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Preface 

The development of modern statistics and probability theory is focused 

largely on random variables, that is, variables whose probability distribu¬ 

tions exist. That random variables play a dominant role in statistics and 

probability theory is evident when one considers the origin of various 

theorems and basic distributions in these fields. The central limit theorem, 

for example, deals entirely with the addition and subtraction of random 

variables. Again, the derivations of the Student-Fisher t and Snedecor F 

distributions are basically exercises in obtaining the distribution of 

quotients of certain independent random variables, and the solution to a 

standard problem in multivariate statistical analysis [14, p. 237] depends on 

a knowledge of the distribution of products of independent beta random 

variables. In the field of sampling techniques, Cochran [57] states that “the 

distribution of the ratio estimate y/x has proved annoyingly intractable 

because both y and x vary from sample to sample. The known theoretical 

results fall short of what we would like to know for practical applications.” 

The desired theoretical results are, however, within the grasp of integral 

transform methods. 
Although the integral transform method (i.e., the characteristic function) 

has long been used in studying sums of random variables—for example, in 

the case of the central limit theorem—it was not until 1948 that Epstein, in 

his paper “Some Applications of the Mellin Transform in Statistics” [92], 

pointed out the advantages of using the Mellin transform in deriving the 

standard statistical distributions involving products or quotients of inde¬ 

pendent random variables. And though integral transform methods are 

very useful in the derivation of statistical and probability theory requiring 

the application of algebraic operations to random variables, the applica¬ 

tion of such methods extends far beyond the theoretical domain. This is 

particularly true since the electronic computer has made possible the 

solution of many problems that heretofore defied solution simply because 

of prohibitive time requirements. In fact, it is in the applied field that the 

vii 



PREFACE viii 

need for, and power of, an algebra of random variables in reaching exact 

solutions efficiently becomes most evident. Moreover, there are many 

problems whose exact solution cannot otherwise be achieved. It is both 

interesting and significant that such problems occur in numerous and 

diverse fields such as engineering, mathematics, economics, operations 

research, and psychology, to mention just a few representative areas. A 

number of examples given in Chapter 1 bear this out. 
Many engineers and scientists are confronted with problems whose 

solution requires application of algebraic operations to random variables, 

yet there is presently no source supplying a unified and self-contained 

presentation of the methodology. It seems timely, therefore, that such a 

book be provided, and that it be designed to meet the needs of individuals 

in the following categories: 

1. Advanced undergraduate and graduate students who are not majors in 

mathematical statistics and wish to take a one-semester course to learn 

how to apply algebraic operations to random variables. The material 

covered would probably consist of the unstarred chapters, sections, and 

problems, and possibly Appendices A, B, D, and E. 

2. Advanced undergraduate and graduate students in statistics who wish 

to take a one-semester course dealing with the algebra of random 

variables, including the more theoretical aspects (starred chapters and 

sections) and the more difficult (starred) problems. 

3. Graduate students who wish to take a reading course dealing with the 

algebra of random variables. Such a course could be tailored to the 

material cited in either of the categories above. 

4. Individuals (graduate students, researchers, faculty members, etc.) who 

desire to participate in a seminar dealing with the algebra of random 

variables. 

5. Individuals who wish to acquire a capability in the use of the algebra of 

random variables on their own, without recourse to a specific course or 

seminar on the subject. 

6. Participants in seminars in industry. 

The minimal required background for an individual in any of these 

categories consists of familiarity with the elementary aspects of differential 

and integral calculus, and with the basic methods of statistical inference 

and of distribution theory. Essentially, this is equivalent to two semesters 

of calculus and a two-semester course in basic statistics. However for 

individuals in any of the categories named who wish to include Chapters 6, 

7. 9, Appendices C, F, and particularly the more difficult (starred) ex¬ 

ercises, somewhat more maturity in statistics is desirable and probably 
necessary. 
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To avoid limiting the use of the book to those who have had a formal 

course in complex variables, I have included a relatively concise chapter 

presenting the basic elements of complex variables—definitions, concepts, 

and theorems—that form the basis for the transform methods and are 

necessary for an understanding and appreciation of the methodology. (For 

example, to understand why the condition that the Mellin transform be 

analytic in a particular strip is sufficient to ensure the uniqueness of a 

derived probability distribution, one must understand the definition of an 

integral transform and of Laurent’s expansion.) The chapter is self-con¬ 

tained, and, in my judgment, is entirely comprehensible to an interested 

reader who understands the elementary aspects of differentiation and 

integration of real variables but has had no previous knowledge of com¬ 

plex variables. To require the interested reader to enroll in a course in 

introductory complex variables would be an inefficient, unnecessary, and 

burdensome method for acquiring the relevant information, since much of 

the material in such a course is not required by the reader and would 

probably discourage many potential readers from learning how to under¬ 

stand and apply transform methods to real world problems. By including 

such a chapter, I am confident that the size of the reading audience and 

the total benefit imparted thereto will be increased. At the same time, 

material that is primarily of theoretical interest* and is not required for 

application of the methods to practical problems, is included in starred 

sections, chapters, and appendices; thus it may be omitted without disrupt¬ 

ing the continuity of the basic material necessary for the reader’s ability to 
understand and apply the methods. 

In short, I have endeavored to produce a book that will be self-con¬ 

tained, useful, interesting, and challenging, both to the student or analyst 

with the specified moderate mathematical background and to the mathe¬ 

matical statistician with theoretical training and interest. More specifically, 

my object has been to present, in a self-contained book, methods for 

utilizing integral transforms in the addition, subtraction, multiplication, 

and division of random variables, and in the analysis of algebraic func¬ 

tions of random variables. I believe that if these methods are clearly 

expounded and made available in a self-contained text, they will be 

utilized not only by mathematical statisticians but by engineers, scientists, 

researchers, and analysts alike, to solve many hitherto insoluble problems, 
both theoretical and applied, of the types cited in Chapter 1. 

Many people have contributed to this book, both directly and indirectly. 

Contribution of subject matter is acknowledged throughout the text and in 

the references. I am particularly indebted to Dr. John L. Imhoff, head of 

*For example, algebraic functions of independent //-function variables, the proof of Jordan’s 

lemma, distribution problems in statistics, and various more difficult problems. 
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the Department of Industrial Engineering, University of Arkansas at 

Fayetteville, for his assistance and encouragement throughout the writing 

of this book, and to Dr. Aubrey E. Harvey, Coordinator of Research, for a 

small grant provided by the Graduate School during the summer of 1971. 

I also express my gratitude to Mrs. Vicki Asfahl, Mrs. Donna Jones, 

Mrs. Marilu S. Zillman, and Mrs. Carol Lancaster for their expertise, 

patience, and efficiency in typing, and to my wife and daughter for bearing 

with me during the many long hours spent at home working on the 

manuscript. Finally, it is my pleasant duty to express my appreciation to 

Dr. Samuel Kotz for his thorough reading of the entire manuscript and for 

the corrections and improvements that resulted from this review. 

Melvin D. Springer 

Fayetteville, Arkansas 

August 1978 
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CHAPTER 1 

Introduction 

1.1 HISTORICAL DEVELOPMENT 

Since the early 1900s, the problem of deriving the distribution of sums of 
random variables (r.v.’s) has received a great deal of attention, and 
systematic procedures for determining such distributions have been well 
developed. Detailed discussions concerning sums of independent random 
variables (i.r.v.’s) have been given by many authors, such as Aroian [16], 
Wintner [411], Levy [205], Lukacs [222,225], and Cramer [73,74], to 
mention just a few. 

The problem of determining the distribution of products and quotients 
of r.v.’s, however, has not been given the same extensive treatment. During 
the period 1929-1942, Craig [66,69,71] made some of the early investiga¬ 
tions into the distribution of the product and quotient of two random 
variables, concentrating on normal variables. At about the same time 
Geary [117] derived his widely used approximation for the quotient of two 
normal variables, and in 1939 Huntington presented proofs for four 
theorems [155] resulting in a mathematical formulation for finding the 
distribution of the sum, difference, product, and quotient of two r.v.’s. 
Other early contributions to the theory of products and quotients of r.v.’s 
were made by Rietz [308], Haldane [140], Curtiss [75], and Aroian [17]. 
Most of the work, however, concentrated on products and quotients of two 
r.v.’s with specific probability density functions (p.d.f.’s). 

Epstein [92] was the first to point out, in 1948, that the Mellin integral 
transform was a natural and powerful tool for analyzing products and 
quotients of i.r.v.’s. He derived directly and with ease the p.d.f.’s of the 
Student-Fisher t and F statistics, as well as the p.d.f. of two standardized 
normal i.r.v.’s. His work, however, was limited to quotients and products 
of 2. In 1954 Jambunathan [160] derived the distribution of the products of 
beta and of gamma i.r.v.’s for certain special cases. By means of a 
logarithmic transformation, Schulz-Arenstorf and Morelock determined 
the p.d.f. of the product of n uniform i.r.v.’s [323]. Also in 1959 Levy 
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2 INTRODUCTION 

[206,207], posed the question of the construction of a general theory of 

multiplication of i.r.v.’s and derived some results for products of 2. In 1962 

Zolotarev [420] began the construction of a general theory of multiplica¬ 

tion of i.r.v.’s, analogous to the theory of addition of i.r.v.’s. His program 

focused on a sequence of theorems, stated without proof, that show both 

the similarity to and difference from the results for addition of i.r.v.’s. 

Other established results relating to product distributions concern isolated 

phases of the subject. They are cited at the appropriate points in the 

development of the algebra of r.v.’s. 

Notwithstanding the scope of these various papers, the status of the 

theory of product distributions had not progressed to the point of deriving 

a general method for developing the p.d.f. of the distribution of products 

of more than two i.r.v.’s. The gap was largely closed in 1966 by Springer 

and Thompson [353,354], who presented a general method for deriving the 

p.d.f. of the product of n i.r.v.’s that are not necessarily nonnegative nor 

identically distributed. They derived and identified the p.d.f.’s of the 

products of certain r.v.’s (e.g., beta, gamma, and Gaussian) as Meijer 

G-functions [358]. Later Carter [47,48], showed that the p.d.f. of the 

product, power, or quotient of //-function variables is an //-function 

variable, and he developed an expression for the p.d.f. of a polynomial in 

//-function variables. Carter also identified many of the basic distributions 

in statistics and probability as //-functions, such as the gamma, beta, 

Weibull, half-normal, chi-square, and Rayleigh distributions. Prasad [294] 

established two theorems for deriving the Mellin transform of a function 

from its Laplace transform, and vice versa, which are often useful in 

determining the p.d.f.’s of algebraic functions of i.r.v.’s. Among the most 

recent contributions in the applied area are the books by Giffin [121] and 

Muth [267], both directed toward problems in operations research and 

certain areas of engineering. Giffin discusses the use of transforms in 

connection with some of the probabilistic models used in systems analysis 

(particularly linear systems) and operations research (particularly applica¬ 

tions in queueing theory). However he treats only very briefly the im¬ 

portant problem of the evaluation of inversion integrals by residues, 

relying mostly on the use of partial fraction expansions (when applicable) 

and the use of tables of integral transforms. Muth’s book deals only with 
the Laplace and z transforms. 

1.2 THE NATURE AND SCOPE OF THE ALGEBRA 
OF RANDOM VARIABLES 

Since almost all problems in the real world are probabilistic, rather than 

deterministic, the solutions to many important problems in diverse fields 
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require the ability to analyze r.v.’s. One may, for example, build and test a 

system in order to analyze the reliability of the system, but the reliability as 

calculated from test data is at best only an estimate of the true reliability. 

Such estimates are subject to random variations that cannot be controlled. 

However one can often determine the p.d.f. of these reliability estimates, 

and from these conclusions may be reached concerning the true but 

unknown system reliability. If the variable is not a composite one (such as 

a sum, difference, product, or quotient), its analysis is relatively straight¬ 

forward. Yet on numerous occasions the r.v. is composite. Thus in the 

reliability analysis of a system consisting of n independent subsystems 

arranged in series, one usually has test data for each available subsystem 

before the system is assembled. The analysis of the reliability of such a 

system on the basis of subsystem test data involves the determination of 

the distribution of the product of n i.r.v.’s (see, e.g., ref. 356). In other 

situations, the r.v. whose distribution is required may be a sum, difference, 

quotient, or algebraic function of component r.v.’s whose p.d.f.’s are 

known. Such p.d.f.’s are obtainable through the use of integral transforms, 

but the only case that has received extensive systematic treatment (via 

characteristic functions) is that involving sums and differences of r.v.’s. In 

this book, the scope of integral transform methods is extended to cover the 

whole spectrum of the algebra of r.v.’s, thereby permitting the determina¬ 

tion of the distribution not only of sums and differences, but also of 

products, quotients, and general algebraic functions of r.v.’s. 

In the case of addition of r.v.’s, the problem is this: given n r.v.’s Y, with 

p.d.f.’s fj(Xj), — oo < xi < oo find the p.d.f. g(w) of the r.v. 

w= i X,. 
i= 1 

Likewise, it may be necessary to find the p.d.f. h(y) of the r.v. 

n 

y= n x„ 
(=i 

which is a problem in the multiplication of either independent or depen¬ 

dent r.v.’s. Often both these problems can be directly solved through the 

use of integral transforms. The operations of addition and subtraction of 

r.v.’s are analytically equivalent, being achieved through the use of either 

the Laplace or the Fourier integral transform, the latter being equivalent to 

the characteristic function. Similarly, multiplication and division of r.v.’s 

are analytically equivalent operations, inasmuch as the quotient Y/X of 

two r.v.’s X and Y is equivalent to the multiplication of the two r.v.’s Y 
and 1 / X. Operations involving powers and roots of r.v.’s can also be 
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directly analyzed by application of the basic laws of operation for Mellin 

transforms. 
In the application of algebraic operations to r.v.’s, there are two broad 

classes: the class for which all the r.v.’s are independent, and that for 

which they are not. The importance of the independence condition stems 

from the equivalence, in the case of i.r.v.’s, of repeated convolution of the 

p.d.f.’s in the transform to successive multiplication of the integral trans¬ 

forms. In the event of dependence among the r.v.’s, this property no longer 

holds, and the evaluation of the inversion integral now entails evaluating a 

multiple, rather than a single, integral. Although the material in this book 

involves both independent and dependent r.v.’s, it is concerned primarily 

with the treatment of i.r.v.’s. 
Unlike the Mellin transform, the Fourier transform (characteristic func¬ 

tion) is readily adaptable to change of unit and origin of the component 

r.v.’s. For this reason, noncentrality poses no problem in the addition or 

subtraction of r.v.’s, but it considerably complicates the procedure of 

deriving the distribution of products and quotients. The Fourier and 

Mellin transforms also differ insofar as range of variable is concerned, the 

former being defined over the doubly infinite range (—00,00) and the 

latter over the singly infinite range (0,00). Therefore when multiplication 

or division of i.r.v.’s having doubly infinite range is to be carried out, it is 

necessary to partition each i.r.v. into two components, one for which the 

p.d.f. is nonnegative on the interval (0,00) and zero elsewhere, and another 

for which the p.d.f. is nonnegative on the interval (— 00,0) and zero 

elsewhere. If such i.r.v.’s are symmetric about the origin, the derivation of 

the distribution of the product or quotient becomes equivalent to that for 

i.r.v.’s having a singly infinite range. 
For many practical problems, the r.v.’s involved are restricted to non¬ 

negative values. For such cases the Laplace transform and inversion 

integral may be used to determine the p.d.f. of the sum of these r.v.’s. The 

procedure for deriving the p.d.f. g(w) of the sum 

w= £x, 
i= 1 

of n i.r.v.’s Xt with p.d.f.’s f(xt) is completely analogous to that for deriving 

the p.d.f. of the product of these r.v.’s. Specifically, the Laplace transform 

of g(w) is the product of the Laplace transforms of f(Xj), knowledge of 

which permits the determination of g(vv’) by evaluating the inversion 

integral along the Bromwich path. 

The more general problem of deriving the p.d.f. of algebraic functions of 

i.r.v.’s may now also be analyzed. For example, one may wish to analyze 
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the r.v. 

Y=Xx + 
X2 + X, 

where the i.r.v.’s X] have specified p.d.f.’s/(.x,), /= 1,2,3,4. This analysis is 

considerably simplified if one can convert the Laplace (or Fourier) trans¬ 

form of gx(u), where U= X2 + X3, into a Mellin transform, and then 

convert the Mellin transform of g2(v), V=U/X4, into a Laplace (or 

Fourier) transform. For then the Laplace (or Fourier) transform of the 

p.d.f. h(y) corresponding to Y can be directly determined without first 

having determined the p.d.f.’s g,(u) and g2(t>). Because of the utility of 

such transform conversion capabilities, methods for the conversion of 

Laplace (or Fourier) transforms to Mellin transforms, and vice versa, as 

developed by Prasad [294], are presented. 

It is interesting to note the manner in which the Mellin integral trans¬ 

form enters into the characteristic function of the p.d.f. of sums (or 

differences) of products (or quotients) of i.r.v.’s [364; 366, pp. 486-487]. 

Specifically, as shown in Chapter 5, the p.d.f. h(w) of the sum 

W=XxYx + X2Y2+-" +x„y„ 

of products XjYj, where Xj and Yj are mutually i.r.v.’s for allj=\,2,...,n, 
has the characteristic function 

OO (jty 1 n 

Ft(h{w))= 2 -Try II Ms (/ (Xj))Ms ( gj(yj))- 
s= i \s v! j= i 

Such operational techniques play an important role in deriving and analyz¬ 

ing the p.d.f. of sums of products and quotients of i.r.v.’s. 

When transforms and/or inversion integrals cannot be evaluated either 

in closed form or in exact series form, numerical procedures such as the 

fast Fourier transform (FFT) and numerical inversion of the Laplace 

transform may be useful. Frequently other p.d.f.’s (e.g., the beta and 

Laguerre p.d.f.’s) yield satisfactory approximations. 

Since the concept of infinite divisibility is only marginally (and mainly 

formally) connected with the algebra of random variables, it is not dis¬ 

cussed here. The theoretical developments in this area are well covered in 

the monographs by Linnik [210], Lukacs [225], and Ramachandran [301], 

and in a number of papers by various authors (see, e.g., Chapters 5, 6, 8, 

and 9 of Lukacs’s monograph for specific authors and their contributions). 



6 INTRODUCTION 

1.3 AREAS OF APPLICATION 

Although The Algebra of Random Variables is established primarily on a 

mathematical basis and its applications are mainly statistical, these ap¬ 

plications nevertheless occur in a wide variety of areas. When considered 

with applications to theoretical aspects of statistics discussed in Chapter 9, 

the examples of applications that follow indicate the present and potential 

usefulness of The Algebra of Random Variables in both theoretical and 

applied areas. 
A simple but practical problem requiring the analysis of products of 

i.r.v.’s concerns signal amplification. If n amplifiers are connected in series 

and if Xt denotes the amplification of the /th amplifier, the analysis of the 

total amplification Y=X{ X2- • • Xn is basically a problem in the analysis 

of products of i.r.v.’s [214]. Again, certain problems in the physical sciences 

connected with the theory of spin-stabilized rockets require the use of the 

distribution of the product of a central chi-square and a noncentral 

chi-square r.v. [13]. In medicine, a hospital administrator may wish for 

planning purposes to analyze the distribution of the hospital costs for 

accident victims. Since the number of accidents in a period, the number of 

days spent in the hospital, and the total cost per patient-day are all r.v.’s 

(i.e., nondeterministic), the distribution of the total hospital cost is the 

distribution of a product of three r.v.’s [214]. Also, in the treatment of 

various military operations research (MOR) problems related to radar 

discrimination [255], it is necessary to analyze the product and quotient of 

Bessel function variables. Again, in a recent study [38] on the detection of 

radar targets of unknown Doppler frequency, the likelihood ratio test led 

to a consideration of an r.v. 

W= £ X, 
i=i 

consisting of a sum of i.r.v.’s, each having a Pareto distribution. Further 

applications involving sums of Pareto variables occur in economic studies, 

where the Pareto distribution is used to describe the distribution of 

incomes [237]. Hill and Buck [149] have shown how the zeta and Laplace 

transforms (defined in Section 2.8) may be employed to considerable 

advantage in the modeling and analysis of economic situations involving, 

respectively, discrete and continuous time series of cash flows. Their 

statement that “the application of this methodology in general practice 

awaits the development of techniques which are specifically geared to 

engineering economics and a comprehensive demonstration of the 

methodology” indicates the potential power of integral transform methods 
in economic analyses. 
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Applications of The Algebra of Random Variables abound in the field of 

engineering, and only a few are mentioned here. One such application was 

made by Webb [394] in 1965 in connection with attempts to improve the 

detection of weak signals masked by noise. Mathematically, the problem 

reduces to the derivation and analysis of the distribution of the product of 

diode detector wave forms. Again, in the area of system reliability, the 

evaluation of confidence limits for the reliability of systems composed of 

independent subsystems, using only subsystem test data, is of particular 

importance for complex systems. The solution to this problem requires the 

analysis of products of i.r.v.’s [356,357]. Closely related to the reliability 

problem is that of system availability, which involves the combined analy¬ 

sis of “up time” and “down time” of a system. As has recently been shown 

[38,376], the analysis of system availability reduces to the basic problem of 

the analysis of products of beta and Euler i.r.v.’s. [38,344, p. 3]. 

Encompassing both system reliability and availability is the concept of 

system effectiveness. In 1963, the Air Force Systems Command (AFSC) 

deemed the problem of evaluating weapons systems effectiveness 

sufficiently important to warrant the formation of the Weapons System 

Effectiveness Industry Advisory Committee (WSEIAC) for the express 

purpose of providing “technical guidance and assistance to the AFSC in 

the development of a technique to apprise management of current and 

predicted weapon system effectiveness at all phases of weapon system life.” 

The findings of the committee, published by the Air Force in five parts 

[393] in 1965, presented an effectiveness evaluation technique, together 

with methods and procedures for predicting and measuring system 

effectiveness. It is of particular significance here that the technique is 

focused on a definition of system effectiveness that expresses the effective¬ 

ness (E) as a product of three random variables [393, (2)a,b]: system 

availability (A), system dependability (D), and system capability (C). That 

is, E = ADC; thus in the final analysis the ability to analyze the effective¬ 

ness of an Air Force weapons system by this technique is contingent on 

one’s ability to carry out a mathematical analysis of a random variable E, 

which is a product of three random variables A, D, and C. Applications of 

the algebra of r.v.’s to aerospace problems of other types have been 

discussed by Donahue [83,84]. 

Teaming machines, adaptive machines, and automatic pattern recogni¬ 

tion are general descriptions for a wide variety of estimation, detection, 

and classification tasks that are encountered in modern engineering, and to 

which The Algebra of Random Variables has some existing, and consider¬ 

able potential, application. Particular undertakings that are representative 

of these tasks are the reproduction of signals at the terminal of a radio 

communication link; the detection of radar targets; the reading by 
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machine of typed or handwritten language; the recognition of spoken 

language by automatic machines; the measurement of variables in a 

production control problem; and the automatic identification of features 

in two-dimensional optical displays such as photographs and television 

pictures. 
A simple example [1] of an r.v. that is an algebraic function of r.v. s 

arises in connection with the analysis of the manufacturing cost of a 

product, where n units of the product are to be produced on a machine 

tool in a mass production plant. The set-up cost (C,), the machine time (/,) 

for the /th unit, and the cost per unit machine time (Cm) are r.v.’s governed 

by specified probability laws. The manufacturing cost per unit 

c + c 

n 

is a rational function of the r.v.’s Cs, Cm, and t0 and its analysis requires 

the knowledge of the distribution of sums of products of i.r.v.’s. 

In the field of mechanical engineering, there has recently been some 

attempt to account explicitly for randomness in internal structural quali¬ 

ties, which has led to the application of probabilistic models in analyzing 

the statics of random beams. Stark and Shukla [365] have shown that a 

variety of well-known expressions for concentrated loads and moments for 

different support conditions have an underlying polynomial-type random 

model, and these authors have utilized Fourier and Mellin transforms in 

the resultant analysis. 
Perhaps the newest application of these methods is in the area of 

nonlinear filtering. As one author [274] has stated: 

This application [the multiplicative processing of images] is motivated very 
directly, because image formation is predominantly a multiplicative pro¬ 
cess .... Applications of multiplicative filtering which may have potential are 
compensators for channel fading, systems for simultaneous amplitude and 
phase modulation and detection, automatic gain controls for other than 
audio application, a.c. and d.c. power regulators, and radar signal processing. 

In the area of stochastic geometric programming, Stark [367] has re¬ 

cently utilized the Mellin transform to encode randomness in the con¬ 

straint and objective function coefficients using the substituted dual func¬ 

tion, which enabled him to obtain statistical moments and the probability 

distribution of the optimal objective value. Although integral transforms 

appear to have considerable potential along these lines, to date very little 

work has been done involving the application of integral transforms to 

problems in the field of stochastic geometric programming. 
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These few present and potential applications of The Algebra of Random 

Variables are sufficient to indicate the wide applicability of such an 

algebra to real world problems. Equally basic, of course, is the role of 

integral transforms in both the theoretical and applied areas of statistics, as 

Chapter 9 bears out. 



CHAPTER 2 

Differentiation and Integration 
in the Complex Plane 

2.1 INTRODUCTION 

The use of integral transforms to derive probability density and distribu¬ 

tion functions of sums, products, quotients, and—more generally—al¬ 

gebraic functions of i.r.v.’s, involves the evaluation of contour integrals in 

the complex plane. Usually the evaluation of such integrals is accom¬ 

plished by application of the residue theorem, which entails the evaluation 

of residues. The procedure for evaluating residues is in itself very simple, 

involving nothing more difficult than the evaluation of an nth order 

derivative of a function f(z) of a complex variable. To understand the 

theory and application of The Algebra of Random Variables, one need only 

understand some basic rudiments of complex variables, particularly those 

relating to differentiation and integration in the complex plane. Included 

in this category are the concepts of a complex number, a complex variable, 

a complex function, a pole, a residue, an analytic function, a complex 

integral, a contour integral, an integral transform, an inversion integral, 

and the statements of a few basic theorems relevant to the evaluation of 

contour integrals. This chapter, designed to provide these rudiments, 

requires on the part of the reader only a knowledge of the elementary 

elements of differential and integral calculus. 

2.2 COMPLEX NUMBERS AND VARIABLES 

A complex number z is a number of the form z = x + iy, where x andy are 

real numbers and i is the imaginary unit defined by i = V- 1 . The real 

numbers x and y are called, respectively, the real and imaginary compo- 

10 
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nents of z, and are often denoted by the symbols R(z) and I(z). Any two 

complex numbers that differ only in the sign of their imaginary parts 

constitute a conjugate pair, and either is said to be the conjugate of the 

other. Thus if z = x + iy, then its conjugate is z = x-iy. Note that the 
product zz = x2+y2 is a purely real number. 

A complex number z can be represented geometrically either by the 

point P (Fig. 2.2.1), whose abscissa and ordinate are, respectively, the real 

and imaginary components of the given number, or by the vector r =OP, 

which joins the origin to this point. This xy plane, in which complex 

numbers are represented geometrically, is variously referred to as the 

complex plane or the Argand diagram. This vector has two important 

attributes in addition to its components x and y, namely, its length 

r = \z\=^x2+y2 and its direction angle 9 = tan-\y / x). Clearly, since 

x — rcos9,y = rsin9, and e,d = cos9 + isin9, the complex number z = x±iy 
can be written in the polar form 

z = r(cos9± i sin#), (2.2.1) 

as well as in the exponential form 

z = re±iB. (2.2.2) 

The length r, as indicated previously, is the absolute value or modulus of z, 

and the angle 9 is the amplitude or argument of z. The product of a 

complex number and its conjugate is the square of the length of the vector; 

>y 

Fig. 2.2.1 The complex plane. 
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that is, 

Finally, if x and y are real variables, z = x + iy is defined to be a complex 

variable. 

2.3 FUNCTIONS OF A COMPLEX VARIABLE 

As is well known, y is defined to be a function of the real variable x if for 

each value of x there corresponds one or more values of y, and this is 

expressed by writing y = f(x). Similarly, if z = x + iy and w = u + iv are two 

complex variables, and if for each value of z in some portion of the 

complex plane one or more values of w are defined, then w is said to be a 

function of z, which is expressed symbolically in the form w=/(z). Also, w 

is a single-valued or multiple-valued function of z, respectively, according 

as only one value or more than one value of w corresponds to a given 

value of z. 

The regions which are involved in contour integration are usually 

defined by one or more simple closed curves, the latter being defined as a 

curve which completely bounds a finite section of a plane or surface. These 

regions may be closed, open, simply connected or multiply connected. If 

the region includes all the points of its boundary curve or curves, it is said 

to be closed. If it contains none of its boundary points, it is called an open 

region. Also, if any simple closed curve which can be drawn in a region R 

can enclose only points in R, then R is said to be simply connected. 

Alternatively, if a simple closed curve can be drawn in R which can 

enclose points which are not in R, then R is said to be multiply connected. 

Since the concepts of limit and continuity are frequently utilized in 

connection with The Algebra of Random Variables, the reader will now be 

reminded of their definitions. 

Definition1 If /(z) is a single-valued function of z, and w0 is a complex 

constant, and if for every e > 0 there exists a positive number S (e) such that 

|/(z)-H>0|<e 

for all z such that 0< |z — z0| < 5 (e), then w0 is said to be the limit of /(z) 

'From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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as z—>z0. Symbolically, 

lim/(z) = w0. 

Closely associated with the concept of a limit is that of continuity. A 

single-valued function of z is defined to be continuous at a point,2 z0, if each 

of the following conditions is met: 

1. /(z0) exists. 

2. lim7.. /(z) exists. 

3- K m,^°/(z)=/(z0)- 

If a function/(z) is continuous at every point of a region R, it is said to be 

continuous throughout R. 

An important theorem on continuous functions is stated below without 

proof. The proof is found in any standard text on functions of complex 

variables. 

Theorem 2.3.1 A necessary and sufficient condition that 

f(z) = u(x,y) + iv(x,y) 

be continuous is that the real functions u(x,y) and t>(x,>>) be continuous. 

One type of function of a complex variable of particular importance in 

The Algebra of Random Variables is that of exponential type or order. A 

function /(x) is said to be of exponential type or order as x tends to 

infinity, provided some constant “a” exists such that the product 

e~ax\f(x)\ is bounded for all x greater than some finite number X. This 

means that /(x) cannot grow more rapidly than Me~ax as x—>oo, where M 

is some constant [350, p. 2], In terms of order notation, /(x)= 0(eax) (see, 

e.g., ref, 226, p. 1). 
Various statements and theorems concerning the limiting values of 

complex functions can be simplified through the use of the following order 

symbols. 

2From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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Order symbols O and o 

{a) The symbol O. Consider two functions /(z) and g(z) of a complex 

variable z, where g(z) ^O, for all z in a region R of the complex 

plane, and let z and z0 be points in R. If there exists a number A 

independent of z such that \f(z)/g(z)\<A for all z in R, one says 

that [226, p.l] 

f(z) = 0(g(z)) as z-*z0inR. 

In the special case dealing with functions of a real variable, the region 

R consists of the real line. 

Example 23.1 Let 

r/ \ 1 COS Z 

■rt*)"—r- 

(Note that cosz= 1 — z2/z! + z4/4! — z6/6! — • • • for < z < y.) 

Then /(z) = O (z) as z—>0 

Example 2.3.2 Let f(z) = e z. Then f(z)= O (z) as z—»oo for 0 < |z| < 
00. 

(b) The symbol o: If lim /(z)/g(z)—>0 as z^>z0 in R, then one says [226, 

P- l]/(2) = °(g0)) as z^z0 in R. 

Example 233 Let f(z) = 1 - cos z = z2/2! - z4/4! + z6/6! — +••*. 
Then f(z) = o(z) as z—>0. 

Example 2.3.4 Let /(z) = z. Then /(z) = o(z2) as z->oo. 

2.4 ANALYTIC FUNCTIONS 

Since the concept of an analytic function is basic to the methods for the 

evaluation and application of contour integrals, it is important for the 

reader to bear in mind the simple definition of an analytic function. 

Specifically, if w = /(z) possesses a derivative at z = z0 and at every point in 
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some neighborhood3 of z0, then /(z) is said to be analytic at z — z0, and z0 is 

called a regular point of the function. If a function/(z) is not analytic at 

z = Zq, but if every neighborhood of z0 contains points at which /(z) is 

analytic, then z0 is called a singular point of /(z). A function that is 

analytic at all points of a region R is said to be analytic in R and 

is variously referred to as an analytic function, a regular function, or a 

holomorphic function [161, p. 11]. If a complex function is analytic for all 

finite values of the variable (i.e., in the complex plane), it is called an entire 

function [161]. It can be shown that an analytic function/(z) of a complex 

variable has continuous derivatives of all orders. 
Since the derivative of a function of a complex variable forms the basis 

for the definition of an analytic function, it is important to understand the 

definition and a few of the more important properties of such a derivative. 

The derivative of a function of a complex variable w =f(z) is defined as 

^- = w'=f'(z)= lim 
dz ' Az—>o 

/(z + Az)-/(z) 

Az 
(2.4.1) 

which is conceptually and symbolically identical to the definition of the 

derivative of a function of a real variable. Furthermore, the general theory 

of limits is valid for complex variables as well as for real variables, so that 

formulas for the differentiation of functions of a real variable will have 

identical counterparts in the domain of complex numbers. It should be 

pointed out, however, that the existence of the derivative /(z) requires that 

the limit of the difference quotient (2.4.1) be the same regardless of how Az 

approaches zero. Fortunately there are some simple necessary and 

sufficient conditions for the existence of the derivative of a function of a 

complex variable, such as the Cauchy-Riemann equations in Theorem 

2.4.1. 

Theorem 2.4.14 If u and v are real single-valued functions of x andy that 

with the four partial derivatives du/dx, du/dy, dv/dx, dv/dy are continu¬ 

ous throughout a region R, then the Cauchy-Riemann equations 

9u _ dv^ , du_ _ _ j9u_ 

al “ aly dy ~ dx 
(2.4.2) 

are both necessary and sufficient conditions that f(z)= u(x,y) +v(x,y) be 

3The neighborhood of a point is the interior of some geographic figure (usually a square or 

circle) that contains the point. 

4From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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analytic in R. In this case, the derivative of /(z) is given by either 

2.5 INTEGRALS: REAL AND COMPLEX 

The definitions of real and complex integrals are conceptually analogous 

in that both are based on the limit of a sum. The main difference between 

the conventional (Riemann) integral and a complex integral is that the 

former involves integrating a real function /(x) over the x-axis and 

the latter involves integrating a complex function /(z) over a curve in the 

complex plane. This curve could, of course, be the x-axis, but frequently it 

is a closed contour such as a semicircle. The analogy between the two 

definitions is now shown. 
One first of all recalls that the Riemann integral introduced in basic 

calculus courses is defined as the limit of a sum. Specifically, let/(x) be a 

function of the real variable x, continuous over the interval (a, b). Divide 

this interval into subintervals whose lengths are Axj,Ax2,...,Ax„, and 

choose points, one in each subinterval, whose abscissas are x1,x2,...,x„i 

respectively. Then the limit of the sum 

n 

2 /U)Ax, 
1= 1 

as n increases without limit in such a way that each subinterval approaches 

zero as a limit, is called the definite (Riemann) integral of /(x). Symboli¬ 

cally, 

(2.5.1) 

One usually thinks of this real (Riemann) integral as the area bounded 

above by the curve y = /(x), below by the x-axis, and on the two sides by 

the vertical lines x = a and x = b. In the case of a complex integral, no such 

interpretation necessarily exists. Throughout this book, the integral (2.5.1) 

is regarded strictly as the limit of a sum. When viewed in this light, the 

definition of the Riemann integral in the real plane is very similar to that 

of the integral of a complex function evaluated over a contour in the 

complex plane, as we now show. 

Actually, it is a simple matter to extend formally the definition of an 

integral from the real domain to the complex plane. Specifically, let /(z) be 
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any function of z, not necessarily analytic, and let C be a curve of finite 

length connecting the points A and B (Fig. 2.5.1). Let the points zit 

i — 1,2,...,n divide the curve C into n — 1 intervals, and set 

Also, let z\ be any point of the arc zi_lzi. Then the limit of the sum 

£ /tt)Az, (2.5.2) 
/ = 1 

as n goes to infinity in such a way that the length of every chord Az,- 

approaches zero, is defined to be the integral of the complex function f(z) 

along C, 

f f(z)dz, 

where C may be either an open or a closed curve. If it is a closed curve 

(i.e., completely encloses a given region) the integral is called a (complex) 

contour integral; otherwise, it is usually referred to as a (complex) line 

integral. 
Although /(z) was not required to be an analytic function in the 

foregoing definition of a complex integral, it is important to realize that if 

/(z) is analytic within a simply connected region R, then the line integral 

Fig. 23.1 Integration in the complex plane. 
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iy 

Fig. 25.2 Positive direction of integration over closed contour C. 

between any two points A and B (Fig. 2.5.1) of R is independent of the 

path. It should also be remembered that when a function /(z) is integrated 

over a closed contour, the sign of the integral will be positive or negative, 

depending on the direction of integration over the contour. The integral is 

defined to be positive when the contour is traversed in such a way that the 

region enclosed by the contour is always to one’s left. (Fig. 2.5.2). This is 

sometimes referred to as the left-hand rule [349, p. 94], 

Perhaps the most fundamental and far-reaching result in the theory of 

analytic functions is the famous theorem of Cauchy, which is now stated 

without proof, since the proof is readily available in any textbook on 

functions of complex variables. This theorem is important insofar as The 

Algebra of Random Variables is concerned primarily because it is needed to 

prove the residue theorem, which is fundamental in the evaluation of 

inversion integrals. The evaluation of inversion integrals is the key to the 

determination of the distribution of sums, differences, products, quotients, 

and more generally, algebraic functions of i.r.v.’s, as we see later. 

Theorem 2.5.1 (Cauchy’s theorem)5. If /(z) is analytic at all points 

within and on a closed curve C, and if /'(z) is continuous throughout this 

closed region R, then 

= 0. 

5From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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2.6 THE LAURENT EXPANSION OF 
A FUNCTION OF A COMPLEX VARIABLE 

The most important theorem associated with The Algebra of Random 

Variables is the residue theorem, which is almost always used to evaluate 

the inversion integral yielding a desired p.d.f. A fundamental element in 

the derivation of the residue theorem is the Laurent expansion which, 

together with the residue theorem, we now briefly discuss. 

It is well known [113] that a complex function /(z) may be expanded in 

a Taylor series about any point inside a region within which the function is 

analytic. In many situations it is most helpful to be able to expand a 

complex function /(z) about a point where, or in the neighborhood of 

which, the function is not analytic. This necessitates a new type of 

expansion known as Laurent’s series, since the method of Taylor series is 

clearly inapplicable in such cases. Laurent’s expansion furnishes a repre¬ 

sentation that is valid in the annular ring (Fig. 2.6.1) bounded by two 

concentric circles, provided the function that is being expanded is analytic 

everywhere between the two circles. As with a Taylor series, the function 

may have singular points outside the larger circle, but unlike a Taylor 

series, it may also have singular points within the inner circle. The result is 

that negative as well as positive powers of (z — a) now appear in the 

Laurent expansion. The result is stated more specifically in the following 

theorem. 

Fig. 2.6.1 Annular ring for Laurent’s expansion. 

Theorem 2.6.1 (Laurent’s series).6 If /(z) is analytic throughout the 

closed region R, bounded by two concentric circles C, and C2, then at any 

point in the annular ring bounded by the circles, /(z) is expressible in 

6From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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series form as 

00 

/(z)= 2 aj(z-ay. (2.6.1) 

where a is the common center of the circles, and 

1 r f(z)dz 

•'c (z — a)j+I ’ 
(2.6.2) 

each integral being taken in the counterclockwise sense around any curve 

C, lying within the annulus and encircling the inner boundary. Further¬ 

more, this series is unique (see, e.g., refs. 415, 150, pp. 209-211). 

Note particularly that when j— — 1 in (2.6.2) one obtains 

(2.6.3) 

That is, the integral of a complex function f(z) evaluated over any curve C 

lying inside the annulus and encircling the inner boundary can be obtained 

by observing or otherwise determining the coefficient a_, in the term 

a_l(z — a)-1 of the Laurent expansion of f(z). This coefficient a_x is 

called the residue of f(z) at that singular point or pole. The following 

example is illustrative. 

Example 2.6.1 Find the Laurent expansion of 

about any point inside the annulus shown in Fig. 2.6.2. 

In deriving the Laurent expansion of a function f(z) about a given point 

z in the region R, one may use any convenient algebraic manipulation 

suggested by the function. For since the Laurent expansion of a function 

over a given annulus is unique [191, p. 689, Exercise 10], if a Laurent 

expansion is found by any process, it is necessarily a valid Laurent series. 

Thus in this example it is advantageous to write f(z) in the form 
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and then to apply the binomial expansion to the second factor. The result 
is 

/0)=—3—j[i-0-i)+0-i)2-0-i)3+---] 
\z U 

>3 i + i=r-,+<,+1>—<2-6-4> (z-\y (z-\y 

which is the desired Laurent expansion, in which it is observed that 

a_j = l. It is apparent from (2.6.4) that the numerical value of the 

coefficient a_, may also be obtained by evaluating {d2/dz2)[{z — l)3 f(z)] 
at z = 1. That is, 

= 1. 

Either way, it follows from Theorem 2.6.1 that 

a-'=ihi 1 

Cz(l-z) 
■dz = 1, 

or equivalently, 
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where/(z)= l/[z(l — z)3]. Thus by means of differentiation—rather than 

integration—it has been established that the integral in (2.6.5) has the 

value 2777. This is a most important result, which is exploited shortly in 

establishing the residue theorem. 

In summary, the Laurent expansion of a function /(z) is intimately 

connected with singular points (i.e., points at which the function fails to be 

analytic). If z = a is a singular point of the function /(z), and if there exists 

a circle with center at a in which there are no other singular points of/(z), 

then z = a is called an isolated singular point. Now if z = a is an isolated 

singularity of/(z), then/(z) can be expanded in a Laurent series around 

z = a and inside an annulus whose inner radius can be made to approach 

zero. 
If when /(z) is expanded about an isolated singular point, all negative 

powers of (z — a) after the mth are missing, /(z) is said to have a pole of 

order m at z = a, and the sum of the terms with negative powers 

a-m | | a-2 | Q-i 

(z-a)m (z — a)2 (z~a) 
(2.6.6) 

is called the principal part of f(z) at z = a? It may be that the Laurent 

expansion of /(z) contains an infinite number of negative powers of 

(z — a), in which case the point z = a is called an essential singularity of the 

function. For example, the function 

f(z) = e = ox/z 

= 1 + - + 
z 3! z3 

+ + 
nlzn 

has an essential singularity at z = 0. However most functions encountered in 

practical applications do not have Laurent expansions of this type (i.e., 

expanded about points that are essential singularities). For the most part, 

they are functions for which the highest order pole in their Laurent 

expansion is of finite order. An example of such a function is the one given 

in Example 2.6.1, which has a pole of order 3 at z = 1, the principal part of 

/(z) at z = 1 being 

—i-1_+ * 

(z-l)3 (z-1)2 

In this case the residue at the pole z = 1 is a_, = 1. 

7From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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As has already been pointed out, the residue of a function/(z) at a pole 

can be obtained by deriving the Laurent expansion of /(z) and observing 

the coefficient a_x. However, there is an easier way. For if/(z) has a pole 

of order m at an isolated singular point z = a, then for any z inside an 

annular ring centered on the point a (Fig. 2.6.1), one can write 

(z - a)mf{z) = a_m + a_m+x(z - a) + a_m+2(z -af+■■■ 

+ a-2{z-a)m-2 + a_x{z-a)m-x + a(){z-a)m+--. , 

from which it is clear (since /(z) is assumed to be analytic inside the 
annular ring) that 

a-i = 

1 

(m— 1)! 

dm~x 

dzm~x 
(2.6.7) 

That is, instead of actually obtaining the Laurent expansion of /(z) to 

determine the residue, one need only observe the order m of the highest 

order pole (singularity) of/(z), multiply /(z) by (z - a)m, and evaluate the 

(m— l)st derivative of this product at z = a. This accounts for the useful¬ 
ness of the residue theorem presented in Section 2.7. 

2.7 THE RESIDUE THEOREM 

Because of the importance of the residue theorem in expediting the 

evaluation of inversion integrals, the theorem now proved. The proof is 

based on both Cauchy’s theorem and the Laurent expansion of a complex 
function /(z). 

Theorem 2.7.1 (the residue theorem).8 If C is a closed curve and /(z) is 

analytic within and on C except at a countable number of singular points 
in the interior of C, then 

n 

z) dz = 2tt/2 Rj, (2.7.1) 
j 

where Rx,R2,...,Rn are the residues of /(z) at the n poles within C. 

proof. Consider a simple closed curve C in whose interior the function 

/(z) has isolated singularities (Fig. 2.7.1). If around each singular point one 

8From Advanced Engineering Mathematics, by C. R. Wylie. Copyright 1951 by McGraw-Hill. 

Used with permission of McGraw-Hill Book Company. 
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Fig. 2.7.1 Closed contour over which /(z) is integrated to prove the residue theorem. 

draws a circle so small that it encloses no other singular points, these 
circles, together with the curve C, constitute the boundary of a multiply 
connected region in which /(z) is everywhere analytic and to which 
Cauchy’s theorem is applicable. That is, the curves C, Cj, Lj,j = 1,2,...,n 
constitute a closed curve on and inside which /(z) is everywhere analytic, 
so that Cauchy’s theorem may be applied. Furthermore, if one traverses C, 
Cj, and Lj, j= \,2,...,n in the direction indicated (i.e., utilizing the left- 
hand rule) necessarily returning from C, to C over the same lines Lj in the 
opposite direction (as indicated by the dashed lines, which actually coin¬ 
cide with the solid lines), the contributions to the integral over the lines L, 
cancel. Therefore, as a consequence of Cauchy’s theorem, 

hScs(z)dz+ib/c/(z)dz+'" + 2s/c/(z)<fe=a (2-72) 

If one now reverses the direction of integration around each of the circles 
and changes the sign of each of the integrals to compensate, (2.7.2) can be 
written in the form 

h //« *“ IS Ic/(z)dz+"' +157 /c/(z) dz' (27'3) 

where all integrals are now taken in the counterclockwise sense. Since the 
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integrals on the right-hand side of (2.7.3) are, by definition, just the 

residues of /(z) at the various isolated singularities (poles) within C, the 
residue theorem as stated earlier follows. 

