
The Rules of Logic Composition

for Bayesian Epistemic e-Values.

7th Conference on Multivariate

Distributions with Applications

Aug. 8-13, 2010, Maresias, Brazil.

Julio Michael Stern

jstern@ime.usp.br

University of São Paulo,

Wagner Borges

wborges@mackenzie.com.br

Mackenzie Presbiterian University.

Logic J.of the IGPL, 2007, 15, 5-6, 401-420.

1



We analyze the relationship between the cred-

ibility, or truth value, of a complex hypothesis,

H, and those of its elementary constituents,

Hj, j = 1 . . . k. This is the Compositionality

question (ex. in analytical philosophy).

According to Wittgenstein,

(Tractatus, 2.0201, 5.0, 5.32):

- Every complex statement can be analyzed

from its elementary constituents.

- Truth values of elementary statements are

the results of those statements’ truth-functions

(Wahrheitsfunktionen).

- All truth-function are results of successive

applications to elementary constituents of a fi-

nite number of truth-operations

(Wahrheitsoperationen).
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In reliability engineering, (Birnbaum, 1.4):

“One of the main purposes of a mathemat-

ical theory of reliability is to develop means

by which one can evaluate the reliability of a

structure when the reliability of its components

are known. The present study will be con-

cerned with this kind of mathematical devel-

opment. It will be necessary for this purpose

to rephrase our intuitive concepts of structure,

component, reliability, etc. in more formal lan-

guage, to restate carefully our assumptions,

and to introduce an appropriate mathematical

apparatus.”

Composition operations:

Series and parallel connections;

Belief values and functions:

Survival probabilities and functions.
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FBST - Full Bayesian Significance Test
Pereira and Stern (1999), Madruga (2003).

Bayesian paradigm: the posterior density, pn(θ),
is proportional to the product of the likelihood
and a prior density,

pn(θ) ∝ L(θ |x) p0(θ).

Hypothesis: H : θ ∈ ΘH ,

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0}

Precise (sharp) hypothesis: dim(H) < dim(Θ),
relaxed notation: H, instead of ΘH.

Reference density, r(θ), interpreted as a repre-
sentation of no information in the parameter
space, or the limit prior for no observations,
or the neutral ground state for the Bayesian
operation. Standard (possibly improper) unin-
formative references include the uniform and
maximum entropy(s) densities, ∗ ∗ ∗
see Dugdale (1996) and Kapur (1989)
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FBST evidence value supporting and against

the hypothesis H, Ev(H) and Ev(H),

s(θ) = pn (θ) /r (θ) ,

ŝ = s(θ̂) = supθ∈Θ s(θ) ,

s∗ = s(θ∗) = supθ∈H s(θ) ,

T (v) = {θ ∈ Θ | s(θ) ≤ v} , T (v) = Θ− T (v) ,

W (v) =
∫
T (v)

pn (θ) dθ , W (v) = 1−W (v) ,

Ev(H) = W (s∗) , Ev(H) = W (s∗) = 1−Ev(H) .

s(θ) is the posterior surprise relative to r(θ).

The tangential set T (v) is the HRSS. Highest

Relative Surprise Set, above level v,

W (v) is the cumulative surprise distribution.

If r ∝ 1 then s(θ) = pn(θ) and T is a HPDS.

r(θ) implicitly gives the metric in Θ.
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Hardy-Weinberg genetic equilibrium,
see (Pereira and Stern 1999).
n , sample size, x1, x3 , homozygote,
x2 = n− x1 − x3 , heterozygote count.

r(θ) = p0(θ) ∝ θy1
1 θ

y2
2 θ

y3
3 , y =

[0,0,0] (uniform) or [−1,−1,−1] (max.ent.) ,

pn(θ | x) ∝ θx1+y1
1 θ

x2+y2
2 θ

x3+y3
3 ,

Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1} ,

H = {θ ∈ Θ | θ3 = (1−
√
θ1 )2} .
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Invariance:

Reparameterization of H (of h(θ)): Trivial.

