilattices:

Given two complete lattices, 〈C,≤c〉 , 〈D,≤d〉,
B(C,D) has Knowledge and Truth orders,

B(C,D) = 〈C ×D,≤k,≤t〉
〈c1, d1〉 ≤k 〈c2, d2〉 ⇔ c1 ≤c c2 and d1 ≤d d2

〈c1, d1〉 ≤t 〈c2, d2〉 ⇔ c1 ≤c c2 and d2 ≤d d1

Interpretation: C - credibility, D - doubt

If 〈c1, d1〉 ≤k 〈c2, d2〉, more information in

1 than 2 (even if inconsistent)

If 〈c1, d1〉 ≤t 〈c2, d2〉, more reason to trust

2 than 1 (even if with less information).
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Join and a Meet operators, t and u,

for truth and knowledge orders:

〈c1, d1〉 tt 〈c2, d2〉 = 〈c1 tc c2, d1 ud d2〉
〈c1, d1〉 ut 〈c2, d2〉 = 〈c1 uc c2, d1 td d2〉
〈c1, d1〉 tk 〈c2, d2〉 = 〈c1 tc c2, d1 td d2〉
〈c1, d1〉 uk 〈c2, d2〉 = 〈c1 uc c2, d1 ud d2〉

Negation, ¬ , and Conflation, −
properties, (if defined):

Ng1: x ≤k y ⇒ ¬x ≤k ¬y,

Ng2: x ≤t y ⇒ ¬y ≤t ¬x,

Cf1: x ≤k y ⇒ −y ≤k −x,

Cf2: x ≤t y ⇒ −x ≤t −y,

Ng3: ¬¬x = x , Cf3: −−x = x.

Ng: reverses trust, preserves knowledge,

Cf: reverses knowledge, preserves trust.
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Unit Square bilattice, over the standard

Unit Interval lattice, 〈[0,1],≤〉 , where

Join and Meet operators, t and u,

coincide with max and min operators.

Negation and conflation operators are:

¬ 〈c, d〉 = 〈d, c〉 , −〈c, d〉 = 〈1− c,1− d〉.

In Figure 2 we have the extremes points,

t-truth, f-false, >-inconsist., ⊥-indeterm.

Region R in the convex hull of points

n-north, s-south, e-east and w-west.

Points kj, km, tj and tm are knowledge

and truth join and meet, over r ∈ R.

Degree of Trust and Inconsistency,

for a point x = 〈c, d〉 in the Bilattice,

are given by linear reparameterizations:

BT (〈c, d〉) = c− d , BI (〈c, d〉) = c+ d− 1 .
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Scientific Production Diagram:

Maturana (1980), Krohn, Küppers (1990):

Experiment Theory

Experiment ⇐ Operatio- ⇐ Hypotheses
design nalization formulation
⇓ ⇑

Effects false/true Inter-
observation eigensolution pretation

⇓ ⇑
Data Explanation Statistical

acquisition ⇒ ⇒ analysis

Sample Parameter
space space

Scientific knowledge, structure and dynamics,

as an autopoietic double feed-back system.
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Statistical Inference:
Cognitive Constructivism, Stern (2005).

- Predictive Probability Statements:
- Chance of observations in sample space.
- At the Experiment side of the diagram, the
task of statistics is to make probabilistic state-
ments about the occurrence of pertinent events,
i.e. describe probabilistic distributions for what,
where, when or which events can occur.

- Epistemic probability statements:
- Truth values in hypotheses space.
- At the Theory side of the diagram, the role of
statistics is to measure the statistical support
of (sharp) hypotheses, i.e. to measure, quan-
titatively, the hypothesis plausibility or possi-
bility in the theoretical framework they were
formulated, given the observed data.

OBS: Extravariability, measurement noise, and
all other statistically significant factors ought
to be incorporated into the model!
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Constructivist Epistemology and Ontology:

von Foerster (2001, 2003):

“Objects are tokens for eigen-behaviors.

Tokens stand for something else. In the cog-

nitive realm, objects are the token names we

give to our eigen-behavior. This is the con-

structivist’s insight into what takes place when

we talk about our experience with objects.”