The residue theorem is important because if/(z) is analytic at all points 

on and inside a closed contour C, except at a finite or countable number of 

isolated singular points inside C, then its Laurent expansion in the neigh¬ 

borhood of each isolated singular point exists. Furthermore, since a func¬ 

tion is uniquely determined [150, pp. 209-211] by its Laurent expansion, 
each integral 

I f(z)dz, j=l,2,...,n 
JCj 

on the right-hand side of (2.7.3) is uniquely determined by its residue at the 
relevant singular point or pole. Consequently, the integral 

jj(z)dz 

on the left-hand side of (2.7.3) is uniquely determined by the sum of the 
residues at the poles. 

The requirement that the singular points be isolated is crucial, for if a 

singular point is not isolated but is essential, the residue a_x in the Laurent 

expansion of /(z) cannot be obtained by differentiation. 

The following example illustrates the power and utility of the residue 
theorem. 

Example 2.7.2 Use the residue theorem to evaluate the integral of the 
function in Example 2.6.1, namely, 

f(z) 
1 

z(l-z)3 
(2.7.4) 

around the circle |z| = |. 

There are two poles of the function inside the contour of integration. 

Specifically, there is a pole of order 1 at z = 0 and a pole of order 3 at z= 1. 

The residues at z = 0 and z = 1 are, respectively, 

7?i = tf_i = 
1 

z(l-z)3 
= 1 

0 
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and 
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i?2 —— 2\ 
d2 I n \3 1 

dz2 ( Z z (1 — z)3 
z= 1 

1 

2 
= i 

= 1. 

Hence 

X </z 

Cz(l-z) 
— \ + R2) 

= 47n‘, 

where C is the circle |z| = |. 

2.8 INTEGRAL TRANSFORMS 

The basis for analyzing distributions of sums, differences, products, 

quotients, powers—and more generally, algebraic functions—of continu¬ 

ous r.v.’s is the integral transform. Thus the Laplace transform provides 

the means for deriving and analyzing the distribution of sums of nonnega¬ 

tive r.v.’s. On the other hand, if the r.v.’s may take on both positive and 

negative values, the Fourier and bilateral Laplace transforms are the 

appropriate tools for deriving and analyzing the p.d.f. of their sums and 

differences. Similarly, the Mellin integral transform constitutes the coun¬ 

terpart of the Laplace integral transform in deriving and analyzing the 

distribution of products and quotients of nonnegative r.v.’s. To derive the 

distribution of products and quotients of n r.v.’s that may take on both 

positive and negative values, one must utilize a modified Mellin integral 

transform. This section defines these transforms and transform pairs. 

Chapters 3 to 6 cover the methods for their utilization in deriving sums, 

products, quotients, and algebraic functions of r.v.’s. Also, Appendix D.2 

gives a table of integral transforms of basic p.d.f.’s. The following section 

discusses inverse transforms (i.e., inversion integrals). 

The aforementioned integral transforms, each corresponding to a func¬ 

tion f(x), are now defined, together with transform pairs. A different 

notation (r,s,it) is used to identify the complex variable involved in the 
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various transforms, since in the later discussion involving Prasad’s theorem 

(Chapter 5), it is necessary for the three complex variables r, s, and it to 

maintain their separate identities. 

2.8.1 Integral Transforms9 and Transform Pairs 

Laplace Transform of f(x) 

If /(a) is a real function and is defined and single valued almost every¬ 

where for x>0, with a a real variable, and is such that the integral 

HlfWIe-^dx (2.8.1) 
Jo 

converges for some real value k, then/(a) is said [382, p. 1] to be Laplace 
transformable, and 

4(/(*))“ e~rxf(x)dx (2.8.2a) 
Jo 

is the Laplace transform of /(a), where r is a complex variable. The inverse 

Laplace transform or inversion integral (discussed in the following section) 

is 

erxLr(f(x))dx, (2.8.2b) 

which, together with (2.8.2a), constitutes a transform pair. Equation 2.8.2b 

determines/(a) uniquely, if Lr(f(a)) is analytic in a strip consisting of the 

portion of the plane to the right of (and including) the Bromwich path 

(c —z'oo,c + /oo), the latter denoting the straight line 

lim PQ = lim (c — ia,c + ia) 
a-* oo a—»oo 

(See Fig. 2.9.1a.) 

Fourier Transform of f (x) 

If /(a) is a real function that is defined and single valued almost every¬ 

where for - oo < a < oo, with a a real variable and is such that the integral 

9For convenience and brevity, 

transform.” 

f I f(x)\elkx 
* — m 

dx (2.8.3) 

the term “transform” is used hereafter instead of “integral 
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converges for some real value of k, then f(x) is said to be Fourier 
transformable [52, p. 312], and 

Ft(f(x))= f e“xf(x)dx (2.8.4) 

is the Fourier transform of f(x). The expression Ft{J(x)) is also called the 
characteristic function of f(x), and e“x is called the kernel [225, pp. 10-11]. 

The definition (2.8.4) of the Fourier transform is not always adopted. 
For example, Churchill [52], Ditkin and Purdnikov [79], and Trantner [382] 
use (2.8.4), and Titchmarsh [381], Whittaker and Watson [403], Erdelyi 
[95], and others use the definition 

Ft(f(x)) = f e~itxf(x)dx. (2.8.5) 

It is really immaterial which of the two definitions is used. For correspond¬ 
ing to any transform, there is an inverse transform (the inversion integral 
discussed in the following section); the two constitute what is called a 
transform pair. Thus 

/OO 

e“xf(x)dx (2.8.5a) 
- OO 

and 

/(*)= ^ j"j~i,xFt{f(x))dt (2.8.5b) 

constitute a transform pair, as do also 

Ft(f(x))= f e~itxf(x)dx (2.8.6a) 
** OO 

and 

1 r00 
fix) =2-j e“xf(x)dx. (2.8.6b) 

Changing from one transform pair to the other merely changes the location 
of the poles in the corresponding complex Fourier transform (Appendix E) 
from a strip in the right half-plane (RHP) to one in the left half-plane 
(LHP), or vice versa. It also changes the Bromwich contour from a 
left-hand contour CL to a right-hand contour CR, or vice versa (Fig. 
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2.9.16). Since evaluation of the inversion integral leads to the same result 
in each case, either transform pair may be used. For Fourier transforms, 
the definition (2.8.4) is used throughout this book, since then the Fourier 
transform is identical with the characteristic function, which is so well 
known among statisticians and probabilists. The transform pair then is as 
defined in (2.8.5a, b). In either case, (2.8.5b) and (2.8.6b) will determine 
f(x) uniquely if the Fourier transform is analytic in a relevant strip 
containing the Bromwich path. 

It should be pointed out that when Laplace transforms are used in this 
book, the transform pair is used in which the kernel of the transform is 
e~rx and that of the inverse transform or inversion integral is erx, since this 
is standard procedure. 

The Complex Fourier (Bilateral Laplace) Transform of f(x) 

As Lathi has pointed out [200], the Fourier transform, as defined by 
(2.8.5a), may be considered as a tool for representing an arbitrary function 
f(x) as a continuous sum of exponential functions of the form e~'tx, as 
given by (2.8.5b). The complex part of the exponent of the kernel—namely, 
it—is a purely imaginary number, that is, a complex number that is limited 
to the imaginary axis. In general, however, it is possible (and sometimes 
desirable) to represent a function f(x) by a continuous sum of exponentials 
of the form e~rx that leads to the complex Fourier transform pair: 

(2.8.7a) 

(2.8.7b) 
— 00 

where r = x + iy. The complex Fourier transform (2.8.7b) is also known as 
the bilateral (or two-sided) Laplace transform. 

An important property of the bilateral Laplace transform is that it can 
be expressed in terms of two unilateral Laplace transforms. To show that 
this property holds, consider any function f(x), — oo<x<co, whose 
bilateral transform exists (i.e., for which the integral (2.8.7b) is absolutely 
convergent). The p.d.f. f(x) can be decomposed into two components 
corresponding to negative and positive values of x: 

f(x)=f (x), — oo <x < 0 

=f+(x)> 0<x<oo. 
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Then 
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%r(f (x))= f erxf (x)dx 
J — 00 

r oo 

= / e~rxf~(-x)dx 
Jo 

= Lr(/“(-x)), -oo<x<0 

= L_r(f~(x)), 0<x<oo (2.8.8a) 

fr(f+(x))= f°°erxf+ (x)dx 
Jo 

= Lr(f+(x)), 0<x<oo, (2.8.8b) 

where L_r(f~(x)), Lr(f+(x)) are unilateral Laplace transforms. That is, 
%(J (a)) is obtained by finding the unilateral Laplace transform 
-4(/_(-*)) and replacing r by -r, whereas <3rr(f+(x)) is identical with 
4(/+(^))> since f+(x) involves only nonnegative values of x. (See Exam¬ 
ples E.l and E.2 of Appendix E.) 

Finally, as shown by Lathi and others,10 if (and only if) the region in 
which both c$r(f “(x)) and fr(/+(x)) converge includes the imaginary 
axis, the ordinary Fourier transform exists and is equivalent to the complex 
Fourier transform obtained by replacing the purely imaginary number it 

by a general complex number r. Furthermore, all the terms of the trans¬ 
form (2.8.8a) represented by LHP poles correspond to the component 
/“(x), and all the terms of the transform (2.8.8b) represented by RHP 
poles correspond to /+(x). 

Melliti Transform of f(x) 

If f(x) is a real function that is defined and single valued almost every¬ 
where for x > 0, with x a real variable, and is such that 

f xk~l\f(x)\dx 
Jo 

converges for some real value k, then /(x) is said to be Mellin transformable 

l0See Appendix E. 
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and 

r oo 

Ms(f(x))= / Xs~xf{x)dx, 
Jo 

(2.8.9) 

where 5 is a complex number, is the Mellin transform [380, p. 2; 347, p. 41] 
of /(x). The inverse Mellin transform or inversion integral (discussed in the 
following section) is 

(2.8.10) 

which, together with (2.8.9), constitutes a transform pair. Equation 2.8.10 
determines /(x) uniquely, if the Mellin transform is analytic in the relevant 
strip. 

It is clear that the Fourier and Laplace transforms are of the exponential 
type. That the Mellin integral transform is also of the exponential type 
becomes evident if one notes that any nonnegative variable x is expressible 
in the form x = elnx. Thus 

o 

r oo 

= / e^s~l)]nxf(x)dx, (2.8.11) 

which is clearly a function of the exponential type. This is of considerable 
importance when Jordan’s lemma is invoked in the process of inverting a 
Mellin transform to obtain the p.d.f./(x). 

The Z and Zeta Transforms 

The generating function (discussed in Chapter 3) is a well-known tool for 
deriving the probability distribution of sums of discrete i.r.v.’s, and it is 
closely related to the Z-transform. Specifically, the Z-transform and gener¬ 
ating function are power series transformations of the probability mass 
functionp(xk) of an integral-valued (discrete) r.v. xk, k = 0, l,2,...,n, into a 
function of the complex variable Z. The power series transformation with 
positive exponents, namely, 

OO 

F(Z)= 2 pMzk (2.8.12) 

is called the generating function, and the power series transformation with 
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negative exponents, 

00 

F(z)= 2 p(xk)Z-k, 
k = 0 

(2.8.13) 

is known as the Z-transform [26]. 
As was stated above, the generating function is used to derive the 

probability distribution of sums of discrete i.r.v.’s. In such derivations, the 
notation customarily used by probabilists and statisticians is here em¬ 
ployed to denote the generating function, namely, 

00 

A(s)= 2 aks>c- (2.8.14) 
k = o 

It should be pointed out that s is not an r.v. but is rather a tool for 
extracting the probabilities ak, which are counterparts of p(xk), k = 
0,1,2,..., in (2.8.12) and (2.8.13). More is said about the generating 
function (2.8.14) in Chapter 3 in connection with sums of discrete i.r.v.’s. 

The Z-transform frequently has applications in connection with discrete 
time series. Generally speaking, discrete time series may be described [170] 
by a function f(nT), where T is a constant-length time interval and n is an 
integer. The usual form of the Z-transform in such cases is [149] 

00 

Z{f(nT)}= 2 f(nT)Z ~n, (2.8.15) 
n = 0 • 

where Z is a complex variable. As is well known, the Laplace and 
Z-transform variables are related by the equation 

Z = ejT, (2.8.16) 

so that the Z-transform is expressible in the form 

OO 

Z[f(nT)}- 2 f(nT)(<PT)~". (2.8.17) 
« = 0 

A lesser-known transform, the zeta transform, also has considerable 
application relative to discrete variable time series as utilized in economic 
models. It is defined [149] as 

00 

Z{f(.nT)}- 2 f(nT)(l + zT)-", 
71=0 

(2.8.18) 



INTEGRAL TRANSFORMS 33 

where z is again a complex variable. It is also well known in the literature 
of transform theory that the relationship between the Z and zeta transform 
variables is 

Z=l+zr. (2.8.19) 

Accordingly, the substitution of Z, as given by (2.8.19), into (2.8.15) 
generates (2.8.18), showing the interrelation between these transforms and 
furnishing a direct means of finding the zeta transform from a Z-transform 
table. 

Zeta transforms have application in economic modeling. In particular, 
zeta transforms serve in the economic analysis of discrete time series in a 
manner similar to the Laplace transform methodology for continuous cash 
flow functions as described by Buck and Hill [149]. 

The Hankel Transform 

Of less importance than the aforementioned transforms in theoretical and 
applied statistics is the Hankel transform [276]. Lord [215-217] has pointed 
out that the characteristic function of the sum of n independent random 
vectors when the vectors have spherical distributions in s dimensions, is a 
Hankel transform. Specifically, when an ^-dimensional random vector X 

has a spherical distribution with p(r)dr for the probability of r<\X\<r+ 

dr, one can define a characteristic function (Hankel transform) 

Hp) = (2?r) 2 p^T+ I rlJ(s/2)-\(,rp)p(r)dr (2.8.20) 
*/o 

whose inversion yields 

p(r)=2<~,m +1 [:r(|)]"'f(rpy'%/2>_, (rP)$(P) rfP> (2.8.21) 

where •/(*/2)-i(') is the Bessel function of the first kind of order s/2—1 
(see Appendix D.l). The Hankel transform has considerable application in 
certain problems of mathematical physics [382]. 

The Walsh-Hadamard Transform 

The Walsh-Hadamard transform of probability mass functions of discrete 
i.r.v.’s has recently received some attention [296] in a variety of engineering 
applications (image coding, communication theory, etc.). Pearl [280] points 
out that whereas the Fourier basis (exponential functions) constitutes the 
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natural representation for systems with translational symmetry, the Walsh 
transform is the natural representation of systems with dyadic symmetry, 
so that stochastic systems with dyadic symmetry benefit most from the 
properties of Walsh transform analysis and the computational advantages 
it offers. Pearl cites some applications in the areas of information theory 
and pattern recognition. The reader is referred to Pearl’s paper [279] for a 
precise definition of the Walsh transform. 

Logarithmic Transformation 

It is instructive to observe the relationship between the Mellin transform of 
the p.d.f. f(x), x>0, and the Fourier transform of the p.d.f. g(y) of the 
transformed variabley=*\nX, — oo <y < oo. Since 

g(y) = eyf(ey). 

it follows from the definition of the Mellin transform that 

r oo 

K(f(x)) = I xs~lf(x)dx 
Jo 

eAs~l) g(y)dy, 
— OO 

where 5 is a complex number. Setting s—l = — it, t real, one obtains the 
Fourier transform of g(y). Thus the Fourier transform of g(y) can be 
obtained from the Mellin transform of f(x) by replacing the argument s in 
the Mellin transform by 1 — it. Conversely, one can obtain the Mellin 
transform of f(x) from the Fourier transform of g(y) by replacing it in the 
Fourier transform of g(y) by 1-5. 

2.8.2 Some Important Properties of Integral Transforms 

In each of the following cases, it is assumed that each transform pair exists 

within the region of convergence, and Fff(x)) is defined by (2.8.5). 

1. Linearity property. 

Laplace: Lr(c{ /,(*) + c2f2(x)) = c,Lr(/,(x)) + c2Lr(f2(x)) 

Fourier: Ft(cx /,(*) + c2f2(x)) = c,F, (/,(*)) + c2F,(f2(x)) 

Mellin: Ms(cx /,(*) + c2f2(x)) = c,Ms(/,(x)) + c2Ms(f2(x)) 
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2. First translation or shifting property. 

Laplace: Lr(eaxf(x)) = Lr_a(f(x)) 

Fourier. F,(e°*f(x)) = F,+la<J(x)) 

Wellin'. M,(x~°f(x))=M,_Mx)) 

3. Second translation or shifting property. 

Laplace: Lr(J(x - a)) = e~arLr(f(x)), x>a 

Fourier: Ft (/(x — a)) = e ~ ,a,Ft (/(x)) 

4. Scaling. 

Laplace: Lr (f{ax)) = ^ Lr/a (/(x)) 

Fourier: Ft (/(ax)) = ^ Ft/a(/(*)) 

Mellin: Ms(J(ax)) = a ~sMs(J(x)) 

5. Transforms of derivatives. 

Laplace: 4(/">(x)) = rnLr(f(x))~ r'-,/(0)- r"-2/'(0)-rf^~2\0) 

0) 
if /(x) and the derivatives /'(x),... ,f^n ])(x) are continuous for 0 < x < 
X and of exponential order for x> X, and f^n\x) is piecewise continu¬ 
ous [350, p. 2] for 0 < x < X, where X is some finite value of x. 
Fourier: Ft (fn\x)) = i nt nFt (/(x)) 
Mellin: Ms(J(n\x))={-\)n(s-!)• • • (s-(n - \))(s-n)Ms_n(f(x)) 

6. Transforms of integrals. 

Laplace: Lr 

Fourier: Ft 

f f(u)du 
Jo 

f f(u)du 

Lr(f(x)) 

^ (/(-*)) 
it 

7. Multiplication by x". 

Laplace: Lr(xJ(x)) = (-\)nL^(f(x)) 

Fourier: Ft(xJ(x)) = (i)nF^(f(x)) 

Mellin: Ms(xnf(x))= A/+„(/(x)) 

8. Division by x. 

Laplace: Lr(^^\=\XLr(f{u))du (provided lim exists) 
\ X J J r x—>0 X 



36 DIFFERENTIATION AND INTEGRATION IN THE COMPLEX PLANE 

Fourier: M = f °°Ft(f(u))dt (provided lim exists) 

Mellin: j = Ms_{(f(x)) (provided lim exists) 

9. Periodic functions. Let f(x) have period r>0 so that/(x + T)=f(x). 

Then we can write 

Joe~rxf(x)dx 
Laplace: Lr (f(xj) = —X_e-Fr— 

Ioe~ilxf(x)dx 
Fourier: Ft (/(*)) = —-- 

l-e 

10. Exponentiation. 

Ms(f(xa)) = a-lMs/a(f(x)) 

2.8.3 The Mellin Integral Transform of a Function 

of a Complex Random Variable11 

The great majority of cases—both theoretical and applied—involving the 
use of the Mellin transform in connection with products, quotients, and 
powers of i.r.v.’s concern Mellin transforms of real variables. However the 
Mellin integral transform may be equally well defined for functions /(z) of 
complex r.v.’s z, as Kotlarski has shown [186]. He considered a bivariate 
r.v. (/?,$) taking values (r,<f>) on the half-plane 

0< r< oo, — 00 <(/>< co 

and associated with the complex number 

z = Rei<s>. 

For the function of the variable z to have a one-to-one correspondence 
with the angle <b, only principal values of <I>, denoted by <b*, are used; that 
is, 

<1>* =<£>mod277\ 

The bivariate r.v. (7?,$*) then takes its values (r,<j>*) on the half-strip 

O<r<00, — 77 < (f>* < 7T. 

11 The results in this section are based on the papers by Kotlarski [186] and Brock and 

Krutchkoff [40] and are reprinted here with permission of the Executive Editor of The Annals 

of Statistics. 
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Kotlarski defined the Mellin transform of f(z) in terms of R and <j>, as 

where u and v are complex numbers. He also pointed out that 

^it,v (h(r><fi)) '/'(log.R, <!>)(/> 

where ip(l is the characteristic function of the joint distribution of 
the bivariate r.v. (log7?,<I>): 

4/(iogR,0)(lO = £[exp( i (/log/l + ©$))]. 

Brock and Krutchkoff [40] consider a complex r.v. Z=Re,<t’ such that 
the density of (R, <£) is given by 

I^U'O-a2)'72 

27rmT(c1) 
rctc4 1\ctc} i exp( — c7KCirc*), 

where all parameters are real, r>0, nrn/\b\<$<rm\b\, A=l — asin(b9 + 

a), |a|<l, b¥= 0, c,>0, c2>0, c4^0, m is a natural number, and 0<a< 
2m, and f(r,<p) is zero otherwise. They then point out that the generalized 
Mellin transform is 

h(s,t)= -(l-n2 * * * *)1/2r|^ +c1jsin(^j 47rmc2j/C4r(c,)r(c3|- + lj 

| j sin7 a + ij sin7 -1 a cos a 
CO CO 

x 2 2 Hj, 
j=0/=0 

where 

HJi = 

(- l)m-/r(2/+y + c35/c4 + \)T(j/2+t/2b)T(j/2-t/2b)all+J 

2 2lT(j + 1 )T(J/2 +t/2+l+\ )T(j/2 -1/2 + / ■+1) 

and t^=0,±b,±2b,..., and s/c4 + c>0. (For any integer k, h(s,kb) is 
evaluated by taking the limit of h(s,t) as t^kb.) 

Brock and Krutchkoff show that when one sets a = a = 0, the density 
function ) becomes 

\bcAc\' 

2mmT(cl) 
y c 1^4 exp(-c2/'C4), 

where r>0, — mm/\b\ <<f>< mm/\b\, cx >0, c2>0, c4^0, b=£0, and m is a 
natural number. Then, for selected values of c„ c2, and c4,/(r,<£) becomes 
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the p.d.f. of the product of Weibull-uniform, chi-uniform, and gamma-uni¬ 

form r.v.’s. 
Levy [207] has also given a tool for treating products of complex r.v.’s. 

However the literature dealing with Mellin transforms of functions of 
complex variables appears to be quite sparse, probably because their use in 
theory and application is relatively infrequent, as compared with the 
extensive use of Mellin transforms of real variables. This being the case, 
the subject is not further discussed; it is mentioned here merely for the 
sake of completeness. 

2.9 COMPLEX INVERSION INTEGRALS 

If the integral transform of a function f(x) is known, the function /(x) can 
be obtained by evaluating the corresponding inversion integral. The reader 
may wonder whether the inversion integral of a function is ever known 
when the function itself is not known. Actually, there are frequent ins¬ 
tances when such is the case: that is, when one knows the integral 
transform of f(x) before he knows what/(x) is. This situation exists, for 
example, when one wishes to derive the p.d.f. of a sum, mean, difference, 
product, quotient—or more generally, an algebraic function—of specific 
i.r.v.’s, in which case the integral transform of the desired p.d.f. is express¬ 
ible in terms of the integral transforms of the p.d.f.’s of the specific 
component r.v.’s, which integral transforms in many cases are known. 

Since later chapters contain frequent applications of these types of 
transform and their associated inversion integrals, they are defined here 
and the nature of their application relative to The Algebra of Random 

Variables is briefly discussed, to permit the reader to see them in their 
proper perspective before considering the details of their application. 

If the transforms defined by (2.8.2a), (2.8.8a,b) and (2.8.9) are analytic 
in a relevant strip containing the Bromwich path, there are reciprocal 
formulas (inversion integrals) that determine the p.d.f. f(x) uniquely. 
Specifically, the corresponding inversion integrals are, respectively, 

f(x)=y~jfC+ e'xLr(f(x))dr (2.9.1) 

f(x)=^Z] fC+IO°e~rx<$r(f~(x))dr — oo <x<0, (2.9.2) 

/(*)-J-7 r°°e-"Vr(r(x))dr 0<x<oo, (2.9.3) 
Z777 Jc — /oo 

x~sMs(f(x))ds 
Z7/7 J c _ IQQ 

0< x < oo. (2.9.4) 
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The reciprocal formulas are valid for all x where /(x) is continuous and the 
path of integration is any line parallel to the imaginary axis and lying 
within the strip of analyticity of the relevant integral transform. Although 
it is extremely important that the inversion integral determines the p.d.f. 
uniquely, if the associated integral transform is analytic in the relevant 
strip or half-plane, the reader is reminded that this condition is sufficient 
and is not to be construed as necessary. 

It should perhaps be pointed out why this condition of analyticity is 
sufficient for the uniqueness of f(x) as obtained from the inversion 
integral. This sufficiency exists because the analyticity of the transform (in 
the relevant strip) ensures that the integrand of the inversion integral is 
expressible as a Laurent expansion, which expansion is always unique. The 
inversion integral may then be evaluated by the method of residues, as we 
show later. However, unless at least one pole exists, the integrand of the 
inversion integral is not expressible as a Laurent series, and the simple 
method of residures can no longer be used. 

In the event that the characteristic function contains poles, the complex 
Fourier (or bilateral Laplace) transform involving the general complex 
variable r, can be used advantageously in connection with the residue 
theorem to obtain /(x) from the inversion integral (2.8.5b). If the char¬ 
acteristic function contains no poles, but is absolutely integrable, the 
ordinary Fourier inversion integral (2.8.5b) can be evaluated directly as a 
function of the real variable t, usually in a straightforward manner, to 
obtain/(x) uniquely. The derivation of the distribution of the mean of n 

normal i.r.v.’s (Section 9.1.1) is a case in point. 
The question now arises as how best to evaluate the integrals (2.9.1) 

through (2.9.4) over a Bromwich path (c — ico,c + ioo), assuming that the 
relevant transforms contain poles (which is usually the case). It would be 
particularly convenient if one could find a closed contour enclosing the 
poles of the integrand and over which the integral would be equal to that 
over the Bromwich path, since then the residue theorem could con¬ 
veniently be applied. Jordan’s lemma, proved in Appendix A, states 
conditions under which the integrals (2.9.1) through (2.9.4), when 
evaluated over the closed contour CL = QKLMPQ or CR = QPTQ (Fig. 
2.9.1), depending on the location of the poles, yield results identical with 
those obtained by integrating over the Bromwich path (c — /oo,c + /oo). 
This will occur, of course, when the contribution to the contour integral 
from integrating over the arcs QKLMP and PTQ is zero. The importance 
of Jordan’s lemma stems from the fact that in the great majority of 
situations requiring the evaluation of inversion integrals, the requisite 
conditions of the lemma are satisfied, thereby simplifying the evaluation of 
these integrals. Throughout this book, the closed contour consisting of the 
circular arc and chord, as the latter approaches infinity, is referred to as 
the Bromwich contour and should not be confused with the Bromwich path, 
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(a) (b) 

Fig. 2.9.1 Bromwich contours used in evaluating integrals over the Bromwich path (c — ioo,c 

+ i oo). 

which is the infinite extension of chord PQ, resulting when the radius of the 
circle approaches infinity (Fig. 2.9.1 a,b). 

It should be pointed out that in the statement and proof of Jordan’s 
lemma, the letter s denotes a complex variable and, to be consistent with 
the previous notation, the 5 should be replaced by r when applied to La¬ 
place and complex Fourier transforms and inversion integrals. 

Jordan’s Lemma 

(a) (As applied to CR, Fig. 2.9.16). If f(s)->0 uniformly with regard to 
args as |s|—»co when — m/2 < args < tt/2 and, if f(s) is analytic when 
|-y|—and — 7r/2<arg5< 7t/2, then 

lim / e 
a >°0 JpjQ 

-"“/(*)<* =0, (2.9.5) 

where k and m are positive real constants. 
(6) (As applied to CL, Fig. 2.9.1a). If /(*)—»0 uniformly with regard to 

args as |—>oo when 7t/2 < args <\m, and if f(s) is analytic when 
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|^|—>A: and m/2 < args < § <n, then 

41 

lim f emsf(x)dx=0, 
a_>0° JOKI MP QKLMP 

(2.9.6) 

where k and m are real positive constants. 

As already mentioned, the proof of this lemma is given in Appendix A. 
The crucial part of the lemma is the condition that f(s) approach zero 
uniformly with respect to args as |j| = R-^cc. Actually, it is easily shown 
that this condition will be satisfied if one can find constants M > 0, k > 0 
such that on the relevant circular arc (QKLMP or PTQ), 

(2.9.7) 

where s = Re‘e. For if two constants M >0, k> 0 can be found such that 
the inequality (2.9.7) is satisfied, then for any e > 0 one can find a value R0 

depending on e but independent of arg^ such that M/Rk<e whenever 
R>R0. Hence as R->oo, |/(s)| approaches zero independently of args, 

from which it follows that f(s) is uniformly convergent with respect to 
args. For future reference, this fact is stated in the form of a theorem. 

Theorem 2.9.1. If one can find constants M>0, k> 0 such that on the 
circumference of a circle (where s = Re'e) with center at the origin and 
radius R (Fig. 2.9.1) 

then f(s) is uniformly convergent with respect to args. 
Appendix A also shows that the value of the integral over each of the 

arcs QK and MP approaches zero as R tends to infinity. 

Furthermore, it can be shown (but is not proved here) that the condition 
(2.9.7) always holds if 

(2.9.8) 

where P(s) and Q(s) are polynomials and the degree of P(s) is less than 
the degree of Q (5). Recall that the Bromwich path is chosen such that all 
the poles of f(s) (the counterpart of f(s) in transform and inversion 
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problems being the corresponding transform) lie on the same side of the 
path: to the left when the Bromwich contour is CL, and to the right when 
the Bromwich contour is CR. For then the conditions of Jordan’s lemma 
relative to the kernel will be satisfied for the contour CL when 
0< x < 1, and for the contour CR when 1 < x < oo. 

It should also be pointed out that the condition of Jordan’s lemma, 
relative to CL, that f(s) be analytic when both |a|—>/c and vr/2 < args < \ v 
requires that all poles of f(s) be at a finite distance from the origin. 
Similarly, when the circular arc is CR, the condition that f(s) must be 
analytic when both |s|-»& and — m/2 < args < m/2 again requires that all 
poles of f(s) be at a finite distance from the origin. In either case, this 
condition may be removed if, for example, the poles of f(s) are countable 
and are spaced at intervals along the real axis, as Appendix F demon¬ 
strates. 

In establishing Jordan’s lemma in Appendix A, one finds it helpful to 
utilize the two theorems stated and proved below. 

Theorem 2.9.2a. The inequality sin 0 > 20/77 holds for 0 < 0 < 77/2. 

proof. This theorem is readily proved by utilizing the fact that for 
0< 0<tt/2, the function of y = sin0 is concave downward and is always 
above the straight line y = 20/ir, except at the end points 0 — 0 and 
0 = 7t/2, where the two functions have identical values. That is, 

sin0 > —, 0< 0 < ^ 
77 2 

sin 0 = —, 0 = 0,0= ~. 
77 2 

Thus 

sin0> —, 0 < 0 < ^. 
77 2 

Theorem 2.9.2b. The inequality cos 0 >1—20/77 holds for 0 < 0 < 77/2. 

proof. The proof of this theorem parallels that of Theorem 2.9.2a. In 
particular, note that for O<0<7r/2, the function y = cosO is concave 
downward and is always above the straight liney = 1 — 20/77, except at the 
end points 0 = 0 and 0 = 77/2, where the two functions have identical 
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values. Specifically, 

Hence 

cos 6 = 1 — 

26 
V 

26 

cos0>l-, 0 <6<^r 
77 2 

7T 

•JT 6 = 0,6= j 

cos 6 > 1 — — 
7T 
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EXERCISES 

2.1 Perform the indicated operations 

(a) 4 —3/+ ( — 6 +7/). 
(b) (3-00+3/). 

— 3 + 3 / 
(C) ‘ 

(d) . 
K ’ 4 + 5/ 
(e) |5 —12/||5+ 12/|. 

_J_l_ 
1+3/ 1 — 3/ 

2.2 

if) 

Ans. —2+4/. 
Ans. 6 + 8/. 

3/-9 
Ans. 

Ans. 

Ans. 

Ans. 

10 ' 

15 — 29/ 
41 

169. 
3_ 

5 ’ 

Express the following complex numbers in polar form 

(a) 3 + 3/. 

(b) 1 - V3 /. 

(c) -3-3V3/. 

Ans. z = 3V2 ^cos ^ +/sin^ j 

= 3V2 eiv/4. 

Ans. z = 2^cos y —/sin y j 

— 2eni/'3. 

Ans. z = 6^cos + /sin j 

= 6c(4/3)(m). 

2.3 Express each of the following functions of the complex variable z in 
the form u(x,y)+ iv(x,y). 

(«) f(z) = z2. Ans. u(x,y) = x2+y2; v(x,y) = 2xy. 
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<4> 

(c) /(z) = e4z. 

(<0 /(z) = lnz2. 

u(x,y) = 

v(x,y) = 

Ans. 

l — x 

(1 -xf+y2 

y 

(1 -xf+y2 

u(x,y) = e4x cos 4y 

v(x,y) = e*xsm.4y 

Ans. u(x,y) = 21nfx2+y2 . 
y 

v(x,y) = 2 arctan —. 
X 

2.4 Give the Taylor series expansion for the function f(x)= 1/(1 — x) of 
the real variable x, and state the interval of convergence. 

GO 

Ans. f(x)= 2 xJ’ converges for |x| < 1. 
j=o 

In Exercises 2.5, 2.6, and 2.7, obtain the Laurent series in z about 
the relevant poles. State the location and order of each pole. 

2.5 

Hint. Let z — 1 = u. Then 

cz _ /cu\_ e (i , , w2 , m3 , \ 
17Ti7-el^)“^l1+,'+2r+3!+'-')' 

Now make the substitution u = z— 1 to obtain the Laurent expansion 
in z. 

2.6 /(z) = 
(z + l)(z + 3) 

Hint. To find the Laurent expansion about the pole z= — 1, let 
z + 1 = u and express /(z) as a function of u, recalling that 

T+uT? = l-f+(f)2~(f)3+'" +(~1f(f)”+"' 

2.7 f(z)~ 
1 

z(z + 2)3 



EXERCISES 45 

Hints, (a) For the expansion about z = 0, write l/[z(z+ 2)3] = 
l/[8z(l+z/2)3] and expand (l + z/2)-3 using the binomial theo¬ 
rem. 

(b) For the expansion about z= -2, use the substitution u = z + 2 
and expand l/(u — 2) in series form. 

2.8 Find the residues at the pole z = 1 in Exercise 2.5 by differentiation. 

Am. e. 

2.9 Find the residues at the relevant poles in Exercise 2.6 by differentia¬ 
tion. 

Am. At z = — 1 residue = — \. 

At z = — 3 residue = §. 

2.10 Find the residues at the relevant poles in Exercise 2.7 by differentia¬ 
tion. 

Ans. Atz = 0 residue = |. 

At z = — 2 residue = — |. 

2.11 Verify the Laplace transform given in Table D.2.1 for each of the 
following p.d.f.’s. (Note that in item c the bilateral Laplace trans¬ 
form is appropriate.) 

(a) f{x)-\, 0<x<l 

(b) f(x) = \e~Xx, 0 < v < oo 

(c) f(x)= —co < x < oo 
V2tt 

(uniform) 

(exponential) 

(normal) 

2.12 Verify the characteristic function given in Table D.2.1 for each of 
the p.d.f.’s in Exercise 2.11. 

2.13 Verify the Mellin transform given in Table D.2.1 for each of the 
p.d.f.’s in Exercise 2.11. 

2.14 Invert the following Laplace transforms: 

(a) Lr(f(x))=j~^. Am. f(x) = eax. 

(b) 4(/(x))=^-. Am. f(x)= * • 
rn +1 r(rt + l) 
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(c) Lr(f(x)) = 
r2 + a2 

Ans. f(x) = 
sin ax 

a 

(d) Lr(f(x)) = 
5r + 4 Ans. f(x) — 5x + 2x2. 

2.15 Invert the following Fourier transforms or characteristic functions 

(use (2.8.5a, b)). 

(a) F,(/(*)) = 
a 

a —it 
Ans. f(x) = ae 

0<x< oo. 

(b) Fl(f(x)) = exp^itu- Ans■ /(*) = 
1 

X exp« 

aV277- 

~[(X-u)/o]2 

(c) F, (/(*)) = 
(1 — 2ii)m/2 

m even. 

— 00 < X < 00. 

f(x) = 

x>0. 

JE-P-*/2 

2m/2r(w/2) 

2.16 Invert the following Mellin transforms. 

(a) r«. Ans. 

A-J+T(5 + a-l) 
(b) ^ (/(•*)) =--• 

r(a) 
Ans. 

(c) Ms(f(x))=^±±. 
s 5 +a 

Ans. 

f(x) = Xe Xx, x>0. 

/(*) = tXt (\*)“ “ V _X*, 
r(a) 

0< x< oo. 

/(x) = (a + l)x“, 

0 < x < 1, a real. 



CHAPTER 3 

The Distribution of Sums and 
Differences of Random Variables 

3.1 THE FOURIER CONVOLUTION AS 
THE DISTRIBUTION OF A SUM 

Though it may not often be regarded as such the Fourier convolution 

g(w)= f °° Mw-x2)f2(x2)dx2 
J — oo 

/oo 
f\(xx)f2(w-xx)dx 

- rr i 

(3.1.1a) 

(3.1.1b) 

of two functions /,(*,) and f2(x2) is actually, except for possibly a constant 
factor, the p.d.f. g(w) of the sum W= Xx + X2 of the i.r.v.’s Xx and X2. To 
see that this is so, consider the transformation 

w = xx + x2, 

x2 = x2 

which, when solved inversely for xx and x2, gives 

(3.1.2) 

xx = w-x2, 

x2 = x2. (3.1.3) 

By means of the inverse transformation (3.1.3), the joint probability 

element 

f(x],x2)dxldx2=f(xx)f(x2)dx]dx2 (3.1.4) 

47 
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is transformed into the joint probability element f(w,x2)dx2dw: 

g(w, x2)dx2dw =/, (w - x2)f2(x2)\J | dx2dw, (3.1.5) 

J being the Jacobian of the inverse transformation (3.1.3): 

3x, 3x, 

3 w 3x2 

3x2 3x2 

3w 3x2 

.1 -1 
' 0 1 

= 1. (3.1.6) 

Integrating out the variable x2 in (3.1.5) yields the p.d.f. of the sum 
w = x, + x2, namely, 

/OO 

f\(w~x2)f2(x2)dx2 (3.1.7a) 
- 00 

/OO 

fMx)f2(w-xx)dxx, (3.1.7b) 
- 00 

which is also recognized as the Fourier convolution of /,(x,) and/2(x2). 
In the same way, one can readily show that the p.d.f. g(w) of the 

difference W=Xx — X2 of two i.r.v.’s Xx and X2 with p.d.f.’s /^x,) and 
f2(x2) is the Fourier convolution 

/OO 

fi(w + x2)f2(x2)dx2 (3.1.8a) 
- 00 

/OO 

f\{*\)h(y* + x\)dxv (3.1.8b) 
- 00 

To establish this result, one utilizes the transformation 

w = x,-x2 

x2 = x2, (3.1.9) 
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whose inverse is expressible as 

xx = x2 + w, 

x2 = x2, 

having the Jacobian 

J = 

3a, 

3w 

3a2 

3w 

3a, 

3a2 

3a2 

3a2 

+ 1 1 
0 1 

Again, the joint probability element 

f(xux2)dx]dx2=f](xl)f2(x2)dxldx2 

(3.1.10) 

(3.1.11) 

(3.1.12) 

is transformed into the joint probability element 

g(w,x2)dx2dw=*fl (w + x2)f(x2)\J\dx2dw. (3.1.13) 

On integrating out a2, one obtains the p.d.f. of the difference w = a, —a2, 

namely, 

/OO 

fl(w + x2)f2(x2)dx2 (3.1.14a) 
- OO 

/OO 
fi(xx)f2{w + xx)dxx, (3.1.14b) 

- OO 

which again is seen to be a Fourier convolution of /,(a,) and /2(a2). 

As specific examples of Fourier convolutions, consider the p.d.f.’s of the 
sum and the difference of two independent and identically distributed 
uniform r.v.’s Xx and X2 with p.d.f. 

0< a( < 1, /=1,2. (3.1.15) 
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From (3.1.1a) it follows that the sum convolution is 

g(w)= f Mw-x2)f(x2)dx2, (3.1.16) 
‘'Range 

of x2 

where w = xl + x2. Given (3.1.15), we see that (3.1.16) becomes 

(3.1.16a) 

(3.1.16b) 

which is represented graphically in Fig. 3.1.1. Note that the limits of 

integration in (3.1.16a) are governed by two constraints: (1) xx = w-x2 is 

necessarily nonnegative, since Xx is a nonnegative r.v., which restricts the 

maximum value of x2 to w; (2) w = xx + x2 takes on its smallest possible 

value (zero) when both xx and x2 take on their smallest values, namely, 

zero. But since w = xx + x2 can also assume values as large as 2, another 

integration in addition to (3.1.16a) must be considered. Since x, = w — x2< 

1, when 1 < w < 2 the variable x2 may range from w — 1 to 1 and still not 

violate the constraint 0 < x2 < 1. This accounts for the limits of integration 

in (3.1.16b). 

In the same way the difference convolution g(w), where W= X2 — Xx is 

the difference of two identically distributed uniform i.r.v.’s each with p.d.f. 

g(w) 

Fig. 3.1.1 P.d.f. of the sum of two uniform i.r.v.’s. 
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(3.1.15) is, from (3.1.14a), 

g(w) = f f\(w + x2)f2{x2)dx2 
' range 
of x2 

As before, the question at this point is the range of integration of x2. Since 

w = x2 — x, and 0 < jc, < 1, it is clear that w is negative if and only if 

x2<xx, and that w ranges from —1 (when x2 = 0, x, = 1) to 0 (when 

x2 = a-,). Moreover, since x2 = w + x,, a2 has a minimum value of zero 

(when a, = a2 = 0) and a maximum value of w + 1 (which necessarily occurs 

when a, assumes its maximum value of one). Thus 

rw + 1 
g(w)= I dx2 = w+1, — 1<h»<0. 

J0 
(3.1.17a) 

On the other hand, w will be nonnegative if and only if x2> xu having its 

smallest nonnegative value (zero) when x2 = x, and its largest value (one) 

when a2= 1, x^O. Again, since x2= w + x, and x, >0, x2 ranges from w 

(when x,=0) to a maximum value of one, governed by the original 

constraint 0< x2< 1. (Note that it is possible for x2= w + x, to achieve the 

g(w) 

Fig. 3.1.2 P .d.f. of the difference of two uniform i.r.v.’s. 
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value 1, since when xx is 0, w will be 1 when x2 is 1.) Thus 

g(w)= fdx2=l-w, 0< w< 1. (3.1.17b) 

Figure 3.1.2 plots these p.d.f.’s. 
By repeated application of the Fourier convolution, one can, of course, 

derive the p.d.f. of the sum W='Zni=xXi of n i.r.v.’s, as a later section 

shows. There is, however, a simpler method that enables one to obtain the 

p.d.f. of the sum of n i.r.v.’s in one step. Not surprisingly, this method is 

based on the Fourier integral transform, which is the subject of the section 

that follows. 

3.2 THE DISTRIBUTION OF SUMS AND DIFFERENCES OF 
CONTINUOUS INDEPENDENT RANDOM VARIABLES 

The relationship between the Fourier transform and the Fourier inversion 

integral provides a powerful method for deriving the distribution of sums 

and differences of i.r.v.’s. Although the dual relationship between an 

integral transform and the corresponding inversion integral for a Fourier 

transform pair has been stated, the result is now restated as a theorem 

pertaining to cases in which f(x) is a p.d.f. (and hence a function that is 

nonnegative, real, single valued—or single valued almost everywhere12 

—and absolutely integrable13). 

Theorem 3.2.1 (the Fourier inversion theorem). If f(x) is a p.d.f. defined 

over the range (- oo, oo), the Fourier transform (characteristic function) 

F, (/(*)) = E[e"'] 

/OO 

e“xf(x)dx, (3.2.1) 
- OO 

where t is a real number, always exists. If the Fourier transform (character¬ 

istic function) is absolutely integrable over (— oo, oo), or is analytic in some 

horizontal strip — a< it < ft, then the p.d.f. is uniquely determined by the 

12A function is single valued almost everywhere (a.e.) if it is single valued at all points except 

those of a set of measure zero. A point set is said to be of measure zero if for any positive 

number e there exists a finite or countably infinite set of intervals (open or closed), such that 

each point of the set is contained in at least one of the intervals and the sum of the measures 

of the intervals is less than e. 

l3The function/(x) is absolutely integrable if / -X\f(x)\dx converges. 
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inversion integral 

(3.2.1a) 

This theorem has been proved by Lukacs [225] and others and is not 

proved here, except to show that the characteristic function always exists. 
This is readily apparent, since 

since f(x) is a p.d.f. and 

| e"x | = |cos tx + / sin tx 

= cos2 tx + sin2 tx 

= 1. 

The Fourier transform (3.2.1) may be considered to be a function of the 
real variable t or of the special (purely imaginary) complex variable z = it. 

If the Fourier transform contains no poles, the horizontal strip consists of 

the entire plane, in which case the inversion integral (3.2.1a) may be 

readily evaluated by integrating with respect to the real variable t over the 

real axis, or any other line parallel to the real axis (see (3.4.17) and (3.4.18) 
and Example 9.1.1). 

On the other hand, if the Fourier transform (3.2.1) contains poles, it is 

usually more convenient to replace this transform by an equivalent com¬ 

plex Fourier (or bilateral Laplace) transform 

— 00 

whenever one such exists, where r is a complex number not restricted to 

purely imaginary values it. Whenever such an equivalent complex Fourier 

(bilateral Laplace) transform exists, one may replace the purely imaginary 

variable it in (3.2.1a) by the general complex number r and evaluate the 

resultant inversion integral over the Bromwich path ( — icojoo). The ques¬ 

tion of when such an equivalent complex Fourier transform exists is 
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therefore of considerable importance, and is stated in the theorem below. 

(The proof of this theorem is given in Appendix E.) 