Reparameterization of Θ, (regularity cond.=

bijective, integrable, a.s.cont.differentiable)

ω = φ(θ) , ΩH = φ(ΘH)

J(ω) =
[
∂ θ

∂ ω

]
=

[
∂ φ−1(ω)

∂ ω

]
=


∂ θ1
∂ ω1

. . . ∂ θ1
∂ ωn... . . . ...

∂ θn
∂ ω1

. . . ∂ θn
∂ ωn



s̃(ω) =
p̃n(ω)

r̃(ω)
=
pn(φ−1(ω)) |J(ω)|
r(φ−1(ω)) |J(ω)|

s̃∗ = sup
ω∈ΩH

s̃(ω) = sup
θ∈ΘH

s(θ) = s∗

hence, T (s∗) 7→ φ(T (s∗)) = T̃ (s̃∗), and

Ẽv(H) =
∫
T̃ (s̃∗)

p̃n(ω)dω =

∫
T (s∗)

pn(θ)dθ = Ev(H) , Q.E.D.
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Critical Level and Consistency:
V (c) = Pr(Ev ≤ c), the cumulative distribution
of Ev(H), given θ0, the true parameter value.
Let t = dim(Θ) and h = dim(H).
Under appropriate regularity conditions,
for increasing sample size, n→∞,

- If H is false, θ0 /∈ H, then Ev(H)→ 1
- If H is true, θ0 ∈ H, then V (c), the confidence
level, is approximated by the function

Chi2
(
t− h,Chi2−1 (t, c)

)
.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Con
fide

nce
 leve

l

t=2; h=0,1;

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t=3; h=0,1,2;

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t=4; h=0,1,2,3;

Test τc critical level vs. confidence level

Alternative approaches: Empirical power anal-
ysis Stern and Zacks (2002) and Lauretto (2004);
Decision theory, Madruga (2001); Sensitivity
analysis, Stern (2004). ∗ ∗ ∗
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Comparative example:

Pereira, Stern, Wechsler (2005).

Independence in 2× 2 contingency table.

H : θ1,1 = (θ1,1 + θ1,2)(θ1,1 + θ2,1) .

Figure 2 compares four statistics, namely,

-Bayes factor posterior probabilities (BF-PP),

-Neyman-Pearson-Wald (NPW) p-values,

-Chi-square approximate p-values, and the

-FBST evidence value in favor of H.

D = x1,1x2,2 − x1,2x2,1 ,

Horizontal axis: D = diagonal asymmetry,

is the unormalized Pearson correlation,

ρ1,2 =
σ1,2

σ1,1σ2,2
=
θ1,1θ2,2 − θ1,2θ2,1√
θ1,1θ1,2θ2,1θ2,2

.

Wish list:

- Full symmetry gives H full support.

- Ev(H) in continuous and differentiable.
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Numerical Computations: ∗ ∗ ∗

- Integration Step, MCMC for W (v):

(dominates computational time)

g(θ), importance sampling density,

W (v) =

∫
ΘZvg(θ)g(θ)dθ∫
ΘZg(θ)g(θ)dθ

where

Zg(θ) = pn(θ)/g(θ) , Zvg(θ) = I(v, θ)Zg(θ) ,

I(v, θ) = 1(θ ∈ T (v)) = 1(s(θ) ≤ v) .

Precision analysis in Zacks and Stern (2003).

OBS: We can get W : [0, θ̂] 7→ R at almost the

same computational cost of W (s∗) = Ev(H).

- Optimization Step:

ALAG, Augmented Lagrangean Algorithm

(dominates program complexity)

Multimodality: SA, Simulated Annealing
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Nuisance parameters and Model Selection:
see Basu (1988), and Pereira and Stern (2001).

Consider H : h(θ) = h(δ) = 0 , θ = [δ, λ] not a
function of some of the parameters, λ.

“If the inference problem at hand relates only
to δ, and if information gained on λ is of no di-
rect relevance to the problem, then we classify
λ as the Nuisance Parameter. The big ques-
tion in statistics is: How can we eliminate the
nuisance parameter from the argument? ”

maxλ or
∫
dλ, the maximization or integra-

tion operators, are procedures to achieve this
goal, in order to obtain a projected profile or
marginal posterior function, pn(δ).