“The meaning of recursion is to run through

one’s own path again. One of its results is

that under certain conditions there exist in-

deed solutions which, when reentered into the

formalism, produce again the same solution.

These are called “eigen-values”, “eigen- func-

tions”, “eigen-behaviors”, etc., depending on

which domain this formation is applied - in the

domain of numbers, in functions, in behaviors,

etc.”
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“ Out of an infinite continuum of possibilities,
recursive operations carve out a precise set of
discrete solutions. Eigen-behavior generates
discrete, identifiable entities. Producing dis-
creteness out of infinite variety has incredibly
important consequences. It permits us to be-
gin naming things. Language is the possibility
of carving out of an infinite number of possi-
ble experiences those experiences which allow
stable interactions...”

“Eigenvalues have been found ontologically to
be discrete (lower-dimensional, precise, sharp
or singular), stable (limit or fixed point), sep-
arable and composable, while ontogenetically
to arise as equilibria that determine themselves
through circular processes.
Ontologically, Eigenvalues and objects, and like-
wise, ontogenetically, stable behavior and the
manifestation of a subject’s ‘grasp’ of an ob-
ject cannot be distinguished.”

Sharp objects => Identifiable entities =>
can be Named => Language (composition)
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Theorems of Noether (physics), Haar (contin-
uous Groups), de Finetti (statistics), etc.

- NTs and HT provide invariant physical quan-
tities (conserv.laws) and invariant measures (in-
tegrals) from symmetry transformation groups.
These become sharp hypotheses by excellence.
- dFTs provide invariant distributions from sym-
metry groups of the statistical model, gener-
ating prototypical sharp hypotheses in applica-
tion areas, see Eaton (1989), Feller (1968),
Nachbin (1965) and Deitmar (2002).

Eigen-Solutions Composability:
Luhmann (1989), on the evolution of the
scientific system. ∗ ∗ ∗

“This is something that idealization, math-
ematization, abstraction, etc. do not describe
adequately. It concerns the increase in the ca-
pacity of decomposition and recombination, a
new formulation of knowledge as the product
of analysis and synthesis. ...uncovers an enor-
mous potential for recombination.”
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Decoupling, Randomization, Sparsity,

and Objective Inference.

General strategy:

Coupled equations in x1, . . . , xn.

define new variables y1, . . . , yn, s.t.

evolution of yi depends only of yi
(and not on yj , j 6= i).

Solve yi(t), i = 1 . . . n,

convert to old coordinates, xi(t).

Discrete chord system’s dynamics:

ẍ+Kx = 0 , w2
0 =

h

ms
,

K = w2
0



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 .. . ...
0 0 −1 .. . . . . 0
... ... . . . . . . 2 −1
0 0 · · · 0 −1 2


.
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Decoupling operator:
Orthogonal matrix Q, diagonalizing K, i.e.

Q−1 = Q′ , and Q′KQ = D = diag(d) .

Q′(Qÿ) +Q′K(Qy) = Iÿ +Dy = 0 ,

equivalent to the n decoupled scalar equations
for harmonic oscillators, ÿk + dkyk = 0.

Solution in normal coordinates:

yk(t) = sin(ϕk + wkt) ,

Columns of Q are the eigenvectors of matrix
K, multiples of the un-normalized vectors zk.
Their corresponding eigenvalues, dk = w2

k , for
j, k = 1 . . . n,

zkj = sin
(
jkπ

n+ 1

)
, wk = 2w0 sin

(
kπ

2(n+ 1)

)
.
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Given a (vector) random variable, x, its ex-

pected (mean) vector, β, and covariance ma-

trix, V , are defined as:

β = E(x) , V = Cov(x) = E((x−β)⊗(x−β)′) .

Since the expectation operator is linear,

E(Ax+ b) = AE(x) + b and

Cov(Ax+ b) = ACov(x)A′ .

For numerical and structural model estimation

we write V (γ) =
∑
γtG

t, where Gt is a basis for

the space of symmetric matrices of dimension

n × n, see Lauretto (2002), For example, for

dimension n = 4,

V (γ) =
10∑
t=1

γtG
t =


γ1 γ5 γ7 γ8
γ5 γ2 γ9 γ10
γ7 γ9 γ3 γ6
γ8 γ10 γ6 γ4

 .
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How can we decouple the estimated model?