Theorem 3.2.2 (the complex Fourier or bilateral Laplace inversion 
theorem). If /(x) is a real function that is defined and single valued 

almost everywhere for — oo<x< oo, and is absolutely integrable over the 

range (—00,00), where 

/~(x)=/(x), — 00 <x < 0 

= 0, 0 < x < co (3.2.2a) 

/+(x) = 0, - 00 < x < 0 

=/(x), 0< x < co, (3.2.2b) 

then the complex Fourier transform %(f(x)) exists, where 

%{/{*)) = <$7 {Ax)), -co<x<0 

^7 (/(*)) = f° erxf~(x)dx (3.2.3a) 
•' — 00 

%(/(*)) = &?U(X))> 0<X< 00 

/(*)) = f erxf+(x)dx. (3.2.3b) 
*/o 

Conversely, if (/(x)) and <3+ (/(x)) exist and are analytic, then the 

p.d.f. 

/(x)=/~(x), — co <x<0 

=/+(x), 0 < x < co 

is uniquely determined by the inversion integrals 

r(x)=2^/ e~rx¥~(f(x))dr, -oo<x<0 

= 0, elsewhere (3.2.4a) 

1 rice 

/+(a)=2^cJ e~rxc3+(f(x))dr, 0<x<oo 

= 0, elsewhere. (3.2.4b) 
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Theorems 3.2.1 and 3.2.2 are important because each ensures that a 

p.d.f. is uniquely determined by its characteristic function (Fourier trans¬ 

form), provided this characteristic function is analytic in a relevant strip. It 

should also be noted that when x is restricted to nonnegative values (i.e., 

when /~(x) = 0, -oo<x<0), the complex Fourier transform becomes 
identical with the ordinary Laplace transform. In such a case 

4(/(*))-W(*)) 

-'$(/(*)) (3.2.4c) 

and 

(3.2.4d) 

The problem of evaluating the inversion integrals (3.2.4a, b) still remains. 

In this connection, the reader is reminded that the poles of the complex 

Fourier transform in the inversion integral (3.2.4a) lie in the LHP. Hence 

when the conditions of Jordan’s lemma are satisfied, the inversion integral 

(3.2.4a) taken over the Bromwich path (— /oo,/oo), is equivalent to that 

taken over the left-hand (closed) Bromwich contour CL (Fig. 2.9.1 a) as 

>co, which is readily evaluated by application of the residue theorem. 

Similarly, when the conditions of Jordan’s lemma are satisfied, the inver¬ 

sion integral (3.2.4b), taken over the Bromwich path (—ioo,/oo), is equiv¬ 

alent to that taken over the right-hand (closed) Bromwich contour CR (Fig. 

2.9.16) as R^>oo. Thus the value of the inversion integral is again obtained 

by applying the residue theorem, since the relevant poles now lie in the 
RHP. 

Actually, the Bromwich path in the inversion integrals (3.2.4a, b) is not 

necessarily restricted to the imaginary axis. If there is a region containing 

the imaginary axis and in which neither (f(x)) nor (/(x)) has any 

pole, the inversion integral (3.2.4a) may be evaluated over any Bromwich 

path (c — /oo,c + /oo) contained in the above-named region, so long as the 

poles of ty- (/(x)) lie to the left of this Bromwich path. Similarly, the 

inversion integral (3.2.4b) may be evaluated over any Bromwich path 

(c'~ icc,c' + /oo) contained in the above-named region, so long as the 

poles of (/(x)) lie to the right of this Bromwich path. One such 

Bromwich path is, of course, the imaginary axis (— /oo,/oo), which is 

satisfactory for both the inversion integrals (3.2.4a, b). 

The preceding theorems indicate how to obtain the p.d.f. (/(x)) from its 

Fourier or bilateral Laplace transform. Once /(x) is obtained, the distribu¬ 

tion function F(x) can, of course, always be determined as Sx-aofiu)du. 
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However F(x) can also be directly derived from the Fourier transform of 

f(x), as the following theorem shows. The proof can be found in a number 

of readily accessible texts (e.g., those by Lukacs [225] and Kendall and 

Stuart [178]) and is not given here. 

Theorem 3.23 The characteristic function Ft(f(x)) of f(x) uniquely de¬ 

termines the distribution function T(x); more specifically [178, pp. 94-95], 

(3.2.5) 

dt, (3.2.5a) 

the form (3.2.5) being particularly convenient for use with nonnegative 

r.v.’s. 
The reader is reminded that although the characteristic function 7y(/(x)) 

always exists and uniquely determines the distribution function F(x) [178, 

p. 94], it does not necessarily determine the p.d.f. f(x) uniquely. A 

sufficient condition that the p.d.f. f(x) be uniquely determined by the 

inversion integral (3.2.1a) is that the characteristic function Ft(f(x)) be 

analytic in a strip containing the real axis. Or equivalently, the inversion 

integrals (3.2.4a,b) uniquely determine f(x) if ^~(f(x)), l3r* (/(*)) are 

analytic in a strip containing the imaginary axis. It should be remembered 

that this condition of analyticity is sufficient. 

As has already been stated, the definition of the Fourier integral 

transform imposes no restrictions on the range of the variable, hence is 

directly applicable to the problem of deriving the p.d.f. of sums or 

differences that may assume either positive or negative values. The coun¬ 

terpart of the Fourier transform, defined only for p.d.f.’s of r.v.’s restricted 

to nonnegative values, is the ordinary Laplace transform. Although either 

the Fourier transform or the complex Fourier (bilateral Laplace) transform 

is the logical choice for analyzing sums and differences of i.r.v.’s that are 

not limited to nonnegative values, the ordinary Laplace transform can be 

used equally well to derive p.d.f.’s of sums or differences of nonnegative 

i.r.v.’s. This is clear from the dual relationship cited in Chapter 2 between 

the Laplace transform and the Laplace inversion integral. For the benefit 

of the reader and for convenience in future reference, this relationship is 

now stated in theorem form. Since the proof can be found in various texts 

on complex variables (e.g., Trantner [382, p. 1]), it is not given here. 
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Theorem 3.2.4 If f(x) is a function of a real variable and is defined and 

single valued almost everywhere for x>0, and is such that the integral 

f |/0)k kxdx 
Jo 

converges for some real value k, then/(x) is said to be Laplace transform¬ 
able, and 

(3.2.6) 

is the Laplace transform of f(x), where r is a complex variable. Conversely, 

if the Laplace transform Lr(f(x)) is analytic and of order 0(r~k) in some 

half-plane Re(r)>c, c,k real, A: > 1, then f(x) is uniquely determined by 

the inversion integral 

(3.2.7) 

evaluated over any line Re(r) = w > c [52, p. 178]. 

Hereafter, for convenience, the inversion integral (3.2.7) is written in the 

form 

The importance of the foregoing theorems and corollary in deriving the 

p.d.f. of sums or differences of i.r.v.’s stems from the following fundamen¬ 

tal theorem. 

Theorem 3.2.5 If XuX2,...,Xn are continuous i.r.v.’s with p.d.f.’s fj(xj), 

j=\,2,...,n, then the p.d.f. g(w) of the sum 

n 

w= s Xj (3.2.8) 

is given by 

(3.2.9) 
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proof. The Fourier transform of the p.d.f. g(w) is, by definition, 

F,(g(y»)) = E[e“~}. 

From the definition of w, (3.2.10) becomes 

F,(g(w)) = E[ei,^lx'] 

II e,tXj 
7= 1 

(3.2.10) 

(3.2.11) 

which, in view of the independence of the XJs, is expressible as 

n 

F,(g(w)) = II E[ei,xJ] 

7=1 

= II / fj(xj)e,tXjdXj 
j=\ 

= H W). (3.2.12) 
7=1 

Then, if each of the Fourier transforms Ft{f.(xj)), j=\,2,...,n is analytic, 

it follows from Theorem 3.2.1 that 

s(w) = J-[ e itw ft Ft(fj(Xj))dt, (3.2.13) 
Z777 J _ qo i 

which proves the theorem. 

Similarly, if the i.r.v.’s X, j=\,2,...,n, are nonnegative, the inversion 

integral (3.2.13) is expressible in the form 

Tib f e™ A Lr(fj(Xj))dr. (3.2.14) 

In other words, g(w) can be determined from a knowledge of the Fourier 

or bilateral Laplace transforms of the p.d.f.’s of the component variables in 

the sum (3.2.8). Therein lies the power of the Fourier and bilateral Laplace 

transforms in deriving the p.d.f. of sums of i.r.v.’s. 

Consider now the important special case of a difference 

W=Xx-X2 (3.2.15) 
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of two i.r.v.’s with p.d.f.’s f^x^J-^x^, respectively. The p.d.f. of W can be 

obtained from a knowledge of the Fourier transforms of /,(x,) and f2(x2), 

as Theorem 3.2.6 shows. 

Theorem 3.2.6 If Xx and X2 are continuous i.r.v.’s with p.d.f.’s fj(xj), 

j = 1,2, then the p.d.f. g(w) of the r.v. 

W=Xx-X2 

is given by 

g(W')==277/_ e~itWp‘U\(X\))F,Ui(~x7))dt’ (3.2.16a) 

or equivalently, by 

- 2S (*.))9T(/2( - (3.2.16b) 

proof. Denote the p.d.f. of the r.v. = — A"2 by f2(x2). Then 

W=Xx-X2 

= Xx + X', (3.2.17) 

and from Theorem 3.2.5 

(3.2.18) 

But it is clear that f2(x2) is simply a reflection of f2(x2), that is, 

fii. xi) 

and therefore 

g(>v)=^:/_” (/,(*,))f,(/2(-*2)V'. (3.2.19) 

which, since fx(xx) and f2(x2) are absolutely integrable, is also equivalent to 

(3.2.16b). This establishes the theorem. 
The distribution function G(w) of an r.v. W, defined as 
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can be obtained by direct integration in (3.2.20) or through the use of 

Fourier transform of g(w) by way of the relationship (3.2.5a). Thus the 

counterparts of (3.2.5) and (3.2.5a) are, respectively, 

G (w) = G (0) + J °° ( 1 eit,Wt^Ft(g{™))dt (3.2.21a) 

= 1 lr^-,(g(,))-r^(^ 
2 2tt J0 it 

The power of (3.2.21) lies in the fact that it enables one to determine the 

distribution function G(w) without first obtaining the p.d.f. g(w). This is 

the case, for example, when 

w= i Xj 
7=1 

is the sum of n specified random variables A) whose p.d.f.’s fj{xj) are 

known. 

Although it is not usually so done, one can, of course, obtain the p.d.f. 

g(w) of the sum 

£ Xj 
7=1 

as an (n— 1) step Fourier convolution. For by (3.1.7a), the p.d.f. gN(wN) of 

the sum WN = WN_, + XN, N > 2, for two i.r.v.’s WN_ x and XN with p.d.f.’s 

gN-X(WN_x) and fN(xN) is the Fourier convolution 

8n(wn)= f 8n-i(wn-i "*■ xN)fN(xN)^xN’ (3.2.22) 

Thus by evaluating (3.2.22) successively for N=2,3,...,n one obtains the 

p.d.f. of the sum of n i.r.v.’s by an (n — l)-step procedure. However one can 

achieve the same result—usually more conveniently—by evaluating the 
inversion integral (3.2.13). 

3.2.1 Distribution of the Sum of Two Identically Distributed 

Uniform Independent Random Variables 

In deriving the p.d.f. of sums of i.r.v.’s of either singly or doubly infinite 

range, the resultant p.d.f. consists of a single component that obtains for 
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the entire range of the sum. As has already been indicated, however, when 

the i.r.v.’s are defined over a finite range, the resultant p.d.f. of the sum 

consists of different components, each of which is valid over a subinterval 

of the complete range. The present example illustrates this fact, as noted 

when the solution was obtained as a convolution (Section 3.1). The 

solution is now obtained by way of the Laplace transform, primarily to 

point out the manner in which the component p.d.f.’s are automatically 

determined by Jordan’s lemma, in contrast to their determination by way 

of limits of integration in the convolution method. 

Consider then, the derivation of the p.d.f. g(w) of the sum W=Xx-\-X2 

of two identically distributed uniform i.r.v.’s having the p.d.f. 

f(xj) =1, 0 < xj < 1, j = 1,2. 

Note first that 

!,/(*,)=4(/(*2)) 

= f e~rxdx 
Jo 

\-e~r 

Then 

(1-e-')2 

1 —2e~r + e~2r 

(3.2.23) 

(3.2.24) 

(3.3.25) 

and 

g(W)=2hi r + <? 2r)dr, (3.2.26) 
2777 Jc-ioo r2 

where there is a single pole at r = 0 and the Bromwich contour is CL = 

QKLMPQ (Fig. 2.9.1a) corresponding to c>0 (since the pole is at the 

origin and w is nonnegative). Write g(w) in the form 

g w) = g\ (w) + g'2(w) + g'3(w), (3.2.27) 
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»!(*-)-3hi ■ Vdr' z*ni jc — ico r 

_ I /•c + Zoo , 

^-2SJ -J(2e~')dr Z.//J Jc — l 00 r 

_J rc + ioo 2e^W~ 

l 2m Jc-i 
dr, 

1 rc + iooprw 

4M-2-J . “T^- ')</' 

J rc + ico e(w-2)r 

ImJc-joo r2 dr' 

(3.2.28) 

(3.2.29) 

(3.2.30) 

It is easily verified that the conditions of Jordan’s lemma are satisfied for 

g\{w) when w>0; for g2(w) when 1 < w < 2; and for g'3(w) when w >2. 

Hence 

g;(w) = J?„ w>0, 

while 

g'2{w)= R2, 1 < w < 2 

and 

g^(w) = /?3, w>2 

= 0, since 0 < w < 2, 

where /?,, R2, and Rs, respectively, are, the residues of the second order 

poles in the integrands of the integrals (3.2.28), (3.2.29), and (3.2.30). Then 

= w, 0 < w < 2 (3.2.31) 

«2=-2|(e<-,)0|r.o 

= —2(w—1), 1 < w <2. (3.2.32) 
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Consequently, 

= w, 0 < w < 1 

82('v) = g'M + g2(W) 

= w — 2w + 2 

(3.2.33) 

= 2 — w, 1 < w<2 (3.2.34) 

which are precisely the results obtained from the evaluation of the corre¬ 
sponding convolution in Section 3.1. 

The reader may surmise at this point that the p.d.f. of the sum 

n 

w-'S.Xj 

of n uniform i.r.v.’s has n components, which is actually the case (see 

Exercise 3.12). In fact, the p.d.f. of 

n 

W= 2 XP n> 1, 

and its derivatives of order k, k=\,2,...,n — 2, are continuous at X = j, 

j—l,2,...,n, whereas its (n— l)st order derivative is discontinuous at these 

values of X [73, p. 245]. 

3.2.2 Distribution of the Sum of 

Independent Chi-Square Random Variables 

One of the important distributions in both theoretical and applied statistics 

is the chi-square distribution with p.d.f. 

xm/2-le-x/2' 0<x<oo, (3.2.35) 

where the parameter m is called the number of degrees of freedom. It is 

well known that a chi-square variable possesses the reproductive property 

with respect to addition.14 That is, the sum 

n 

w= 2 Xj (3.2.36) 

l4An r.v. x is said to possess the reproductive property with respect to addition when the sum 

of n random values of x has the same type of distribution as does x. 
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of n independent random chi-square variables X- having tij degrees of 

freedom, has a chi-square distribution with 

N. ,= 2 
7=1 

degrees of freedom, as we now show. 

Note that X;j—l,2,...,n is nonnegative, so that it is natural to use the 

Laplace transform of the p.d.f. (3.2.35), namely, 

Then 

Lr(fXj) = J e rxJxjn'/2) le X^2dxj 

1 

(1 +2r)"-'/2 ' 
(3.2.37) 

4U(*o)= n Lr(f(Xj)) 
7=1 

1 n 

= (1+2 rj2^nj (3.2.38) 

Since Lr(g(w)) is analytic in the strip corresponding to Re(r)>— it 

determines g(w) uniquely. Hence g(w) has a chi-square distribution with 

degrees of freedom, since Lr(g(w)) as given by (3.2.38) is identical 

with the Laplace transform of a chi-square distribution with degrees 

of freedom (Table D.2.1, Appendix D.2, see also Exercise 9.29). 

3.3 THE DISTRIBUTION OF THE SUM OF MIXTURES 
OF INDEPENDENT RANDOM VARIABLES 

It bears stating at this point that the distribution of a sun of n identically 

and independently distributed r.v.’s is, for the most part, relatively easy to 

obtain by means of characteristic functions when each r.v. is of singly 

infinite range, or when each r.v. is of doubly infinite range. Moreover, if 

the r.v. possesses the reproductive property, the distribution may perhaps 

be more readily obtained by the moment-generating function, as Section 
3.6 demonstrates. 

Such is not the case, however, for the distribution of the sum of 

identically and independently distributed r.v.’s of finite range; nor is it true 
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for the distribution of the sum of a mixture of n i.r.v.’s, some of finite 

range and some of infinite range, nor for the sum of a mixture of n i.r.v.’s, 

some of singly infinite range and some of doubly infinite range. The 

resultant p.d.f. (and d.f.) of the sum is then partitioned into components, 

each of which is valid for a specific range of values of the sum. 

In such a case (except when the number of variables is large and the 

distribution of the sum is asymptotically normal), the distribution usually 

cannot be determined by other methods (such as the geometric and 

moment-generating function methods). It is in such an instance that the 
power of the integral transform method comes sharply into focus. 

It is, of course, difficult to express in general form the component p.d.f.’s 

which correspond to the various subranges for the sum of mixtures of 

i.r.v.’s in general, since the notation for expressing the result becomes 

increasingly cumbersome as the number of i.r.v.’s of finite range increases, 

or when the ranges of such variables overlap. However the manner in 

which the integral transform automatically partitions the p.d.f. of the sum 

into component p.d.f.’s that are valid over specific subranges can be 

grasped from a consideration of the example in Section 3.3.1. (Exercises 
3.15 and 3.16 are also illuminating.) 

3.3.1 The Distribution of the Sum of a Uniform 

and an Exponential Random Variable 

Let Xi and X2 be, respectively, uniform and exponential i.r.v.’s with p.d.f.’s 

/,(x1)=l, 0<X, <1 

/2(x2) = c_X2, 0<x2<oo 

and consider the p.d.f. g(>t>) of the sum W= Xl + X2. This density function 

is obtained by inverting the Laplace transform Lr(g(w)), where 

Lr(g(w)) = Lr(fl(xl))Lr(f2(x2)), 

r 

o 

r+1 
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c + i oo (1 6 r) 
nv-dr 

«<•>-££ 

l rc+ 

iTriJc-ioo r(r + 1) 

/oo 

C + /00 

r(r + 1) 

+ (O0 g(w-l)r 

r(r+ 1) 
dr. 

For each of these two integrals, the poles are all in the LHP (i.e., 

Re(r) < 0), so that the conditions of Jordan’s lemma are satisfied if, 

respectively, w>0 for the first integral and w > 1 for the second integral.15 

That is, 

gO) = gi(B>), 
= g2(w)> 
= 0 

xv > 0 

xv > 1 

elsewhere. 

Specifically, 

r + 0 
2m {2m) r+ 1 

r = 0 r r=-l_ 

= 1 xv > 0 

e0v-l)r 

r+ 1 r 
r = 0 r= — 1 

Or equivalently, 

= — 1 +e_(w_1), 

g(xv)= l-e~w, 
= c-(w-l)_e-w 

W > 1. 

0< w< 1 

1 < W < 00 

l5AIthough the conditions of Jordan’s lemma are not satisfied when >^ = 0, w=l, it can be 

readily shown that the values of the relevant contour integrals over the circular arc CL = 

QKLMPQ (Fig. 2.9.1a) approach zero as R—»oo for these two values of w, so that the residue 

theorem applies for all values 0 < w < 2. Specifically, when w = 0, 

lim < lim 
1 

= lim 
1 

and when vv = 1, 

(•-.oo r(r+ 1) r—°o |r||r+l| R (R + 1) 

1\„>V—1 

= 0 

lim 
(l-e-')e* , ,• 1 — e 1 1 — e 1 „ 

< lim T-n——rr = lim „ , _ =0. 
/•-►oo r(r+1) r->oo |r||r+l| «—<»/?(/? +1) 



SUMS AND DIFFERENCES OF DEPENDENT RANDOM VARIABLES 67 

It is easily verified that 

and that E{w] = E[xx]+ E[x^. 

The method can be extended to the derivation of the p.d.f. of a sum of 

more than two r.v.’s in a direct and straightforward manner, as the reader 

can verify by solving Exercises 3.16 and 3.19. 

3.4* THE DISTRIBUTION OF SUMS AND DIFFERENCES 
OF DEPENDENT RANDOM VARIABLES 

Up to this point, the discussion has been limited to the derivation of 

p.d.f.’s of sums and differences of independent random variables. When the 

independence condition is removed, the analysis becomes—in gener¬ 

al—considerably more complicated, largely because the transform of the 

p.d.f.’s of sums of dependent r.v.’s is no longer expressible as the product 

of the transforms of the component r.v.’s. The impact of this condition can 

be noted in the following analysis of sums and differences of dependent 

r.v.’s. 

3.4.1 Multivariate Fourier Transforms 

Section 3.2 defined the Fourier transform or characteristic function of the 

univariate p.d.f./(x) as 

(3.4.1) 
— 00 

It was also pointed out that if the Fourier transform Ft(f(x)) was analytic, 

then /(x) could be obtained by evaluating the Fourier inversion integral 

(3.4.2) 

More generally, the Fourier transform (or multivariate characteristic func¬ 

tion, hereafter abbreviated as m.c.f.) of the multivariate p.d.f. 

/(x,,x2, ...,x„) is defined [178, p. 107] as 

eillxl + it2x2--- +it„x„ 

x f(xux2,...,xn)dxxdx2- ■ • dxn, (3.4.3) 



68 SUMS AND DIFFERENCES OF RANDOM VARIABLES 

which is hereafter denoted by the simpler form F(tx,t2, If 

F(tx,t2,...,t„) is an analytic function of tt,i= then f(xx,x2,...,x„) 
can be obtained from F(tx,t2,...,tn) by evaluating the multiple inversion 

integral 

n 
1 r oo r co r oo yy 

f(xl,X2,...,Xn)=j- I ■ I 11 
J — OO*7 — OO J — OO 1 

e~itxJ 

XF(tvt2,...,tn)-]ldXj. (3.4.4) 
l 

As in the univariate case, an analytic m.c.f. defines the corresponding 

distribution uniquely. If the i—\,2,...,n are independent, the m.c.f. 

(3.4.3) is expressible as the product of n univariate characteristic functions 

(u.c.f.’s), namely, 

F(h,t2,...,tn)= n fjj, (*,)). (3.4.5) 
(=1 

where Ft (f(xi)) is given by (3.4.1) with t = ti and x = x(. Similarly, the 

multivariate p.d.f. (3.4.4) is expressible as the product of n univariate 

inversion integrals; that is, 

f(xx,x2,...,xn)= n 
7=i 

2 

=fi(x\)f2(x2)-• -fn(xn). (3.4.6) 

However if the Xj,j=l,2,...,n are not independent, the m.c.f. is not 

expressible in the form (3.4.5), and neither is the multivariate p.d.f. 

f(xl,x2,...,xn) expressible in the factored form (3.4.6).16 In particular, the 

determination of the distribution of a sum of dependent r.v.’s requires first 

that one obtain F(tl,t2,...,tn) from (3.4.3). Then, letting = t,i= l,2,...,/t 

in the resultant m.c.f. F(tut2,...,tn) and evaluating the associated inversion 

integral, one obtains the p.d.f. g(w) of the sum W=^nj=xXj of n dependent 

r.v.’s, namely, 

g(>V)=^rf e itWF(t’t^--d)dt. (3.4.7) 

l6That is, a necessary and sufficient condition for the independence of n variables is that their 

m.c.f. factorize into their individual characteristic functions [178, p. 357], 
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The p.d.f. g(w) may also be obtained by evaluating the inversion integral 

_ , 1 rc + i oo 

^(w)=—/ e-™®s{r,r,...,r)dr (3.4.7a) 
Z7TI Jc— / 00 

corresponding to the complex Fourier transform where r is a 
complex number (see Section 2.8.1). 

It is sometimes possible to transform dependent r.v.’s into independent 

variables, as when the joint p.d.f. is of the form f(xl,...,xn) = conste-2, 

where Q is a quadratic form in (a,,...,a„) [32, pp. 127-143]. For example, 

the r.v.’s Xx and X2 with joint p.d.f. 

f(x i,*2) = 
27ra,a2(l-p2)1/2 

exp 
2(l-p2)\a2 

2 pxxx2 x\ 

°\°2 a 

|p| < 1, — 00<X,<00, /=1,2 (3.4.8) 

are dependent (correlated) normal r.v.’s. Consider now the transformation 

x2 

with Jacobian J, where 

3IVi fyi 

3x2 

dy2 

0A, 3x2 

1 “P 

0,(1 V)'/2 a2(l-p2)'/2 

0 
°2 

1 

<7|02(l-p2)l/2 

(3.4.9) 

(3.4.10) 



70 SUMS AND DIFFERENCES OF RANDOM VARIABLES 

and 

Application of the transformation to the joint p.d.f. (3.4.8) gives 

g{y 1^2) ==f(xux2)\J\ 

(3.4.11) 

Clearly the transformed variables are independent, even though the origi¬ 

nal variables were dependent. 

3.4.2 The Distribution of the Sum of 
Two Dependent, Normal Random Variables 

Since the reader may find it helpful to follow through the derivation of 

the distribution of the sum of two dependent, normal r.v.’s before proceed¬ 

ing to the general case for a sum of N, this section considers the sum of 

only two such r.v.’s. The general case is treated in the next section. 

The first step is to derive the bivariate characteristic function (bivariate 

Fourier transform) of the joint (bivariate normal) p.d.f. 

f(x,y) = 

|p|<l, -oo<x,<oo, o(>0, / = 1,2. (3.4.12) 

The bivariate Fourier transform or characteristic function is then obtained 

from (3.4.3) with n = 2; that is, 

dxxdx2. (3.4.13) 
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Making the substitution 

y\ = -*i ~ ~pa\a2^2’ 

y2 = x2-pola2ti-ajt2 (3.4.14) 

and noting that the Jacobian / is 1, where 

one finds 

9/i 9/1 

3 a: , 3a:2 

9/2 9^2 

3x, dx2 

F C11 /2) = exP - \ (t W\ + 211*2° 1 °2p + <2°2) 
2ttox <t2(1 —p2)1^2 

/OO /* OO 

/ eXP 
- oo*'— OO 

/? 

2(1 — P2) \ a? 

2P/i/2 | /2 

aia2 a? 
dyxdy2 

= exp ~ \{tW\+'1P\a\(J2t\h + fal) (3.4.15) 

If one now denotes the p.d.f. of the sum w = xx + x2 by g(w), the bivariate 
characteristic function of g(w) is 

F(t,t) — exp -^(a2 + 2Pia,a2 + af)f2 (3.4.16) 

Then g(w) is given by the inversion integral 

g(w) = ^f°° exp(-/Ov)exp[-^(af + 2pa,a2 + a2)/2 dt (3.4.17) 

exp[ - w2/(2a2)] 

277(3 
[°° 

— on 

(3.4.18) 
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4 j a 

a2 = a\ + 2polo2+ o\. 

Clearly, the inversion integral (3.4.18) reduces to 

exp[ - w2/2(o2 + 2polo2 + 

S W =-. =~ 
V27t yo2 + 2polo2 + o2 

which is the well-known p.d.f. of the sum of two correlated normal r.v.’s 
with correlation coefficient p and variances a2 and o\. The p.d.f. of the sum 
of n correlated normal r.v.’s is obtained in the same manner. (See Exercise 
3.17.) 

)] — oo<vv<oo, (3.6.19) 

3.4.3 The Distribution of the Sum of 

n Dependent, Normal Random Variables 

The distribution of the sum of n dependent normal r.v.’s Xv X2,...,Xn is 
focused on the multivariate normal p.d.f. 

IF~'I1/2 r i i 
f(xJ,x2,...,*„)=-— exp -y(x-p)'V \x~n) , (3.4.20) 

(2ttY/2 1 2 J 

where V is a symmetrical (n X n) matrix, namely, the variance-covariance 
matrix 

Pl2a\°2 Pl3°l°3 P\n°\an 

P2\a2°l °2 P23°2a3 P2n°2an 
(3.4.21) 

Pnlan°\ Pn2°na2 Pn3an°3 o2n 

The usual symbols are employed. Specifically, a boldface capital letter 
denotes a matrix, a boldface lowercase letter a column vector, and a prime 
indicates transposition; thus a row vector is represented by a boldface, 
primed lowercase letter. Furthermore, V-1 is the inverse of the matrix V, 
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and pjk is the correlation coefficient 

Pjk ~ 
Pjk 

°J°k 
(3.4.22) 

where 

Pjk = E[ (xj - fy)(xk - iik) ], (3.4.23) 

Pj = E[xj]’ 

Pk = E[xk] 

aj=E[(xj-Pj)2\ 

°k = E[(xk~ Pkf], 

P = 

Pi 

Pn 

The inverse V 1 is obtained as 

Vu V21 Vnl 

\V\ \V\ \V\ 

Vl2 Vl2 Vnl 

\V\ \V\ \V\ 

Vx» V2n Vnn 

\V\ \V\ \V\ 

V' 

I vy 

where | V\ is the determinant of V and 

v-W 

(3.4.24) 

(3.4.25) 

is the adjoint of V in which T), denotes the cofactor of o,-,-, the element in 
the yth row and ith column of the matrix V. The matrix V is usually 
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V = (Fy), (3-4.26) 

where Vy represents the element in the /th row and yth column. For the 

matrix (3.4.21), Vy = pyOjoj. 
Thus for the bivariate normal distribution utilized to determine the 

distribution of the sum of two dependent r.v.’s in Section 3.4.2, 

V = 
2 
1 

paxa2 

P°l°2\ 

<*l I 

IVI = <rfCT|( 1 - P2) 

P,, = o|, Vi2=~P°1<!2’ 

Matrix 3.4.24 then becomes 

V2\ ~ P(J\a2’ 

(3.4.27) 

(3.4.28) 

V22 = oi (3.4.29) 

y-* = 

l 

°Kl-p2) 
-p 

<ji<j2(i-p2) 

-p 

ala2(\-p2) 

1 

af(l-p2) 

(3.4.30) 

It should perhaps be pointed out that the matrix (3.4.21) may be 
singular, in which case V has rank r<n. In this case, the p.d.f. (3.4.20) is 
reduced to r dimensions, which means that one or more variables are 
redundant. 

By utilizing the fact that there exists an orthogonal17 transformation 
[178, p. 347]; [32, p. 154, Exercise 1] 

x = By, (3.4.31) 

which transforms the argument of the exponential function in (3.4.20) into 
a sum of squares where the coefficients af are the latent roots or 
eigenvalues [161, p. 122] of V~\ one can establish [178] that the m.c.f. of 

l7An orthogonal transformation is a linear transformation of the variables xx, x2,...,xn of the 

form 
n 

yi 2 ^iji 1,2,...,n, 
j-1 

which leaves the quadratic form x} + x2+ • • • + x7 invariant. 
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the multivariate density function (3.4.20) is 
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F(tl,t2,...,t„) = exp( - ^t'Vt)exp(/t». (3.4.32) 

n 

The p.d.f. g(w) of the sum W= ^ Xt is then given by the inversion integral 

g(w)=^r (3.4.33a) 

= e~nvF(r,r,...,r)dr. (3.4.33b) 
Z7TI Jr — ion 

3.5 THE DISTRIBUTION OF THE SUM OF DISCRETE 
INDEPENDENT RANDOM VARIABLES 

Among discrete i.r.v.’s, those assuming only integral values k = 
0,1,2,...,are of special importance, and here we consider the distribution 
of the sum of such r.v.’s. The derivation of the probability distribution of 
such sums is accomplished by the well-known method of generating 
functions, the latter being defined below. (The material in this section, with 
the exception of the example, is taken from Feller [99, pp. 248-252], and is 
reprinted with the permission of the publisher.) 

Definition 3.5.1. Let a0,ax,a2,...,be a sequence of real numbers. If 

A (5) = a0 + axs + a2s2 + • • • (3.5.1) 

converges in some interval — s0 < s < s0, then the function A (5) is called the 
generating function of the sequence {a-}. 

It should be pointed out that 5 is not an r.v. but is merely a tool for 
generating the sequence {a,-}. If the sequence {aj} is bounded, a compari¬ 
son with the geometric series shows that the series (3.5.1) converges at least 
for |j| < 1. 

Consider now the problem of determining the probability distribution of 
a sum of nonnegative, independent integral-valued r.v.’s with the probabil¬ 
ity distributions 

Pr[X=j]=dj (3.5.2a) 

and 

K[Y=j] = bj. (3.5.2b) 
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The event (X —j,Y= k) has probability djbk. The sum 

W=X+Y (3.5.3) 

is a new r.v., and the event W=r is the union of the mutually exclusive 
events 

(*-0, T= r), (X= 1, Y=r-1 ),...,(X=r, Y=0). (3.5.4) 

Consequently, the distribution cr = P [ W— r] is given by 

cr = a0br + axbr_x + a2br_2 + • • • +ar_xbx +arb0. (3.5.5) 

The operation (3.5.5), leading from the two sequences {ak} and {bk} to a 
new sequence {c*.}, is called a convolution according to the following 
definition [99, p. 250]. 

Definition 3.5.2. Let {ak} and {bk} be any two number sequences.18 The 
new sequence (cr) defined by (3.5.5) is called the convolution of {ak) and 
{bk} and is denoted by 

(3.5.6) 

The sequences (ak} and {bk) have generating functions 

A(s)=£aksk 
k 

(3.5.7a) 

and 

B(s)='2bksk. (3.5.7b) 
k 

The product T(.s') •£(.?) can be obtained by termwise multiplication of the 
power series for A (s) and B (s). Collecting terms with equal powers of s, 

one finds that the coefficient cr of sr in the expansion of A (5) B (5) is given 
by (3.5.5). This result is expressed in Theorem 3.5.1. 

Theorem 3.5.1 If {a*.} and (bk} are sequences with generating functions 
A (5) and B (y), and ck is their convolution, the generating function C (5) = 
'2kcksk is the product 

C(*) = /l(j)fl(j). (3.5.8) 

If X and Y are nonnegative, integral-valued, mutually independent r.v.’s 

l8The sequences {ak} and [bk} are probability distributions usually in our applications, but 
they need not be. 
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with generating functions ^(5) and B(s), their sum W=X+Y has the 
generating function A (j) B (s). 

More generally, if {ak}, {bk}, {c*}, [dkare any sequences, one can 
form the convolution ak*bk and then the convolution of this new sequence 
with ck, and so on. The generating function of is 
>4(5) B(s) C(s) D(s), which shows that the order in which the convolu¬ 
tions are performed is immaterial. For example, {ak}*{bk}*{ck} = 

{ck}*{bk)*{ak}, and so on. That is, the convolution is an associative and 
commutative operation, just as is the summation of r.v.’s. 

In the study of the sum 

W=Xx+X2+■■■+Xn (3.5.9) 

of n i.r.v.’s, the special case in which the Xj have a common distribution is 
of particular interest and importance. If {a,} is the common probability 
distribution of the Xp the probability distribution of the sum (3.5.9) will be 
denoted by the symbol {a'•}"*. Then 

«2* = {«,}*{*,)> (3.5.10a) 

(3.5.10b) 

and in general 

{<5)"*-{«, (3.5.10c) 

That is, {a,j}n* is the sequence of probabilities whose generating function is 
An(s). Specifically, {a,}1* is the same as (a,), and (a,}0* is defined as the 
sequence whose generating function is y4°(.s)=l, that is, the sequence 
(1,0,0,0,...). 

For example, the generating function for the binomial distribution 

b(k;n,p) = ^pkqn~k is 

2 [nk){psfqn~k={q+ ps)n. (3.5.11) 

Since this generating function is the «th power of (q+ps), we see that 
b(k;np) is the distribution of the sum Z = 2"=1Aj. of n i.r.v.’s with the 
common generating function (q+ps)-, each variable Xj assumes the value 0 
with probability q and the value 1 with probability p. That is, 

b(k-n,p)={b(k;\,p))n* (3.5.12) 

is the sequence of probabilities that the sum of the number of successes in 
n Bernoulli trials is k,k = 0,l,2,. ..,n. 
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Example 3.5.1 illustrates the use of convolutions in determining the 
probability distribution of the sum of i.r.v.’s that do not have a common 
distribution. 

Example 3.5.1. Two types of Bernoulli trial are carried out, in which 
the probabilities of success in a given trial are, respectively, px and p2. If 
m = 2 Bernoulli trials of type 1 and n = 3 Bernoulli trials of type 2 are 
carried out, derive the probability distribution of the sum W=X+ Y of the 
number of successes in ^ = 5 independent trials. 

From (3.5.5), the desired probability distribution is 

P[ W=r]=cr 

= £«A-„ r = 0,l,2,...,5, (3.5.13) 
i' = 0 

where 

' = 0,1,2, (3.5.14a) 

*y = ())^?2W. 7=0,1,2,3. (3.5.14b) 

Specifically, 

co — aobo ~ q\q\ 

cx = a0bl + alb0 

= lp2q\ql + 2pxqxql 

c2 = a0b2 + axbx + a2b0 

= 2>p\q\q2 + 6Pxp2qxq\ +p2xqJ 

c3 = aob3 + axb2 + a2bx 

= q\p\ + 6pxp\qxq2 + 3p\p2q\ 

C4 @\ ^3 @2^2 

= 2pxp\qx+2>p \p2q2 

c5 — a2b3 

=p2\pI 
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3.6 MOMENT-GENERATING FUNCTIONS 
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It is clear that Fourier, Laplace, and Mellin transforms all have the 

properties of a moment-generating function (m.g.f.) of the p.d.f./(x) of an 
r.v. X, since 

E[Xk] 71 (/(*)) r dt 
t = 0 

E[Xk] = (-1 )k4jLr(f(x)) 
dr 

r = 0 

[where Lr(f(x)) is defined by (2.8.2a) and F,(f(x)) by (2.8.5).] 

Furthermore, if these transforms are analytic in the relevant strip (as they 

usually are), they determine f(x), hence its moments, uniquely. 

However the familiar m.g.f. (here denoted by Mx(t)) for a p.d.f.19/(x) is 

not an integral transform but is defined to be 

Mx(t)= \ etxf{x)dx, 
•'range 

of X 

where t is a real (continuous) variable. (If t is regarded as a complex 

variable, then Mx(t) is equivalent to the bilateral Laplace transform 

(2.8.7b).) The &th moment is then 

M,(i) = E [e“] 

= f e‘*f(x)dx 
J — no 

= /_' 
(■txy (tx)” 

1 + tx H-^-!-••■ + 
2! n\ 

f(x)dx 

/oo r oo p- r oo 

f(x)dx + t I xf(x)dx+ j x2f(x)dx 
-OO •' — 00 '^••' — 00 

r oo 

+ • • • H—j- / xnf(x)dx+ • • • 

^ tJ / 
= ^ 77 Hr 

7 = 0 J' 

l9The m.g.f. of a probability mass function p(x) is 

Mx(t)= S e,xp(x). 
All x 
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3 tj 
K(>) 

1 = 0. 

Moment-generating functions are sometimes used to show that a statistic 

or r.v. has a particular p.d.f. For instance, there are some situations in 

which one can derive rather easily the m.f.g. of a p.d.f. without knowing 

the p.d.f. itself. If such an m.g.f. is identical with that of a known 

distribution—say, the chi-square distribution—then one concludes that the 

heretofore unknown p.d.f. is chi-square. A case in point is the p.d.f. of the 

sum of the squares of n i.r.v.’s, each having the standardized normal 

distribution. It is easy to derive the m.g.f. of this p.d.f. and to show that it 

is identical to that of a chi-square distribution with n degrees of freedom. 

One concludes, therefore, that the sum of the squares of n such i.r.v.’s has 

a chi-square distribution with n degrees of freedom. However in utilizing 

the m.g.f., one must be certain that the conditions specified in its definition 

are met. In particular, the m.g.f. must exist in an interval \t\<h, h>0 [153, 

2nd ed, p. 40]. Some examples given by Kotlarski [187] demonstrate some 

interesting deficiencies—not in the m.g.f. techniques, as he suggested—but 

in what happens when the conditions of a theorem or technique are not 

met [272]. The deficiency of the m.g.f. is that it does not always exist for a 

distribution. Also, as Kotlarski [187] points out, the domain of an m.g.f. 

depends on the distribution, whereas the domain of all characteristic 

functions is the same, namely, the real line. 

In view of these limitations of the m.g.f., and since m.g.f.’s are com¬ 

monly used, the following question arises: given that a set of constants are, 

in fact, the moments of a distribution, can any other distribution have the 

same set? In other words, does the given set of moments determine the 

distribution uniquely? This question is not relevant when the moments are 

determined from an analytic transform, in which case the p.d.f. and its 

moments are uniquely determined. The question is relevant, however, 

when one seeks to determine a p.d.f./(x) from a knowledge of its moments 

or cumulants as obtained from the moment-generating or cumulant-gener- 

ating functions. The cumulant Kk is the coefficient of (it)k/k\ in the power 

series expansion of log if an expression exists [178]. The cumu¬ 

lants bear a definite relation to the moments of a p.d.f. and in general, 

have properties that are more useful from the theoretical standpoint, as 

Section 8.10 reveals. At any rate, the answer to the aforementioned 

question of moments can be found in various theorems, three of which are 

given below without proof.20 The proofs may be found in Stuart and 
Kendall [178, pp. 109-110]. 

20Reproduced by permission of the publishers, Charles Griffin & Company Ltd., of London 

and High Wycombe, from Kendall and Stuart, Advanced Theory of Statistics, Vol. I, 1st ed. 
1958; 4th ed. 1977. 
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Theorem 3.6.1 A set of moments determines a distribution uniquely if the 

series 'Lf=0vjtJ/j\ converges for some real nonzero /, where v- is the 
absolute yth moment about any origin. 

A few simple but effective consequences of this theorem are stated in the 
following corollaries [178, p. 110].21 

Corollary 1. The moments uniquely determine the distribution, if the 

upper limit of lim^M\^ /n is finite. 

Corollary 2. A sufficient condition that the moments determine a distrib- 

ution uniquely is that lim,,^^ V /2w t>e finite (a condition that enables 
one to disregard the absolute moments). 

Corollary 3. The moments uniquely determine the distribution, if the 
range of the distribution is finite. 

Two other criteria for answering the moment question, the first due to 

Carleman [46] and the second to Stieltjes [178, p. Ill], are given in the 

following two theorems, stated here without proof. 

Theorem 3.6.2 A set of moments determines a distribution uniquely if 

(when the range of the distribution is ( — oo, oo)) 

1/(2i) 

diverges. For the limits 0 to oo, the corresponding series is 

oo i 

,?o (*,)'/«> 

Theorem 3.6.3 If there exists a p.d.f. f(x), the moments determine it 

uniquely if, for limits — oo to + oo and some fixed x0, 

f(x) < M\x\p~ 'exp( — «|x|x) for |x|>x0, M,/?,a, >0, A>1 

and for limits 0 to oo, 

f(x)< M |x|/J_1exp( — a|x|A) for |x|>x0, 0, 

2‘Reproduced by permission of the publishers, Charles Griffin & Company Ltd., of London 

and High Wycombe, from Kendall and Stuart, Advanced Theory of Statistics, Vol. I, 1st ed., 

1958; 4th ed., 1977. 
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Example 3.6.1 Show that the normal distribution 

/(*) = —^-exp( 
oVXrr \ 

— X 

2a2 F 
— 00 < X < 00 

is uniquely determined by its moments. 

Solution22 Since the distribution is symmetrical about the origin, all odd 

order moments are zero (i.e., /x^+i =0). It can be shown (e.g., by partial 

integration) that all even order moments exist; specifically, 

/4=—7=^ r x2rexP 
ov2tt *'-< 

(2r)i 

(1#) dx 

X r\ ’ 

Consider, then, the evaluation of 

r = 0,1,2,— 

lim lim (3.6.1) 
«->oo 2 n n^><x>\2nj\ 2 n\ j 

Using Stirling’s formula for evaluating large factorials, one has 

lim n\ = \l2vn nne~n, 
n—> oo 

which when used in (3.6.1) yields 

2n/- 

lim —-- 
n-* oo In 

= lim - 
"-*00 nV2 

= lim 

e~2n (2n)2nV47m 

e-nnnVXrm 

1/2 n 

V2e n1/2 

= lim - 
"^°° V2en 

= 0. 

22Reproduced by permission of the publishers, Charles Griffin & Company Ltd., of London 

and High Wycombe, from Kendall & Stuart, Advanced Theory of Statistics, Vol. 1, 1st ed., 

1958; 4th ed., 1977. 
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Hence it follows from Corollary 2 that the normal distribution is uniquely 
determined by its moments. 

It can also be shown that the moments of many of the basic distribu¬ 

tions in statistics (e.g., the chi-square, beta, uniform, and Rayleigh distribu¬ 

tions) determine the distribution uniquely (see Exercise 3.6). Because of 

this, the m.g.f. often can be used to advantage, as we now show. First, 

however, it is helpful to state some important operational rules relevant to 
the m.g.f. Mx(t) of the p.d.f./(x): 

Mx (t) = E[ e,x~\ (definition of m.g.f.) 

= | etxf(x)dx (provided this integral exists). 
** ~ 00 

«„(/) = £[ e'“] 

= Mx (ct) (c = a constant), 

Mx+C(t) = E[eix+C}‘] 

= ectMx (t) (c = a constant), 

(3.6.2) 

(3.6.3) 

M'2x.(t) = E[e(x'+x*+---+x")t] 
j 

n 

= II E\ etxj] (assuming the xj are independent), 

y= i 

(3.6.4) 

Example 3.6.2 Use the m.g.f. to derive the p.d.f. g(w) of the mean 

w = —2”= \X: of n normal i.r.v.’s with p.d.f.’s 
n J 1 J 

1 

OjV2 77’ 
— CO<Xj<O0. exp 
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One begins by showing that the normal p.d.f. with mean fi and variance 

a2 has the m.g.f. 