The FBST does not follow the nuisance pa-
rameters elimination paradigm. In fact, stay-
ing in the original parameter space, in its full
dimension, explains the “Intrinsic Regulariza-
tion” property of the FBST, when it is used
for model selection.
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Abstract Belief Calculus, ABC,
see Darwiche, Ginsberg (1992).

〈Φ,⊕,�〉 , Support Structure,
Φ , Support Function, for statements on U.
Null and full support values are 0 and 1.
⊕ , Support Summation operator,
� , Support Scaling or Conditionalization,
〈Φ,⊕〉 , Partial Support Structure.

⊕, gives the support value of the disjunction
of any two logically disjoint statements from
their individual support values,

¬(A ∧B)⇒ Φ(A ∨B) = Φ(A)⊕Φ(B) .

�, gives the conditional support value of B
given A from the unconditional support values
of A and the conjunction C = A ∧B,

ΦA(B) = Φ(A ∧B)�Φ(A) .

⊗, unscaling: If Φ does not reject A,

Φ(A ∧B) = ΦA(B)⊗Φ(A) .
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Support structures for some belief calculi,

a = Φ(A), b = Φ(B), c = Φ(C = A ∧B).

Φ(U) a⊕ b 0 1 a � b a⊗ b
[0,1] a+ b 0 1 a ≤ b a× b Pr
[0,1] max(a, b) 0 1 a ≤ b a× b Ps
{0,1} max(a, b) 0 1 a ≤ b min(a, b) CL
{0..∞} min(a, b) ∞ 0 b ≤ a a+ b DB

Pr= Probability, Ps= Possibility,

CL= Classical Logic, DB= Disbelief.

In the FBST setup, two belief calculi are in si-

multaneous use: Ev constitutes a possibilistic

(partial) support structure coexisting in har-

mony with the probabilistic support structure

given by the posterior probability measure in

the parameter space, see also Zadeh (1987).

See Klir (1988) for nesting prop. of T (v).
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FBST Compositionality:

Disjunction of (homogeneous) hypotheses

+ Possibilistic support structure ⇒
Maximization as composition operation:

Stern (2003).

Structures: M i = {Θ, Hi, p0, pn, r} .

Ev

 q∨
i=1

Hi

 = W

(
q

max
i=1

s∗i
)

=
q

max
i=1

(
Ev(Hi)

)
,

Onus Probandi, In Dubito Pro Reo, Presump-

tion of Innocence, and Most Favorable Inter-

pretation are basic principles of legal reasoning,

see Gaskins (1992).
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“The defendant is entitled to have the trial
court construe the evidence in support of its
claim as truthful, giving it its most favorable
interpretation, as well as having the benefit of
all reasonable inferences drawn from that evi-
dence.”

“The plaintiff has the burden of proof, and
must prove false a defendant’s misstatement,
without making any assumption not explicitly
stated by the defendant, or tacitly implied by
an existing law or regulatory requirement.”

A defendant describes a system (machine, soft-
ware, etc.) by a parameter θ, and claims that
θ has been set to a value in a legal or valid
null set, H. Claiming that θ has been set at
the most likely value must give the defendant’s
claim full support, for being absolutely vague
cannot put him in a better position.

A : θ ∈ Θ and⇒ Ev(A) = 1, it is tautological.
B : θ ∈ {θ̂} ⇒ Ev(B) = 1, for T = ∅.
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Conjunction of (homogeneous) hypotheses
+ Independent structures ⇒
Mellin convolution as composition operation:
Borges and Stern (2005).

Structures: Mj = {Θj, Hj, p
j
0, p

j
n, r

j} .

Ev

 k∧
j=1

Hj

 = W (s∗) =
⊗

1≤j≤k
W j

 k∏
j=1

s∗j
 ,

Given two random variables, X and Y , with
distributions G1, G2 : R+ 7→ [0,1], the Mellin
convolution, G1⊗G2, is the distribution of the
product Z = XY , see Springer (1979),

G1 ⊗G2(z) =
∫ ∞

0

∫ z/y
0

G1(dx)G2(dy) =

∫ ∞
0

G1(z/y)G2(dy) .