A possible decoupling operator is the lower tri-
angular Cholesky factor, L | V = LL′.

Let us consider y = L−1x, or x = Ly.

In the new variables the model is decoupled,
i.e., has uncorrelated random components,

Cov(y) = L−1V L−t = L−1LL′L−t = I .

Let us consider a simple example:

V =


1 1 0 0
1 2 0 0
0 0 4 4
0 0 4 8

 , L =


1 0 0 0
1 1 0 0
0 0 2 0
0 0 2 2

 .

This example has two peculiarities:

- The matrix V is sparse, has several zero
elements, and also structured, the zeros are
arranged in nice a (block) pattern.
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- This is also an example of perfect factoriza-

tion (or elimination), i.e., no position with a

zero in V is filled with a non-zero in L.

Perfect eliminations are rare, however, there

are several techniques that can be used to ob-

tain sparse (and structured) Cholesky factor-

izations in which the fill in is minimized, that

is, the sparsity of the Cholesky factor is max-

imized. In practice, large models can only be

computed with the help of these techniques.

Bayesian Networks, rely on sparse factoriza-

tion techniques that, from an abstract graph

theoretical perspective, are almost identical to

sparse Cholesky factorization, see for example

Lauritzen (2006), Stern (2006a, sec.9-11) and

Colla (2007).
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Simpson’s Paradox and the

Control of Confounding Variables:

Table 1: Simpson’s Paradox.

Sex T R NR Tot R%
All T 20 20 40 50%
All NT 16 24 40 40%

Male T 18 12 30 60%
Male NT 7 3 10 70%
Fem T 2 8 10 20%
Fem NT 9 21 30 30%

Simpson’s Paradox (Lindley’s example):

The association between two variables, Treat-

ment and Recovery, is reversed if the data is

aggregated / disaggregated over a confound-

ing variable, Sex.
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How can we design a statistical experiment
in order to avoid (separate, decouple) spurious
associations?

1) Control possible confounding variables,
imposing some form of invariance, constancy
or equality.

2) Measure possible confounding variables and
include the relevant ones in the statistical model.

Keeping everything under control in a statis-
tical experiment (or in life in general) consti-
tutes, in the words of Fisher:

“a totally impossible requirement in our exam-
ple, and equally in all other forms of experi-
mentation.”

Solution: Box et al. (1978, p.102-103):

“Control what you can,
and randomize what you can not.”
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Pearl (2000, p. 340,348. Epilogue:
The Art and Science of Cause and Effect):

“...Fisher’s ‘randomized experiment’...
consists of two parts, ‘randomization’ and in-
tervention’.”

“Intervention means that we change the nat-
ural behavior of the individual: we separate
subjects into two groups, called treatment and
control, and we convince the subjects to obey
the experimental policy. We assign treatment
to some patients who, under normal circum-
stances, will not seek treatment, and give place-
bo to patients who otherwise would receive
treatment. That, in our new vocabulary, means
‘surgery’ - we are severing one functional link
and replacing it with another. Fisher’s great
insight was that connecting the new link to a
random coin flip ‘guarantees’ that the link we
wish to break is actually broken. The reason
is that a random coin is assumed to be unaf-
fected by anything we can measure on macro-
scopic level...”
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“Statistics is Prediction”;
but is that all there is?
Cognitive Constructivism: No!

Abelson (1995, p.xiii): “The purpose of statis-
tics is to organize a useful argument from quan-
titative evidence, using a form of principled
rhetoric.”

Einstein (1950): “There exists a passion for
comprehension, just as there exists a passion
for music.”

“I believe that every true theorist is a kind of
tamed metaphysicist... The metaphysicist be-
lieves that the logically simple is also the real.
The tamed metaphysicist believes that not all
that is logically simple is embodied in experi-
enced reality, but that the totality of all sensory
experience can be ‘comprehended’ on the ba-
sis of a conceptual system built on premises of
great simplicity.”
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Are scientific hypotheses or theories

supposed to be static (dogmaic) ?

No. Science is an Evolving System!

Evolution of complex systems =>

Stable modular structures =>

Quantization =>

Objective probability!

(at least in Bohr complementarity theory)
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