Mx(t) = e»‘ + 
a2t2 

To establish this result, note that, by definition, 

Mx(t) = E[e‘x] 

1 .-LfVap 
oV2tt 2 \ a J 

dx, 

which reduces to 

1 r<x 

exp -(x — (/x + a2/))2 — 2 fw2t — a4t2 
2 a2 

o2t2 
= exp fit H 2 

l_rx 

J-, V27T 
exp 

2a' 
(x-(/r + at))2 

dx 

dx 

= exp .2 r 0 + 0 J 

Since it has previously been proved that a normal distribution is uniquely 

determined by its moments, it follows that a necessary and sufficient 

condition that a distribution be normal with mean m and variance v is that 

its m.g.f. be of the form 

Mx (t) = exp^mt + t>y j. (3.6.5) 

Thus w will be normally distributed, if and only if g(w) has an m.g.f. of the 

form of (3.6.5). Now, from (3.6.4), g(w) has the m.g.f. 

ac«= n m (t) 
7=1 

n 

= II exp 
( = 1 

. , 2 t 
Vjt+Oj^ 

= exp 
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which is of the form (3.6.5). Hence g(w) is normally distributed with mean 
2” Hj = np and variance 2"a72 = no2. 

In concluding this discussion of m.g.f.’s, one should point out that since 

the Mellin transform generates the moments of a function per se, it is 

sometimes more convenient to use than the traditional m.g.f. or the 

Fourier or Laplace transforms, all of which require the use of derivatives. 

The Mellin transform is also a natural m.g.f. for determining the moments 

of the distribution of products and quotients of i.r.v.’s, whereas the 

characteristic function, the Laplace transform, or the “traditional” m.g.f. 

are the appropriate methods for obtaining the moments of the distribution 

of sums and differences of i.r.v.’s. 

EXERCISES 

3.1 State the generating function that generates the probabilities of the 

number of spots on the upper face of a die when it is tossed once. 

3.2 Use the generating function to determine the probabilities of the 

possible sums of the spots on the upper faces of two fair dice. 

3.3 Let X be the number of nickles drawn from a box containing two 

nickles and two dimes in a draw of two coins. State the generating 

function for the probabilities Pr[X=j],j = 0,1,2. 

3.4 One of the numbers 2 and 3 is chosen at random with the 

probability of \ for each, and one of the numbers 2,3,4 is chosen 

at random with probabilities } each. Determine the generating 

function that generates the probabilities Pr[S=j],j = 4,5,6,l, where 

S denotes the sum of the two numbers chosen. 

3.5 Let X be the number of trials required to obtain the first success in 

a sequence of independent Bernoulli trials in which the probability 

of success at each trial is p (geometric distribution). 

(a) Find the generating function for the r.v. X. 

(b) Find E[X], 

(c) Find the generating function for the r.v. X + 2. 

3.6 Show that the moments of each of the following distributions 

determine the distribution uniquely. 
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(a) The uniform distribution 

/(a) = 1, 0< x < 1 

= 0, otherwise. 

(b) The chi-square distribution with m degrees of freedom: 

fix) =—-— -xm//2~le~x/2, 0 < a < co 
2m/2T(m/2) 

= 0, otherwise. 

(c) The beta distribution 

0<x<1 B(a,b) 

= 0, otherwise. 

(,d) The Rayleigh distribution 

f(x) = xe~x2//2, 0 < a < co 

= 0, otherwise. 

Hint, (a), (c) Use Corollary 3 of Section 3.6. (b), (d) Use the 

Mellin transform to obtain the moments of the distribution, and 

then apply any of the theorems or corollaries stated in Section 3.6 

that are appropriate. 

3.7 Find the moments of the standardized normal distribution 

3.8 

/(a)=—-—e x2/2, — co < a < co 
VItt 

by means of (a) the m.g.f. and (b) the Mellin transform. 

Find the moments of the Cauchy distribution 

/(*) = 
1 

7r(l + A2) 

— 00 < A < 00 

by using (a) the Mellin transform and (b) the m.g.f. 
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3.9 Let xu x2, and x3 be three r.v.’s with joint p.d.f. 

/(x„x2,x3) =---Xj > 0, x2>0, x3>0 
(l + Xl + x2 + x3)4 

= 0, otherwise. 

Find the p.d.f. g(w) of the sum w = x,+ x2 + x3. 

Ans. g(w) =———w>0 
(1 + w)4 

= 0 otherwise. 

3.10 Derive the p.d.f. g(w) of the difference w = x,— x2 of two identi¬ 

cally distributed exponential i.r.v.’s each having p.d.f. f(xl) = e~x‘, 
x, >0, i= 1,2. 

e~w 
Ans. g(w)=—, 0 < w < oo 

ew 
= —, — GO < IV < 0. 

3.11 Show that if for k= 1,2,Xk is a Cauchy r.v. with parameter 
bk, having the p.d.f. 

fM 
_1_ 

*bk[l + (xk/bkf] ’ 

— QC < Xk< QO, 

then 

w= 2 xk 
k=\ 

is a Cauchy r.v. with parameter 2^ = !^, where the Xk are assumed 

to be independent. 

3.12 Prove that the p.d.f. g(w) of the sum w = 2”_ xXj of n identically 

distributed uniform i.r.v.’s each having p.d.f. 

/(xy)=l, 0<x/<l 

= 0, elsewhere 
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is 

?(b,)= (7=i)! iYw-'y~'+{r2Yw~2y~' 

— (3)(M' —' + ••• + ••' 1)^ )(*’-('—0)' '}. 

r— 1 < w< r, r= 1,2,(Cramer, [73, p. 245]) 

3.13* Let xx,x2,...,xn be n i.r.v.’s, each of which is distributed uniformly 

(rectangularly). Without loss of generality, one may assume that 

the variable xp j = l,2,...,n is distributed uniformly between ±a} 

with mean 0, with p.d.f. 

fj(xj) = ~aJ<xJ<aJ 
j 

= 0, \xj\>aj. 

Prove that the distribution function F(w) of the sum W='E"=xXj is 

(- iy,+'S2+ ’ +'s"[(H,-(-uI + a2H-+ an)/2-tt]n 
F(w) = 2-j-* 

n\axa2...an 

w + a j + a2 + • • • + an 
where Sl=sxax + s2a2 + +snan <-^- 

and the summation is to be extended over all sx,s2,...,sn that can 

only have two values, 0 and 1, till (w + ax + a2 + . ..a„)/2 —£2 is not 

negative. 

(Mitra, 1970) 

(The probability distribution of the sum of i.r.v.’s, each of which is 

distributed uniformly between different ranges, is of both theoreti¬ 

cal and practical importance in many branches of science, particu¬ 

larly in numerical analysis.) 

3.14* Show that when the number n of uniform i.r.v.’s with p.d.f.’s given 

in Exercise 3.13 is large, the asymptotic density function g(w) of 

the sum W = 2"= xXj is given by 

g(w); 
27r(ax + a2 + • • • + a 

1/2 

exp 
w* 

a\ + + ai 

(Mitra, 1970) 
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3.15 Find the p.d.f. g(w) of the sum 

W=Xx + X2 

of an exponential and a beta r.v. having, respectively, the p.d.f.’s 

fl(xl) = e~Xi, 0<x,<oo 

= 0, elsewhere 

/2(-x2) = 6x2(1 ~x2), 0<x2<1 

= 0, elsewhere, 

assuming that Xx and X2 are independent. Check your result by 
showing that 

and 

E[ W] = E[Xx] + E[X2]. 

3.16* Determine the p.d.f. g(w) of the sum 

Wx = Xx + X2 + X3, 

where Xx,X2,X3 are, respectively, uniform, exponential, and chi- 

square (with 4 degrees of freedom) i.r.v.’s with p.d.f.’s 

fI(x1) = l, 0< x, < 1 

= 0, elsewhere 

f2(x2) = e~X2’ 0<x2<oo 

= 0, elsewhere 

f3(x3) = ^-x3e(_*3)/2, 0 < x3 < oo(chi-square distribution 

with 4 degrees of freedom) 

elsewhere. 

A ns. g(w) = 1 — e w — we H'/2, 0<w<l 

= + (w- \)e~^~l)/2- e~w- we~w/2, w>\ 

= 0, elsewhere 
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Verify that 

and 

E[ W]= E[Xx] + E[X2] + E[X2}. 

3.17 Find the p.d.f. of the sum of n correlated normal r.v.’s with joint 

p.d.f. (3.4.20). 

3.18 Find the p.d.f. g(w) of the sum W— Xx + X2 of two i.r.v.’s Xx and 

X2 having p.d.f.’s 

f2(x2) = e x* 

= 0 

— 1 < xx < 0 

elsewhere 

0 < x2 < oo 

elsewhere. 

A ns. g(w)=\ — e (w+1), — 1 < w < 0 

= e~w-e~(w+,), 0< w< co 

3.19 Find the p.d.f. g(w) of the sum W= Xi + X2 + X3 of three i.r.v.’s 

having p.d.f.’s 

= 0, 
f2(x2) = e 

= 0, 
/3(a3)=—h=re-*i, 

V2v 

— 1 < A, < 0 
elsewhere 

0 < x2< oo 

elsewhere 

— oo < x3 < oo 

Verify that g(w)dw= 1 and that 

E[ W] = E[Xx] + E[X2] + E[X2\ 

3.20 Show that (3.2.5) and (3.2.5a) are equivalent. (See [178, pp. 94-97].) 



CHAPTER 4 

The Distribution of Products and 
Quotients of Random Variables 

4.1 THE MELLIN CONVOLUTION AND ITS 
RELATION TO PRODUCT DISTRIBUTIONS 

The importance of the Mellin integral transform in studying the p.d.f. of 

products of i.r.v.’s is not surprising when one notes that the p.d.f. of the 

product Y = XxX2 of two nonnegative i.r.v.’s with p.d.f.’s/^xQ and f2(x2) *s 

expressible as a Mellin convolution, namely, 

h2(y)= f™ ^f\[^-)f2(x2)dx2 (4.1.1a) 
•'0 x2 \x2 ' 

= rf/,(*,)/2(fW (4.1.lb) 
•'0 *1 \xl / 

To establish this fact, consider the transformation of variables 

Y=XxX2, X2 = X2, (4.1.2) 

which, on solving inversely for A, and X2, yield 

X, = -f, X2 = X2. (4.1.3) 
A 2 

The transformation (4.1.2) transforms the joint p.d.f. f(xx,x2)=fx(xx)f2(x2) 

into g(y,x2), where 

g(y,x2)=fi pi. (4.1.4) 

91 
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J being the Jacobian of the inverse transformation (4.1.3): 

0A, 3-Xj 

dy dx2 

3x2 3x2 

dy 3x2 

0 

(4.1.5) 

Integrating out the variable x2 in (4.1.4), one obtains the p.d.f. of y, 

namely, 

(4.1.6) 

which is precisely the Mellin convolution of /,(Xj) and /2(x2). That is, the 

Mellin convolution of two p.d.f.’s /,(*,) and f2(x2) is precisely the p.d.f. 

h{y) of the product r.v. Y=XxX2. 

Similarly, the p.d.f. of the quotient Y= X{/X2 = (Xx)(\/X-^ of two 

nonnegative i.r.v.’s with p.d.f.’s fi(xx) and f2(x2) is expressible as the Mellin 

convolution 

(4.1.7) 

of /](x,) and g2(\/x2). As in the case of products, this can be established 

by utilizing a transformation, specifically, 

(4.1.8) 

the inverse of which is 

Xx=YX2, X2 = X2. (4.1.9) 



THE MELLIN CONVOLUTION 93 

Since the Jacobian of the transformation (4.1.9) is 

9x, 3x, 

dy 9x2 

dx2 dx2 

dy dx2 

= *2 y 
o 1 

= *2> (4.1.10) 

the joint p.d.f. f(xl,x2)=f1(x1)f2(x2) is transformed into g(y,x2), where 

S(y,x2)=fl(yx2)f2(x2)\j\ 

= x2fx(y,x2)f2{x2). (4.1.11) 

On integrating (4.1.11) with respect to x2, one obtains the Mellin convolu¬ 
tion 

r 00 

hi(y)= I g(y,x2)dx2 

= f x2/l(yx2)f2(x2)dx2, (4.1.12) 
Jo 

which is the p.d.f. of the quotient r.v. Y=Xx/X2. That the p.d.f. h2(y) in 

(4.1.12) is in fact the Mellin convolution of /,(x,) and g2{\/x2) perhaps 

becomes more apparent if one expresses (4.1.12) in the equivalent form 

The variable x2 in both (4.1.12) and (4.1.13) may, of course, be inter¬ 

changed with the variable xx without affecting the convolution of the pair 
of functions involved. 

As specific examples of Mellin convolutions, consider the p.d.f.’s of the 

quotient and product of two independent and identically distributed uni¬ 
form r.v.’s Xx and X2, where 

//(*/) = 1, 0 < x, < 1, /=1,2. (4.1.14) 
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For the product convolution, one has, from (4.1.1a) 

h2(y)—f —/i( \f2(xi)dx2- (4.1.15) 
J0 x2 \x2 / 

Note that the lower limit of integration of x2 is determined from the 

relation 

x, = —, 0< x, < 1, 0 < x2 < 1. 

That is, since x, < 1, the lower limit on x2 is7. Also, since x, < 1 and x2 < 1, 

the maximum value of y = x}x2 is 1. Hence the value of the integrand in 

(4.1.15) is zero for x2<y and for x2> 1, so that (4.1.15) becomes 

= 0nx2)|^ 

= In 1 — lny 

= — Iny, 0 < y < 1. (4.1.16) 

Similarly, for the quotient convolution, one has, from (4.1.12), 

r 00 
h200= / *2/1 (t^2)/2 (x2)dx2. (4.1.17) 

*'0 

Since y = xx/x2, it follows that x2 < xx/y = x,(l/y). That is, 
> 

x2<L; (4.1.18) 

since x, < 1. However (4.1.18) is valid only if y> 1, since when y<l, 

(4.1.18) violates the necessary constraint x2< 1. If y < 1, (4.1.18) must be 

replaced by the inequality 

x2< 1. (4.1.19) 

Furthermore, since x, and x2 are nonnegative, the integrand in (4.1.17) is 
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zero when x2<0. Consequently, the p.d.f. (4.1.17) has two components: 

hi00 = f x2dx2 

= j> 0< >» < 1 (4.1.20a) 

and 

(4.1.20b) 

Thus the convolution of the quotient of two identically distributed uniform 

r.v.’s with p.d.f. (4.1.14) has the two components (4.1.20a, b) that hold 

wheny > 1 and 0< y < 1, respectively. Figure 4.1.1 shows the convolution 
graphically. 

It has been shown that the Mellin convolution of /,(*,) and f2(x2) is 

precisely the p.d.f. of the product r.v. Y= XxX2. By n— 1 repeated convolu¬ 

tions of the p.d.f.’s, one obtains the p.d.f. of the product 7=II"=1Ar,- of n 

i.r.v.’s Xj, as a subsequent section of this chapter proves. It is also shown 

that repeated convolution of the p.d.f.’s is equivalent in the transform to 

successive multiplication of the Mellin integral transforms—which consid¬ 

erably simplifies the derivation of the distribution of products of i.r.v.’s. 

h(y) 

Fig. 4.1.1 Graphical representation of the p.d.f. of the quotient of two identically distributed 
uniform r.v.’s. 
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4.2 THE MELLIN INTEGRAL TRANSFORM 

AND INVERSION INTEGRAL 

As we see shortly, the Mellin integral transform and its associated inver¬ 

sion integral play a fundamental role in the derivation of p.d.f.’s of 

products, quotients, and—more generally—algebraic functions of i.r.v.’s. 

Although the dual relationship between an integral transform and the 

corresponding inversion integral for a Mellin transform pair has been 

previously stated, for the benefit of the reader and for convenience in 

future reference, the result is now stated as a theorem. 

Theorem 4.2.1. (The Mellin Transform and Inversion Theorem). If /(x) 

is a real function that is defined and single valued almost everywhere for 

x>0 and is absolutely integrable over the range (0,oo), then the Mellin 

transform 

(4.2.1) 

exists [347, p. 41]. Conversely, if the Mellin transform exists and is an 

analytic function of the complex variable 5 for c, < Re(s) < c2, where cx and 

c2 are real, then the inversion integral 

(4.2.2) 

evaluated along any line c, < Re(s)= w < c2 converges to the function/(x) 

independently of w [347, p. 42]. 

Hereafter, the Mellin inversion integral (4.2.2) is written in the more 

convenient form: 

(4.2.3) 

As in the case of Fourier and Laplace inversion integrals, the line (c — 

/oo,c + /oo) is referred to as the Bromwich path. The integrals (4.2.2) and 

(4.2.3) are important because under the stated conditions, a function/(x) is 

uniquely determined by its Mellin transform Ms(J(x)), so that/(x) can be 

obtained from a knowledge of its Mellin transform by means of (4.2.3). 
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As has already been shown, the Mellin convolution of two functions 

/iC*i)> fi(x2)y 0< a, < oo, 0< x2< oo, namely, 

(4.2.4) 

is the p.d.f. of the product Y=XxX2 of the i.r.v.’s V, and X2 with p.d.f.’s 

/i(*i) and f2(x2), respectively. Note also that by the definition (4.2.1) the 
Mellin transform of the product density function h2(y) is 

K (K(y)) = £[>■'-'] 

— £’[f-t |X2) ]’_ 1 

M*r'] 

= M,(. (4.2.5) 

Hence the p.d.f. h2(y) of the product Y=XlX2 of two i.r.v.’s with p.d.f.’s 

/i(x,) and/2(x2) is the Mellin convolution whose Mellin transform is the 

product of the Mellin transforms of /,(*,) and f2(x2). Therefore, by 

Theorem 4.2.1, the Mellin convolution h2(y) may also be obtained by 
evaluating the inversion integral 

(4.2.6) 

a fact which is exploited in deriving the p.d.f. of products of i.r.v.’s in the 
section that follows. 

43 THE DISTRIBUTION OF PRODUCTS AND 
QUOTIENTS OF INDEPENDENT NONNEGATIVE 
RANDOM VARIABLES 

The Mellin convolution (4.2.6) may be extended to include the p.d.f. hn{y) 

of the product Y— XxX2- ■ • Xn of n nonnegative i.r.v.’s. Thus by (4.2.4) the 

p.d.f. h3(y) of the product Y= XxX2X3 of three nonnegative i.r.v.’s is the 
Mellin convolution 

(4.3.1) 
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whose Mellin transform, from (4.2.5), is 

Ms (h3(y)) = Ms (h2(y))Ms (/3(*3)) 

= Ms (/, {xx))Ms (f2(x2))Ms (/3(x3)). (4.3.2) 

Clearly (n — 1) successive applications of (4.2.4) and (4.2.5) for nonnegative 

i.r.v.’s leads to the general results 

K(y)=f00 y K-1 (j- )/M dxn (4-3-3) 
•'0 Xn V Xn / 

and 

K(K(y))= ft (4.3.4) 
i= l 

Thus the p.d.f. hn(y) of the product of n i.r.v.’s can be obtained by 
evaluating (4.3.3) as an (rc-l)-step Mellin convolution. Since the Mellin 

transform of hn(y) is given by (4.3.4), however, it follows from the 

inversion Theorem 4.2.1 that (4.3.3) is also equivalent to 

K(y)--h f+'V* n «,(/,(*))*. C,<c<c2, (4.3.5) 

provided the M^f^xJ), i=\,2,...,n are analytic in a strip c,<Re(s)<c2, 

where c, cx, and c2 are real. In other words, hn{y) can be obtained directly 

from a knowledge of the Mellin transforms of the component r.v.’s by way 

of (4.3.5). In fact, since the evaluation of (4.3.5) is almost always easier, 

simpler, and quicker than the evaluation of the (n— l)-fold convolution 

(4.3.3), the p.d.f. hn(y) is usually derived from (4.3.5). Therein lies the 

utility of the Mellin integral transform in determining the p.d.f.’s of 

products of i.r.v.’s. 
It should be pointed out that (4.3.4) is an immediate consequence of the 

definition (4.2.1) of the Mellin transform. For if h{y) is the p.d.f. of 

T=II"=1ArI, where the Xt are i.r.v.’s with p.d.f.’s /■ (■*/)» then by the defini¬ 

tion (4.2.1), 

M,(h(y))= E[y‘~1 ] = e[(xxx2- ■■ xj’~1 ] 

= n £[*;-'] = n */,(/(•*,))• 
1=1 i-i 
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The distribution function H(y), defined as 

H(y)= fyh(x)dx, 0<y<oo, 
Jo 

(4.3.6) 

can be obtained by direct integration in (4.3.6) or through 
Mellin transform of h(y). More specifically, 

use of the 

Ms(\-H{y)) = s-'MS+X{h(y)), (4.3.7) 

so that 

1-^00= 2hf y~Ss~lMs+M(y))ds. 
jc _ / 00 

(4.3.8) 

To establish (4.3.8), assume that the derivative H'(y) = (d/dy)H(y) = h(y) 
exists for 0 <y < oo, and let 

cW=i-#W. (4.3.9) 

Then from the well-known relationship [95 (9), p. 307], 

«.(G'W)=-(J-I)M,-,(CW), (4.3.10) 

it follows that 

- M,(H' M)= -(s-I)M,_,(GM), 

hence that 

M,+ i(H'M) = sM,( G{y)). (4.3.10a) 

Or equivalently, 

(4.3.10b) 

Inversion of the Mellin transform (4.3.10b) yields 

1 rc + i oo I 

(4.3.11) 

which is identical with (4.3.8). 
The Mellin integral transform may also be used to obtain the p.d.f. h(y) 

of the quotient Y=Xx/X2 of two nonnegative i.r.v.’s Xx and X2 with 
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p.d.f.’s and /2(x2), respectively. To derive this quotient density 
function, write Y as the product of Xx and 1 / X2 and note that if W has the 
p.d.f. f(w), and U= Wa, where a is a real number, has p.d.f. g(u), then by 
definition the Mellin transform of the r.v. U is 

M, (?(«)) = E[u‘~'] 

r oo 

= f wa(-s~^f(w)dw. 

or equivalently, 

Ms(g(*)) = Mas-a + l(f(W))- (4.3.12) 

In particular, if a= — 1, (4.3.12) states that the Mellin transform of the 
p.d.f. g(l/w) of the reciprocal r.v. l/W is the Mellin transform of /(w) 
with s replaced by —5 + 2. Hence 

Ms(h(y)) = Ms(Mxi))Ms(g(l/x2)) 

= Ms U\ (^1 ))A/_J+2(/(x2)), 

so that 

1 r c + i oo 

h(^=2riJc_ioo y SMs(fi(xl))M_s+2(f2(x^)ds. 

Finally, 

r + (4.3.15) 
Jc — i oo \ ** / 

4.4 THE DISTRIBUTION OF PRODUCTS AND QUOTIENTS OF 
CONTINUOUS STANDARDIZED NONNEGATIVE RANDOM 
VARIABLES: SPECIFIC CASES 

As Chapter 3 pointed out, a change of origin and unit poses no problem in 
the analysis of sums of i.r.v.’s inasmuch as such changes can be absorbed 
in the Fourier or Laplace transforms. This is not the case, however, in the 
analysis of products of i.r.v.’s. A change in the unit or scale factor is 

(4.3.13a) 

(4.3.13b) 

(4.3.14) 
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reflected in the Mellin transform as indicated by the scaling property of 
Section 2.8.2, but there is no similar relationship enabling one to absorb in 
the Mellin transform the effect of a change or shift in the origin. For this 
reason, r.v.’s that are not everywhere positive—for example, identically 
distributed nonstandardized normal i.r.v.’s N (/i, a)23—and nonstandar- 
dized i.r.v.’s (regardless of whether they are nonnegative) must be treated 
separately. For example, the class of nonstandardized r.v.’s would include 
products of uniform r.v.’s with different ranges («,,&,), at>0, bt>0, as well 
as noncentral r.v.’s that are necessarily of doubly infinite range (—00,00). 
This section discusses only the distribution of products and quotients of 
some important standardized continuous nonnegative r.v.’s. 

4.4.1 Products of Independent Uniform Random Variables 

Consider the product Y=JTi= xXt of n identically distributed uniform 
i.r.v.’s, each having p.d.f. 

/(*,.) = !, ()<*,.< 1, i=l,2,...,n 

= 0, otherwise. (4.4.1) 

Let h(y) denote the p.d.f. of the r.v. Y. Then 

s 
(4.4.2) 

and 

(4.4.3) 

so that 

c >0. (4.4.4) 

23The symbol N(fi,o) denotes a normal distribution with mean /a and standard deviation a. 
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Appendix B establishes that the integral (4.4.4) satisfies the conditions of 
Jordan’s lemma, hence may be evaluated by the residue theorem. That is, 

1 rc+ 
2iri Jc-i 

c+ i oo y 
ds = sum of residues at the poles 

= R 0’ 

where R0 denotes the residue at the only pole, namely, the pole at 5 — 0. 
Since it is a pole of order n. 

R - 1 d- — {snyZ\ 
0 (/i— 1)! dsn~l \ sn I 

s = 0 

1 

j = 0 

(InlAr1 

Thus 

(lnl /y)n 1 
h(y)= \ ' ' , 0<y<\. 

(n~ 1)! 

The p.d.f. h(y) of the quotient Y=Xx/X2 of two uniform i.r.v.’s each 
having the p.d.f. (4.4.1) has previously been derived as a Mellin convolu¬ 
tion. It is now obtained by evaluating the relevant Mellin inversion integral 
(4.3.14). From (4.3.13b), we have 

K (h(y)) = Ms (f(xl))M_s+2(f(x2)) 

so that h{y) may be obtained by evaluating the inversion integral 

(4.4.6) 
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Appendix B shows that as a consequence of Jordan’s lemma 

h(y)=h\(y), 0<y<l 

= h2(y), l<y<oo 

where 

and 

-M 

1 r c + (' oo y ' 

oo j( —J + 2) 

y 

ds. 

QKLMPQ 5 ( — 5 + 2) 
ds, 

0< y< 1 

0 < y < 1 (4.4.7) 

=j_ r 
2m Jr 

1 rc + i oo y 

j( — 5 + 2) 
<A, 1 < y < oo 

y 

QPTQS( — S + 2) 
(4.4.8) 

In (4.4.7) the contour CL= QKLMPQ is a circular arc (Fig. 2.9.1a) with 
infinite chord having end points c — ia, c + ia, a-+oo, and enclosing the 
origin 5 = 0, where c is any value between 0 and 2 and the integration is 
carried out in the positive direction. In (4.4.8), the contour CR = QPTQ is 
again a circular arc with infinite chord having end points c-ia, c + ia, 
a^co, this time enclosing the point 5 = 2 (Fig. 2.9.16). Jordan’s lemma 
dictates (as shown in Appendix B) the contours in Fig. 2.9.1 and further¬ 
more ensures that the contribution to the intervals (4.4.7) and (4.4.8) from 
the arcs QKLMP and QPT, respectively, is zero, so that the residue 
theorem may be applied to obtain the values of the two integrals over the 
Bromwich path (c —/oo,c+/oo). Specifically, (4.4.7) becomes 

X y 
ds + 

QKLMPS( — S + 2) JpQ 5( — 5 + 2) / J p, 

y 
ds 

J rc + i oo u 

= 0+T~( ~7~~ zm Jc-ioo si — 5 (- 5 + 2) 
ds 

i n y 
2m ^ -5 + 2 4=0 
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or 

h\(y) = h 0<y<\. 

Similarly, (4.4.8) becomes (Fig. 2.9.1 b) 

(4.4.9) 

X y 
ds + 

y 

ptqs( — s + 2) Jqps(-s + 2) 
f — 

Jnp s( — 
ds 

2 m 
lim X y 

R—>oo JQTP s(s 2) 
ds + lim f 

A—>oo Jf 

y J 

PQ s(s-2) 
ds. (4.4.10) 

From Jordan’s lemma and the left-hand rule, it follows that 

hM=0+2S(2m)i7 5 = 2 

7 
2 ’ 

1 < y < oo. 

These results necessarily agree with those obtained when the p.d.f. of the 
quotient Y—Xx/X2 was derived as a Mellin convolution. 

4.4.2 Products of Independent Beta Random Variables 

Equations (6.3.7) and (6.4.7) show that the p.d.f. of the product of n beta 
i.r.v.’s having parameters a, and b{ and p.d.f. (4.4.11) is an //-function with 

p.d.f. 

h(y)= n 
7=1 

T(aj + bj) 0 

r(fly) 

(al + bl-\,\),...,(an + bn 

(«, — 1, !),...,(«„— 1,1) 
y >0 

= 0, elsewhere. 

Or equivalently, since the Meijer G-function is a special case of the 
//-function, 

h(y)= n 
J-1 

n°,+bj) 
IV,) 

G"'° n,n y 
a\ + bl — \,...,an + bn — \ 

a \ 1an 1 

And since h(y) is an //-function r.v., it can be obtained in the exact series 
form given by (7.1.2), which is valid regardless of whether the parameters 
cij,bj are integers. 
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The derivation of the distribution of beta i.r.v.’s with p.d.f. (4.4.11) and 

integer parameters is considerably simpler than that for beta variables with 

noninteger parameters. Nevertheless, the derivation of this distribution 

illustrates the analytical nature and structure of product distributions and 

is carried out directly, rather than extracted from the general p.d.f. (7.1.1), 

of which it is a special case. The result is stated in the form of a theorem. 

Theorem 4.4.1. The p.d.f. h(y) of the product 7=11" of n inde¬ 
pendent beta variables of the first kind 

B (ai> fy) 
'(I-*,-) - vV-. -1 (4.4.11) 

with integral parameters is expressible in closed form as 

where 

m 

Hy)= 2 
k = 1 

Kk,yd‘ ‘( — Iny)'* 1 1 
J-o 

m 

Km= 2 K~dk)-\ 
<7=1 
q¥=k 

j~ 1 m 

**,= 2 2 (-0 
r = 0 q = 1 

q¥=k 

r +1 v r " 

(dq~dk) 

r+ 1 KkJ-\-n j> o, 

and dk denotes the m different integers that occur with multiplicity ek 

among the ai-l,ai,ai+l,...,ai + bl-2 for i=\,2,...,n. 

proof. Consider n beta variables of the first kind with integral parame¬ 
ters ai,bi with p.d.f. (4.4.11). Since the Mellin integral transform of the 
p.d.f. (4.4.11) is 

it follows that 

B{s + ax-\,b,) 

*(aM 

r(a; + />,)r(5 + q,.-l) 

r(a,)r(5+a,.-i-i-^) ’ 
(4.4.12) 

K(Hy))~ II 
/= i 

_r (a. + b,)_ 

T(fl/)(J + ~ 1)0 + a,) • • • (j + a, -2 + b,) 
(4.4.13) 
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and 
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1 r c ■+• i oo 

h{y)=^~- f y~sK(h(y))ds■ (4.4.14) 
Z7T/ Jc — yqo 

The problem lies in evaluating the integral (4.4.14) in closed form. To 

simplify the evaluation, one can, without loss of generality, rewrite (4.4.13) 

in a form that shows the location and order of the distinct poles, namely, 

Ms(h(y))= n — 
« = i Vai 

_{a, + bt-\)\_ 

- i)i(j+dx - ins+d2-\r • • • (s+dm -\y- 

(4.4.15) 

where (a, -1)! = T(a,), (a, + bi— 1)! = T(a,+ b,), dk^dj, k^j, and there oc¬ 

cur m distinct integers dx<d2< - • • <dm of multiplicity el,e2,...,em, re¬ 

spectively, among the ai—l,ai,...,ai + bi—2, for /= 1,2,...,/i. If Ms(h(y)) 

as given by (4.4.15) is now substituted into the integral (4.4.14), the 

resultant inversion integral may be evaluated by the method of residues, 

since the conditions of Jordan’s lemma are satisfied.24 Specifically, 

h(y)= 
A to-i)i 

= , («,-!)! 

A {cg + b-\)\ 

| rc + ico y Sds 

2mJc-in (s + d, - 1)'' • • • (j + dm - 1 )'- 

2 
A = I 

where Rk is the residue at the fcth pole of order ek, k=\,2,...,m, namely, 

Rk = 
de> -i 

(ek~ 0! l ds‘ 
-{s + dk-\)eky s II (.s + ^-l) 

q= 1 
J--W-I) 

(4.4.16) 

Using Leibniz’s rule for differentiation of products, one can write (4.4.16) 
in the form 

( — lny)c*-1 ~j 
Rk=y- 2 t— (4.4.17) 

5=-(4-0 

24Chapter 6 shows that this is an //-function inversion integral, and Appendix F proves that 

the conditions of Jordan’s lemma always hold for any //-function inversion integral. 
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where 

w(S)= n (*+^-0e?. 
9= > 

q¥=k 

Differentiation of In W (5) yields 

m e 

w«K,)—wv S ^ry, 
q = 1 q 
q¥=k 

to which Leibniz’s rule for differentiation of products may be applied to 
obtain 

-(<4-0 
(4.4.18) 

m 

Kk0— II (dq — dk) q, 
9 = 1 
q¥=k 

j— 1 m / . , \ r\e K, ■ 1 

st-ir17"1 ' ' r.o I v ' > (d.-<LY 9 = 

q^k 

(4.4.19) 

j> 0, (4.4.20) 

and W{J)(s) denotes the y'th derivative of W(s). Hence from (4.4.17) and 
(4.4.18) it follows that 

“FFiT12 k = \ 

eky Kkjydk ‘(-ln^r* 1 J 

X y=0 (ek-\-j)\j\ 
(4.4.21) 

The same result could have been obtained by expanding the Mellin 
transform (4.4.15) in partial fractions [355] and utilizing the fact [95, 
p. 343] that 

rc + i 00 y s 

2mjc-ico (j-f-^)* 
ds — 0< y < 1 

= 0, otherwise, 

although the previous approach using recursive relationships is more 
suitable for computer utilization. 
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Theorem 4.4.2. The p.d.f. of the product Y=]\%xXi of n identically 

distributed independent beta variables with p.d.f. (4.4.11) and integer 

parameters a, b has the closed form representation 

/ + y b n- 1 

*00- Lr-W 2 2 Kkjy°+k-\-\nyy-'-j, (4.4.22) 
\ } k~\ j~o 

where 

n (dq-dky (4.4.23) 
q¥=k 

q = 1 

and 

b 7-1 

^=2 S(-.r'pV)77^W^- ^>0' q=l r = 0 ' ^ >{d -dk) q 
q¥=k 

(4.4.24) 

proof. Since all the poles are of order n and a, = a, bi = b, i=l,2,...,n, 

the result follows directly from Theorem 4.4.1 by putting m = b +1, ek = n, 

k=\,2,...,m; dq = a + q — 2, q=\,2,...,m. 

To illustrate the application of the procedure for determining the p.d.f. 

of a product of independent beta variables, Example 4.4.1 is presented. 

Example 4.4.1. Determine the p.d.f. h(y) of the product Y = XxX2X3, of 

three i.r.v.’s /= 1,2,3, whose p.d.f.’s are 

/(*«) = 
1 

£(«/,*/) 
<■ ‘0-*;)*' \ 

0<x,<l, i = 1,2,3 

al = 9,bl=3; 

a2 = S,b2 = 3; 

a3 = 4, b3 = 2. 

On evaluating the constants Kkj in (4.4.24), one finds the density and 

distribution functions to be, respectively, 

h{y) =^ y3- 1980y4 + 99,000y7 + (374,220 +356,400 lny)y8 

— (443,520 — 237,6001ny)y9- 1^00 ^io 
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Fig. 4.4.1 P.d.f. of product of three beta r.v.’s. 

and 

H (_y) = M / _ 396y ^ + 12,375^8 

+ (37,180 + 39,600 lny)/ 

- (46,728 - 23,760 lny).F10 ~ y 11. 

Figure 4.4.1 plots h(y). 

4.4.3 The Product of Independent Gamma Random Variables 

As Chapter 6 demonstrates, the gamma r.v. Xj with p.d.f. 

f(xj) = J XjJ ~ le~Xj, bj> 0, 0 < x < oo (4.4.25) 
T(bj) 

is an H-function r.v. Then, from (6.4.9), the product y’=II"_1A) of n 

gamma i.r.v.’s with p.d.f. (4.4.25) is an ^/-function r.v. with p.d.f. 

h(y)= ft y>0, 
7=1 r(^) 

which is expressible in the exact series form (7.1.2) given in Chapter 7. 
However, since in this case, 

M,(hM)= ft [r(*,)]''r(s+6J-i), 
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(7.1.1) simplifies considerably, reducing to the form 

(4.4.26) 
oo n 

h(y)= 2 2 
y' = 0 k= 1 

where [358, p. 724] 

Rjk(y’s) = 
1 

K-i)! 

dmk~' 

dsmk~l 
y-sU(0)(s,k) 

and 

n f Pa 

u<°xs,k)=(s+d,+j)"* n r'(s+4) n (s+d.+t) 
a=1 1 t = 0 

Equation 4.4.26 expresses h(y) as a sum of residues 

(^jf v (t1 )H)w"w 
at the poles s— — dk—j, k= l,2,...,n, y = 0,1,2,.... The computation of 
these residues is considerably expedited by using the algorithm [358, 
p. 725] 

U^+l\s,k)= 2 [l)u^-m\s,k)V^\s,k), q = 0,1,2,..., (4.4.27) 
m = 0 

where 

K(m)(s,A:) = m^m>(s + dk +j+ 1) + (■- l)m+1 (m + 1)!(s + dk + t)~m~1 

Pk n 

+ 2 (- l)mm!(5 + 4 + t)“(m + 1)+ 2 ma\p<m)(s + da) 
t—0 a=1 

+ £ 2(-ir«.!0+rfo+()-<"",), 
a =1 / = 0 

and 

i//(.s + a) = -^lnT(s + a) 

(d/ds)T(s + a) 

T(s + a) 
(4.4.28) 
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is Euler’s psi function, frequently referred to as the digamma function. 
This algorithm is derived by writing U^°\s,k) in the form 

U(0\s,k) = 
r (s+dk+j+1) 

(s + dk)”' (s + dk+j- 1) 

mk Pk 

II (s+dk+ty* 
t = 0 

n f Pa 

x n r*{s+da)\ n c?+<4+ 
a—1 V/=0 
a=£k 

and differentiating In U(0\s,k) with respect to s, giving 

Uw(s, k) = U(0)(s, k) F(0)(s, k), (4.4.29) 

where 

J-1 
™k^(s + dk+j+l)-mk 2 

/ = 0 

1 
s + dk +1 

+ 2 r,k(S + dk + t) '+ 2 ™a'Ks + da) 
t=0 a—1 

a=£k 

+ 22 r,a{s + da + t) \ 
a=1t—0 

Application of Leibniz’s rule for the differentiation of a product to (4.4.29) 
yields the algorithm (4.4.27). 

Theorem 4.43. The p.d.f. of the product Y = XxX2 - • • Xn of n identically 

distributed independent gamma variables each having p.d.f. 

is 

/(*) 0< A< 00 (4.4.30) 

oo n — 1 k — 1 

*00“ 2 2 2 (-l)*""(-lny)""1-V 
7 = 0 k=0 m = 0 

j~ I 

$(k-m, 1)- 2 
1 

-=o (j~i) 
■\k — m 

, (4.4.31) 

j= -7 



112 

where 
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U<®(s)I __ =—--, 
(-iy>! 

and 

U(k\s) 
,c= -j 

dk r(5+6+y) 

dsk \ (s + b- l)(5' + 6)- • • (s + b — 2+j) 

can be expressed recursively as 

U(k\s) 
j—j 

nlkm-J0(-\)k-\k-l)\ 

m\(k — 1 — m)\ 

X 

j-1 

£(k-m, 1)- 2 1 

/=o (j-i) 
■\k — m 

U('m\s) 

s= -J 

where £( /3,a) is the Riemann zeta function defined by 

Hfi,a)= 2 (a + a)~P, 
a = 0 

•* = -J 

j= 1,2,... 

(4.4.32) 

proof. From Table D.2, formula 7, the Mellin transform of the gamma 
p.d.f (4.4.30) is seen to be 

T(.s + 6—1) 
^ (/(*))=-^-, Re(j)>-(6-l), 

so that 

K(h(y)) = 
r^+^-i) 

r-(fc) 

, 1 rc+ioo y s 

hM=~isL. mr"(s+b-')ds- 

and 
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Since the conditions of Jordan’s lemma are satisfied, 

h(y)= 2 R(y^nJ) 
j-o 

2 
7 = 0 

* = -J 

As before, these residues, when evaluated recursively through the use of 
Leibniz’s rule for the differentiation of products, lead to (4.4.31). The 
details are given by Springer and Thompson [358]. 

The representation of h(y) as given by Theorem 4.4.3 is particularly 
convenient for adaptation to electronic computers. Lomnicki [214] has 
expressed the representation in a different form but reducible to that of 
(4.4.31). Specifically, Lomnicki’s counterpart of the p.d.f. (4.4.31) is 

yb~\ 

r "(*>) 
where 

<t>„(y)= —-— 2 
(«-!)! A 

(-i yy 
or 

XZ„_1(A(s),A'(s),...,A^~2\s))i, s=-j (4.4.33) 

and 

Zn_i(A (s),A'(s), ...,A N~2(s)) 

(”'- 1}(a-)]^' [^4("2- °(a:)]*2 - • • 

{nxr\n^--0nrr'Wk2\---k^ 

and the sum above is extended to all the partitions of the number n such 
that 'Lrj=\m.jkj = n. The notation /4°(j) denotes zl(s), and A(k)(s) signifies 
the kth derivative of A (5), where by definition 

A (s) = — fny + mp(s + 1) 

and \J/(s+ 1) is the Euler psi function previously defined in (4.4.28). Also, 
since A (5) and its derivatives must be evaluated at s = —j when used in the 

)]' (4.4.34) 
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expression (4.4.34), one should note that 

j 

A^k\s)\^_=A^{-j) = n\^k\\) + r\ £ Ar"<*+1> , (4-4.35) 

where 

^k\s +y'+l) = (- \)k+xk\${k + \,s+ j+ 1) (4.4.36) 

is the kth derivative of the Euler psi function (or digamma function), 
usually referred to as the polygamma function, expressed in terms of the 
Riemann zeta function defined by (4.4.32). The evaluation of 0„(y) is 
considerably simplified by the recursive relationships (4.4.35) and 

(4.4.37) 

Unfortunately, the procedure and recursive relationships apply only to the 
derivation of the p.d.f. h(y) of products of n identically distributed gamma 
i.r.v.’s. 

Using the same notation, Lomnicki also showed that the p.d.f. h{y) of 
the product Y=Wj=lXi of n identically distributed Weibull i.r.v.’s each 
with p.d.f. 

f(x) = iBx1* 1exp(-A/3), 0 < a < co 

is 

h(y) = V„(jvp) 

and that the p.d.f. of the product of n standardized normal i.r.v.’s N{0,1) is 

4.4.4* The Distribution of the Product of Two 

Independent, Noncentral Beta Random Variables 

Let Xx and X2 be two noncentral beta i.r.v.’s with parameters pj, qj, and Ay; 
or equivalently, with p.d.f.’s 

r/ \ _J J ’ ' J 

1 _c-or((%/2))r({2A:+^)/2)Ar! 

» T({2k+Pj+gj}/2)\f 
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What is the p.d.f. g(y) of the product Y=XlX21 

Malik [234] derived this p.d.f. by the use of Mellin transforms. He noted 
that 

2m+px + qx\ / 2m+pl+2s — 2\ ^(2)r( 

K(g(y))=e (Xl+X2> 2 2 /? , N /9 , , _9 
A:=o m=0 t 2.m+px\ l 2m+px +qx + 2s 2 

mr( 
\2*~"T 

2 ) \ 2 

2k — 2m+p2 + q2\ (2k — 2m+p2 + 2s — 2 

ml 

X 
)r( ) 

2k — 2m+p2\ (2k — 2m+p2 + q2 + 2s — 2 

)r( )(*-«)! 

(4.4.38) 

To find the p.d.f. g(y), one must find the inverse Mellin transform of each 
term in the series (4.4.38), namely, 

c + i oo 

y jr|s + /n + -y- — 1 jr|j + k — m+ + lj 

■p, Pi , 9i 
T| s + m+ ~y + '(J 

j-l)r(i+A:-m+y+ y-l) 

Consul [59] has shown that 

j /■ c +1 oo A_JT(5 + a)r(5 + 6) xa(\ — x)r+n~l 

2m Jc-ioo r(s + a + r)r(s + b + n) T(r+n) 

X F(n,a — b + r;r+ n; 1 — x), 

where F(a,/3;y,x) is the hypergeometric function (see Appendix D.l). 
Consequently, 

yk + (p,/2)-l(l + 1 

r(9,/2 + ft/2) 

xF(y,2m-*+-y P 2 Q\ 

T + T; T + T; 

(4.4.39) 
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from which it follows that 

g(y) = e (A|+Az) 2 2 

A["A 2 
k-mJ 2 m+px + qx \ ( 2k-2m+p2 + q2\ 

k=o m=0 J2m+px\ (2k-2m+p2 

(^H 
ym + (j> ,/2) — —_y)(9'/2) + (92/2)- 1 

+ y; 

jm!(k — m)! 

<h ^ <h . \ 

t + t; 1_4 

(4.4.40) 

As Malik has pointed out, this density function is also expressible in terms 
of a mixture of beta distributions, namely, 

oo k oo 

2 2 2 
k = 0 m = 0 r = 0 

g(y) = e (X|+A2> 2 2 2 AfA* ' 

x 
r(T + f +'»)r(y+'-)r(2»»-*+y-y + y+'') 

r|2m-*T+-y--y + y)r(y + Y + y + »n + r 

m + Cpi/2)- 1 
(i-y) 

(?,/2) + (92/2)+r-l 

//>. 9, 92 , \ 
fi — + /m, — + — + r 

\ 2 ’2 2 / 

+ A:-w,yJw!(A:-m)!r! 

(4.4.41) 

where the sum over r comes from the hypergeometric function F(.,.; .,*). 
The distribution function of y is 

F(y)= fyf(y)dy 
Jo 

= e~^1 ‘*'^2) 

P1 . <71 V*C"r(^ + ^+m|rl¥+r|r|2m-* + 4i 42 P\ Pi , 4i 
+ r OO /t OO 

m\(k-m)\ 

1 w , / P\ . 4i , 42 . \ 
r^xMT + m'T + T + ? 
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where 

I'(a’b)=jb)ly,°~'a-,r',i' (4A42) 

is the incomplete beta function, which has been tabulated by Pearson 
[282]. Parenthetically, the incomplete beta function should not be confused 
with the well-known beta function 

B(a,b)=f xa *(1 — x)b ldx, 
Jo 

which is expressible in terms of gamma functions as 

n l . \ flW) 

7J7TW’ 

where the gamma function is defined as 

(4.4.42a) 

(4.4.42b) 

r oo 

T(a)= I xa~ le~xdx. 
Jo 

(4.4.43) 

Finally, by setting A1=A2 = 0 in (4.4.40), one obtains the p.d.f. of the 
product of two central beta variates: 

g(y) = 

f(t + T Mt + f )y(p'/2)-\i-y)(j,'/2)+(92/2)~l 

^WiWihf) 
v P/^2 Pi Pi , <l\ <1\ , ^2 , \ 
^ 2*2 2 + 2 ’ 2 + 2 ’ ^ y 

where F(a,b,c;z) is Gauss’s hypergeometric function (Appendix D.l). 