Ev(H), W (v) and ⊗:
Truth value, function, operation.
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Fig.1,2: W j, s∗j, and Ev(Hj), for j = 1,2;

Fig.3: W1 ⊗W2, s∗1s∗2, Ev(H1 ∧H2) and

bounds: Ev(H1) ∗ Ev(H2) and 1− Ev(H1) ∗ Ev(H2).

Fig.4: M3 is an independent replica of M2,

Ev(H1) < Ev(H2), but Ev(H1 ∧H3) > Ev(H2 ∧H3).
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Compound H in Homogeneous

Disjunctive Normal Form, (HDNF)

+ Independent (j) structures ⇒

Structures: M(i,j) = {Θj, H(i,j), p
j
0, p

j
n, r

j} .

Ev(H) = Ev
(∨q

i=1

∧k

j=1
H(i,j)

)
=

maxqi=1 Ev
(∧k

j=1
H(i,j)

)
=

W

(
maxqi=1

∏k

j=1
s∗(i,j)

)
,

W =
⊗

1≤j≤k
W j .

If all s∗ = 0 ∨ ŝ, Ev = 0 ∨ 1, classical logic.

HDNF does not cover the most general com-

position cases of heterogeneous structures, de-

pendent structures, etc. ∗ ∗ ∗
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Constructivist Epistemology and Ontology:

von Foerster (2003).

“Objects are tokens for eigen-behaviors.”

(eigen-... = system’s recurrent solution)

“Tokens stand for something else. In the cog-

nitive realm, objects are the token names we

give to our eigen-behavior. This is the con-

structivist’s insight into what takes place when

we talk about our experience with objects.”

ex: ball, money (gold), wave (equation)...

“Eigenvalues have been found ontologically to

be discrete (sharp), stable, separable and com-

posable, while ontogenetically to arise as equi-

libria that determine themselves through circu-

lar processes. Ontologically, Eigenvalues and

objects, and likewise, ontogenetically, stable

behavior and the manifestation of a subject’s

‘grasp’ of an object cannot be distinguished.”
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Scientific Production Diagram:

Maturana (1980), Krohn, Küppers (1990):

Experiment Theory

Experiment ⇐ Operatio- ⇐ Hypotheses
design nalization formulation
⇓ ⇑

Effects false/true Inter-
observation eigensolution pretation

⇓ ⇑
Data Explanation Statistical

acquisition ⇒ ⇒ analysis

Sample Parameter
space space

Scientific knowledge, structure and dynamics,

as an autopoietic double feed-back system.
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Statistical Inference:
Cognitive Constructivism or Idealism.
Rouanet (1998), Stern (2005).

- Predictive Probability Statements:
- Chance of observations in sample space.
- At the Experiment side of the diagram, the
task of statistics is to make probabilistic state-
ments about the occurrence of pertinent events,
i.e. describe probabilistic distributions for what,
where, when or which events can occur.

- Epistemic probability statements:
- Truth values in hypotheses space.
- At the Theory side of the diagram, the role of
statistics is to measure the statistical support
of (sharp) hypotheses, i.e. to measure, quan-
titatively, the hypothesis plausibility or possi-
bility in the theoretical framework they were
formulated, given the observed data.

OBS: Extravariability, measurement noise, and
all other statistically significant factors ought
to be incorporated into the model!
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Noether theorems in physics, and
de Finetti type theorems in statistics: ∗ ∗ ∗

- NTs provide invariant physical quantities (con-
serv.laws) from symmetry transformation groups,
and these are sharp hypotheses by excellence.
- dFTs provide invariant distributions from sym-
metry groups of the statistical model, gen-
erating prototypical sharp hypotheses in ap-
plication areas, see Diaconis (1987,8), Eaton
(1989), Feller (1968) and Ressel (1985,7,8).

Eigen-Solutions Composability:
Luhmann (1989), on the evolution of the
scientific system. ∗ ∗ ∗

“This is something that idealization, math-
ematization, abstraction, etc. do not describe
adequately. It concerns the increase in the ca-
pacity of decomposition and recombination, a
new formulation of knowledge as the product
of analysis and synthesis. ...uncovers an enor-
mous potential for recombination.”
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