4.5 THE DISTRIBUTION OF PRODUCTS AND QUOTIENTS OF 

CONTINUOUS RANDOM VARIABLES THAT ARE NOT 

EVERYWHERE POSITIVE 

4.5.1 Derivation of the Distribution of Products 

To treat the more general problem of deriving the distribution of products 
of i.r.v.’s that may assume both positive and negative values, a procedure 
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developed by Epstein [92] for the case of two variables and extended by 
Springer and Thompson [354] to n variables is presented. This extension is 
accomplished by partitioning a function_/j(x,), — oo<x,<oo,/=l,2,...,n, 
into two components, namely, 

(4.5.1) f;( *,)=/, (x,)+f* (x,), 

in which f~(x,) vanishes identically except on the interval — oo < x, < 0, 
where fi~(xi)=fi(xi). Similarly, /+(x,) is defined to be indentically zero 
except over the interval 0 < x, < oo, where ^+(xI)=^(x,). Using such a 
partitioning, one can then express the p.d.f. h2(y) of the product r.v. 
Y=XxX2 in terms of pairs of functions defined over the interval (0, oo) 
whose Mellin transforms are well defined, as is now shown. Note that the 
p.d.f. of the r.v. Y=XxX2 is the Mellin convolution 

(4.5.2) 

which, in view of (4.5.1) is expressible as 

i- 

(4.5.3) 

Note also that when y <0 and - oo < Xj < oo, 

and (4.5.4) 

so that (4.5.3) becomes 

- oo <y <0. (4.5.5) 
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Similarly, when y > 0 and - oo < xx < oo, 

/2+(-^-)/f O*i) = 0 and /2"(^-)/,+ (*i) = 0, 

and as a result (4.5.3) reduces to 

+/2_(z“)/r(_xi)J^'xn 0 < _y < c 

If one now defines 

h2(y) = h2 {y) + K(y), 

where 

and 

h-(y)=h2{y), if -oo<>><0 

0; elsewhere 

h + (y)=h2 (>')» if °<y<°0 
0; elsewhere, 

then for 0< y< oo, 

h2(-y)= -^rf2(^r)f\~(-xi)dx\ 
J 0 xl \ -X-i / 

+ f °° ~~ fi~ ( ) f\~ (.x\)dx\ 
Jo x\ \ x\) 

and 

h2(y) = f°°^-/2+(^)/+(^i)^i 
Jo *i V xi ) 

(4.5.6) 

. (4.5.7) 

(4.5.8) 

(4.5.9) 

(4.5.10) 

(4.5.11a) 

(4.5.11Z?) 

That is, hf (t) an<i ^2 (~y) have been expressed in terms of convolutions 
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of pairs of functions defined over the interval (0, oo), whose Mellin trans¬ 
forms are well defined by (4.2.1) and by 

MAK(-y))=m, (x2))m, (/f (- x,)) 

+ M, Or (■- X2))M, (/,+ (*,)), (4.5.12a) 

M, (h2(y)) = M, (f2+ (x2))M, (/,* (x,)) 

+ x2))M, (/r(- x,)). (4.5.12b) 

The inversion integral (4.2.3) then yields h^iy) and h^i—y). In turn, 
/i2_(— y) defines h{(y). 

If (n — 1) successive applications of the foregoing procedure are carried 
out, one obtains the p.d.f. of the r.v. 

y= n x„ 
7=1 

namely, 

*WH'WH*W, (4-5.13) 

whose components are defined by inverting the Mellin transforms 

M, (h~ (->’)) = M, (f* (y))M, ( h~_,( ->■)) 

+ M,U„-(-y))-M,(h^(y)) (4.5.14a) 

and 

K (KO’)) = M, {/; (y))M, (h;_,(y)) 

+ M, (/-( -y))M, (4.5.14b) 

The two products on the right in (4.5.14a), when expanded into terms 
involving fi+{x,) and f~(— xt), result in 2"_1 products, where each product 
consists of h factors, each factor being either ^■+(xi) or f~( — x(). Also, each 
product contains an odd number of factors of the form jj“( — x{). For 
example, when n = 3, Y = Xx X2X3, and 

M, (h-(-y)) = M, (/,“ (- xt))Ms (/2+ (x2))M, (f* (x,)) 

+ M, (f* (x,))M, (/f (- x2))M, (}* (x3)) 

+ M, (/,- (x,))M, (f* (x2))M, (/,- (- x,)) 

+ M, (/f (- x,))M, (f2~ (- x2))M,(/3- ( - x3)). 

(4.5.15a) 
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Similarly, the two products on the right in (4.5.14b), when expanded into 
terms involving/^(x,) and/,“(-.**), result in 2n~x products, where each 
product consists of n factors, each factor being either/.+(x|.) or f~(-x,). 

Now, however, each product involves an even number of factors of the 
form — For example, when n = 3, 

Ms (h + (y)) = Ms (/,+ (xx))Ms (f2+ (.x2))Ms (/3+ (x3)) 

+ Ms (/+ {xx))M, Ui ( - xj)Ms (/3- ( - x3)) 

+ Ms (/f ( - xx))Ms (/2- ( - x2))Ms (/3+ (x3)) 

+ Ms (/r ( - xx))Ms (/2+ (x2))Ms (/3- ( - x3)). 

(4.5.15b) 

Thus the p.d.f. h(y) consists of the component p.d.f.’s h~(y) and h+(y), 
which are valid for negative and nonnegative values of Y, respectively, and 
are obtained by inverting the Mellin transforms Ms{h~(-y)) and 
Ms(h+(y)): 

f y~sMs{h~{-y))ds, — co <_y <0 
Z7// Jc _ |qo 

= 0, otherwise (4.5.16a) 

1 rc + ioo 

h+(y)=2riJ y~sMs(h + (y))ds, 0<y<oo 

= 0, otherwise, (4.5.16b) 

where Ms(h~(—y)) and Ms+(y) are expanded in the manner indicated. 
Finally, it should be pointed out that these inversion integrals are usually 
evaluated by the method of residues. 

In the special case where the are identical even functions of x, that 
is, 

/r(- xi) =f+(xi) =f(x), /=l,2,...,n, (4.5.17) 

the p.d.f. of the product 7=11"=!^ is even, so that 

h„+(x) = h~(-x) (4.5.18) 

and 

M, (h * (x)) = M, (h ~ (*)) = 2-' [ M, (/*(*)) ]'(4.5.19) 
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Equation 4.5.19 supplies a direct relation between the p.d.f. h(y) of the 
product Y=Uni=lXi and the common p.d.f./(a,) of the i.r.v.’s X{, — oo <Xt 

<oo, i— 1,2,...,«. 
The quotient Y=Xx/X2 of two i.r.v.’s Xx and X2 may be considered as 

the product of Xx and 1 / X2. As has already been pointed out, if A is a 
nonnegative r.v. and W= 1 /X has the p.d.f. g(w), then 

Ms(g(w)) = M_s+2(f(x)). (4.5.20) 

Partitioning the p.d.f. h(y) of the quotient Y=Xx/X2 of two i.r.v.’s Xt with 
p.d.f.’s fi(Xj), — oo < < oo, i= 1,2, one has 

h(y) = h~(y) + h+(y), (4.5.21) 

in which h~(y) and h+(y) denote the components of h(y) that are valid 
over the negative and positive ranges of y, respectively, and where 

K {h ~ (-y)) = Ms if l ix\))M2-J2 ( - X2) 

+ Ms (/r (- XX))M2_S (/2+ (*2)) (4.5.22a) 

and 

M, (h +(y)) = M, (St (X (*j)) 

+ W,(/r(-x,))A/2_,(/2-(-x2)). (4.5.22b) 

Evaluation of the inversion integral (4.2.3) for these two Mellin transforms 
leads to the p.d.f. h(y) as given by (4.5.21). In particular, if the x, are 
identical even i.r.v.’s with p.d.f./(x), then h(y) is even and 

i /* q q. j oq 

h(y)=^Zi\ 2y~s[Ms(f+(x))M2-s(f+(x))]ds’ — oo <y < oo 
Z7TZ Jc — ice 

(4.5.23) 

which was previously obtained by Epstein [92], 

4.5.2 The Distribution of the Product of n Independent 

Normal Random Variables N(0,a,) 

In deriving the p.d.f. h(y) of the product T=II"«1Ar; of n i.r.v.’s, each 
having p.d.f. 

/(*/) = exp — 00 < X, < 00, i— 1»2, — ,/i, (4.5.24) 
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note first [95, p. 312] that 

MJ(e-"0 = r(4 te(*)>0. 

Using this fact in conjunction with properties 4 and 10, Section 2.8.2, and 

(4.5.19), one obtains the Mellin transform of/+(jc(), namely, 

— V'lff). Re(s)> 0. (4.5.25) 
V 7T X L ' 

The Mellin transform of h(y) is, therefore, then 

= ft «,(fW) (4.5.26) 
1=1 

and the associated inversion integral is 

A*00-2 _■")« — 1 " -2r,/2 

0<_y < oo. (4.5.27) 

Also, because of symmetry, h (y) = h + (y) = h(y). Letting V = 
2~n(Hr,i=lo~2)y2, (4.5.27) becomes equivalent to 

c + / oo 

<2”)”/2 iio, rn(5)^, (4.5.28) 

It remains to evaluate the inversion integral (4.5.28), which can be accom¬ 

plished by using the residue theorem, which is applicable because from 

(6.3.8), Theorem 6.4.1, and Appendix F, h+(y) is an 77-function inversion 

integral to which Jordan’s lemma applies. Thus 

OO 

h + (v)= 2 R(v,n,j), (4.5.29) 
7 = 0 

where 

(4.5.30) 

s= -j 

R (v,n,j) = 
1 dn~x ' (s+j)nv-*Tn(s) ' 

(»—!)! dsn~x (25r)”/2n;<r, 

is the residue of the integrand of Equation (4.5.28) at the pole of order n at 

s=—j,j = 0,1,2,_ The evaluation of these residues is considerably 
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simplified by the application of Leibniz’s rule for the differentiation of 
products, which when applied to (4.5.28), yields 

R(v,n,j) = t.2. 
1 (— lno) 

n-l-K 

(27T)n/2(I[nlaiy k-o (n-\-k)\k\ 

lK 

ds 
-(s+j)T(s) 

s=-j 

To simplify the notation, let 

tf(j)=[(*+/)r(j)]" 

U(K)(s)=-^-U(s), K> 1 
dsK 

U(0\s)=U(s). 

(4.5.31) 

(4.5.32a) 

(4.5.32b) 

(4.5.32c) 

Then, as we show presently, the required residues (4.5.31) can be obtained 
recursively from the relationship 

(-Inv)n~1~K 

R (v, nj) = At/' 2 7-]—vy U(K>(j) 
k=o (n-l-K)lKl 

where A = (277-)_'I/,2(II"ai)~1 or equivalently, in terms of y. 

(4.5.33) 

S=-J 

R(y,nJ)=M 
y 

n— 1 

2"II"a,2 ) K=o 

n — K— 1 

-ln- 
y 

2nn>2 
x 

(n-\-K)\K\ 
U^K\s) , j = 0,1,2,..., (4.5.34) 

*- -j 

where U(K\s) is obtained from the lower derivatives by the recursion 
formula 

k-i (AT-O’ 

(-1) -,7^- i \| 
m-o m\\K— 1 — m)! 

7-1 

2 
i 

'=o (j-i) 
K-m 

U^m)(s) 

(4.5.35) 
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and £(K— m, 1) is a Riemann zeta function previously defined by (4.4.32). 

These recursive relationships make the residues as expressed in (4.5.32) 

particularly amenable to evaluation by an electronic computer. 

To evaluate the residues (4.5.33) and (4.5.34) necessary for determining 

h(y), note first that U(s), defined by (4.5.32a), can be written in the form 

U(s) 
TU+j+l) 

i(i+l)(j + 2)---(s+y-l) 
(4.5.36) 

in which the denominator is understood to be one when j = 0. Then 

In U(s) = n 
y'-i 

lnr(.s+y+ 1)— 2 ln(s + i) , 
i-0 

and differentiation of (4.5.37) leads to the result 

t/(l)(.s) = «£/(*) 
7-1 

+(s+j+\)~ 2 
i = 0 

1 

s + i 

(4.5.37) 

(4.5.38) 

Application of Leibniz’s rule to (4.5.38), making use of (4.4.36), leads to the 

recursion formula (4.5.35), which involves both the Euler psi function and 

the Riemann zeta function. 

Thus the p.d.f. h(y) of the product of n normal i.r.v.’s N (0, of), i = 

l,2,...,n, is given by 

h(y) = h~(y), -cc<y<0 

= h + (y), 0<y < oo, 

where, because of symmetry, h~(y) = h+(y), and where 

(4.5.39) 

/i + (T) = A2 
7 = 0 

\ “■* n-1 

2nn."of j x?o 

y In 
y 

2nn iof 

n-\-K 

U{K\s) 

s=-j 

j = 0,1,2,..., 0<>» < oo. (4.5.40) 

As has previously been shown (see (4.3.8)), the distribution function 

H+(y) may be determined directly from a knowledge of the Mellin 
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transform Afs(h+(y)). Specifically, 

G + (y)=\-H + (y), y> 0 

= J-:f y sMs(G + (y))ds. (4.5.41) 
Z777 Jc — ico 

Also, from (4.3.10a, b), 

M,(G(y))=-sM1+l(h*(y)), 

so that (4.5.41) becomes 

= 1-2 ®(y,n,j+ 1), 
j=0 

where 

( Y \2-/+1 

$0w' + l) = X[2n/2Ilfa j 

ln\2'in7, 
x 2 

2 \ n — 1 — AT 

(4.5.42) 

K-o (n-l-K)Ua 
I(/(s+l) 
S 

(A) 

s = —J 

j= 1,2,.... (4.5.42a) 

Finally, 

H-(y)=\-H + (y), y< 0 

Example 4.5.1 Determine the p.d.f. /z(y) and d.f. //(y) of the product 
of six normal i.r.v.’s N(0,1). 
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The p.d.f. h(y) is obtained from (4.5.34) by setting a, = l,/ = 1,2,...,6 
and evaluating the required derivatives U(K\—j),K=0,1,2,3,4,5. These 
derivatives, obtained in a straightforward manner with the aid of the 
recursion formula (4.5.35), are given below. The symbol $'(b,a) denotes 
the modified Riemann zeta function, defined as 

r(M) = f(M) + 2 2 -L (4.5.43) 
r= l r 

(-ir 
t/(°)(-y)=-—— 

C/0" 

Ua'( -j) = - ) [ nVO +1) + nf'(2,j + 1) ] 
O'!) 

t/<3)( -» - [«VO +1) + 3"V0+1 )f'(2J +1) - 2»f (3J + 1) ] 

(/(4)(O)=Tv[«V0'+ \) + 6nY(j+ l)r(2J +1) 
C/0 

-8nVO+l)f(3J+l) + 3/J2r2(2j+l) + 6nr(4j + l)] 

t/(5>(-y)= 00 [«vo+0+io«vo+or(2j+1) 
O'!) 

— 20 nY(j+ l)f (3J + 1) + 15«V0+ 0r2(2J+1) 

+ 30nVO+l)r(4J+l) 

20«2f '(2 J + 1K (3 J+ 1) ■" 24nf (5 J + 1) ]. 
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Substituting these results in (4.5.34) gives the p.d.f. h(y) of the product 

y = nf= jX, of six independent standardized normal r.v.’s, shown below. 

(-0 6, y 
2 \j 

h(y) = 
(2tt)3 y=o (j!)e 

6^(y+l) 

+ 
3!2! 

{36 ip2(j+ l) + 6f'(2 J+ 1)} + 

X {216^3(y-h 1)+ 108^(y+ l)r(2J+1) - 12f (3J+ 1)} 

+ ^ ( -ln(^)){ 1296^0 + 1) +1296^0 + 1)?(2J+1) 

-288^0+ lK(3J+l)+108r2(2J+l) + 36r(4J+l)} 

+ ^{7776^0 +1)+ 12,96(ty3(y + l)r(2J + 1) 

-4320^2(y + IX (3J + l) + 3240i//(/ + \)$*(2J + 1) 

+ 1080^(y+ l)r(4J+ l)-720r(2j + 1){ (3 J+ 1) - 144f (5 J+ 1)}. 

(4.5.44) 

The graph of h(y) is shown in Fig. 4.5.1 and is tablulated elsewhere 

[353,358], together with the distribution function H(y). The number of 

residues R(y,n,j),j = 0,1,2,..., which must be evaluated, depends on the 
accuracy required for h(y) or H(y). 

Similarly, by utilizing (4.5.42a) and (4.5.42b), one can obtain the distri¬ 
bution function H(y). 
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h(y) 

Fig. 4.5.1 P.d.f. of product of six standardized normal r.v.’s. 

• 4.6* THE DISTRIBUTION OF PRODUCTS 
AND QUOTIENTS OF CONTINUOUS, NONSTAND ARDIZED, 
INDEPENDENT NORMAL RANDOM VARIABLES 

As an earlier section pointed out, a change of unit (scale) can be readily 

accommodated by means of the Mellin transform, but a change of origin 

cannot. This considerably complicates the derivation of the mathematical 

form of the distribution of products and quotients of nonstandardized 

normal i.r.v.’s. Several authors [83,17,241] have dealt with products and 

quotients of nonstandardized normal i.r.v.’s but have left the distribution 

expressed in integral form (see Exercise 4.27). This section derives the 

distribution of the product of n nonstandardized normal i.r.v.’s in terms of 

the parabolic cylinder function (Appendix D.l) and also in series form; the 

distribution of the quotient is expressed in series form. 

4.6.1 Distribution of the Product of Independent, 
Nonstandardized Normal Random Variables 

In general, the Mellin transform of the p.d.f. of products of nonstandar¬ 

dized r.v.’s cannot be simply expressed in terms of the Mellin transforms of 

the corresponding standardized r.v.’s. These facts become painfully evident 

in the following derivation of the p.d.f. of products of nonstandardized 

r.v.’s. 
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Consider, then, the derivation of the product of n nonstandardized 

normal r.v.’s having p.d.f.’s 

— oo < x, < oo, i=\,2,...,n. 

(4.6.1) 

Since each of these p.d.f.’s is of doubly infinite range, it must be parti¬ 

tioned by way of (4.5.1) into the two components/] (x,) and/ (*,)» with 

Mellin transforms [95, p. 313, (13)] 

where r(r) is the gamma function with complex argument r, and 

D_r[ + Hi/oj] is the parabolic cylinder function. This parabolic cylinder 

function can be expressed in terms of the more manageable gamma 

function and the confluent hypergeometric function (Appendix D.l); 

specifically, 

o, 

r+\. 3. 

(4.6.3) 

By means of the relationship 

T(2y) = (2v)-'/222'-''2r(y)r(y + 1), 

(4.6.3) can be reduced to the form 

(4.6.4) 
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where 

*■(»•)-* 

<i>,<0='i>l 

r_ _/A_ 

2 ; 2 ; 2a,2 I’ 

•+1 3 n 

2 ’ 2a,2 ’ 

and $(•) denotes the confluent hypergeometric function (Appendix D.l), 

sometimes denoted by ,F,(-). Then the Mellin transforms of h±(±y), as 
given by (4.5.14a, b), respectively, reduce to 

exp 

Mr{hn{±y))\ = 
-N?r 

(2^n".,a,2) 
2\n/2 

X 
2"n”=1a2 j 

-r/2 

")n — 1 
n n 

n A:± n Bt 
(=i /=i 

, (4.6.5) 

where 

B.= 

To determine the p.d.f. h(y) of the product Y=U'jXi of n noncentral 

normal variables, it is necessary to evaluate the inversion integral 

rc-r i oo . . 

y-'M,(h,±(±y))dr, 0<Re(r)<l, (4.6.6) 
A7TI Jc _ ioq 

which in light of (4.6.5) becomes 

1 rc + i oo 

*”±W=2y~r- 

exp 

x2 n- 1 -LW-) n $,(()+ 
2n V 2 / / = i lW_ 2"/2 

2"n"=1a2 

-r/2 

T"[(r+1)/2] « 
L ± n £*2(/) 

i = 1 Oj 

f (4.6.7) 
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Or, equivalently, 

where 

exp 

A* = 

2' 

(?) 
. - 

(2*y/2nu°, 

B* = T/lA * ft ( 7^)' 

w = 
r 

2”n,a,2 

Letting s = r/2, (4.6.8) becomes 

1 r c' 4* Zoo 
1 I ... —sT'n 

h±(w) = A’ 

B* 

I rC -r loo 

| w-,r,(j) _n $,(/)* 
2m Jc' — Zoo * 1 

1 re'+ ioo / ,\rt 
-J— j vv 5rn(5+|) n ®2(i)ds 
2m Jc' — ioo / = i 

where 

2 ’ 2a? ' 

(4.6.9a) 

(4.6.9b) 

(4.6.9c) 

(4.6.10) 

(4.6.11a) 

2 ’ 2o? r 
(4.6.11b) 

The inversion integrals in (4.6.10) can be evaluated by utilizing the left- 

hand Bromwich contour CL = QKLMPQ (Fig. 2.9.1a) when 0< |w| < 1 and 

the right-hand Bromwich contour CR = QTPQ (Fig. 2.9.16), using the 

transformation r= -s to shift the poles from the LHP to the RHP when 

l<|w|<oo. (See Appendix F.2) And since the conditions of Jordan’s 
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lemma are satisfied, these integrals evaluated over the Bromwich contours 

CL and CR as R-^co are precisely the same as the integrals evaluated over 

the Bromwich path (c — z'oo,c + z'oo) when 0<|w| < 1 and l<|w|<oo, re¬ 
spectively, In particular, 

00 00 

h±(w)= 2 R(w;n,j)± 2 R'(w;n,k), (4.6.12) 
j=0 k=Q 

where R (w;n,j) denotes the residue of the first integrand in (4.6.10) at the 

nth order pole s=—j,j = 0,1,2,...,and R'(w;n,k) denotes the residue of 

the second integrand in (4.6.10) at the nth order pole s=—k, k = 
• More specifically, 

y' = 0,1,2,... (4.6.13a) 

and 

*'("■■■■- (^TjT (■>+/)”» -*r" (f +1) n *2(/) 
1 dn~x 

— w + v2\i) 
s = — k 

k = \,\, (4.6.13b) 

Application of Leibniz’s rule to (4.6.13a) and (4.6.13b), respectively, yields 

R(w;n,j) = w~s *2 --^-- 2-(-lnw)""‘“9 
<7 = 0 (n-\-q)\ q\ 

and 

X 
dq 

dsq 

j = 0,1,2,. 

(j+y)T"W n #,(,) 
s = -J 

(4.6.14a) 

n- 1 
R'(w; n,k) = w s^- 

* = o \n-\-q)\ V 
-—V(-invv)"“I_<7 

x^(^urr,6+i) n,^/) 
s= — k 

k = - £ rv 2 ’ 2 9 * * * * (4.6.14b) 
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Through the reapplication of Leibniz’s rule, the derivatives 

d^_ 

dsq 
(S+;)T"(*) n 4>,(0 

i— 1 

(4.6.15a) 

and 

^(i+j + j)V(i + j)n^i) (4.6.15b) 

are expressible recursively in terms of derivatives of lower order, which in 

turn involves the gamma, digamma, polygamma, and hypergeometric 

functions. To establish this, it is again helpful to utilize the identity 

(s + b — 1 + j)T(s + b— 1) = 
r(s + 6+y) 

(5 + b — 1)(^ + b) • • ■ (5 + b — 2 +j) 
(4.6.16) 

together with the notation 

Ub{sJ) = 

Ulq\s,j) = 

f_r(j + fe+y)_y 
\ (s + b — 1)(j + b) - • • (s + b-2 +j) ) 

dq I_T(s + b+j)_ 

dsq \ (s +b-\)(s +b)- ■ ■ (s + b — 2+j) 

(4.6.17) 

(4.6.18) 

Then the derivatives (4.6.15a) and (4.6.15b) may be written in the form 

dq 

dsq 
(s+j)nT"(s) n *,(/) 

/ = 1 

q / n \ ( n \(q-m) 

Jo(’)U"W)(n*,«) 

(4.6.19a) 

and 

dq 

dsq 

q / \ / n \(q~m) 

- 2 «)^+y + t) n®2(0 . (4.6.19b) 
m = 0 V'~‘ ' 

From Leibniz’s rule for the differentiation of the product Ub(s + b+j) 
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II"=1$a(/) of two factors, it follows that 

^[t4Cv>M0] = 2 {qm)ui-\sj)[ n *(,')) 
m — 0v \' * / 

(q-m) 

a =1,2. 

(4.6.20) 

It remains to determine the derivatives U£m)(s,j) and (n"=1<I>a(/))(‘?-"!). 

Consider first the derivatives U£m\s,j). From (4.6.17), 

j-1 

In Ub (sj) = n\nT(s + b+j)- 2 ln(.s + 6 - 1 +/), (4.6.21) 
i = 0 

which, on differentiation, yields 

7-i 

= U„(v) n*(s + b +j) - 2 
i = 0 s+b—l+i 

= Uh(s,j)Vb(s,j), (4.6.22) 

where 

7-i 

Vb(s,j) = n'ir(s + b+j)- 2 (s + b- 1 + i)-1. (4.6.23) 
i = 0 

Again, application of Leibniz’s rule to (4.6.22) gives the general result 

?=0,1,... (4.6.24) 
/=0 V 1 ’ 

where 

7-i 

Vi‘\s) = nV\s + b+j)+ 2 (~1)/+1 
( = 0 

x(/+l)!(s + 6-l + /)~/_1, (4.6.25) 

^ 1 \s + b +j) = digamma function 

ip(l)(s + b+j) = polygamma function, / > 1 (defined by (4.4.36)). 
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The remaining derivatives that need to be evaluated in (4.6.19a) and 

(4.6.19b) are (nf=14>a(/))(r), r = q-m=0, The evaluation of these 

derivatives is accomplished by utilizing Leibniz s rule for differentiating a 

product of r factors [113], from which it follows that 

n <M0 
/ = 1 

(4.6.26) 

yn 
= 2 2 

=0 /'-> = 0 In ^ 

where theyc> c = must satisfy the constraint jx +j2 + ’ ’ ’ +Jn = r- 
In summary, the residues (4.6.19a) and (4.6.19b) evaluated at the rele¬ 

vant poles are expressible, respectively, as 

and 

R (w;n,j) — 
<7 = 0 

cjqw2j (~\nw)n 1 q 

(n — 1 — q)\q\ 
(4.6.27) 

R (w; n,k) = 
dkqw*k(-\nw)n 1 * 

<7-0 (n-\-q)\q\ 
(4.6.28) 

where cjq and dkq are obtained by evaluating the derivatives (4.6.19a) and 

(4.6.19b), respectively, at the values s= — j, j = 0,1,2,...,and s=—K, 

f_This in turn requires the evaluation of U£m\s,j), 6=1, §, 

and n,A= ,$„(/), a = 1,2, by way of (4.6.22) through (4.6.25). The final result 

in terms of the original variable y (recalling the relationship (4.6.9c)) is 

h(y) = h~(y), 

= h+(y), 

— oo <y <0 

0<y < oo, 

(4.6.29a) 

(4.6.29b) 

where the component density functions h (.y) and h+(y) are given by 

(4.6.7) and are expressible in the exact series forms 

y 
oo n — 1 

h±(y) = A* 2 2 cjq\ ^ 

j = 0 q = 0 

ln< 
y 

2nn 

n — 1 — q y 
m- 1tt«. 

oo n — 1 

± B* 2 2 dkq 
k= 1/2 q = 0 

n — 1 — q 

y 

2nn"=1a,2 
ln- 

y y 
rnuof 2n- *n"a, 

where A* and B* are given by (4.6.9a) and (4.6.9b). 

(4.6.30) 
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4.6.2 An Alternative Derivation of the 
Distribution of Products of 
Independent, Nonstandardized, 
Normal Random Variables25 

The form of the p.d.f. h(y) of products of nonstandardized normal r.v.’s as 

given in the preceding section is obtained from a Mellin inversion integral 

that involves the rather complex parabolic cylinder function. It is possible 

to express the Mellin transform of h(y) in terms of gamma functions, as 

we now show. The evaluation of the resultant inversion integral is still 

tedious for n>2, but it provides a feasible procedure for deriving the 

distribution of the quotient of nonstandardized normal r.v.’s in analytical 
form, as the following section demonstrates. 

Consider, then, n independent nonstandardized normal r.v.’s N(ni,oi) 

with p.d.f.’s 

(*.—/021 . . . 
--— , i = \,2,...,n, co <Xj< co. 

2a,- 

(4.6.31) 

Without loss of generality (since a scale factor can be absorbed in the 

Mellin transform), one can utilize the transformed variable wi = xi/oi, so 
that 

//(*/) = 
V27To, 

exp 

xi ~ ft 
Wi~ft=——, 1=1,2,...,/! (4.6.32) 

and analyze the product 

w= II w,. 
/=! 

(4.6.33) 

Then 

fi(Wi) = ——ex p 
V2tt 

-\(">'-ft)2 1=1,2,...,/!. (4.6.34) 

Since there is no simple formula relating the Mellin transform of the p.d.f. 

of a nonstandardized normal r.v. to the Mellin transform of the p.d.f. of a 

standardized normal r.v., it is natural to reduce (4.6.31) to a form involving 

25The results in Sections 4.6.2 and 4.6.3 were derived by J. M. Pruett in a doctoral dissertation 

entitled “The Distribution of Products of Some Independent Nonstandardized Random 

Variables,” University of Arkansas, 1972. 
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the p.d.f. of a standardized normal variable #(0,1). Writing jj(w,) = 

(Vim Yxe~^e~v^^2e'liWi and expanding exp[ — • —/i,-)2] in series form, 

one finds that (4.6.34) reduces to 

1 00 1 

//W= , - e tt/22 77 ftV* ‘v'/2> 
7 = 0 # 

/=1,2,.. ,.,n. (4.6.35) 

Now it is easily shown that 

Mj(e(—,9) = ^) (4.6.36) 

and applying properties 4 and 10, respectively, of Section 2.8.2 to (4.6.36) 

gives 

Ms(e~w‘/2) = 2(#2)-T(|] 1 (4.6.37) 

and 

Ms (iw{ [ e(- ]) = 2K*+j)/2] ~1 r( (4.6.38) 

Hence in light of the partitioning procedure defined by (4.5.1), 

f jrift-V2 yr(^) 

= —L— 2(#2) ~xe~^/2[ Et + O, ], (4.6.39) 
VYit 

where 

£,= 2o^7(ftV2)T(f+y), (4.6.40) 

o'=|0(57TT)T^V5)",r(£TL4 (4-64,) 

Similarly, 

A**,))=^=-I ±(V2 )'r(i#) 

1 

V2w 

2U/2)-lett2/2[£'._0.]- (4.6.42) 
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Then, with a little algebraic manipulation, it is easily shown by mathemati¬ 

cal induction [298, pp. 49-54] that 

Ms(h+(w))= 1 2("/2)(*-2>expf 2 -y] 
(27r) /2 \/-l 2 / 

•2n~\ExEr • • En + 0\02‘ • • On) (4.6.43) 

Ms{h~(-w))= 1 -2(n/2)(^2)exp( 2 -y] 
(2tt)”/2 \ —i = i 2 / 

•2n-\E,E2- • • 0,02- • • 0„). (4.6.44) 

Then 

h + (w)=-,f w~sMs(h + (w))ds (4.6.45) 
2 77/ Jc — / oo 

h~(w)=^—.f w~sMs(h~( — w))ds, (4.6.46) 
277/ 2C_ zoo 

which integrals may be evaluated by the residue theorem. 

4.6.3 The Distribution of the Quotient of Two 
Independent, Nonstandardized, Normal Random Variables 

One of the important unsolved problems in the field of survey sampling is 

that of the determination of the distribution of the quotient y/x of two 

independent, nonstandardized, normal r.v.’s. Perhaps one reason for the 

elusiveness of the determination of the distribution of this quotient is that 

none of its absolute moments exists. It is well-known that the ratio of two 

standard normal i.r.v.’s has a Cauchy distribution, which has the character¬ 

istic of having no absolute finite moments. In particular, its even order 

moments are all infinite, whereas its moments of odd order are zero only 

because of symmetry. It is not surprising, therefore, that the distribution of 

the ratio of nonstandardized normal i.r.v.’s also has this property, since the 

standardized normal r.v. is a special case of a nonstandardized normal r.v. 
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with mean zero and variance one. That such is in fact the case is now 

shown. It is also shown that the quotient distribution is in the form of an 

infinite series involving the parameter ratios /q/a, and \i2/o2. Consider, 

then, the two noncentral normal r.v.’s Xx and X2 having the p.d.f.’s. 

— oo < a, <oo, 1 = 1,2, (4.6.47) 

whose quotient V=Xx/X2 is regarded as the product of the two r.v.’s Xx 

and 1 /X2 with p.d.f.’s /,(*,) and g2( 1 /x2), respectively. Then, as previously 

shown, 

ai\/(2ir) 

-exp 

M4gJ(i))=M-'+2(/2<*2))’ <4'6'48) 

where r is a complex variable and the Mellin transform of the p.d.f. g(v) of 

the quotient V=Xx/X2 is 

K(g(°))=K(f,(x,))M-r+2(/2(x2)). (4.6.49) 

Evaluation by the method of residues of the inversion integral 

g(o)=y^ fC + '°°v~rMr( g(v))dr (4.6.50) 
2m Jc — joo 

yields the desired p.d.f. of V. 

To evaluate this inversion integral, one must utilize the partitioning 

technique defined by (4.5.1) and discussed in Section 4.5.1, since the 

variables Xt may assume both positive and negative values. Thus 

/» 00 

K[fi+ (*/)] = Jo *rXfi+ (*,•)dxi (4.6.5la) 

_ _ r oo 

Mr [fr (-■*,•)]=/ xi fr (- xd dxi> (4.6.51b) 
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where, as before, r is a complex variable. Then 

KiT (*,)) = 
l2(r/2) - 1 . /V/2o?. 

o° , 

2 i 
y=o 

(4.6.52a) 

(re-*,))= 
V(2w) 

00 1 
.ar-l2(r/2)-le-*?/o?. ^ 1 

=o-/! 7 = 0 

(4.6.52b) 

^-.+2(/i+U))=-F='ir'+'2“r/2«-rf/2,’? 

I 

and 

w-^2(/r(-*,))=-p=-<’rr+l2-r/2c-',''/V 

V 1 ( ZlL^L 
J-0 -'! l 

+ H (4.6.52d) 

As shown previously (4.5.22a, 4.5.22b) these Mellin transforms have the 

partitioned form 

M.(«+(«)) = A/,(/,+ (x,))M_,+2(/2+(x2)) 

+ M, U~ (- Xi))M_r+2(/2“ ( — x2)) (4.6.53a) 

M,(«"(-t))) = M,(/l+(xl))M_,+2(/2"(-x2)) 

+ M,(/f ( -x,))M_,+2(/2+(x2)). (4.6.53b) 
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Substituting (4.6.52a-d) for the Mellin transforms in (4.6.53a, b) and utiliz¬ 

ing the transformation s = r/2, one obtains the results 

m,U+(u))= l— -)rb + 4) 
V(2tt) 

-]-—o2-2s+,2-se-^2°l ^ -U ^^-W-j+^ + l) 
°2 ! \ 2 / 

hr) AM °* ! \ w^j 

—l-—a22s+l2-se-M2°i 2 -t( + 1) y^y AM o2 ) [ 2 ) 

(4.6.54a) 

and 

Ms(§ (“»)) = 

- 1 n-2s+l2-se-^/2ai 2 
^{2tt) 7 = 0 J 

+ 

V(2?r) 

The resultant p.d.f. g(u) is then 

(4.6.54b) 

g(T) = g + (0 + g (»), (4.6.55) 
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where 
, 1 f c +1 oo 

g (V)=J— v~sMs(g+(v))ds, (4.6.56a) 
Z7TI Jc_ ioq 

1 r c + i oo 

g-(U)=2ViJ v~sMs(g~(-v))ds, (4.6.56b) 

and Ms(g+(v)) and Af,(g (o)) are given by (4.6.54a) and (4.6.54b), respec¬ 
tively. If one now employs the transformation 

w = 
x\/°\ 

x2/a7 
(4.6.57) 

letting M,= ju,,/a„ M2 = fo/o2, then (4.6.56a) and (4.6.56b) become, re¬ 

spectively, 

%jiwvi’+i) 

f jf(jt/2V2)'r(-.*+^ + i) 

I i(-M2V2)T(-S+^ + l 
7=0 7- V 

ds (4.6.58a) 

and 

h~(w)=h C1“ b(w2)'’exp[" '^M'+ 

f -i(-M2V2yr(-i+^ + i) 
j = 0 J• \ * / 

ds. 

(4.6.58b) 
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As Section 4.6.2 indicated, one can separate each summation in 

(4.6.58a, b) into two components, one of which consists of a sum Ej(s,Mj) 

of even powers of the variables, and the other a sum Ot{s, M,) of odd 

powers of the parameters A/(, /= 1,2, where 

0° 1 

E,(S,M,)= 2 1 (M,V2)JT(s+j), 
j=0 (2jV 

(4.6.59a) 

2 (1.\|}! (A/|V2 f'Mr(,+y+ *), (4.6.59b) 

°° 1 7’ 
E2(s,M2)= 2 -T-^rr(Af2V2 ) yr( —5+y + 1), 

,=o (2/)! 
(4.6.59c) 

Q.MO- 2 (2y.}1), (w2V2 f+T( *+./+ ^). (4.6.59d) 

Note also that 

Ei{s,Mi) = Ei{s,-Mi), i = l,2, (4.6.60a) 

Oi(s,Mi)= - Ot (s,-Mt), 1 = 1,2, (4.6.60b) 

so that (4.6.58a) and (4.6.58b) are expressible as 

h+(w)= 
exp[~KMi2+M22)] 

277 
w 25[yf(5) + 5(5)]^ 

(4.6.61a) 

and 

h (w) = 
exP [-KMi2 + Mi)] ( ! 

(4.6.61b) 

77 

where 

2 ^j7<M'V2 )2T(S+J0 

X (4.6.62) 
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and 

'w"U, (M,V2)2/+T(j+/+i)' 

x(|0(2LTT)[(M2VI)2i + 'r(-J+''+5))' (4'663) 

The procedure is to evaluate the residues at the poles of A (5) and B (s) and 

then use the residue theorem to evaluate the inversion integrals. To show 

that the residue theorem is applicable, partition the form of h+(w) into two 

parts: hf(w), which is valid when 0<w<l, and h£(w), which is valid 

when l<w<oo. Similarly, h~(w) is structured into two components: 

/zf (w), which is applicable when — 1 < w<0, and /z2-(w), which is applica¬ 

ble when — 00 < w < — 1. 

Note that in view of the identity 

w~2s = eln(’v~2'') 

= g-(21n«’)^ 

the integral in (4.6.61a) is expressible in the form 

f £-(2|n,f)^y4 (5) + b (j)J ds. 

•'c — i 00 

(4.6.64) 

(4.6.65) 

Thus if one restricts the values of w to the range 0< w < 1, the coefficient 

of s, namely, — 21nw, is positive so that the conditions of Jordan’s lemma 

are satisfied relative to the closed contour CL= QKLMPQ (Fig. 2.9.1a), 

and the equality 

Xr c 100 
e - (2 in ($)]*& = I e~i2lnw)s[A (_y) + # (5)j fa (4.6.66) 

Ci •'c — i 00 

holds. Therefore, 

Z7TI Jc _ Zoo 

= (2«/+2«/l 0<W<1, (4.6.67) 
' j / ' 

where Rj denotes the residues at the poles located at — j, j = 

— \, - f,... and Rj those at the poles located at.? = - (j' + \),f = 0,1,2, — 
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For values 1 < w< oo, the coefficient of 5 in the kernel e~^2lnw)s is negative, 

so that the conditions of Jordan’s lemma are satisfied relative to the closed 

contour CR = QTPQ (Fig. 2.9.16), and the equality 

(2\nW)s[A (j) + £(,)]<& = fC + ,COe-(21nw)s[A(s) 4- B (5)] ds 
J c — i oo 

holds. Therefore, 

1 rc + ioo _ _ _ 

hj (w)= ——7 j w~2s[A (5) + B (j)] ds 
Z7TI Jc-.jQO 

2^+2 Rk' L i<iv<oo, 
k k' / 

(4.6.68) 

where Rk denotes the residues at the poles located at s = k+\,k= — 1, 

-2,..., and Rk, those at the poles located at s = k' + \,k' = — §, — f,— 
The same reasoning is applicable to 6_(w) as given in Equation (4.6.61b), 

so that 

/J-(w) = /If(w) + /l2-(w), (4.6.69) 

where 

h~(w)=-±- fC + ,C°e-^-w))s[A(s)-B(s)]ds 
Z7TI Jc — jco 

= — 1 < w <0 (4.6.70a) 
' j f ' 

^2(W)=Y^ f e-(21n(-w))ij-^(5)_ £(s)j<ft 
Z7TI yc_/00 

= — 00 < w< — 1, (4.6.70b) 
V k k’ / 

where the residues Rj, Rj,, Rk, and Rk-, have already been defined. Finally, 

by a systematic arrangement of the residues [298, pp. 66-73] in the sums 

above (considerably simplified by the fact that only first order poles 
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occur), /jf(w) and hp(w) are expressible as the following series: 

hf(w)=—exp 
i( M? M2 \ 

2U ojj 

f f _J_1 U,V2 \2Ju2V2'2k 

J-O *-o (2»! (20! \ 

2 w2U+i) 

1=0 

Tjj + k + l+l) 

n.(-iy 

2 m+ 1 
00 00 _i i / m,v2 r',,T' (fev2 

-o„to(2m+l)! (2»+l)d o, ) \ a2 

2n+ 1 

and 

2 w2m+2p+x 
p = 0 

T(m + n+p + 2) 

pK-'Y 
0 < | w| < 1 (4.6.71a) 

h?(w)=-ex p 
77 

1 / /*! \ 

S 5 _1_iIjhY2\2JIp2Y2 '2k 

,i0k=o(2j)'. (2k)\[ *, 

X 2 w~2(k + l+l) 

1 = 0 

TU+k + l+l) 

/!(-l)/ 

1__1 ( M,V2 \2ot + 1/ p2V2 \ 
±22 

2n+ 1 

^o„t0(2m+l)! (2/t+l)! I a o2 / 

X 2 w-2"-2^-3 
p = 0 

T(m + n + p + 2) 

pk-w 

1 < H < 00. 

(4.6.71b) 
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In summary, the p.d.f. h(w) of the quotient W=(Xx/ 

nonstandardized normal r.v.’s is given by 

°\)/(X2/o2) of two 

h(w) = h2(w), — 00 < w< — 1 (4.6.72a) 

— 1 < w<0 (4.6.72b) 

= /t,+ (w), 0< w< 1 (4.6.72c) 

= h2(w), 1 < W < 00 (4.6.72d) 

and hf(w), hf(w) are given by (4.6.71a) and (4.6.71b), respectively. A 

computer program for evaluating these density functions has been written 

and is operational [298, Appendix C], There are removable discontinuities 

at w= - 1,0,1. The p.d.f. of the quotient V=XjX2 may be obtained from 

these equations through the use of the simple transformation V— 

Mojw- , „ , x 
An example is presented for which the ratio Mx/M2 = (^i/°v 

is 0.50. Figure 4.6.1 plots the p.d.f. with removable discontinuities at 

w= —1,0,1. 
Note that the moments of the distributions g~(v) and g+(v), as given by 

the Mellin transforms (4.6.54a, b), do not exist, since Ms(g~(~v)) and 

Ms(g+(v)) are infinite for s= — j/2,j = 0,1,2,... and s=j/2+\,j = 

2,4,6,.... 

W 

Fig. 4.6.1 P.d.f. of the quotient of two normal i.r.v.’s, M,/M2 = {mx/oi)/(m2/a2) = 0.5. 
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4.7 THE DISTRIBUTION OF PRODUCTS OF 

DISCRETE INDEPENDENT RANDOM VARIABLES 

In the analysis of discrete r.v.’s the probability mass function (p.m.f.), 
rather than the p.d.f., is used, in which probabilities rather than probability 
densities are associated with the possible values of the r.v. Thus if p(x) is 
the probability mass function for the discrete r.v. x, which may assume the 
values x = Xj,j=\,2,...,n, then p(xj) gives the probability that the value 
x = Xj will be chosen if a value of the r.v. is selected at random from the n 

possible values. If m r.v.’s xi,i=\,2,...,m are considered, in which the /th 
r.v. can assume the n, values xiJ,j= 1,2,...,«■, then the p.m.f. p(y) of the 
product r.v. y = n"L,x, consists of the probabilities 

p(y\ y = {yk}, (4.7.1) 

where {y*.} denotes the set of products xljx2ji • • • xmJm, each product in the 
set having the value yk and being formed by taking one and only one value 
from each of the sets {xij},j= 1,2,i — l,2,...,m. The probability 
distribution function is then 

P(yk)= 2 p{ys}, (4.7.2) 
S < k 

where {y5} denotes a possible product x,x2- ■ ■ xm < ys for each possible 
value ys < yk of the product r.v. (y). 

Consider, for example, the distribution of the product Y=XxX2 of two 
binomial i.r.v.’s with p.m.f.’s 

p(xx) = [1)px'^-P\)2~X\ *, = 0,1,2 (4.7.3a) 

and 

P(x 2) = ( x2 ) P2-1 ('-P2)l-X\ x2 = 0,\. (4.7.3b) 

The p.m.f. p(y), then, gives the probability that y = xxx2, where x, and x2, 

respectively, are the number of successes resulting when two types of 
Bernoulli trial are carried out, in which the respective probabilities of 
success in a given trial are pl and p2. 

Since x, is an element of (0,1,2) and x2 is an element of (0,1), then for 

J-0, 

p(y)^P\{i)Pi{j), i = 0, 7 = 0,1 

i—1,2, 7 = 0, 
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where/?,(/) is (4.7.3a) evaluated for x, = i andp2(J) is (4.7.3b) evaluated for 
a2 =y',/ = 0,1,2; 7 = 0,1. Specifically, 

p(0) =Pi(0)p2(0) +pi(0)p2(l)+pl(\)p2(0) +px(2)p2(0) 

= (1 ~Px?{\-/>2) + (l -P\?P2 + 2P\(\~P\)i}-pJ+PiO-Pi)- 

(4.7.4a) 

Similarly, 

P{\)=P\(\)Pi(\) 

= 2plp2(\-pl) (4.7.4b) 

p(2)=pl(2)p2(\) 

(4.7.4c) 

The probability distribution for the product Y= XxX2 is, then, 

p{y) = ^-P\)2^-P2) + ^-P\)2P2 + 2P\^-P\){^-Pi)+P2\i}-P^ 

y = 0 (4.7.5a) 

= 2p\P2{\ ~P\), y= 1 (4.7.5b) 

y = 2. (4.7.5c) 

=P2P2- 

=p2p2> 

As a partial check on the validity of the probability distribution 
(4.7.5a-c), note that since a, and a2 are independent, 

E[y] = e[x\]e[x2] 

= nxpxn2p2 

= nxn2pxp2 

= 2pxp2 (4.7.6) 

o2 = E[y2]-E[y]2 

= E[x\]E[xl]-n2xnlp\pl 

= 2pxp2(\+px)-4p2p2 

= 2pxp2 + 2p2p2-4p2p2. (4.7.7) 
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Now, by definition. 

E[y] = 2 yp(y) 

= 0p(0) + lp(\) + 2p(2) 

= ^P\Pi 

and 

°y=E[y2]-(E[y])2 

= tfp(0)+\2p(\) + 2>p(2)-{E[y])2 

= 2pxp2 + 2p]p2-4p]pl, 

which results are identical—as they must be—with (4.7.6) and (4.7.7), 

respectively. 

4.8* THE DISTRIBUTION OF PRODUCTS AND 
QUOTIENTS OF DEPENDENT RANDOM VARIABLES 

Thus far, the analysis of products and quotients by means of Mellin 

transforms has been limited to independent r.v.’s. Reed [304] and Fox [111] 

appear to have been among the first to develop the bivariate generalization 

of Mellin transforms. Later, Subrahmanian [371] combined the earlier 

results of Springer and Thompson [354] with those of Fox to establish an 

analogy between the bivariate techniques and the univariate (independent) 

methods. His results are summarized in this section. Although the use of 

Mellin transforms, under relevant conditions, may be extended to the 

general case of products of n dependent r.v.’s, only products (and 

quotients) of two dependent r.v.’s are considered here. 

4.8.1 The Two-Dimensional Mellin Transform 

Let (U, V) be a two-dimensional r.v. for which U and V are not indepen¬ 

dent, and let (U, V) have the joint p.d.f./(«,») that is positive in the first 

quadrant and zero elsewhere. Fox [111] has defined the Mellin transform 

of f(u, v) as 

(4.8.1) 
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with the inverse 

1 rh + ioc rk+ioo n 

f(u,v)=—l—f f U Slv 2M(sl,s2)dslds2. (4.8.2) 
(7iri.Y •'h-ico Jk-ica (2 m) 

The conditions under which (4.8.1) and (4.8.2) are valid are stated without 

proof in the theorems that follow. The proofs are given by Fox [111]. 

Theorem 4.8.1. If 

(i) M (sx,s2) is a regular function of both the variables slt s2 in the strips 

a < 5, < b, c < s2 < d for some a, b, c, d. 

(ii) in these strips |A/(^j,^)!= ^(l^il~/”)^(l^l ”) f°r some w>0, n>0, 
as |j,| and |.y2| tend to infinity, independently of each other; 

(iii) a<h<b and c<k<d; 

((i) (ii) (iii) iv) /-ooZ-ool^^n^)! |<*i IW exists when taken alon8 any lmes parallel 
to the imaginary axes in the strips defined in (i); 

(v) f(u,v) is defined by the equation 

then 

1 rh + iao /•k + ico , , . 
f(u,v)=--f / u~Slv S2M(sl,s2)dslds2, (4.8.3) 

(27r/) ^h — ioo ^k — ico 

r oo r oo 

M(sl,s2)= I | us'~lvS2~l(f(u,v))dudv (4.8.4) 
•m •'o 

is true. 

Theorem 4.8.2. Let U denote a part of the complex u = (u\ + iu2) plane, 

which is bounded by two lines through the origin and includes the whole 

of the positive real u-axis from 0 to + oo. Let V denote a similar region in 

the complex v = (v\ + iv2) plane. If with u in U and v in V the following 

conditions are satisfied: 

(i) there exist two real numbers h and k so that uhvkf(u,v) is a regular 

function of both u and v; 

(ii) uhvkf(u,v)= 0(\\ogu\~m)0(\\ogv\~n), m>0, n>0, as u and v tend 

independently either to zero or to infinity; 

(iii) /f\uhvkf(u,v)\\du\ \dv\ exists, when taken along any lines in the U and 

V regions extending from the origin to infinity; 
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(iv) MS],s2(f(u>v)) is defined by (4.8.4); 
then the equation 

1 fh + i oo rk + i oo 

f(u,v)=-f f U~S'V~S2M (f(u,v))dslds2 (4.8.5) 
(277/) 4-/oo 4-/00 

is true. 

Only two cases are discussed here. 

1. If Y = UV, then h(y), the p.d.f. of Y, has the Mellin transform 

= M,My)) = "„(/(«.»)). (4-8.6) 

2. If IT=t//F, then g(w), the p.d.f. of W, has the Mellin transform 

MSus2( g(w)) = Ms; -,+2( s(w)) = K,-s+2(f{u, u)). (4.8.7) 

Extensions of (4.8.1) and (4.8.2) to the case where U and V are not 

everywhere positive can be readily accomplished by the method discussed 

in Section 4.5. In particular, denote by M + +(sx,s2), M + ~(si,s2), 
M ~ +(svs2), and M~~(sl,s2) the Mellin transform of f(u,v) in the four 

quadrants. Then, after assigning the appropriate sign to the negative 

variable involved, one can write the expressions for the Mellin transform 

of h(y) and g(w). Specifically, the Mellin transform of h(y) is 

Ms+(h{y)) = M + + (s,s) + M (s,s), y>0 (4.8.8a) 

K~i.K-y))= M + ~ (s,s) + M~ + (s,s), y< 0 (4.8.8b) 

while that for g{w) is 

Ms+{g(w)) = M + + (s, -s + 2) + M~-(s , - 5 + 2), w>0 (4.8.9a) 

M~(g{~w)) = M + ~(s, - -5 + 2) + M + (5, 

+ 1 w <0. (4.8.9b) 

Inversion of the Mellin transforms (4.8.8b, a) and (4.8.9b, a), which are 

functions of the single complex variable s along the real line, in the manner 

discussed in Section 4.2, yields the p.d.f.’s 

h{y) = h (y), - oo <y <0 (4.8.10a) 

= h+(y). 0<^ < oo (4.8.10b) 

g(w) = g~(w), — oo < w < 0 (4.8.11a) 

= & + 0)> 0< w < 00. (4.8.11b) 
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4.8.2 The Case of the Symmetrical Distribution 

If the joint distribution f(u,v) satisfies the conditions of Theorem 4.8.2 and 

is symmetrical about both the u and v axes, namely, 

then 

/(- u,v) =/( u, o) =f(u, - v) =f(u,v). (4.8.12) 

M + + (slts2) = M + ~ (j„s2) = M~ + (svs2) = M~~ (svs2), (4.8.13) 

so that 

MV!(/(«,.))=4M + + (Sl!i2), (4.8.13a) 

If Y= UV, inversion of (4.8.13a) yields 

h(y)=T~- fC+ 0°4y~sM + +(s,s)ds. 
Z7TI Jc _ / 00 

(4.8.14) 

More generally [111], if the n pairs of bivariate r.v.’s (C,, Vt) have the joint 

p.d.f.’s f(u„Vi), i=\,2,...,n, which are all symmetrical about the axes of 
r 1 1 1 n n 

(w,) and vi, the joint p.d.f. of the pair of r.v.’s u=Ilui,v= II u, is 

/(«»«) 

where 

(2 m) 

1 rh + ico rk + ioo , n , 
- I I 4n~xu~s'v~S2 IT M,+ + (sy,s2)dsl,ds2, 

— •'k — Zoo ,= ' 

(4.8.15) 

/• 00 /* 00 

Mi+ + (sl,s2)= f f uis'-IviS2~lfi(ui,vi)duidvi (4.8.16) 
Jo Jo 

and Mi++(sl,s2), ^(u,,u,) satisfy the conditions of Theorems 4.8.1 and 

4.8.2, respectively. 

The following example, which illustrates how the method of Mellin 

transforms applies to the derivation of the distribution of products of 

dependent r.v.’s, is due to Subrahmanian [371]. 

4.8.3 The Bivariate Normal Distribution 

Consider the standardized form of the bivariate normal distribution, 

namely, 

f(xi,x2) = 
277 yT 

exp 
[ x\ — 2pX,A2 + *!] 

2(1-P2) 
(4.8.17) 
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where p denotes the coefficient of correlation between a, and x2■ Since 

(4.8.17) is a symmetrical p.d.f., (4.8.13) holds. Substituting in (4.8.1) and 

integrating with respect to x, (see ref. 95, (13), p. 313), one obtains 

M + (*„**)=^(i-p2)<',-|)/2 

X /' 
*/0 

■ St-I exp 
-(2~ P2) 

4(1 -P2) 
\D ■S| 

px2 

L (i-p2) 
2\I/2 

dx 2’ 

(4.8.18) 

where Dv(y) is the parabolic cylinder function (Appendix D.l). Using the 

integral equation [98, (11), p. 121] 

2\-P-s,/2 l/2V( 

( e-ztrl+p/2D , \2(kty/2]dt=^-r-- ■ -~(z + k) 
Jo s,L J T[(sx + P+\)/2] 

-p/2 

XF 
Si p 5, + ^+l z-k l5j_ . 

\ 2 ’ 2 ’ ’ z+k r 

Re( (3)>0, Re(f)>° (4-8.19) 

with x2 = 2tl/2, where F(a,b,c,z) is Gauss’s hypergeometric series (Appen¬ 

dix D.l), one can complete the integration in (4.8.18) to obtain 

r^i)rOy2)0-p2)((s,+*2+1)/2) 1 

2(J' + J2 + 2)/2r(l)r((j1+J2+1)/2) 

■2 Fx 
S i S2 5] + ^2 4" 1 

T’T; 2 (4.8.20) 

where 2Fx{a,b\c,x) is Gauss’s hypergeometric series expressed in the 

notation of the generalized hypergeometric series (see Appendix D.l). 
From (4.8.6) and (4.8.20), it follows that the Mellin transform of the 

p.d.f. h(y) of the product Y= XxX2 is 

M,(h*(y)) = M,(h (y)) 

[r(^)]2(l-p2)‘~(l/;) 

yr(i)r(J+i) 
2 f, 

A 5 + 1 
2’ 2 

; j + \; 1 (4.8.21) 
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Then, from (4.8.8a, b) and from specializing the transform in formula (29) 

of ref. 95 (p. 331) for p = 0, /3= 1, one obtains 

h(y) = 
—P2)1/2 

exp 
p\y\ 
i-p2 

Kr \y\ 
i-p2 

— oo<y< oo, (4.8.22) 

where K0(x) is the modified Bessel function of the second kind of order 

zero (Appendix D.l). 
Similarly, one can obtain the p.d.f. g(w) of the quotient W= Xx/X2 of 

two dependent r.v.’s having the p.d.f. (4.8.17). Specifically, from (4.8.9a, b) 

it follows that the Mellin transform of g(w) is (4.8.20) with s, = s, s2 = — s + 

2, so that 

Ms{g + (w)) = 
T(s)T(-s + 2)(\-p2)l/2 

2rG)r(f) 
2^1 

s ~s 1.3, 
2 ’ 2 + 2 ’1 

(4.8.23) 

Then, using equations due to Erdelyi [97, (12), p. 101] and [95, (12), p. 309], 

it follows that 

/i 2\l/2 

g(w)=-------, -oo<w<oo, (4.8.24) 
v w2 — 2pw +1 

as has been obtained with other methods by Fieller [102] and Craig [71]. 

The distribution of y was obtained with other methods by Craig [69], 

Aroian [17], and Taneja, Cornwell, and Aroian [373], Craig and Aroian 

considered the product v = xxx2/oxo2, where xx and x2 follow a bivariate 

normal distribution N (p.{,p2,ax,a2; p). They obtained the distribution of v 
for various values of 5j, S2, and p, where 8l:=px/ol, S2 = p^/a2. Taneja et 

al. derived the mathematical forms of the distribution of t; for five new 

cases: (1) 5„,52,p; (2) <5,=0,S2,p; (3) 5j = 52 = <5,p; (4) 61 = 62 = 0,p=l; (5) 

6, = S2 = 8,p= 1. Special cases include the normal distribution and both the 

central and noncentral chi-square distributions for one degree of freedom. 

They also proved that if 5, = 52 = <5 and 8 becomes large, the standardized 

distribution of the product approaches a Pearson type III distribution. 

Their results can be used to provide tables for p = 0 (already available) and 

for p=A 0. 

EXERCISES 

4.1 Show that the p.d.f. h(y) of the product T=II"Aj of n identically 

distributed uniform i.r.v.’s with p.d.f. 

f(x)=Ta’ 
— a < x < a 
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is 

Ky)=~ 2 (*— 1)! 

= 0, \y l>an 

In 
a 

y 

vn-1 

0< Ijv'I < an 

4.2 Let Xx and X2 be two uniform i.r.v.’s with means Mi > /x2 > ^ and 

with p.d.f.’s 

fi (Xi) = U \Xi~ Mr I ^ 2 » 1=1,2 

= 0, otherwise. 

Show that the product Y=XxX2 has p.d.f. 

S(>0 = 0. .V>(mi + iXm2 + i) 

y 
— — In 

= -In 

= -In 

(Mi + sX^ + i) 

Ml — 2 

7T» ( Mi — i)( M2+ i) <( Mi + i)( M2-*- i) 

Mi+ 5 

( Mi — l)( M2 2) 

(M1 2)(M2 2)<^^<-(mi 2)(M22) 

y 
, (Mi“i)(M2 —1)<(Mi+ 0(M2~l) 

= 0, 0<^<(^,-|)(m2-5)- 

4.3* Show that the p.d.f. h(y) of the product Y = XxX2 of a uniform and 

Cauchy r.v. with p.d.f.’s 

/l(*l)=2“’ ~a<xx<a 

= 0, |*,|>a 

and 

fl(X2)~ 
7t(c2 + x\) ’ 

— 00 < x2< 00, 

respectively, is 

hM=2^,n 

(a2c2+y2) 
- 00 <y < 00. 
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Hint. Note that Ms(h+(y)) = [ — (ac)s 1/2j]csc(77-.y/2),0<Re(.y)< 

2 or equivalently, (from ref. 95, (11), p. 307) 

M.. 
dh + (y) \ 

dy ) 

Now observe that this is the Mellin transform of the Cauchy 

density function f2(x2) with c replaced by ac. 

4.4* Show that the p.d.f. h(y) of the product Y = XxX2 of a uniform and 

gamma r.v. with p.d.f. 

/,(*,)= 2^, — a<xx<a 

and 

/2(* 2) = 
xte - Xl 

r(c+i)' 
0 < x2< 00, 

respectively, is 

*W-2Tc 

r(c,\y/g 1) 
r(c) 

— 00 <— < 00, 
a 

where T(c,y/a) denotes the incomplete gamma function with 

parameter c [283]. 

In Exercises 4.5 to 4.9, the Cauchy i.r.v.’s are identically distribut¬ 
ed with p.d.f. 

/(*) 
a 

7r(a2 + x2) ’ 

— 00 <x < 00. 

4.5 Show that the p.d.f. h(y) of the product Y= XxX2 of two Cauchy 
i.r.v.’s is 

4.6 

4.7 

h(y) = 
a 

In 
y 

1r2(y2-a4) \a 
— 00 <y < 00. 

Show that the p.d.f. h(v) of the quotient V=Xx/X2 of two Cauchy 

i.r.v.’s is identical with the p.d.f. h(y) of the product. 

Show that the p.d.f. h(y) of the product Y= XxX2X3 of three 
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identically distributed Cauchy i.r.v.’s is 

AGO- 
2\7T3(y2 + a6) 

— oo <y < oo. 

4.8 Show that the p.d.f. h(y) of the product Y=U]Xj of five Cauchy 

i.r.v.’s is 

M>0- 
a 

4!775(y2 + u10) ln% 
+ 10772| lnl I \ +9it4 , — oo<y<oo. 

4.9 Show that the p.d.f. h(y) of the product 7=111% of 10 indepen¬ 

dent Cauchy i.r.v.’s is 

h(y) = 
a 10 

9!7r,0(y2-a20) 

In + 120772|ln| 
y 

a 20 a 20 

+ 4368tt4| ln| 1 \ +52480tt6{ lnl %- 
y 

a 20 a 20 

+ 147,456778 

4.10 Verify that each of the p.d.f.’s h(y) in Exercises 4.5 to 4.9 does in 

fact satisfy the relationship 

/OO 

h{y)dy = \. 
- OO 

4.11 Given the three beta i.r.v.’s with p.d.f. 

f(*j) 
noj+bj) 

r(«,)!•(»,) ' 
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where a, = 5, /?, = 2, <a2 ~ 6, Z>2 = 2, a3 = 6,63 = 3, show that the p.d.f. 

h(y) of the r.v. Y=X{X2X3 is 

/i(/= 17,640[2/-33/- 18/lny-6/(hiy)2 

— 12/lny+ 30/+/], 0<y<l. 

[The crux of the problem is the evaluation of the Kkj’s in (4.4.23) 

and (4.4.24). Once these are obtained, h(y) follows immediately 

from (4.4.21).] Show also that the distribution function is 

H (/ = 7056/ - 89,180/ + 79,920/ + 2205/ 

- 47,040/lny - 17,640/(lny)2 - 30,240/lny. 

4.12 Use the Mellin transform to prove that Y=— 2(ln IT^ Xj) has a 

chi-square distribution with 2n degrees of freedom, where Xt, 

i=l,2,...,n are uniform i.r.v.’s each having p.d.f. 

f(x) = 1, 0< x < 1 

= 0, otherwise. 

4.13 Show that the p.d.f. h(y) of the product Y= XtX2 of two normal 

i.r.v.’s N (0,1) is 

h(y)=-K0(y), -cc<y<co, 
77 

where K0(y) is Bessel’s function of the second kind with a purely 

imaginary argument of zero order (see Appendix D.l). 

4.14 Let V1,V2,...,Vm,X1,X2,...,X„ be (m + n) normal i.r.v.’s each 

having zero mean and variance a2. Define Y —V/W where V= 

'E't’X2, W/=2"=1Ar(2. Prove that Y has the F p.d.f. 

T((m + n)/2) y^/2-\ 

^ T(m/2)T(n/2) (y + \fm + n)/2‘ 

4.15 Let X0,Xy,X2,...,Xn be n+ 1 normal i.r.v.’s N(0,1), and define 

V=(Zrj^lX2/n)l/2. Show that Y=X0/V has the Student t p.d.f. 
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with n degrees of freedom: 

h(y) = 
1 r[(n + l)/2] 

Vmr r(/i/2) K) 
2 \ —(n+ l)/2 

— oo <y < oo. 

4.16 Let Xx and X2 be i.r.v.’s, each exponentially distributed with 

parameter X = | (see Table D.2). Use the method of integral trans¬ 

forms to show that the p.d.f. h(y) of the quotient Y= Xx/ X2 is 

h(y)={\+y)~2, T>0 

= 0, otherwise. 

4.17* Let X,j = l,2,3,4 be i.r.v.’s, each exponentially distributed with 
Xx + X2 

parameter X. Find the p.d.f. h(y) of the r.v. Y= ^ • 

4.18 Consider the power r.v. X with parameter a and having p.d.f. 

f(x) = (a+ 1)jc“, 0 < x < 1, areal 

= 0, otherwise. 

(This is a particular member of the family of beta p.d.f.’s. (4.4.11) 

with ax = a+ \,bx = 1.) Show that the p.d.f. h(y) of the product 

Y=II"=1X( of n such power r.v.’s is 

0<y<l 

= 0, otherwise. 

4.19 Establish that the quotient of two power r.v.’s with parameter a has 

p.d.f. 

g(w) = (^-)w“, 0< w < 1 

1 < w< oo 

= 0; elsewhere. 
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4.20* Let Xj and X2 be two independent power r.v.’s with p.d.f.’s 

/i(*i) = 
(m+ 1)a, a, < a, < bx 

b? + ax>0 

= 0 otherwise. 

fi(* i) = 
(m + \)x2 d2 ^ x2 ^ b2 

’ a2>0, 

= 0 otherwise. 

Also, let bx> b2> ax> a2 and bxb2> bxa2> b2ax> axa2. Show that 

the product Y = XxX2 has p.d.f. 

g(y)=-A(y) to(ji-). 

= A(y) 

~A(y) 

= 0 

-|nfe)+lnfe) 

“ ln( )+ln( 6^) ■*" ln( ) 

bxa2 

axb2 

1 u2 

\a2 

, axa2< y < axb2 

elsewhere 

where 

A(y) = 

Verify that 

{m+\)2y‘ 

[<*,62)'"+' - (*,a2)'"+‘ - (fc2a,)'"+1 + (a,a2)m-1 ] 

f g(y)dy = i 
■'Range 

of.y 

4.21* Let I be a power r.v. with p.d.f. 

(Pruett, 1972) 

f(x) = ce cxc \ 0<*<e, e>0, c>l. 
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Let X{i),X{J),i<j, be the ith andy'th order statistics in a random 

sample of size n. Prove that the r.v. Y = X({)X(j) has the p.m.f. 

*«='"£ 'sVir’L'T'Hv) 
r=0 5 = 0 V /V 7 

n\ce~c(J+s+ *^ +1 

X (/ -1)!(J- i -1)!(n ~j)\(j~ 2i- 2r + s)! 

.y c(r+ 0 - 1 r e c(J - 2« - 2r + s) _y c/2(J - 2i - 2r + s) j ^ 

where 0 < i <j < n, e > 0, c > 1, and 0 < y < e. 

(Malik and Trudel 1970) 

Hint. First obtain the joint probability mass distribution 

p{xU),x(j)) and then evaluate the Mellin (product) convolution 

h(y). 

4.22* Prove that the p.d.f. g(w) of the quotient W — X(i)/X^, i<j, of the 

power r.v.’s X^yX^ in Exercise 4.21 is 

s(w) = 
B(iJ-i) 

w (c, 0(1 — wc) J-i-l 

0 < w < 1, 0< i <j < n, c> 1. 

(Malik and Trudel, 1976) 

Hint. Proceed from the joint probability mass distribution 

g(x{i),x(J)) to the Mellin quotient convolution. 

4 23* (a) Settingy = i + 1 in Exercises 4.21 and 4.22, find the probability 
mass functions of the product Y=X(f)X(i+l) and quotient W= 

XrJXr+u of consecutive order statistics. 
(b) Setting i=\,j=n in Exercises 4.21 and 4.22, respectively, find 

the p.m.f. of the product Y—X^X^ and quotient W= X^/X^ of 

the extreme order statistics. 
(Malik and Trudel, 1976) 

j 

4.24* Let X} denote the uniform r.v. with p.d.f. 

-a<x,<a 

= 0, elsewhere 
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4.25 

and X2 the normal r.v. 

flM = 
1 

VItt a 

-xl/2a2 - 00 <*2 <00, 

and assume Xl and X2 are independent. Show that the r.v. Y— 

XjX2 has p.d.f. 

h(y) = 
1 

2V27T 
Ei i/ rA)2} 

2' ̂ ao) J - 00 <y < 00, 

where — Ei( — x) denotes the exponential integral [98, p. 143]; that 

is, 
r 00 p —t 

E\ (x)=—Ei( — x)= - dt, x > 0. 
J X * 

Hint. Note that 

1 
K(h+(y)) = 

2Vn 

Also (see ref. 95, (11), p. 307), 

2_2\(-s—1)/2 (2a2n2) 
T(s/2) 

Ms (.y ^ {h + (y[)}) = - sMs (h + <(>>)), 

so that 

exp 

4-{h+W) =--— 
<tyX 1 V2tt aa 

Integration now leads to the desired result. 

y 

Show that the quotient Y = Xx/X2 of two independent gamma r.v.’s 
with p.d.f. 

f(Xi)=fkxre~"' 
bf >0, 0 < xt < 00 

is a beta r.v. of the second kind with p.d.f. 

,6,-1 

h(y)= 
y 

B(bub2)(l+y)b'+b> 
0 < y < 00. 
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4.26 

4.27* 

Let Xx, X2, X3, and X4 be uniform i.r.v.’s with p.d.f. 

/(*,)=!> 0 < x, < 1, /= 1,2,3,4. 

Section 3.1 demonstrated that U=Xx + X2 and W=X3 + X4 each 

has a triangular distribution. Show that the p.d.f. g(u) of the 
quotient 

v=H 
w 

of two such triangular i.r.v.’s is given by 

g(v) = 

Tv 

6 ’ 

8 3t> 2 1 
3 2 3o2 6u3 
_ 2 t; 8 3 

3 6 2v2 2v3 

6v3 

0 < u < - 

1 < v < 2 

2 < v< oo. 

(Locker and Perry, 1962) 

Show26 that the p.d.f. h(Y) of the product Y=YXY2 of two normal 

i.r.v.’s N(0,a) and N(n,o) is 

h(y) = 
-f/2o> 

7TO 

— oo <y < oo. 

(Kk/2(y/a2) is a modified Bessel function of the third kind of order 

k/2, defined in Appendix D.l.) 

Hint. Since 

1 
/i(*i) = 

V2tt a 

-A/2 o1 

Vir 2 

it follows that 

Also 

fl(x 2> = 
1 

V2n a 
exp 

2a2 

26I am indebted to Dr. W. E. Thompson for suggesting and solving this problem. 
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which can be written in the form 

/2(* 2) 
1 

V2tt a 
e-f/^ex p 

-a; 

2a2 

1 
-e 
V2n a 

Then 

^,(/2+(*2)) = (/i+(*i)) 

and 

W,(/2-(x2)) = e-^ § (-£)*±M,+k(f,+ (Xl)), 
k — 0 ' O / 

from which it follows (as can be shown) that 

M,(h*(y)) = M,(h-(y)) 

-e-W I ^2*(/,+ (*i))M,(/i" (*,))• 
A: = 0 Va / (2/c)! 

The inversion of Ms(h + (y)) then yields /z(y), — 00 <y < 00. 

4.28* Let Xx and X2 be normally distributed i.r.v.’s with means 

variances of (1 —1,2) and correlation coefficient p. Let W= Xx/X2 

and denote its p.d.f. and distribution function by g(w) and G(w), 

respectively. 

(a) Show that 

b(w)d(w) 
cx - 

6(w) 6(w) 

V277 axa2ai{w) y(l-p2)n(w) _ Vi-pMb-) 

V»-P2 

ttoxo2ci2(w) 2(1 -P2) 
+ 
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where 

/ w2 2pw I 
«0) = | —-+ — 

\ a] a2 

1/2 

b(w) = 
9xw p(9x + 92w) 92 

a\°2 
+ “ 

02 0,02 022 
c = —y — 2p-—- H -, 

a2 °,a2 a2 

^(w) = exp< 
b2(w) — ca2(w) 

a 

2(\-p2)a2(w) ) 

(y) =—-— [y e~ul/2du. 
\/ ^) rrr — rr\ V2n 

(b) Show, by direct calculation, that 

G(w) = L 
Bx — 02w —02 o2w —pa, 

+ L 

oxo2a(w) ’ o2 ’ oxo2a(w) 

92w — 0x 02 a2w — pax 

axa2a(w) ’ <J2 ’ a,a2a(>v) J ’ 

where 

1 rco re 

L(M;r)=WP7^ -£ 
exp 

2\ 1 (x2-2yxy+y2) 

2(i-y2) 
dxdy 

is the standard bivariate normal integral tabulated by the National 

Bureau of Standards [270]. 

(c) Show that as 92/a2—> oo, that is, as 

Pr(X2>0)^l, 

G(n>)—>a 
92w-91 

oxo2a(w) 
(Hinkley, 1969) 
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4.29* Let u=y2/(2B) be a gamma-distributed r.v. with parameter p, and 

v = x2/A an independently distributed beta r.v. of the first kind 

with parameters q,p — q (i.e., with p.d.f. (4.4.11) with ax = q+ \,bx = 

p — q + 1), where 0 <q<p and A, B, > 0. 

(a) Prove that the product of these r.v.’s is gamma distributed 

with parameter q. 

(Stuart, 1962) 

(b) Show that for the special case q = j, it follows that (2mu)1/2 is 

exactly normally distributed with mean zero and variance 1; or 

equivalently, that xy is exactly normal with mean zero and variance 

AB. 

(Stuart, 1962) 

(c) Show that if q=p-q=l, one obtains the corollary that the 

product of a gamma variable (parameter 2) with an independent 

rectangular variable on (0,1) is gamma distributed with parameter 

1 (i.e., is exponentially distributed). 

(Stuart, 1962) 

(d) By setting 

p = (n - l)/2,q = \,A = (n - l)2/n, B = 1 /(n - 1),x = (xf - x)/s,y = s' 

in part (a), show that (x, — 3c)/ s-s' is exactly normally distributed 

with zero mean and variance (n—l)/n. 

(Stuart, 1962, and Durbin, 1961, with editorial note 

by E. S. Pearson) 

4.30* (Distribution of the ratio of sums of Laguerre polynomials.) Let 

Xx x,...,Xx n, be a random sample from a population with p.d.f. 

kx 

fx(x) = T~l(mx + \)e~xxm' 2 aX iL'n'(x), x>0, 
i = 0 

where mx>-\,k, is a positive integer, ax 0= \,ax x,...,ax,kx are 

suitably chosen constants, and L,m,(x) is the Laguerre polynomial 

of degree i and order m that is. 

Lr(X) |/ + m, j (~ *)7 

Similarly, let Ar2il,...,x2in2 be a second independent random sample 
from a population with density function 

^2 

/2(x) = r-'(m2+ l)e~*"2 2 a2 iL^(x), 
i = 0 

x > 0, 
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with m2> — \,k2 a positive integer, a20= \,a2x,...,a2ki suitably 

chosen constants, and L/"2(x) the Laguerre polynomial of order m2 

and degree i. Zelen and Dannemiller [417] showed that the r.v. 

Si = xu\ + ‘'' +xi,v i=l,2 

has p.d.f. 

&0) = 2 T~\Ni +j)ai,jJ' exP(“ ssNl~')LjN*~l(s)> s > °> 
7=o 

for /= 1,2, where 7V, = n,(l + m,) and a, is the coefficient of xj in 

1 + 

namely, 

n;\ 
aij = 2---2 --- 

j\ +2/2+ ■ • • + kjk. =j J\• Jk, ■ (rti J1 A,)- 

/ m, + l\ 7i / mi + ki\ 

A 1 \ ki ) ' ' ai,ki. 

A. 

Show that the p.d.f. of the r.v. U=Sl/S2 is 

^2n2 I 7 / . \ / -\ 

2 2 «1)Ia2j 2 2 (p)(^)(— 
,=0 7 = 0 p-0 a=0 2 ' * / 

/> + <7 

r(«)r(^) 
where B(a,b)= ■ , 

r(o + 6) 

and that the distribution function is 

Mi M2 / 7 / • \ / -\ 

#(«)= 2 2 2 2 (n)(^)(-1);’+ 
i = 0 7 = 0 />=0 9 = 0 ^ A / V V / 

•/u/(«+p(Ari+/,>Ar2+<7)> 

where Ix(a,b) is the incomplete beta function (4.4.42). 

(Basu and Lochner, 1971) 
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4.31* 

4.32 

PRODUCTS AND QUOTIENTS OF RANDOM VARIABLES 

Let UVU2,..., Un, Vlf V2,...,Vm be i.r.v.’s, each uniform over (0,1). 

Show that 

P 
ux + u2 + • • • +un 

»i + ®2 +••• +vm 
< a 

1 

(n + m)\am 

[ma] [(ma — i)/a\ 

2 2 
/=0 7=0 

x(-0 '+y(”)(y)[(m-7)a-/]” 
+ m 

Evaluate 

Let 

and 

P 
u, + u7 + • • • + u„ 
—---- <0.9 
Vx+V2+ +t>5 

(Marsaglia, 1965) 

/(* x)=-£-exp 0< Aj < 00 

0< x2< 00. 

(a) Prove that the distribution of Y=Xx/X2 is 

. Pi 
where a = —— 

P2 

g(y) = 
a 

(y + a)2’ 

(cf. Exercise 4.16). 

(b) Show that no moments of g(j>) exist. 

(c) Show that 

h(x) 
m 

(x + a) 
/■+ i 

has moments up to r— 1. 

(Lachenbruch and Brogan, 1971) 
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4.33 Let A" be a discrete r.v. with p.m.f. 

P(*) = \, *=1,2,3,4 

= 0, otherwise. 

Find the probability distribution P(y) of the product Y=XxX2 of 

two such identically distributed i.r.v.’s. Check your results by 
showing that 

£[y] = E[xx]E[x2] 

“(MlS 
and 

E[y2]=e[x]]e[xI] 

'(Mis¬ 

calculate the variance of the probability distribution P(y). 

4.34 Let a: be a discrete r.v. having the p.m.f. as given: 

* p O) 

1 0.08 
2 0.17 

3 0.50 

4 0.17 

5 0.08 

Find the probability distribution P(y) of the product Y=XxX2 of 

two such identically distributed i.r.v.’s Xx and X2. Check your 
results (partially) by showing that 

E[y] = E[xx]E[x2] 

=(M1)2 

E[y*]= E[x\]E[X1] 

= (£[x2])2. 
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4.35 Find the probability distribution P(y) of the product Y 

Xt,X2,X3, each Xpj= 1,2,3 having the binomial p.m.f. 

p{x) = (^)px{\-pf~X’ x = 0,1,2,3. 

Show that 

£[/]=£[x,]£[x2]£[jc3] 

= (£[*])3 

and 

E[y2}= E[x\]E[xl}E[xl] 

= (£[x2])3. 

Compute the variance of P(y). 



CHAPTER 5* 

The Distribution of 
Algebraic Functions 
of Independent Random Variables 

This chapter presents fundamental methods for the derivation of the 

p.d.f.’s of algebraic functions27 of i.r.v.’s, as well as the moments of such 

p.d.f.’s. Two theorems and two corollaries are stated establishing the 

relationships between Laplace and Mellin transforms, and between Fourier 

and Mellin transforms. (The proofs of these theorems are given in Appen¬ 

dix C and are due to R. D. Prasad28 [295].) These theorems and corollaries 

permit one to determine the Laplace (Fourier) transform of p.d.f. from a 

knowledge of its Mellin transform, and vice versa, without knowing the 

p.d.f. explicitly. This capability is particularly convenient in deriving the 

integral transform of the p.d.f. of an algebraic function of i.r.v.’s, whose 

inversion will then yield the p.d.f. of that algebraic function. Thus if Xk, 

k = 1,2,3 are nonnegative i.r.v.’s, and the p.d.f.’s of the sum W—Xx-hX2 

and product Y=X2X3 are g(w) and h(y), respectively, then one can find, 

directly, 

Lr(g(w)) = Lr(Mxi))Lr(f2(x2)) 

and 

K(h(y)) = K(Mx3))Ms(f2(x2)), 

if all the transforms exist. Now consider, for example, the algebraic 

27An algebraic function [161] is a function containing only algebraic terms and symbols. Any 

polynomial is algebraic, but functions such as log*, sinx,ex are not. An algebraic function in 

which the variable (or variables) does not appear as an irreducible radical or with fractional 

exponents, is called a rational function. Thus 3x3 + x Vy +V5 is rational in x, but neither 

in y nor in x and y together. 

28These proofs, communicated to me by Prasad, provide the rigor that is somewhat lacking in 

the referenced paper [294], The notation differs from that of Prasad, but the content is the 

same. 
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function x: + x2x3. One could find the Laplace transform of a, + x2x3 
easily if he had a direct way to get the Laplace transform of x2x3 from its 
Mellin transform. Similarly, if one could go directly from the Laplace to 
the Mellin transform, he could easily compute the Mellin transform of 
such functions as x{(x2 + x3). Such direct techniques, and more generally, 
direct techniques for the mutual conversion of Laplace, Fourier, and 
Mellin transforms, have recently been developed by Prasad [294] and 
permit the systematic computation of the transforms of any function of 
xux2,.... These direct techniques are presented in this chapter, as well as 
operational techniques recently developed by Stark and Shukla [365] for 
random scalar and vector products, which are particularly useful in deriv¬ 
ing the p.d.f. of sums of products of i.r.v.’s. 

This chapter also gives a brief discussion of quadratic forms, a special 
type of algebraic function of i.r.v.’s that occurs in connection with a 
number of problems in both theoretical and applied statistics. The distribu¬ 
tion of such quadratic forms sometimes plays an important role in the 
solution of these problems, as examples included in the discussion show. 
Finally, an example is given to illustrate the procedure for deriving the 
p.d.f. of an algebraic function of i.r.v.’s. 

The relation between Chapters 5 and 6 bears stating. Chapter 5 deals 
with the distribution of the class of algebraic functions of i.r.v.’s. An 
important special subclass contained therein is the class of algebraic 
functions of independent //-function r.v.’s, which includes many of the 
basic distributions in probability and statistics. Chapter 6 covers the 
derivation of the distributions of such functions. 

5.1 PROBABILITY DISTRIBUTIONS OF ALGEBRAIC 
FUNCTIONS OF INDEPENDENT RANDOM 

VARIABLES 

To deal with algebraic expressions involving the sum, the product, and the 
ratio of i.r.v.’s, it is necessary to obtain the conversion of the Laplace 
transform to the Mellin transform, and vice versa. However care must be 
exercised when the algebraic function resulting from the addition, subtrac¬ 
tion, multiplication, and division of i.r.v.’s—or combinations of these 
operations—is not limited to nonnegative r.v.’s, since as has already been 
emphasized, the Laplace and Mellin transforms ordinarily apply only to 
functions of nonnegative r.v.’s. In such cases, the Fourier or bilateral 
Laplace transform should be used instead of the Laplace transform, in 
connection with the extended definition of the Mellin transform over the 
entire real axis [354], The following theorems enable one to carry out 
conversions among transforms; specifically, from Laplace transform to 
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Mellin transform, and vice versa; from Fourier transform to Mellin trans¬ 

form, and vice versa. These theorems are stated here without proofs. The 
proofs are given in Appendix C (see note 28). 

Theorem 5.1.1. Let Lr(f(x)) be the Laplace transform of f(x), x>0 such 

that Lr(f(x)) is analytic and of order 0{r~k), where k> 1 for all r in 

Re(/•)>£<(); then the Mellin transform of f(x) is given by 

. s r(a) rc + ioo 

MM*))-4.~ Lr(f(x))( — r)~adr, 
AIT l J c — Zoo 

Re(a)>0, e<c<0. (5.1.1) 

In the special case when the singularities of Lr(f(x)) are poles in Re(r) < e, 
and \Lr(f{x))\ is bounded in Re(r)< e, 

Ma (/(*)) = r(a) [.2 ResLr(/(*))( - r) ~ a at poles of Lr(f(x)) ], 

where Res stands for “residue of.” When Lr(J{x)) is entire, 

«*(/«)= 
m,_„(4(/w)) 

r(l-a) 

and Ma(f(x)) is analytic in Re(a)>0. 

Theorem 5.1.2. Let Lr(J(x)) and Ma(f(x)) be the Laplace and Mellin 

transforms of f(x), x>0, respectively. If f(x) is of bounded variation and 

xkf(x)£L2 on (0, l)29 and x f(x)EL2 on (1, oo) with k < /, then 

Lr(f(X)) = 2^ Jc_ ' (/(■*))r(1 ~ a)r°~ ' d(X’ 

A: + |<c<min (l,/+^)- (5.1.2) 

(One says that xkf(x)EL2 on (a,b) if f(x) is measurable and f^\xkf(x)\2dx 

< oo. See ref. 380, p. 10.) 

Corollary 5.1.1. If Ms(J(x)) is the Mellin transform of f(x), and f(x) 

satisfies the conditions of Theorem 5.1.2, then the Fourier transform of 

29Read “xkf(x) belongs to, or is, (0,1).” 
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f(x) is given by 

Ft {f{x)) = y- fC + ,C°Ms (f(x))r(l - s)(it)s 
L'TTl Jq — ioo 

xds. (5.1.3) 

Corollary 5.1.2. If Ft(J(x)) is the complex Fourier transform of f(x), and 
is analytic and of order 0((it)~k), where k>\ and lm(t)¥=0, then the 

Mellin transform of f(x) is given by 

Ms{f(x)) = 
r (s) 

2tt 
r \Ft(f(xm~s 

J — CO L 
Im(/)>0 

+ (-l)'-'F,(/(x))(-rt) lm(0<0 
dt 

(5.1.4) 

The following examples, due to Prasad [294], illustrate the application of 

the theorems. 

Example 5.1.1. Use Theorem 5.1.1 to find the Mellin transform of 

f(x)= e~ax sinbx. 
The Laplace transform of f(x) is given by 

4(/(*)) = fXe-axsinbx e rxdx 

b 

(r + a)2 + b2 

(5.1.5) 

4 (/(*)) l^as fwo simple poles in the left half of the complex r-plane, 
namely, r=-a + ib and r=-a-ib. Hence from Theorem 5.1.1, the 

Mellin transform of f(x) is given by 

Ma (f{x)) = T(a)[2 ResLr(f(x))(-r)~a at poles of Lr(f(x))] 

= T(a)b 
(a + ib) “ (a — ib) 

lib + lib 

T(a) 

2 i 

(a + ib)a - (a — ib)a 

(a2 + b2)a 

(5.1.6) 
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The expression above for Ma(f(x)) can be simplified by using the substitu¬ 
tion 

a = Acos9, b = Asin9, 

A = Va2 + b2 , 0 = tan~'^) (5.1.7) 

which leads to the result 

T(a) 

2/ 

A a (cos 9 + i sin 9)“ - A a (cos 9 - i sin 9 )a 

0a2 + b2)a 

^(a) 2isin a# 
2/ Aa 

T(a)sin(atan_1(6/a)) 

{a2 + b2)a/1 
(5.1.8) 

Example 5.1.2. Use Theorem 5.1.2 to find the Laplace transform of the 
exponential integral [98, p. 143] 

/GO a~l 

— dt 

(cf. Exercise 4.24). 
The Mellin transform of f(x) is given by 

r oo 

Ma(f(x))= f xa~'f{x)dx 
Jo 

r °° 1 ' roo p~t 1 
1 dx = 1 f —dt 

'o 1 Jx t J 

=-l 

8
—

 

7 8 

+ / 
•°° xa e~x , 
-dx 

a J o
- h ) a x 

1 roo 

- I xa~xe~xdx 
a J0 

T(a) 

a 
(5.1.9) 



178 ALGEBRAIC FUNCTIONS OF INDEPENDENT RANDOM VARIABLES 

From Theorem 5.1.2, the Laplace transform of f(x) will be given by 

Since (as can be shown) the conditions of Jordan s lemma are satisfied, this 
inversion integral may be evaluated by the method of residues by integrat¬ 
ing over the Bromwich contours lim^^^C^ and lim^^^C^ (Fig. F.1.1), 
where these Bromwich contours are chosen so as not to pass through any 
of the poles. (Section F.l discusses the case in which the integrand 
contains an infinite number of poles.) Hence a is not an integer, and one 
may utilize Euler’s functional equation [18, (4.5), p. 26] 

r(a)T(l - a) = 7rcsc7ra 

and express (5.1.10a) in the form 

The integrand has a double pole at a = 0 and simple poles at a — 1,2,..., in 

the right half-plane. Thus 

L*(f(x))-f2 Res 
77-(csc77a)r“ 

at a = 0,1,2,... 
a 

log( 1 T /■) 
(5.1.11) 

r 

Example 5.1.3. Use Corollary 5.1.1 to find the Fourier transform of the 
algebraic expression W= Xl + X2X3 where the Aare independent nor¬ 
mally distributed r.v.’s with means m, and standard deviations opj= 1,2,3. 
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The Mellin transform of the p.d.f. fj(xj),j=2,3, is 

+ + dy 

exp(-m//4a/) ^ 

V27T 
T(j) 

where 

+ U 5 7 = 2,3 

U(a,b)-D_a_ i/2(b), (5.1.12) 

where U(a,x) is the parabolic cylinder function [2, (19.3.1), p. 687]. (The 
notation Dv(x) is defined in Appendix D.l.) 

In view of (5.1.12), one notes that since X2 and X3 are i.r.v.’s, the Mellin 
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transform of the p.d.f. g(y) of Y = X2X3 is, 

[rw]2 3 

^ exp 

— mj 2 1 

f 1 mj\ u s— -z, I 
2 °j 1 

>+£/ 2 Oj 

The Fourier transform of g(y) is, from Corollary 5.1.1 

“ (-//)* 
F,(g(y))= S 

k—0 k\ •Ms(g(y)) 
= *+1 

3 

= J- 2 (-/0*r(*+i) n ^/exp 
Z7T ' k = 0 7 = 2 

1 m7 1 

-my 

4a 

— m, 

2’ a, 2 °/ 

(5.1.13) 

Also, the Fourier transform of/^Xj) is 

f, (/i (jci))=exp( - im\i - t°y)’ 

so that the Fourier transform of the p.d.f. h(w) of w is 

FMvD-MMxMigW) 

-«p(-im,<-5«f/2)-J- S (-«)*T(*+1) At,/exp 

(5.1.14) 

(5.1.15) 

A: =0 

~m7 

4a,2 

2 1 

1 "!/ 
UU+4-, — 

“m7 

2’ a, 2’ a; 
(5.1.16) 

5.2 OPERATIONAL TECHNIQUES FOR RANDOM 
AND SCALAR PRODUCTS 

This section deals with operational techniques for random models based 
on products of i.r.v.’s as developed by Stark and Shukla [365] and Stark 
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and Nichols [366, pp. 483-487]. In particular, they derive operational 
expressions for scalar and vector products of vectors having mutually 
independent random components and state that applications of such 
operational techniques to mechanics appear promising in view of the basic 
role of vector multiplication. 

The reader is reminded at this point that if Xt has p.d.f. ^(a,) and the Xt 
are mutually i.r.v.’s, /= 1,2,...,/?, then the p.d.f. g(w) of the product 
variable Y=TY'i=xXi has the Mellin transform 

m 

M,(g(y))= n 
z = 1 

It is easily verified that the Mellin transform of the p.d.f. h(y) of Y= 
X°X2- • • Xwhere a,b,...,r are constants, is 

Ms(h(y)) = Ma(s-l')+lfl(x])Mb(s_l*)+lf2(x2)' • ■ Mr^_^+ifn(xn). 

Note also that if a,b,...,r assume negative values, one obtains a valid 
counterpart for quotients instead of products. 

5.2.1 Compound Random Products 

When the number of r.v.’s in the product is also a random variable N, the 
product is called compound. The Mellin transform for the compound 
product of identically distributed i.r.v.’s 

Y=XxX2-Xn 

is 

where GN(s) is the generating function for the probabilities qvq2,..., 

corresponding to the number of terms TV =1,2,..., in the product and 
Ms(/(*,)) is the common Mellin transform. That is, 

V (h(z)) = M, (fW) + ?2[ K (/(■*)) ]2 +•••+«,[ M, (/(x)) ]" 

= G„(M,(/(x))). 

These considerations suggest the more general result stated in the following 
theorem, which is easily verified. 
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Theorem 5.2.1. Let Y=XxX2- • • Xn be a compound product of indepen¬ 

dent nonnegative r.v.’s with associated Mellin transforms Ms(f(xi)), i — 

1,2,.... Let qx,q2,..., be the probabilities corresponding to the number of 

terms n= 1,2,..., in the product. The Mellin transform for Y is 

Ms (h(y)) = qxMs (/(a,)) + q2Ms (f(xx))Ms (f(x2)) + • • • 

+ q„M, (f(xt))M, (f(x2))---Ms (/(*„)) + ■ ■ •. 

5.2.2 Product Sums 

It is easy to devise expressions of operational techniques for sums (and 

differences) of products (and quotients) of independent nonnegative r.v.’s, 

including quadratic and bilinear forms. Consider, for example, the basic 

random model 

W=XxYx + X2Y2+--- +XnYn, 

where W has p.d.f. h(w) and Xp Yj are mutually i.r.v.’s for ally = 1,2,...,n, 

with p.d.f.’s fj(xj) and gjiy])- The characteristic function Ft(h{w)) for the 

density of W can be written in the form 

Ft(h(w)) = E[eitw] 

n 

= II E[ei,x*] 

j-1 

J — 1 

" oo (itx,y,)s 

n oo 

-ns 
j=15=1 (,-!)! 

K(fj(Xj))M,(gj{yj)), 

Clearly, this important ability to use operational techniques can easily be 

extended to more general sums of products considered earlier, including a 

random number of terms. Of course specific expressions may not always 

be convenient. 

5.2.3 Random Scalar and Vector Products 

The basic random model for a sum of random products describes a variety 

of situations. For example, (1) the total scalar moment arising from a series 
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of forces Yl,Y2,...,Yn acting at respective positions XvX2,...,Xn; (2) the 

total work done by a system of forces; (3) the numbers of vehicles passing 

a sequence of two traffic signals where Xt and Y, are zero or one for the /th 

vehicle at the two intersections according as the vehicle encountered “red” 

or “green”; (4) the total dollar volume of stocks traded in n transactions 

where the /th transaction involves Xt shares at price Yt, and so on. 

Actually, for n = 3 the expression for Ft(h(w)) in terms of the Mellin 

transforms for the p.d.f.’s of Xj and Yj is the characteristic function for the 
scalar product X*Y of the vectors 

X —Aj£| + Y2£2 + Y3c3 and Y=Y1e] + Y2e2+ Y3£3, 

where £1; e2, and £3 are unit vectors. Furthermore, the characteristic 

function for the component of the vector product along ek is 

where 

w(k*)=xt±lrk±2. 

F,[h(»,(k±))) s 
5= 1 

(ft)"1 
Msf(xk±i)K(g(yk±d) 

and k is the cyclic variable 

53 QUADRATIC FORMS 

One type of algebraic function of some importance in both theoretical and 

applied statistics is the quadratic form. A quadratic form [32, p. 127] is a 

homogeneous polynomial of the second degree, namely, 

n n 

Q= 2 2 OyXtXj. 
,=1j-1 

If it is positive for all real values of the variables {*,•}, it is called a positive 

definite quadratic form [161, p. 148]; if it is positive or zero, it is called 
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semidefinite. There exists a linear transformation of the form 

y i 2 
7=1 

r < n (5.3.1) 

such that 

2 djjdkj — 0, i k, d?+ j + • • • + dn 0, 

7=1 

that is, an orthogonal transformation that reduces the quadratic form Q to 

a sum of squares Q'\ 

Q'= 2 ej.y}> 
«J=i 

where r< n is the rank of the matrix of the coefficients in (5.3.1). 
Quadratic forms are encountered in various areas of statistical theory, 

such as the analysis of variance, serial correlation analysis, and multiple 

regression of time series analysis. Usually the analysis of problems in these 

areas depends on a knowledge of the distribution of certain quadratic 

forms. For example, the validity of the F test in the analysis of variance 

rests on the fact that the components of variance are mutually independent 

quadratic forms each having a chi-square distribution. The use of 

quadratic forms in establishing various results in statistical theory is well 

documented in the literature and is not discussed here. Quadratic forms 

are introduced in this section because they are a special type of algebraic 

function and their distribution is usually derived by means of Fourier 

transforms (characteristic functions), a problem that is clearly relevant to 

the algebra of r.v.’s. For example, by using characteristic functions it can 

be readily proven that a necessary and sufficient condition that a quadratic 

form be distributed as chi-square is that the nonzero roots of its character¬ 

istic equation be -I-1. 

Quadratic forms are useful in the applied domain as well as in the 

theoretical. McNolty,30 for example, derives [253] the distribution of a 

quadratic form that occurs in certain bombing problems when it is desired 

to examine the coverage effect on a population of target elements or on a 

single, randomly located point target where the population or point target 

30The discussion that follows in this section is essentially that of McNolty, reprinted in part 

from “Quadratic Form Distributions Associated with Special Functions,” by Frank McNolty, 

Sankhya, Series B (1972), Vol. 34, Part I, pp. 21-26, with the permission of the editors of 

Sankhya. 
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is not distributed uniformly in azimuth and need not be described by 
identically distributed (xT,yT,zT) components. Frequently, a starting point 
for the analysis of population coverage or point-target kill is the derivation 
of the distribution of the positive definite quadratic form 

Q = (xt~ xc) +(yT~yC) +{zt~zc) > (5.3.2) 

where xT, yT, and zT are the independent target coordinates and xc,, yc, and 
zc are the independent coordinates of the lethal sphere. Determination of 
the p.d.f. h(y) of the quadratic form (5.3.2) enables one to evaluate the 
probability of killing the target. It is here assumed that the independent 
burst-point coordinates xc, yc, zc have the normal distributions N (a, a), 
N(b,a), and N(c,o), respectively, while the independent target compo¬ 
nents are described by (5.3.3) to (5.3.5): 

/(x;A,y1,Q1)=2<e./4)-<3/2). 
(Gi/2-l) 

Ae,/2 

( ~[y?/(2A)+Xa2] 

X exp |-j- 

v T Vlkl 
X7(e,/2)-i ^ » a 

f{y)=f{y\Ky2,Q2\ -oo<y<co, 

(5.3.3) 

(5.3.4) 

and 

f{z)=f(z',Kyi,Qi), -00<Z<00, (5.3.5) 

where /„(•) denotes a modified Bessel function of the first kind of order v 

(Appendix D.l), and the parameters are subject to the restrictions \> 

0,y1,y2,y3>0; Q1,Q2,Q3>0- 
The characteristic function <t>w(t) of w = u2 is 

X exp 

— 177-/4 

= /_‘ 
|Gi/2 

yt+i/o2 

V 2 / (2a2) a 

i(x — a)2 

.2 

Tilf 

V2 ‘AGi/2)-iT7=-exP' 4a4[ / + (//2a2)] 
dx, (5.3.6) 
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where 

„ _ ^ 

V2tt y{e'/2^'a 
(5.3.7) 

and the characteristic functions <$>h(t) and <j>p(t) for h = l2 = (yT—yc)2 and 
p = t>2 = (zT — zc)2 have the same general form as (5.3.6), so that the char¬ 
acteristic function for Q = w + h + p is 

M0“«k(0<h(0*P( 0- (5.3.8) 

Inversion of the characteristic function (5.3.8) yields the p.d.f. /(w) of 0: 

/“ /“ /” |*p'/2 
^ ^ — 00 ^ — 00 J — 00 J — 00 

|y|e2/2|zp3/2 
e 'v“ , / YiW \F / yi\yI \ 

X/, 

(( + //(2a2))3/2/<e,/2>"'l V2 f 

(63/2) — 11 
V2 

•exp 
(x2+y2 + z2) ax + + cz 

— (1+Aa2) +-4- 
2o2 

•exp 
*[ (■* - a?+(y ~ b?+(z - cf ] 

(40 
/ + 

(£) 

-1 

dxdydzdt, (5.3.9) 

where H2 and H3 have the same form as Hx except that they include the 
constants (Q2,y2,b) and (Q3,y3,C), respectively, in place of (Qx,yx,a). 

To obtain a tractable result, it is desirable to set a = b — c = 0 (i.e., assume 
that the center of the burst is at the origin). Then, if one carries out the 
indicated integration with respect to t in (5.3.9) and after this introduces 
the transformation a = rsin6cos<f>, y = rsinOsiruf), z = rcos9, the subse¬ 
quent integrations with respect to <£, 9, and r yield the desired p.d.f. for the 
quadratic form (5.3.2); namely, 

„ ^ A ?/2e ~ r2/(4A)e - u/(2a2) 1/2 

/(“)=—^ ...— Z 
V2^to3 qT(q/2) n=0 (2n + !)!(! + Xa2)iq/2)+n 

XF} 
(I) 

22 

+ n; 
T2a 

2 |4(l+Aa2)J 
u> 0, (5.3.10) 
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where q= Qx + Q2+ (73,T2 = y2 + yj+ yj and lF1(a;b;x) is the confluent 
hypergeometric function defined in Appendix D.l. 

In a subsequent paper, McNolty, Hansen, and Huyhen [255] utilize a 
quadratic form to represent a mathematical model for the analysis of 
physical radar target returns. Specifically, the quadratic form involves 
generalized Bessel and Gaussian components. Its probability distribution is 
derived and expressed in terms of generalized Bessel and Gaussian compo¬ 
nents. The use of this mathematical model has a number of interesting 
practical applications, including target discrimination, the determination of 
target detection probabilities as a function of signal to noise ratio, and 
utilization in the design of a radar altimeter in which the terrain-target 
scattering model is an important part of the radar link analysis. 

5.4 SPECIAL FUNCTION DISTRIBUTIONS 

McNolty and Tomsky [252] have defined certain special function distribu¬ 
tions that had not previously appeared in the literature and discussed some 
of their properties. They paid particular attention to the presentation of 
generalized phase and radial density functions associated with seven types 
of special function distributions. For example, one might wish to recon¬ 
struct a phase density function from a given radial (amplitude) density, or 
perhaps describe bivariate populations directly in terms of phase (azimuth) 
and radial distributions rather than by means of their Cartesian compo¬ 
nent distributions. As a typical problem of this type, one might have a 
random signal voltage S(t) expressed as 

S(t) = A(t)C(t), 

in which the amplitude A(t) of the phase-modulated carrier C{t) is related 
to the x and y components by 

A\t) = X2(i)+ Y2{t). 

The authors examine the distribution of various relevant r.v.’s such as 
U=x2/Y2 and V= X2/(X2 + Y2), when X and Y have certain specified 
distributions (e.g., type I Bessel function distributions.) Their results were 
obtained by employing either characteristic functions or weighted mixture 
representations. 

In a related paper, McNolty [253] goes on to derive the distributions of 
quadratic forms consisting of the squared differences of the various special 
function variates and a normal variate. This derivation is accomplished 
within the framework of bivariate and trivariate situations in which the 
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(x,y) or (x,y,z) component distributions are not necessarily the same; Kih. 

moments are obtained and a characteristic function is discussed. 

5.5 AN EXAMPLE 

Before working the exercises at the close of this chapter, the reader may 
find this example helpful, which is illustrative of the procedure utilized in 
determining the p.d.f. of a function of several i.r.v.’s. 

Let X,, i= 1,2,3, be identically distributed i.r.v.’s. with p.d.f. 

f{x) = e~x‘, i= 1,2,3, 

and let Y be a function of these i.r.v.s, namely, 

Y = 
x2+x3- 

Find the p.d.f. h(y) of the function Y, the latter itself being an r.v. 
Let U—X2 + X3 and denote its p.d.f. by g(u). Then the Laplace trans¬ 

form of g(u) is 

Lr(g(u))=Lr(f2(x2))Lr(f2(x2))=-—~. 
0 + ') 

From Theorem 5.1.1, 

M,(g(u))=^T f‘ ^L,(g(u))(-r) ‘dr 

=rW-L r+'-LXldr 
2777 ^c-loo (l + r)2 

=r(s)[-s(-^)-s“'(-i)]|r.-, 

-r(i+i). 

Since Y is the quotient of the r.v.’s X/ U, it follows that 

M, (h(y)) = M, (/, (x,))M_j+2( g(u)) = T(i)r( - s + 3), 

Hy)=^i r*“°y-sns)n-s+3)ds. 
ATTl Jc - IQQ 

so that 
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Since the conditions of Jordan’s lemma are satisfied, one can evaluate the 
inversion integral above by means of the residue theorem. Specifically, 

h(y) = Rl, 0< y < 1 

= R2, l<y<oo, 

where Rx and R2 are the residues at the poles s = 0 and s = 3, respectively. 
Specifically,31 

00 

*i= 2 .y_*0+y)r0)r(-*+3)L=_y- 
7 = 0 

= S _T{s+j+\)T(-s + 3) 

^ s(s+\)-■ ■ (s+j-\) 

oo (— i y 
= 2 V-ra+3)/ 

7 = 0 J- 

S= -J 

°° .(j + 2)! 
- 2 (-i 

7 = 0 J' 

= 2 (-1)70 + 2)0+l)y, 0< y < 1. 
7 = 0 

Similarly,32 

1 rc + iao 

R2 =-r—: / y _-T0)r( —s + 3)t&, l<y<00 
I'M Jft — joQ 

= 2 y ( - ^ + 3 +y')r( - 5 + 3)r0) , 1 <y < oo 
7 = 0 j= — j 

= s r(-j+3+y+i)r(j) 
7=0^ ( —j + 3)( —j + 4)...(-j + 3+y—1) 

00 (— IV 
= 2 ——0+2)0 0+3)> l<y<co 

7 = 0 2- 

1 <y < oo 

j = 3 +7 

= 2 (-l)J'0 + 2)0+1)>; 0+3)> l<y<oo. 
7 = 0 

3'The denominator in the second equation is understood to be 1 when 7 =0. 

32The denominator in the third equation is understood to be 1 when 7 = 0. 
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EXERCISES 

5.1 Let xu x2, x3, and x4 be normal i.r.v.’s, each with zero mean and unit 
variance. Find the p.d.f.’s of 

*3 

V(x2i+xj)/2 

2x\ 

2>x\ 

xf + x\ + x\ 

x\ + x\ 

xj + xj 

5.2 The r.v.’s and x2 represent, respectively, the amplitudes of sine 
and cosine waves. Both are independently and uniformly distributed 
over the interval (0,1). Let the r.v. R represent the amplitude of their 
resultant; (i.e., R2 = x\ + .xf). Derive the p.d.f. h(R) of R. 

Arts. h(R)=j, 0<R<\. 

k(R) = (2csc-'R-j), 1 < R <V2 

= 0, elsewhere. 

5.3 Given the following Laplace transforms, use Theorem 5.1.1 to de¬ 
termine the corresponding Mellin transforms Ms(f(x)). 

(«) x > 0. 

(*) 0 < A < 1 

(c) 4(/W)=— x > 0. 
(l-2r)2 

5.4 Given the following Mellin transforms, use Theorem 5.1.2 to de¬ 
termine the corresponding Laplace transforms. 

(a) Ms(f(x)) = \~*r(s). 

(b) Ms(f(x))=±, Re(T)>0. 

(«) 

(b) 

(c) 

(d) 
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Use Corollary 5.1.1 to determine the Fourier transforms of the 

p.d.f.’s whose Mellin transforms are given in Exercise 5.4. 

Show that [(a + b) / ab][x / (x + y)\ is an r.v. having the distribution 

/(*) 
T(a + b) n 

T(a)mX 
(1-x) 6-1 0 < x < 1 

if x = uy2, y = uyb, where ux and u2 are i.r.v.’s selected from the 

uniform distribution 

f(u) = 1, 0< u < 1 

= 0, otherwise, 

subject to the condition that x+y < 1. 



CHAPTER 6* 

The Distribution of Algebraic 
Functions of Independent 
//-Function Variables33 

6.1 INTRODUCTION 

This chapter presents a new statistical probability distribution introduced 

by Carter [47] and based on the //-function law; it is (1) the general form 

of many common distribution or probability laws and (2) easily “trans¬ 

formed” by means of the Mellin integral transform. The //-function 

distribution is specified by its p.d.f. f(x), which is merely the //-function 

multiplied by a normalizing constant that makes the integral of the 

//-function over the relevant range equal to 1. The //-function itself is a 

transcendental function introduced by Fox [112] in 1961, and its integral 

over the relevant range is not in general unity. 

As Carter has shown, the new //-function distribution includes as special 

cases many of the more common classical distributions. Therefore it can 

be considered to be a generalization of these special cases and can serve as 

a basis for handling algebraic functions of “mixtures” of such variables. 

One of the most significant properties of the //-function distribution is 

that the distribution of products of independent //-function variables is 

also an //-function distribution—a property not common among the 

classical distributions. For example, the distribution of the product of 

normal i.r.v.’s is not normal. On the other hand, since the beta, gamma, 

Weibull, Maxwell, and various other distributions are special cases of the 

//-function distribution, products of such identically distributed i.r.v.’s, or 

33I am indebted to Dr. Bradley D. Carter [47] for the results in Chapter 6 and Sections 8.2 to 

8.7, and for his permission to include them in this book. 
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mixed products of i.r.v.’s having these distributions, will also follow the 

//-function probability law. Theorems are presented to show that the 

product of //-function i.r.v.’s is an //-function r.v., the rational power of 

an //-function r.v. is an //-function r.v., and the quotient or ratio of two 

//-function i.r.v.’s is an //-function r.v. Also, integral transforms are 

derived (in the form of integrals) for the p.d.f. of a sum of independent 

//-function r.v.’s and the p.d.f. of a polynomial in independent //-function 

r.v.’s. However since it is difficult—if indeed even possible—to evaluate 

the inversion integrals for these expressions in closed form for the general 

case, the results are not stated as theorems. Instead, numerical methods are 

presented in Chapter 8 that are applicable and will lead to numerical 

solutions in the general case. 

In short, this chapter deals with the distribution of the following types of 

algebraic functions of //-function r.v.’s: 

1. A single term consisting of a product or quotient of independent 
//-function r.v.’s. 

2. A single term consisting of a rational power of an //-function r.v. 

3. A single term consisting of any combination of products, quotients, or 

rational power of independent //-function r.v.’s. 

4. A sum of independent terms, each of which is an //-function r.v. 

5. A polynomial of any number of terms, each term being any combina¬ 

tion of products, quotients, or rational powers of independent //-func¬ 

tion r.v.’s. 

In this section we have simply intoduced the //-function. Section 6.2 

defines the //-function and lists simple identities and special cases of this 

function. Section 6.3 defines the //-function distribution, presents its 

characteristic function, and identifies many well-known distributions in 

statistics as special casses of the //-function distribution. Finally, Sections 

6.4 to 6.6 deal with the distribution of the types of algebraic function of 

//-function r.v.’s just listed. 

6.2 THE//-FUNCTION 

The //-function was introduced by Fox [112] in 1961 as a symmetric 

Fourier kernel to the Meijer G-function [226, p.139; 97, p. 206]. Soon after, 

several properties, asymptotic expansions, analytic continuations, and re- 
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currence relations involving the //-function were presented by Braaksma 
[37] and Gupta [133]. Their contributions formed the basis for much of the 
work in //-function theory over the following decade. 

This period witnessed the development of more expansion formulas for 
the //-function. These included expansions by Anandani [5,6,9,11] and by 
Kapoor and Gupta [177] using generalized Legendre functions, Fourier 
series, and Laplace transforms; expansions by Bessel functions due to 
Bajpai [19,20]; expansions by hypergeometric functions due to Goyal 
[127]; and expansions by Gegenbauer (ultraspherical) polynomials due to 
Soni [351]. Generally these proved unwieldy and applicable only to special 
cases of the //-function. Also during this period, Dwivedi [87,88] in¬ 
troduced a density function defined in terms of the confluent hypergeo¬ 
metric function and showed that the product of n i.r.v.’s, each having this 
density function, is an //-function variable. 

It was not until 1970 that an integration of the //-function with respect 
to its parameters was presented by Pendse [284]. His procedure was again 
rather complex and did not address the more practical problem of evaluat¬ 
ing the //-function inversion integral. His techniques were next applied by 
Taxak [375] to sum certain series of products of two //-functions. 

Other contributors to the general theory of //-functions have written 
papers dealing with numerous and isolated phases of the subject, and a 
partial list is included in the references. One rather important and signifi¬ 
cant result was recently derived by Srivastava and Buschman [361], who 
have shown that an //-function transform of the Mellin convolution of two 
functions can be expressed in terms of the Mellin convolution of //-func¬ 
tion transforms of the functions. Typically, however, the various authors 
have approached the problems of analyzing the product of an //-function 
and another function (such as a Bessel [21] or hypergeometric [159]), by 
differentiating the //-function [8,10] or establishing identities [7], In 1969, 
Shaw [327] provided groundwork for application of the Mellin transform 
and inversion formula toward evaluating the //-function inversion integral. 
Later, Carter [47,48] developed the results presented in this chapter, with 
the exception of the exact evaluation of the //-function inversion integral, 
accomplished by Eldred and Barnes [91] and Lovett [218]. They provided 
both the theoretical model and the vehicle for application (embodied in the 
computer program) of the //-function to engineering and related problems 
involving algebraic functions of independent //-function r.v.’s (Appendix 
F). In the case of products, quotients, or rational powers (and sometimes 
sums) of //-function r.v.’s, derivation of the exact distributions is now 
possible. 
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6.2.1 Definition of H(z). 

Although there are slight variations and generalizations in the definition of 

the //-function in the literature, this book uses the definition 

H 
p->1 

(aI,al),...,(al,,ap) 
H(z) 

1 
2777 X 

iff. ,r(f>, - /y)n;, ,r( i - aj+<y) 
c nj.m+,r(i - bj+Pjs) n/.,+,r(a, - ajS) 

-zs ds (6.2.1) 

where 

0 < m < q, 

0 <n< p, 

otj>0 for j=\,2,...,p, 

Pj>0 for j=\,2,...,q, 

and dj (j = 1,2and bj (j= \,2,...,q) are complex numbers such that 

no pole of T(bj - fys) for j = 1,2,..., m coincides with any pole of T( 1 - a,- + 

ay5) for j=\,2,...,n. Furthermore, C is a contour in the complex 5-plane 

running from co— /oo.to to +/oo for some real number to such that the 

points 

5 = 

bj + k 

for j= 1,2,...,m and & = 0,1,...; and the points 

aj—\ — k 

5= - 

for j= l,2,...,/i and k = 0,1,..., lie to the right and left of C, respectively. 

In other words, (6.2.1) is a Mellin-Barnes integral [97, pp. 49-50]. 
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6.2.2 Simple Identities and Special Cases 
of the //-Function H(z) 

Variable substitution into (6.2.1) yields the following three identities, which 

are very useful in manipulating the //-function: 

H"’” 1 

z 

(flj,0!]),...,(flp, OLp) 

=H n,m 

q,p (1 ...,(l ap,OLp) 

(6.2.2) 

Hmn 
p,<i 

(ax,ay),...,{ap,(Xp) 

and 

c>0, (6.2.3) 

z C H" 
P-Q 

{ax,a^t...,{apiap) 

{b\>fii)>--->{bq,fiq) 

Hmn 
P-Q 

(al + alc,al),...,(ap + <xpc,ap) 

O, + /?, c, /?,), • • •, (bq, 4- fiqc, fiq) 
(6.2.4) 

Many of the so-called special functions are found to be special cases of 

the //-function, including Gauss’s hypergeometric function, the confluent 

hypergeometric function, Wright’s generalized hypergeometric function, 

MacRobert’s ^-function, Meijer’s G-function; and Bessel functions. Excel¬ 

lent discussions of many of these and other related functions are given by 

Erdelyi [97] and Luke [226-228]. The relations between the //-function and 

some of the more important of these special cases are given on pages 
197-198. 
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1. The exponential function 

exp(x) = H‘;°[ - *1(0,1) ]00 <x < 0 

This is easily verified. Specifically, from the definition (6.2.1), 

for bt=0,fil=m = q=\,n!=p=0 

c<° 

1 

C — ICO 

00 

where /? denotes the residue at the pole s = j. That is, 

i?7 = (-j+y)(-x)T(-5) 

-(s+M-xY 

s=J 

T(-s+j+l) 

-s(-s+l)--(-s+j-l) 
7 = 0,1 

s=j 

and the denominator is understood to be 1 when j = 0. Hence 

Rj= j, 7 = 0,1,2,..., 

from which it follows that 

i/o\°[-x|(0,l)]= 2 7j-=«*. 
7=1 

2. The generalized, hypergeometric function 

pVq 

Uj-\T(bj) Lll f 

n/_,r(<*) '’«+I 

av...,ap 

bv...,bq 

(1 ~ a\> 1), —, (1 ~ ap' l) 

(0,1),(1 — Z>„— 1) 

(6.2.5) 

one has 

(6.2.6) 
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3. Wright’s generalized hypergeometric function 

P 
■q/ (“i>« 0i. ■ • * * 

(4,./>i).-,(V0 

— ap,Op) 

(0,1),(i 
(6.2.7) 

4. Meijer’s G-function 

G 

(^1) 1)> • * • J (^5 i) 
(6.2.8) 

It should be noted that Luke also gives an extensive list of special cases 

and identities for the generalized hypergeometric function and for Meijer’s 

G-function, and with the use of (6.2.6) and (6.2.8), these results can be 

extended to the //-function. 

6.2.3 The Mellin and Laplace Transforms of H(cz) 

Under the preceding definition of the //-function and assuming conver¬ 

gence of the integral in the definition, the Mellin transform [47,48] can be 

found by interpreting the //-function as the inverse transform of the 

coefficient on z~s where (6.2.1) is written as 

TT^i TV A i O „\Tin W1 ^ 

Using the definition of the Mellin transform and denoting the Mellin 

inversion integral (2.8.10) by M ~ \Ms(f(x)), one can express H(cz) in the 

form 

H(cz) = M~l 
n;L ,r (bj+fa) n;= tr( 1 - aj - «/) 

— 5 c 
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from which it follows that 

' 

H”." 
CZ 

P.Q 

. 

A/JIT"" cz .\=M,{H(cz)} 
(bM.(4,,/3,) f 

n”.,r(4,+^)n;.,r(i-a,-y) ^ 
nj, „+ ,r( l - bj - pjs)nr.n+,r(<>,+v)c 

is the Mellin transform of the //-function with argument cz. 
From the definition of the Laplace transform, one has 

, > r00 
Lr{H{cz)} = I e~rzH (cz)dz 

Jo 

(6.2.9) 

n» ,r(bj - fijs)n;. ,r(i - %.+<y) 
“J0 c 2mJcr(l-6j + fijs)nf.^,r(aj-ajs) 

x(cz)sdsdz. 

The contour integral in the 5-plane converges absolutely under the condi¬ 
tions given by Erdelyi [97, pp. 49-50] so that when these conditions are 
satisfied (as they frequently are), the Laplace integral will converge ab¬ 
solutely. Hence the order of integration in the equation above can be 
changed giving 

. 1 r n”,r(4j-^)iy.,r(l-a,. + ttjz) 
M M jcn,_^+ iF(| _A.+J%J)n/.„+1r(fly-V) 

X e~rsz* dz^ds 

2m Jc n;.„+,r(i - 4,+^)n/,„+,r(a, - <y) 

1 |_|m,n+l 

r p+i-q 
c (0, l).(0|.0i).---.(a,.<v) 

r (4,,/i,),•••.(*,. A,) 
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and from (6.2.4), it follows that 

M »(«)} = 7 H 
m+ ],n 

C '/’•<?+1 (b, + i3„p,),...,(b, + firp,) 

Then from (6.2.2) the Laplace transform is expressible as 

= Lr{H(cz)} (Hm'n cz 
(avaj,...,(ap,ap) 

(bx,Px),...,{bq>Pq) 

1 n + l,m H +1 
C Q,P + 1 

(1 

(0,1),(1-a,(1 - OpOp) 

(6.2.10) 

6.3 THE //-FUNCTION DISTRIBUTION 

6.3.1 Definition 

Consider an r.v. T that follows a probability law such that its p.d.f. is given 

by 

/(*) = 
cx 

(al,al),...,(ap,ap) 

p,q (bx,fix),...,(bq,fiq) 

0, otherwise, 

A > 0 
(6.3.1) 

where the symbol H represents the //-function as defined in (6.2.1) and 
k,c,a,j(J= OLj(J= bj(J= and f3j(j=\,...,q) are the 
parameters of the distribution with values such that 

f f(x)dx-1 
Jo 

with f{x) >0 for 0<x<oo. Furthermore, the values of a, (j= a.j 

(_/ = 1,...,p), bj (j= 1,...,<7), and (j=\,...,q) must conform to those 
restrictions in the definition of the //-function (see (6.2.1)). The r.v. X then 
is called an //-function r.v., which follows an //-function probability law 
or //-function distribution. 
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6.3.2 The Characteristic Function 

The characteristic function (or Fourier transform) of f(x) is given as 

f e“xf(x)dx = f eitxkWm'n 
•'-00 Jq P,q 

cx dx 

L_it tH”-" cx S
' 

i 
v
 

- 
J 

(bM,. 

From (6.2.10), assuming absolute convergence of the integral in the defini¬ 
tion of the //-function, the characteristic function of the //-distribution 
can be given as 

<ko=4H k LJrt+ I,m 
C <?./>+1 

-1 

(6.3.2) 

6.3.3 Moments 

Since the derivatives of the //-function exist, the moments of the //-distrib¬ 
ution can be found by taking the derivatives of (6.3.2). However, there is a 
simpler method of finding the general expression for the rth moment about 
the origin, and it capitalizes on the ease with which the Mellin transform of 
the p.d.f. may be obtained. In this connection, one recalls that the rth 
moment about the origin is defined as 

/OO 

xrf(x)dx, 
- m 

(6.3.3a) 

where E is the expected value operator. From the definition of the Mellin 
transform, it is clear that Ms{f(x)} = E{xs~x} for distributions where 
Pr[ x<0] = 0, so that the rth moment about the origin may be obtained 
from the Mellin transform of the relevant p.d.f. Specifically, 

H'r = Mr+l{f(x)} 

= M. 
r+ 1 Mm'n cx 

P'i 
(6.3.36) 
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Then, from (6.2.9) 

k nr. ,r(bj+p,+ftr)ny., r( 1 - a, - - «/) 

(6.3.3c) 

6.3.4 Special Cases of the //-Function Distribution 

As indicated at the beginning of this chapter, one of the most important 
assets of the //-function distribution is that many of the classical nonnega¬ 
tive distributions are special cases and can be expressed in the form of 
(6.3.1) . This section gives some of the more common of these special cases; 
their respective p.d.f.’s appear in the form of (6.3.1). The procedure for 
converting a p.d.f. into its //-function form is expedited by the use of 
(6.2.2) , (6.2.3), and (6.2.4), as is illustrated in some detail below for the 
gamma and beta distributions. 

The Gamma Distribution 

(6.3.4a) 

To establish this result, note that the Mellin transform of f(x) = e 

x < oo, is 

so that the inversion integral yielding /(x) is, by definition, 
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i.e., (6.2.1) with bx =0,/?, = — 1, m = q— l,«=p = 0. Then, by (6.2.4), 

0-i 
— I e -x/<t> = 1 LI 1,0 

«^>r(<9) 01 

l 
— X 

<l> $T(9) \ <j> 

which establishes (6.3.4a). 

The Weibull Distribution 

f(x) = 6<t>x’t,-]exp( — 9x,t>), ,x>0 

=04>x+-|Hj;,[fa<1(o,i)] 

■•■'♦Hi? 

9l/+x 
K) 

9x'+x (i-i ill 
l •p •t>l\ 

The Maxwell Distribution 

4x2exp(- x2/92) 
/(*)=-^V , *>o 

03vV 

93Vtt 
x2H^[(1/^)x2|(0,D] 

2 2 W EO 
C M0.1 

93Vtt 

2 Ui.o 
-n„. 
9V^r °’' 

1 
9X (o.O 

04) 

(6.3.5) 

(6.3.6) 
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The Beta Distribution 

/(*) = 

.0-1 (1-x) 
<>-1 

B(9,<f>) 

0, x > 1 

0<x< 1; 0 

= hSrM‘[Kx)]X-'dS 

-2hill 

1 

>o B(9,<f>) 
.9- 

'(1 -x)< x Sds 

= — ( 
2mi Jr 

T(<t>)T(9-\+s) 

c B (9,<}>)T(9 + $ — 1 + j) 
’ds 

T(9 + <t>) 

T(9) 

1 
2mi 

fne-lzs) 

Jcr(9 + <j>-l-s) 

r(9+<t>) m,,0 

T(9) ‘-1 
x 

(9 + <f>— 1,1) 

(0-U) 
(6.3.7) 

The Half-Normal Distribution 

/(*) = 
2exp(- x2/(292)) 

9V 2m 
x>0; 9> 0 

2 LI i.o 
—:— n„ 
9V2^ 0J 

(0,1) 

(6.3.8) 
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The Exponential Distribution 

Let 9 = 1 in (6.3.4). 

exp( — x/<b) 
f(x)=---, x>0; <j>>0 

$ 

1 Lli.o 
—nn. <p °-' 4>' 

(0,1) 

The Chi-Square Distribution 

Let 9 = v/2 and <f> = 2 in (6.3.4). 

xv/2~l exp( — x/2) 
/(-*) = 

2v/2T(v/2) 
x>0; u>0 

1 Uio 

2r(o/2) ai Hf-M) 

(6.3.9) 

(6.3.9a) 

(6.3.10) 

The Rayleigh Distribution 

Let 9— 1/(2a2) and <f> = 2 in (6.3.5). 

xexp(-x2/(2 a2)) 
f(x)=---, *>0 

a 

1 Ui.o 
-nn. 
aV2 °’‘ aV2 

(6.3.11) 

The General Hypergeometric Distribution [97, p. 56] 

/(*)- 
dac/dT( j3)T(r — c / d) 

„C — 1 

T(c/d)T(r)T(p-c/d)' • ■ i 
P 
r 

— ax x>0, (6.3.11a) 

where ,F, 

function de 

$ —axd = axd) is the confluent hypergeometric 

ined in Appendix D.l. 
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Then from (6.2.6), the general hypergeometric function f(x) as given by 

(6.3.11a) becomes 

,, , da^nmr-c/d) c_, 
/(*) = - •' T(c/d)T(r)T(p-c/d) 

ac/dY(r— c/d) 

T(.c/d)T{p-c/d\ 
-HM 1,2 

r(r) 

r(i8) 

al/dx 

H 1.1 
1.2 

al/dT(r-c/d) |_|U 

T{c/d)T(p-c/d) x'2 
ax^dx 

nyd (1-ftl) 

~r,\) \ 

/H1 r’d) 

c—l 1 ) 
d d) 

(6.3.12) 

The Half-Cauchy Distribution 

fix) 
29 

tt(92 + x2) ’ 
a>0;9 >0 

= f-JcM.{f(x)}x-’ds 

1 
277/ 

1 
277/ 

i r- JC J0 77 

29x 

L 

(e1+x1) 

r(h)r(i-h)* 

77 

dx 

s— 1 

' ds 

fds (6.3.13) 

9n 2s/cr(-r)r(,+MH 

9tt 
(6.3.13a) 
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The Half-Student Distribution 

Suppose X = U/ V V/(29) , where U is a half-normal r.v. with p.d.f. 

fM = 
,-u2/2 

t 

and V is a chi/square r.v. with p.d.f. 

/2(u) = 
vo-'e~v/2 

2eT(9) 

Then f(x) has a half-Student distribution with p.d.f. „ , 2 r(»+p 
n Vife r(9) 

=-1-H!'! 
VmrT{6) ' 

The F Distribution 

" 1 + x2 
-[* + (1/2)] 

(29) 
> 

X G-»4) ' 

V29 
(04) 

*>0,0 >0 (6.3.14) 

(6.3.14a) 

Suppose X = (U / 9X)/(V/ 92), where U and Khave chi-square distributions 

with parameters 0, and 92, respectively. Then f(x) has an F distribution 

with p.d.f. 

r(fl| + fl2) (OA*' 

r(0,)T(02) \ 92] [1 +{9x/92)x](e'+ei) 
(6.3.15) 

92T(9l)T(92) } (0,-1,1) 
*>0, 0,,02> 0. 

(6.3.15a) 

6.4 PRODUCTS, QUOTIENTS AND POWERS OF 
//-FUNCTION RANDOM VARIABLES 

In this section, theorems are presented to show that the product of 

independent H-function r.v.’s is an //-function r.v., the rational power of 
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an //-function r.v. is an //-function r.v., and the quotient or ratio of two 

//-function r.v.’s is an H-function r.v. Also, since the integrand, exclusive 

of the kernel, is precisely a Mellin transform, the reader is reminded of the 

various properties of the Mellin transform, which have previously been 

stated and will not be restated here. Furthermore, when one deals with the 

complex //-function notation, it will simplify matters to denote the inver¬ 

sion integral by the symbol M ~\Ms(f(x)); i.e., 

<6A» 
Z777 Jc — (0o 

6.4.1 The distribution of Products of //-Function Random Variables 

In this section, it will be proven that the probability distribution of 

products of //-function i.r.v.’s is also an H-function distribution. This 

property permits one to use one mathematical model (or computer pro¬ 

gram) to obtain the distribution of products of either identically distrib¬ 

uted or mixed i.r.v.’s, so long as each r.v. has an //-function distribution. 

Theorem 6.4.1 If XvX2,...,Xn are independent //-function r.v.’s with 

p.d.f.’s f\(xl),f2(x2),... ,f„(xn), respectively, where 

tH"5'"' C,X: 
• • • ’ (ajpj’ ajPj) 

7 pj.qj 7 7 
(bjl,Pj\ iPjqpftjqj ) 

0, otherwise, 

XJ>0 (6.4.2) 

fory = l,2,...,/i, then the p.d.f. of the r.v. 

Y= n X, 
7=1 7 

is given by 

h(y) = 

n n 

2 mr 2 nj 

H 1 '-1 
n n 

2 Pj, 2 % 
7=1 7=1 

0, otherwise, 

(M)1 

(^11» al l)> • • •» anp„ ) 
y> 0 

(6.4.3) 
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where the sequence of the parameters {ajv,ajv) is 

o=l,2,...,rij for j=\,2,...,n 

followed by 

v = rij+ \,rij + 2,...,pj for j = 1,2,...,/?, 

and the sequence of the parameters (bjv,/3Jv) is 

o=l,2for j=\,2,...,n 

followed by 

o = my + \,m.j+2,...,qj for j — 1,2, 

proof. From (6.2.9), the Mellin transform of fj(xj) is 

,,, kj n^.lr(fc>+^)ng.1r(i-a>-a^) 

4' '' s’ n».,+1r(i-*>-v)n?.,+1r(<i>)+afcj) 

and, using (4.3.5), it follows that 

(6.4.4) 

h + (y) = M 1 y >0 

= M~l n 
7=1 

kj Mbjv + (3Jvs)ng. ,r(l - aJV - aJvs) 

CJ n^ = my + ir0 - bjv - pjVs)n^n.+xT(ajv + aJvs) 

y> 0. (6.4.5) 

Hence from the definition of the inverse Mellin transform (4.2.2), the equa¬ 

tion above can be written as the following integral evaluated over the 

appropriate Bromwich path (c — ico,c + ioo): 

h + (y) = 
nr ,1% + fa)n;. ,ny. ,r( 1 - ajv - ajvs) 

2mi J n;= ,n«=m.+,r(i - bjv-/3Jvs)n”=1n$=„.+]r(ajv+aJvs) 

— s 

ds 

(a\ 1> all)> • • • ’ (anp„’anp„ ) 

(^1\’Pl l)’ • • • > (knq„’>Pnq„ ) 

which completes the proof of Theorem 6.4.1. 

(6.4.6) 
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Example 6.4.1. The Product of n Beta Random Variables. Suppose 

that in Theorem 6.4.1, XvX2,---,Xn are all beta r.v. s having the p.d.f. 

shown in (6.3.7) where, when written in terms of (6.4.6), 

. r (Oj+tj) 

j m ’ 

aj\= = 

and 

rrij= 1, rij = 0, Pj= 1, <7y = 1, 

for>=1,2,...,«. Then, substituting into (6.4.6) of Theorem 6.4.1, one has 

h(y)=- 

n T(9j + (f>j) 

j-' m) 

H ° 
n,n y 

(9,+cj)i-1,1),.-.,(#„+<(>„-1,1) 

(9,-1,1),...,(9,-1,1) 

0, otherwise. 

(6.4.7) 

Application of the identity (6.2.8) now gives 

h(y) = 
V 

7=1 T(ej) 

-
1

 

1 i—^ 1 

.0, otherwise. 

y>0 

(6.4.8) 

That is, the p.d.f. of the product of n independent beta r.v.’s is given by 

(6.4.8). This result agrees with that of Lomnicki [212,213] and that of 

Springer and Thompson [358, p. 731]. 

Example 6.4.2. The Product of n Gamma Variables. Now suppose that 

in Theorem 6.4.1, Xx,X2,...,Xn are all gamma i.r.v.’s having the p.d.f. 
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given in (6.3.4), where, when written in terms of (6.4.6) 

and 

ajX = 0j-\, 

«,i = 1> 

mj = 1, nj ~ °, Pj = 0, qj= 1, 

for j= l,2,...,/i. Then from (6.4.6) 

h(y) = - 

[(n ' ]HJ° i -©T' 

1
_

1
 

1 1 

1 
1 

. 0, otherwise, 

which, on application of (6.2.8), becomes 

7>0 (6.4.9) 

h(y) = 
|( n ' )G? 

O-i <t>jT(0j)l CM 
. 0, otherwise. 

y >0 

(6.4.9a) 

Thus (6.4.9a) expresses the p.d.f. of the product of n independent gamma 

variables in terms of Meijer G-functions. Equation 6.4.9a agrees with the 

result obtained by Springer and Thompson [358, p. 722]. 

6.4.2 The Distribution of Rational Powers 
of //-Function Random Variables 

Another important property of the //-function distribution is that a ra¬ 

tional power of an //-function r.v. also follows an //-function distribution, 

as Theorem 6.4.2 shows. 
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Theorem 6.4.2. If X is an //-function r.v. with p.d.f. 

/(*) = - p,q 
cx 

{ax,ax),...,{ap,Op) 

(bvPi),...,(bq,Pq) 

0, otherwise, 

a >0 

then the p.d.f. of the r.v. 

Y=XP, 

where P is a rational number, is given by 

b(y)=- 
kcp-‘ H"'” 

p><7 
cpy 

0, otherwise 

(al-alP+ aua:P (ap- apP + a^otpP ) 

y > 0 (6.4.10) 

when P > 0, and 

h(y)= 

kcp~' H"" 
?.p c“y 

(1-bi+fiiP-Pv - P\P ).(I- bp + fipP-/}p, —fipP) 

*P ' '*P’ ^p‘ 

'p ' t-’p" Pp’ Up 

(1 - ax + a,P- axP ),...,(1 - ap + apP- <xp, - apP ) 

0, otherwise 

when P<0. 

7>0 (6.4.11) 

proof. Equation (4.3.12) shows that h+(y), the component of the p.d.f. 

h(y) corresponding to y > 0, is given by 

h + (y) = M M Ps-P+ 1 P.<7 
CX 

(fli.ai). 

(bM,...,(b,M 

while from (6.2.9) and (6.4.5) 

k TS:_lT{bv + P9t)m_lT{\-av-avt) 
h + (y) = M ~1 

c‘ nUm+Al~ bv~Mnpv.n+lT(av + avt) 
t = Ps-P+ 1 

— - 1 = M 
n;.,r(4„-AP+j3„+Aft) 

n;.,r(l-a0+ «„P-a„-a„ ft) 
nJ-«+ir(<^-«cP+«.-«.*) 
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Application of (4.2.2) then yields 

h + ( y kcp~l r + 

nj.„+ir(a„-a„P + «„ + a„ft) w dS’ 

and from the definition of the //-function, it follows that 

h + (y) = kcp 
p,q 

(a,-0|/> + a„a,/>).(^-c^P + ^c^P) 

(l’l-filP + l}l,lilP),...,(b,-p,P+ISt,^P) 

and 

P> 0 

h+(y) = kcp 1 

H” 
q,p 

(l-bl + piP-(3l,-(3lP),...,(\-bq + f]qP-pq,-pqP) 

(\-al + alP-al,-alP),...,(\-ap + apP-aq,-aqP) 

P< 0. 

Example 6.43 The Square of a Standard Half-Normal Variable. 
Suppose that in Theorem 6.4.2, the r.v. X has a standard half-normal 

distribution with the p.d.f. given in (6.3.8) with 6= 1, where when written 
in the form of (6.4.10), 

and 

k = 
1 

V27T ’ 

£,=0, 

c = 
1 

V2 ’ 

n = 0, p — 0, q= 1. m = 1, 
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Then from Theorem 6.4.2, the p.d.f. of 

Y=X2 

is given by 

i 

2 V^7T 

U i.o 
**0,1 

r i 
2^ <-*•■)] 

k otherwise, 

y >0 

or, with the use of (6.2.8) 

r 1 G1>0 
r i 

2y 

1 ‘ 
h(y) = - 

iVn 

^*0,1 2 

lo, otherwise. 

(6.4.12) 

Since (6.4.12) is equivalent to (6.3.10) with v = 1, it follows that h(y) is the 
p.d.f. for the chi-square distribution with one degree of freedom. This 
result agrees with the well-known fact that the square of either a standard 
normal variable or a standard half-normal variable follows a chi-square 

distribution. 

6.4.3 The Distribution of Quotients 
of //-Function Random Variables 

From (4.3.14) and Theorems 6.4.1 and 6.4.2 (with P= - 1), one obtains yet 
another important property of the //-function distribution, namely, that 
quotients of independent nonnegative //-function variables also follow an 
//-function distribution. This result is stated in the following theorem. 

Theorem 6.4.3 If Xx and X2 are independent //-function r.v.’s with p.d.f.’s 
fi(xi) and f2(x2), respectively, where 

fj(xj) = 
C:X, 

(«,n ®/i)> • • • > (^jPj > ajpj) 
j pj,% j j bjq., fijq.) 

0, otherwise, 

Xj> 0 

for j = 1,2, then the p.d.f. of the r.v. 



PRODUCTS, QUOTIENTS AND POWERS OF tf-FUNCTION VARIABLES 215 

is given by 

+ n2,nt + m2 

P\ + ‘h’Q\ +P2 

_ 0, otherwise, 

y >0 
(6.4.13) 

where the sequence of the //-function parameters is 

(all>all)>>>-»(aln|>a!l«,)>(l — • * • > 

0 k2m2 ^2m^)’ (al,n, + 1> al,n, + l)> • • • > (al/>,> alp,)> 

( ^ ~ ^2,m2 + 1 — 2^2,m2 + 1, @2,m2 + l)> ■ ■ • > ( 1 — k2q2 ~ 2q2> $2q^)’ 

and 

(^1 \’Pl l)> ■ • • 5 (1 ~ a2\— 2a2l’a2\)> • • • > 

0 ^2n2 ^^2n2> ^2n2)’ + 1> P\,mx + l)’ • • • > (^1^,’ P\q^)> 

0 ^2,n2+ 1 — 2a2,«2+Ua2,«2+l)’---’(^ —<32p2~^a2p2’a2p^)- 

proof. From (4.3.14), the component of the p.d.f. of Y, which is obtained 
for nonnegative values of Y, is given by 

h+(y) = M-'[Ms{Ux1)}M2_s{f2(x2)}], 

or, from (6.4.4) 

h + (y) = 

i k\ nr=i^(^>iu + ^it;‘s')n"L1r(i —alt;—alo5) 

ci + ,r(l — blv — Plvs)UpLn] + lV{alv + alt,j) 

< k2_[ r (b2v + 2(32v — p2vs)nnv= i r( 1 ~ a2v — 2<*2v a2u5) 

c\ s n^=m2+ ,r(l - b2v - 2(32v + P2vSW-n2+ \Y(a2v + 2a2v~ a2vS) 

Rearranging and writing in terms of the Mellin inversion integral (6.4.2), 
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this becomes 

+ . 1 r nnv'=xT(\- au,-aXvs)n”LxT(b2v + 2p2v-P2vs) 

h {y) c2 ' 2viJcWvLni + lT(alv + alvs)niLm2+Al-b2v-2P2v + (32v 

n-1 xT(bXv + PXvs)Il"vL ,r( 1 - a2o - 2«2c - a2vs) / fiV 

n’Lmi + ,r( 1 - bXv- plvs)WvLn2+ ,r(fl2o + 2a2c - a2vs) \ c2 ) 

s) 

ds 

= MiH 
mt + n2,nt + m: 

Pl+Q2<‘}\+P2 

1 
(ail’aii)’--- 

T/ 

-
1 

-cT
 

where the sequence of the parameters of the //-function is that given in 

Theorem 6.4.3. 

Example 6.4.4. The Quotient of Two Half-Normal Variables. Suppose 
that in Theorem 6.4.3, Xx and X2 are half-normal r.v.’s having the p.d.f. 
given in (6.3.8), where when written in the form of (6.4.13), 

7 0jV2¥ ’ 

0,1=0, 

1 
' - 2 > 

1 

7 OjV2 

and 

mj= 1, rij = 0, pj = 0, qj= 1, 

for j= 1,2. Then substituting into (6.4.13) of Theorem 6.4.3, one obtains 

h(y) = - 

@2 Ul. 1 
0XTT 

02 

Txy 
(04)' 

(o.i) 
’ ^>0 (6.4.14) 

0, otherwise, 

which, when compared to (6.3.13), is recognized to be the p.d.f. of the 



PRODUCTS, QUOTIENTS AND POWERS OF H-FUNCTION VARIABLES 217 

half-Cauchy distribution 

/oo- 202/0l 

^((^2/^1 Y+y2) ’ 

y >0. 

6.4.4 Determining the Parameters in the Distribution of 
Products, Quotients, and Powers of 
Independent //-Function Random Variables 

Theorems 6.4.1, 6.4.2, and 6.4.3 show that the exact p.d.f. of a function 
involving only products, quotients, and powers of //-function r.v.’s can be 
calculated directly; or more precisely, if the parameters of the p.d.f. of 
each r.v. are known, the parameters of the probability distribution of the 
function can be easily calculated, after which the inversion integral can be 
exactly evaluated by the method of residues, as shown in Chapter 7. Figure 
6.4.4 describes, in flow chart form, an algorithm or technique for evaluat¬ 
ing the parameters of such a function. The objective of the flow chart is to 
describe the general logic of a solution procedure, not to serve as an exact 
description of the computer program. 

In examining the flow chart, assume that the function to be evaluated is 
of the general form 

Y=h(X„X2,...,Xn), 

where Xl,X2,...,Xn and Y are all //-function r.v.’s. Then, according to the 
symbolism of the flow chart in Fig. 6.4.4, the parameters of the p.d.f. of 
each Xj, when considered one at a time, are mm, nn, pp, qq, kk, cc, 

(acij, aotjJ = 1,... ,pp) and (bbj, PfyJ = 1,..., qq), and the respective parame¬ 
ters of the p.d.f. of Y are m, n, p, q, k, c, (dj, ajy j=\,...,p) and 
(bj,fij,j= 1 ,...,q) corresponding to the definition of the //-function distrib¬ 
ution (6.3.1). Input to the system is an operation type (either multiply or 
divide) and either a power and the parameters of the probability distribu¬ 
tion in the case of an r.v. or simply a numerical value in the case of a 
constant (deterministic value). Computations can then proceed in accor¬ 
dance with the flow chart until all r.v.’s and constants in the term are 
accounted for and the parameters of the p.d.f. of Y have been found. 

As has just been pointed out, products, powers, and quotients of 
//-function r.v.’s are themselves //-function r.v.’s whose parameters are 
expressible in terms of those of the distributions of the original //-function 
r.v.’s. The p.d.f. of the resultant //-function r.v. is then a Mellin-Barnes 
type of inversion integral that must be evaluated to obtain the analytical 
form of the resultant p.d.f. The derivation of the exact (series) solution of 



Fig. 6.4.4 Flow chart for determining the distribution parameters of the probability distribu¬ 

tion of a function consisting of products, quotients, and powers of //-function random 

variables. 

218 
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the //-function inversion integral (6.2.1) over the Bromwich path (c — z'oo,c 
+ /oo) is due to Eldred and Barnes [91] and Lovett [218] (see Chapter 7). A 
computer program that evaluates this series solution (i.e., the resultant 
p.d.f.) and the corresponding cumulative distribution function (c.d.f.) has 
also been developed by Eldred and Barnes [91]. 

6.5 THE DISTRIBUTION OF 
SUMS OF INDEPENDENT 
//-FUNCTION RANDOM VARIABLES 

This section gives expressions for the distribution of sums of independent 
//-function r.v.’s. Since it is at best difficult to evaluate the inversion 
integrals for these expressions in closed form in the general case, the results 
are not stated in theorem form. Nevertheless, the approximation methods 
presented in Chapter 8 are applicable and will lead to approximate 
solutions in the general case, for which the accuracy of the approximation 
can be determined. 

The distribution of the sum of n i.r.v.’s is given in (3.2.9) of Theorem 
3.2.5 as 

n 

h(w) = F 1 Ft{jj(xj)} 

Substituting the Fourier transform given in (6.3.2), this becomes 

X - - 

cj (0,1),(1 ajX ajX,ajX),...,{\ qjp, ajpj, aJp) 

(6.5.1) 

Using the convolution notation, (6.5.1) can be rewritten as 

h(w)=—. H 
c i 

* • • • 

(6.5.2) 
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where the symbol * represents the Fourier exponential convolution opera¬ 
tion (and also the Laplace convolution in this case, since Pt(Xj < 0) = 0). If 
the p.d.f. of h(y) cannot be determined in closed form from either (6.5.1) 
or (6.5.2), it can be approximated by obtaining approximate solutions to 

(6.5.1) using the methods of Chapter 8. 

6.6 THE DISTRIBUTION OF A POLYNOMIAL 
IN INDEPENDENT //-FUNCTION VARIABLES 

Now consider the equation of the form 

M Nh 
(6.6.1) 

where Rh is a constant and the Xh/s are independent H-function r.v.’s. 
What is the distribution of W1 It is the purpose of this section to obtain 

expressions for: 

1. The p.d.f. of W. 
2. The rth noncentral moment of the distribution of W when the p.d.f. of 

XhJ is given by 

fhj(xhj)=- 

ku H"4'”*' 
"J Phj^hj 

l
_

l
 

( ahj 1 > ahj 1)»• • * > ( ah jphJ > ahjphj ) 

i.^hj\iPhj\)’•••’(^hjqhj ’ Phjqhj ) 

0, otherwise. 
L 7 

Assuming that all Phj>0, (6.4.10) of Theorem 6.4.2 shows that the p.d.f. of 

the distribution of 

is expressible in the form 

{®hj\ ahj 1 Phj "f” ahj 1 ’ ahj 1 j ) ’ • • 'hj\'ahj\“hj 

0, otherwise. 

4>0, (6.6.3) 
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If Phj < 0, (6.4.11) will be used to find fhj(x'hj) instead of (6.4.10). To 
simplify the notation as much as possible, only the results of PhJ > 0 will be 
used in the following expressions. 

From (6.4.6) of Theorem 6.4.1, it follows that the p.d.f. of the distribu¬ 
tion of 

Nh 

is given by 

gh(zh) = 

Nh Nh 

2 mhp 2 nhj 

H =1 j~\ 
Nh Nh 

2 Phj’ 2 Qhj 
7=1 7=1 

(ah\\ ah\\Ph\+ aAll>aAll^/il)> • • •> 

Nh i^h 11 — Ph\lPh\ + fih\l’fihUPhl)’---’ 

n cfyz, 
y=l hj h (ahNHphNH ~ ahNkPhNPhNh + ahNHPhHpahNHPhNHPhNh ) 

( bhNhPhHh ~ fthNhqhNh PhNh + PhNhqhNh’ PhNhqhNh PhNh ) 

0, otherwise. 

zh> 0 (6.6.4) 

where the sequence of the parameters in the //-function is that given in 
(6.4.3). 

If = RhZh, where Rh is a constant, then the p.d.f. the distribution of 
Z’h can be found by variable substitution into (6.6.4). Specifically, one 
obtains 

<iM)= 

IR h\ \j~ ' 

Nh 

n kNcft> 1 

i 

R„\j4, c»*U 

Nh Nh 

2 mhj’ 2 % 

U7 = ! 7=1 

/ Nh Nh 

2 Phj > 2 Phj 
7=1_ 7=1 

(ah\l~ ah\\Ph\ + ah\\’ah\\Ph\)’-"’ 

(Al 1 ~ fth 11 Ph 1 + fih\\’Ph\\ph\)’ ■■■■> 

h (^NhPhNh ~ ahNHPhNhPhNh + ^NhPhNh^HNhPhNh^Nh) 

{bhNhqhNh ~ fihNhqhN,PhNn + PhNhqhNh’PhNhqHNhPhNh ) 

0, otherwise, 

zh> 0 (6.6.5) 
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where the parameters have the same sequence as in (6.6.4). 
Hence the p.d.f. of the distribution of 

MM M Nh 

Y= 2 Z'= 2 Rhzh= 2 Rh n xij 
h— 1 h=\ h=1 J 

M Nh 

= 2 K n xfr 
h=1 J~l 

is given by 

h(y) = g\(zd*g'2(z'2)*- • ■ *g'M(z'M), (6.6.6) 

where, as before, the symbol * represents the Fourier convolution opera¬ 

tion. 
Although the expression above for h(y) is complicated and difficult to 

evaluate, the moments for the distribution are much easier to find. The 
p.d.f. of the distribution of ZA' is given by (6.6.5) and, from (6.4.4), its 
Mellin transform is 

Ms{g'h{z'h)} = IL 
I /?, 

Nh 

n 
7=1 

khjchf° 
s)- 

ir(bhjv @hjvphJ+fihjv+phjvphJs) 

n^m,,+ ir(l ~ bhjv + fihjv Rhj ~ Phjv ~ PhjvRhjS) 

n„l,T(l Clfyv C^hjv Pty ®hjv ^hjv RhjS ) 

„hJ + lr(@fyV O^hjvRhj ahjv ahjvRhjS) 

(6.6.7) 

As (6.3.3b) shows, the rth moment about the origin of the distribution of 
Z'h can be expressed as 

Mr+Ag'h(z'h)} = E{{Zi)r}. 

Therefore, because of the independence of the terms, the rth moment 
about the origin for the distribution of Y can be expressed as a function of 
the lower order moments about the origin for the distributions of the 
individual terms. In other words, E{ Yr) can be expressed as a function of 
E{(Z^)V] for h = 1,2and for v— 1,2,...,r. 
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EXERCISES 

6.1* Using Theorem 6.4.3, show that the central t variable is an //"-func¬ 

tion r.v., and determine its p.d.f. from (6.4.13). 

6.2* Using Theorem 6.4.3, show that the central F variable is an //-func¬ 

tion r.v., and determine its p.d.f. from (6.4.13). 

6.3 Show that 

Y=XlX2 + X3X4 

has the Laplace or double exponential distribution 

s(>0=!exp(-bl) 

if the Xif i= 1,2,3,4, are normal i.r.v.’s with mean 0 and variance 1. 

(Mantel, 1973) 



CHAPTER 7* 

Analytical Model for Evaluation 
of the //-Function 
Inversion Integral 

The reader will recall that when normalized with the proper constant, the 
//-function inversion integral presented in Chapter 6 encompasses an 
entire class or family of p.d.f.’s. Because this inversion integral (p.d.f.) 
includes so many basic distributions in statistics as special cases, it is 
important to be able to evaluate it in analytical (series) form. The tools 
necessary for doing this were provided in Chapter 6. The actual derivation 
of the analytical (series) form of the //-function inversion integral, how¬ 
ever, is carried out in the following sections. The derivation employs the 
Euler psi function ip and its derivatives ip(m) (the polygamma functions), 
together with recursive formulas amenable to computer evaluation. The 
functions xp and ip(m) may be evaluated for positive and negative real 
arguments (except nonpositive integers) to any desired degree of accuracy 
by series expansions and recurrence relations [169,2]. 
The evaluation of the p.d.f. is accomplished34 in Sections 7.1.1, 7.1.2, and 
7.1.3. The solution is completely general, including the cases of absence of 
poles in the LHP or RHP, and overlapping or partial overlapping of poles. 
A computer program has been written by Eldred and Barnes [91] which is 
operational and which achieves the following tasks: 

1. Determines the parameters a,, a,, &,,/?,,M, N,p, and q in the p.d.f. of an 
//-function r.v., that is the p.d.f. of the product, quotient, or rational 
power of input //-function r.v.’s. 

34I am indebted to Mr. B. S. Eldred and Dr. J. W. Barnes [91] of the Mechanical Engineering 
Department of the University of Texas at Austin, for developing Sections 7.1.1, 7.1.2, 
Examples 7.3.1, 7.3.2 and for their permission to include these results in this book. The results 
in Sections 7.1.3, 7.2, and Appendix F are due to Lovett [218], 

224 
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2. Evaluates the p.d.f. and c.d.f. of the //-function r.v. at any value of the 
r.v. 

3. Plots the p.d.f. and c.d.f. 

The computer program, compiled on an MNF compiler and run on a CDC 
6600, is very efficient, and poses no precision problems. Should precision 
problems arise when the program is run on smaller computers, the problem 
may be solved by compiling the program under IBM’s Extended //-com¬ 
piler. 

7.1 ANALYTICAL FORM OF THE 
PROBABILITY DENSITY FUNCTION OF AN //-FUNCTION 

VARIABLE 

The //-function inversion integral was presented in Chapter 6 in integral 
form, but for convenience of the reader it appears again below:35 

1 rc +1 

w-mL. 
nr„ r(4,.+, r( l - a, - «,*) 

n?=M+ir(l /3is)H'’=N+lT(ai +(XjS) 
y Sds, 

(7.1.1) 

wherey is a real number; 00<jV<p;a(>0 for /= 1,2,/3,>0 
for i = 1,2,..., q\ and at(i = 1,2,... ,p) and bt(i= 1,2,..., q) are real numbers 
such that no pole of 

r(6, + /8(j') for /=1,2,...,M 

coincides with any pole of 

T(l — a,— oi'S) for i=\,2,...,N, 

and the Bromwich path (c — /oo,c + zoo) in the complex plane is such that 
all poles of 

M N 

IlTto + Aj) and II T(1 — a, —a,^) 
i=1 i=l 

lie to the left and right of (c — ioo,c + ice), respectively. This last restriction 
follows directly from the definition of the //-function (Definition 6.2.1). 

35The reader is reminded that in the limits of integration (c — ioo,c+ ioo), i=y/~ 1, whereas 

when used as a subscript in a,-, bh and so on, the letter i denotes a running variable, and also 

that (7.1.1) is equivalent to the definition (6.2.1). 
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Poles of these two gamma function factors occur at nonpositive integer 

values of the arguments (bi + {iis),i= 1,2,...,M and (1 — ai — ais),i = 

1,2Hence, these poles can be given by 

bi+j 

SlJ ft ' 

>-0.1,2, 

and 

for the factors 

1 - a,- +/' 

a, 
7 = 0,1,2,... 

M N 

n T(6, + fas) and n r( 1 - a,, - afj), 
i = 1 i = l 

respectively. Then the restriction that the Bromwich path (c — /oo,c + /oo) 

separate the complex 5-plane into an LHP and an RHP such that the 

points 

bi+j 

$ij fa ’ 
7 = 0,1,2,... 

lie to the left of (c — /oo,c + /oo), and the points 

1 — a, + / „ , _ 
Sij=-, 7 = 0,1,2,... 
J a. 

lie to the right of (c —ioo,c + /oo) can be expressed by the constraint 

fa 
M 

maxiReri))i.l<miiRe( 

1 -a; 
N 

Hi-! 

If the poles are in the LHP, the residue theorem is applicable when the 

value of the inversion integral over the circular arc CLk (Fig. F.l.l) 

approaches zero as the radius of the circle approaches infinity. Sufficient 

conditions for the vanishing of the integral over this arc are given by 

Jordan’s lemma (Appendix A). Similar statements apply when the poles 

are in the RHP. These statements are verified in Appendix F. 
Consequently, the method of residues must be applied once for poles in 

the LHP and again for poles in the RHP, to evaluate the //-function 
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inversion integral h(y). Thus 

hx(y) for poles in the LHP 

h2{y) for poles in the RHP, 

where hx{y) is obtained by evaluating residues at poles in the LHP, and 
h2(y) is obtained by evaluating residues at poles in the RHP. In the 
following development, hx(y) and h2(y) represent components of the p.d.f. 
h(y) of a product, quotient, or rational power of independent //-function 
r.v.’s. 

It should be noted that in what follows hx(y) and h2(y) also correspond 
to the components of the p.d.f. for which 0<y < 1 and 1 <y< oo, respec¬ 
tively. This fact follows from an examination of Jordan’s Lemma (Appen¬ 
dix A), which guarantees the applicability of the residue theorem to the 
evaluation of the //-function inversion integral, as is shown in Appendix F. 

The question naturally arises: How many poles need to be considered in 
the evaluation of the //-function inversion integral when there is an infinite 
number of poles in the integrand? The number depends of course on the 
desired accuracy of the distribution function for the particular //-function 
involved. For most cases utilization of 10 to 20 poles will probably be more 
than adequate for 5-place accuracy in the distribution function. However, 
cases have been identified that require the utilization of 30 poles. Because 
of the characteristic of nonuniform convergence of the series form of the 
//-function inversion integral, it is difficult to determine the number of 
poles that are adequate to achieve a specified accuracy in the distribution 
function in the general case. This is an area for further research. 

7.1.1 Evaluation of the Probability Density Function for Poles in the 
Left-Half Plane 

First consider the evaluation of the p.d.f. h(y) at poles in the LHP. In the 
//-function inversion integral, these poles occur in the factor 

M 

/•= 1 

and are given by 

j=0,1,2,3,... 

/= 1,2,3,..., Af. 
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Without loss of generality assume that the poles 

are ordered algebraically from largest (most positive) to smallest (most 

negative) and denoted by 

MZ-i 

Then, by the theory of residues, the portion of h(y) evaluated at poles in 

the LHP may be given as 

00 

hx {y) = 2 (residue evaluted at sk) 
k = 1 

= 2 
/«*-1 

*-> («*-!)! dss‘~' 

<.s-sk)‘ 
n,.ir(i:+ft^)II„ir(i-a,-^) 

n*. m+Tr(i - *, - ft ») II*. *+ +aks) 
-y 

s = sk 

where Sk is the order of the pole sk in the integrand of the //-function 
inversion integral, after any cancellation of terms. 

To arrive at a value for Sk, it is necessary to know the order of the pole 
sk in each of the four product terms of the integrand. Hence, define SkM, 

8kN, 8kq, and 8kp to be the orders of the pole in the four terms 

M N <1 

II r(i,+A4 IIr(i-a,-«,.), II r(i-6,-/?,$), 
i'=l i = 1 i = M + 1 

P 

and II r(a,-+ afj), respectively. 
i = N+ 1 

For example, 8kM is the number of factors in the term 

M 

nm+M 
/= i 
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such that 

bi + P,sk =Jki 

where jki is a nonpositive integer, possibly different for each relevant i. 
This definition yields 

bk ~ bkM + bkN bkq bkp- 

However, due to the definition of the //-function, the poles of the two 
terms 

M N 

IIr(i, + fli) and nr(l-a,-a,j) 
1=1 (=1 

are separated by the contour of integration. The evaluation here is at the 
poles of the LHP; therefore bkN must necessarily be zero. Note also that if 
Sk < 1 then there is no residue at sk. 

Given then that 

bk = bkM ~ bkq ~ bkp ^ 

hx(y) can be expressed as follows: 

1 dSk ~1 
*,W- 2 

■ N 

*Ti («*-!)! ds‘>~' 

M ii 

m+fa) n,-.,r(i-a.- 
(s - Jj)4' n J, M+ ,r( 1 - f>, - - Jj)*- lL_„+ ,r(a, + a,s) 

I-, (7.1.2) 

s = sk 

where 

cfM 
o - %)'• n „ „+,r( i - b- Mi*-sk)s» n A*,+«,■*) 

M 

Ui0\s) = (s-sk)SkM IT Tibj + PiS). 
i = 1 

and 
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Applying Leibnitz’s rule for the differentiation of products to the last 

formulation of hx(y) yields 

K(y) = 

jSk-w- 1 

dsSk~w~l 

dw 

dsw 
s = sk 

GO 

k — 1 

dSk~w~l 

dsSk~w-1 
ms) 

w 

2 (o) 
o = 0 ds j^y 

dv 

ds 
7 Ui°\s) 

s = sk 

From the preceding discussion it is evident that, to calculate hx(y) 

efficiently, it is necessary to be able to derive simple forms for the 
derivatives of C£°\s), U£°\s), and y ~s. For this purpose note that 

rw=m±±>. 
X 

With this in mind, U£°\s) and C^°\s) may be written as follows: 

M M 

vf\i)= n rn 
i=i i=i 

b, + ¥=-J b/ + piSk =-J 

_(s ~ Sk)T(J + 1 + b,+ fas)_ 

(6, + /3,s)( 1 + bt + fys)1 + b,: + PjS)(J + bt + (IjS) 

M M 

= n r(4,+fts) n 
i=i i=i 

bi + PiSk 7--j b, + [i,sk = ~J 

r(y +1 + bj+fijS^ 

(bj + A5)(1 + bj + fas) ...(J-1 + bj + Mb 
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cj0)M= 

N 

II r(l-af-a,-j) 
i=l 

n m-b-fa) n 
i = M+\ i=M+\ 

\-bi~PjSk¥*-J \—bj — PjSk = — J 

_1_ 

_(s-sk)T{J + 2-b-&s)_ 

(1 - A - A j)(2 - b, - pfs) A - AW+1 - A ■- A*) 

1 

p p 

n r(a,- + a,-j) n 
i = A+l ; = A+1 

a, + a,5A. tt — y a, + a,^ = — J 

1 

_(j--yfc)IV+l+a,• + «,•*)_ 

(a, + a,-s)( 1 + a, + a,.s)1 + a, + a,5)(/ + a, + a,^) 

nr(i-rv) n [r(i-A,-fis)]_1 
/ = 1 = M + 1 

1 —b,~ PjSk ^-J 

<? 

n 
/ = M+ 1 

1 ~b,~ P,sk = - J 

T(J+2-b-p,s) 

(1-6, - ftj)(2 - - ft*)... (y - 6, - ft»)( - ft) 

II [r(a, + a,.v)] 1 
/ = A + 1 

a, + a,- s* ¥=~J 

r(/+ 1 + fl,- + a,-5) 1 

(a, + a, 5)( 1 + a, + a, j) ...{J— 1 + a, + a,s)(ai) 
a, + a,sk = - J 

where the conditional notations, beneath the product signs, of the form 
x(i,k)^-J and x(i,k) = - J, are to be read “not equal to any negative 
integer” and “equal to some negative integer — J (not necessarily constant 
with respect to i and k),” respectively. The conditional notations are to 

n 
i=N+ 1 
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delineate between those gamma functions that have poles at sk and those 
that do not. 

To calculate the first derivatives of C£°\s) and U^°\s) utilize the simple 
product rule for products involving an arbitrary number of factors. That is 

4- ruM= i yj‘>oo n/,(*)• 
ax , = 1 /=1 j— 1 

j*i 

Now note that each term of Q(0)O) and U^\s) is of one of the four forms 

r(x)’ 7+7^’ ’’ °r (c + Jx) ‘ 

These forms have the following derivatives: 

-^T(x) = T(x)xP(x) where f(x)= -^lnT(x) 

±(c+dx)-'=(c+dxy'(-^) 

j-x [r(x) ] -:1 = - [ r« ] ■-2 j~x r(x) = [r(x) ] -:'(- *(*)) 

d / i r1 j ( i d \ 
dx\c + dx) \c + dx) \c + dx)' 

A common property, then, of these four forms is that for each form ft{x), it 
happens that there exists a function g,(x) such that fil\x) =fi(x)gi(x). Then 
the simple product rule above takes the form 

d_ 

dx 

L 

n Ux) 2 Si(x) n fj(x). 
1=1 7=1 

Applying the facts of the preceding discussion to Ufc0)(s) and C^°\s) 

yields 

UP(‘)-Ui°\s) 

M 

2 
i — 1 

bi + ftsk¥=~J 

+ 
M 

2 
i=i 

b, + fi,sk = - J 

J-i (-B) 
PMJ+l + bi + P,s)+ 2 77, , ‘n x 

/-0 (l+bi + Pis) 

= Ui°\s) Vl'\s) 
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and 

Cj»(s) = Cf >(j) | 2 ( - “iX* - “i - «r>) 

2 (-A)>«1 

i = M + 1 
1 ~bi~ PiSk=£-J 

<7 

2 
i = Af + 1 

l-6/-A-s*= -/ 

2 
/=! 

A 
(l-b-frs) 

2 0,)»H «, + «,-*) 
i-IV+1 

Oi + Cp^-J 

p 

2 
i = A+ 1 

ai + aisk=~J 

J- 1 -a. 
(«,)^(y +1 + a,. + a,s) + 2o (;+ai+'0|S) 

=crwxf’w. 

From this point it is a straightforward procedure to calculate the higher 
order derivatives of Q(0^(a) and U^°\s). That is, simply apply Leibnitz’s 
rule for the differentiation of products in a recursive fashion. Then 

2(,'71)cr'-,)Wxl'+,,W 
/ = 0 v 1 ' 

m*)= 2('";M^-'-,iwn'+,)w 
/ = 0 ' 1 ' 

and 
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where, by simple differentiation of sums, 

/ = I 

2 (-A)V'-1,0-*,-Ai) 
i = M+ 1 

1 ~bi~ PiSk^-J 

q 

2 
i = M+ 1 

1 — 6, — /?,•$* = — J 

(-PW-'>V+2-bi-M+ 2 
/=i {l-b-frs) 

2 (a,W' 1)(tf,+<v) 
/ = A + 1 

a, + a(sk ~ J 

P 

2 
/ = A + 1 

a, + a,-j* = - J 

(ai)ty(/ l\J + 1 + ai + a-s) + 2 
1=0 

(-«i)‘(t- 1)! 

(I+01 + 015)' 

and 

M 

n°W= 2 (f>W-'Kb,+p,s) 
i= 1 

b, + [i,sk =£-J 

M 

+ 2 
/= i 

Z?/ ■+■ /?/•?£ = ~ J 

All that remains to complete the derivation of h^y) is to derive an 
expression for the derivatives ofy-*. However these derivatives are simply 
given by 

(ft)V-»(7+ 1 + 6, + ft,) + S' ( — -7 
/=o (/+£>, +ft*)' 

-jp(y 0 = (-lny)> 
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In summary 

OO 1 f>k ~ 1 

hM= 2 (* _n, 2 
A: =0 V°A: V- w = 0 

dSk w 1 
[I W j dssk-w-\ * 

w 

2(S) 
D = 0 (/s' 7 UM 

s = sk 

where 

ao)W|.-»,= 5r(i-«rvJ n [r(i-i,.-/3A)]-' 
/= 1 i = M+ 1 

i - - p,sk # - y 

n (-i)VK-ft) 
i = M+ 1 

\-bi-ftsk = -J 

n [r(a,.+«,5j] 1 n (-i)yy!(«,.) 
/ = A+ 1 i = A + 1 

ai + aiSk ¥= —J a, + a, — — J 

M M , _ i sj 

t'rwi.-*- n (i,+M> n -^fr 
i = i ( = i J -\Pi) 

b, + /?,J* ¥=—J b, + f),sk = - J 

^(a0)w) 
s sk s~sk I=Q \ t / S = Sk 

ds 
s = sk 

- V(r(I)c'r'-|>wn'>w|s-„ 

£-,(y-)=(-\ny)'y 
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and 

xi°(*)|,-*= 2 (-a,W' 1)(1-a,-aA) 
j = i 

i = M+l 

\-bj-piSkJ=-J 

<7 

2 
/=A7+1 

1 -bi~PiSk= -J 

J- 1 

(-A)V'-',(i)+ 2 W--0"' 
1=0 

2 1)(«, + «A) 
i-V+l 

a, + a,sk ^ - J 

P 

2 
/ = V + 1 

a, + <XjSk = — J 

J-I 

(a,)V'-»(l)+ 2 (-«,)'(<- 1)!(/-J-)-' 
/=0 

M 

n° W|,-„= 2 (MV'-'\b,+i3,st) 
i= 1 

bj + fi,sk ¥= - J 

+ 2 
i=i 

bj 4- fijSfc J 

(ft)V'-|)(l)+ s’ (-ft)'('- !)!(/-/)■' 
/ = 0 

This represents that portion of the p.d.f. /(y) for which poles are in the 
LHP. 

7.1.2 Evaluation of the Probability Density Function for Poles in the 
Right-Half Plane 

To complete the evaluation of h(y) poles in the RHP must now be 
considered. These poles occur in the factor 

N 

II (l-a,-<v) 
/=i 

in the numerator of the inversion integral and are given by 

5(/ = 

1 - a, +j 

a. 
7 = 0,1,2,3,... 
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Without loss of generality assume that the poles 

are ordered algebraically from smallest to largest and denoted by 

M 
00 

& = 1- 

Again the theory of residues is applicable and the inversion integral can be 

evaluated over the Bromwich path in a fashion analagous to that used for 

poles in the LHP. Then the portion of the p.d.f. h(y) evaluated at poles in 

the RHP may be given as 

00 

h2(y) = 2 (— residue evaluated at 5*.) 
k= 1 

00 

= 2 
-1 ds*~x 

(«*-!)! dss*~l 

t>k nfl ^(b, + tr( 1 - a, - OjS) 

n Um+ir0 - bi - A^n^w+irCa,.+aiS)y s = sk 

where 8k is the order of the pole sk in the integrand of the //-function 

inversion integral, after any cancellation of terms. The minus sign in the 

coefficient 

-1 

(5,-1)! 

arises from the fact that the integration of the inversion integral is in 

opposite orientation to that used for the theory of residues, when operating 

in the RHP. 
Then, following the same procedure used for poles in the LHP, we 

define 5* = SkN - 8kq ~8kp> 0 (note that this time 8kM = 0) and obtain 

00 

h2{y)= 2 
k = 1 

— 1 

(«*-!)! 

ds--‘ 
•S* 

where now 

Cf'(s) = 
nf-.r^+As) 

(s - sk)s" w„M+,r(:i - b, - fi,s)(s - j,)8* nf. ,r(a,+<v) 
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and 

uVKs) - 0 -- n?_ ,r(i - a,- a,s). 

Hence, if we apply Leibnitz’s rule to h2(y) and perform the cancellations in 

CfPXs) and U£0\s) we find that 

A(>0= 

00 _ 1 1 

2 Tir-Tv 2 
k = 1 (A w = 0 

\ d8k~W-X 

) ^Sk-w-\ 

W 

cn*) 2 
o = 0 L 

(?) 
dw~v 
dsw-vy s = sk 

M q 

crw = n m+p,S) n [ro - - m j 
i = 1 i = M+ 1 

1 -bj- PiSk ¥=~J 

-1 

q 

x n 
/ = A/+1 

-J 

_T{J + 2-b,-fa)_ 
(1 - W- Aj)(2-b-M-'-V-b-fti)( - ft) 

X n [r(a,+ «,.!')] 1 
(= N+ 1 

a,- + a/Sk ¥= — J 

r(/+l + af + afj) 1 
(a, + a,^)( 1 + a, 4- ats) • • • (7 — 1 + af + aI-j)(a/) 

a, + a,j*= -7 

VP(s)= n r(l - a, —ctjs) n 
1-1 = 1 

i ~ a, — a, j* =£ — J 1 — a, — a, j* = — J 

(7 + 2 — a, — a,.s) 

(!-«/“ a,-j)('1 - a, - a,s) • • • (7 - a, - a,s)( - a,) ' 

To find the derivatives of C£°\s) and U^0)(s) again use the modified 
product role: 

x n 
i = N+ 1 

d_ 
ds 

L L L 

n fi(x)= 2 8i(x) 
I-I i=l 7=1 

where 

ffl\x) = gi(x)fi(x) 
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as developed for the forms considered in the LHP. The same forms appear 

here composing Ck(0)(s) and U£°\s). Then we find, in a manner completely 

analogous to that used in the LHP, that 

cr>(j)= s' (r~1 )cr-'-»(SM'+,>M 
1 = 0 ' 1 ' 

uir+)= s](r 11)uI'-'"1)WKt,+,>W 

where 

xi"W= 2 U3W~'\b, +p,s) 
i= 1 

2 (-A)V'-»(1 -b,-M 
i = M+ 1 

1 ~bj- PjSk J=-J 

<? 

- 2 
i = M+ I 

1 bj fijS/c = J 

(-A)V'-V+2-4,-A»)+ 2 /(A)'(< °! 
i~i (l-b-frs) 

/ = A + 1 
a, + <XiSk=£-J 

P 

- 2 
i = A +1 

a, + a,sk = -7 

2 ( —a,)ty(' 1}( 1 — a,_ a,j) 
i = 1 

1 — a, — a, 5* 9^—7 

A 

+ 2 
/=i 

1 —a, —a,j*= -7 

(q,)V<-v+i+«,+v)+ 21 
/ = 0 (1+0, + OtjS) 

t \t i a-n/ t , \iV> (a») 0* 1V + 2-a,.-a^)+ 2, 77-- 
i=\ (l-a-oLiS) 

and 
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As in the LHP, the derivatives of y~s are given by 

r ,-s 

In summary 

00 _ 1 °k ~ 1 

h2(y)= 2 7T-TTf 2 
A: = 1 (A U- w = 0 

l (8,-l\ d 

v = 0 L kw j dsSk~w-1 C^0)^ ( o) ■* = ** 

where 

at q 

cr«i.-„- n r (b,+pA> n 
i= 1 i = M+ 1 

1 — bj — ^ — y 

■ [r(i-6,-M)]"‘ n (-i)Ui(-A) 
( = A/+ 1 

1 ~bj-PiSk = - J 

n [r(a,. + a,.jJ] 1 n (-l)yy!(«,) 
i = N+\ i = N+1 

a, + a,sk —J a, + a,sk = — J 

U[0)(s)\s=Sk= n r(l-a,-a,^) n 
1 = 1 

l—a, — a, sk ^ — J 
■'!(«) 

l-a,-a,j* = -y 

_rfr 

(is 

ds 

7 ms) 

7 ^0)(^) 

=cm -2 ('7 l)cr'-,)wxri>w s = sk ,=0\ t ) 

= t/r>(s) -2lr,1)it'-,-"wei)w 
-J* /=o ' f / 

A = (-lny)ry * 
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and 

M q 

2 U3W~'>(*,+M- 2 
1=1 / = M + 1 

1 ~bi~ PjSk¥= ~J 

■(-MV'-'Ki-b.-M 

2 
i— M+l 

1 ~bi-fiiSk= -J 

J- 1 

(-ft)V'-"(i)+ 2 
1=0 

2 («,W' 1)(«,+«a) 
i = N + 1 

a, + a,i* ¥= — J 

2 
i = A + 1 

a, + <XjSk = — J 

/=i 
1 — a, — a, s* ¥* — J 1 

+ s' («,)'(<-i)!(/-y)" 
1 = 0 

This represents that portion of the p.d.f. h(y) for which poles are in the 

RHP. 

7.1.3 Evaluation of the Probability Density Function Given the Total 

Absence of Poles in One Half Plane 

Often in practice one of the two product terms in the numerator of the 

integrand of the //-function inversion integral is absent. When this 

happens there will be no poles in the corresponding half plane. This does 

not present any difficulties with the inversion technique as the theory of 

residues may be applied as shown below. 

N 

n 
i=i 

- a, - = -J 

y-i 

(a,W-■>(!)+ 2 -0 
— t 

/ = 0 



242 EVALUATION OF THE //-FUNCTION INVERSION INTEGRAL 

Suppose, as happens in the majority of such cases, that the factor 

N 

n r(l-flf-a,-5) 
i= 1 

is not present. Then there are no poles in the RHP. The residue theorem 

may be applied, as before, to the poles of the LHP. However, to apply the 

residue theorem to the RHP the poles must first be shifted from the LHP 

to the RHP by the transformation r = —s in the integrand of the //-func¬ 

tion inversion integral. Under this transformation the inversion integral 

becomes 

M N 

n r(4,-ftr) n T(\-a, + a,r) 
-^-y'(-dr). 

Q p s \ J 

II T(1 -bt + frr) II 
(=A/+1 i = N+l 

Under the assumption that the factor 

N 

II r(l-a, + a,r) 
« = 1 

is absent, the only poles occur in the factor 

M 

II T(b-ft,r) 
i= 1 

and are given by 

r = 
bj +j 

A 
7 = 0,1,2,. 

Then each r value is the negative of the corresponding s value for the 

evaluation of poles in the LHP of the original //-function inversion 

integral. The residues at these poles of the transformed inversion integral 

may be evaluated by a procedure analogous to that used previously. A 
similar method applies in the case that the factor 

M 

n r(i,+fls) 
/•= 1. 

is absent (M < 1) in the original inversion integral. 



CUMULATIVE DISTRIBUTION FUNCTION 243 

Although the above describes the correct mathematical procedure for 

evaluating the inversion integral in the case of absence of poles in either 

the RHP or the LHP it is not necessary in practice. This method again 

yields hx(y) for 0<y<l and h2(y) for l<y<oo. However, in such a 

situation, hx(y) and h2(y) are identical functions. Hence, it suffices to 

derive either hx(y) or h2(y), when there is an absence of poles in either half 

plane, to obtain the p.d.f. h(y) valid for all y on the interval (0, oo). 

7.2 CUMULATIVE DISTRIBUTION FUNCTION 

The cumulative distribution function may be found by a procedure analo¬ 

gous to that for the p.d.f. The c.d.f. H(y), defined by 

H(y)= fy h(y)dy, 
Jo 

can be obtained by direct integration or through use of the Mellin 

transform of h(y). The latter method is preferable, since it avoids the 

necessity of evaluating h(y) to derive H(y). Specifically (see (4.3.7)), 

Inverting, one obtains 

and 

Writing H(y) in the form of an //-function inversion integral, one has 

1 fc+.«[ nf„r[fe,+fi(j+i)] 
c — IOO i=M+ 1 

n".,r[l-a,-a,(*+<)] 

nf.Ai+1r[^+a,(*+i)] i = N+ 1 

1 f c + i oo 
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If new parameters are defined by 

a' = a, + a„ b' = b, + ft, 

then the inversion integral above, with the exclusion of the s term in the 

denominator, takes the form of a typical //-function inversion integral. 

Hence, it would seem that the general inversion technique introduced here 

should be applicable with minor alterations to accommodate the s term in 

the denominator. The modifications are as presented below. 

The introduction of the s term in the denominator of the integrand 

introduces an additional pole at 5 = 0. If there is no pole at 5 = 0 in the 

numerator the general model may be applied by substituting a- and b' as 

noted, introducing 

Ci°\s) = 
Ci°\s) 

xV)(s)=x\>P(s)~s 1 

and adding the residue at 5 = 0, as given by 

Res(s = 0) = 
ir.ir(A)nf„r(i-a-) 

n?.«+,r(i-fc;)n?_„+lr(a;)’ 

to the sum of the residues for the portion of H(y) which includes the pole 

at 5 = 0. Usually the residue at 5 = 0 will be added to Hx(y). It should be 

noted that, in this case, if any one of the terms in the denominator of the 

residue formula above has a pole at 5 = 0, that is 1 — b[ or a■ is a 

nonpositive integer, then there is no residue at 5 = 0 and the preceding 

modifications will suffice. 

If, on the other hand, a pole occurs in the numerator at 5 = 0 then the 

introduction of the 5 term in the denominator effectively decreases the 

order of the pole by 1. In this case the residue at 5 = 0 is evaluated as in the 

general //-function inversion model with the substitution of a[ and b\ for a, 

and bj, respectively. The residues at poles other than 5 = 0 are handled with 

the additional substitutions of C^(s) and xjfXs), as defined above, for 
C/0)(5) and x* }(5)> respectively. 

In the manner outlined above the c.d.f., H(y), associated with an 

//-function p.d.f., h(y), can be evaluated without first obtaining h(y), if it 
is so desired. 
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73 EXAMPLES 

Example 73.1 Suppose A, and X2 are random variables with the 
following Weibull p.d.f.’s: 

fi(x\)~2xxe x\ xx>0 

f2(x2) = 3xle~x{ x2>0 

where 9X = 1.0,<£, = 2.0,92 = 1-0, and <£2 = 3.0. To derive the p.d.f. of the 
product r.v., 

Y= XxX2, 

it is necessary to identify the poles of the //-function representing the 

distribution of Y. By applying Theorem 6.4.1 to the //-function representa¬ 

tions of the densities/,(x,) and f2(x2) (6.3.5), the p.d.f. of Y may be written 

h(y) = 
H2’Q 

0,2 

lo. 

' 
(\ i\ (2 \\ 

y 
\ 2 ’ 2 /’ l 3 ’ 3 / 

y>0 

otherwise. 

Then the //-function parameters are: 

M—2, N = 0, p = 0, <7 = 2, bx = \, Px = \, b2 = f, yS2 = {. 

The nonzero portion of the p.d.f. may be written in the form of an 

//-function inversion integral as 

h^=iriic+l™Tti+*s)v^+is)y Sds■ 
•'c —IOQ 

Note that the factor nf=1T(l — at — axs) is absent. In Section 7.1.3 it was 

indicated that the p.d.f. h(y) may consequently be obtained by evaluating 

only the residues at poles in the LHP. However, to illustrate the shifting of 

poles to the RHP, h(y) may be evaluated in two components as in the 

general case when there are poles in both half planes. 



246 EVALUATION OF THE //-FUNCTION INVERSION INTEGRAL 

Poles occurring in the LHP are given, as in the general case, by 

sv=-^P~ = -( 1+2A J-0.1.2,- 
Pi 

= -1,-3,-5,-7,. ..,-(1+2;),... 

sv=-^r- = -( 2 + 3/), 3=0,1,2,... 
Pi 

2,-5,-8,-11,...,-(2 + 3/),— 

Ordering the poles algebraically from largest to smallest yields 

{^)r«i = {-^-2,-3,-5,-7,-S,-9,-11,-0, 

Poles of order 1 occur for 5= — 1, —2, —3, —7, —8, —9, — 13, — 14, — 15,... 

while poles of order 2 occur for s — — 5, — 11, — 17, — 

Evaluation of the residues at these poles will produce hx(y), that compo¬ 

nent of the desired p.d.f. for which 0 <y < 1. In particular, at s = —5 the 

evaluation of the residue follows below with 5 = 2 and k = 4. 

CS0)(s)|,__5=1.0 

and 

Ci’> «|,. - 5=Cf> MxfM I_ 5 >= o.o, 

since N=0, p = 0, and q<M+1. 

TOU-i 
(-1)2 (-1)1 

2!(0 l!(t) 
-3 

= -3[{i+<»>(l) + (-i)(l!)[(-2)-' + (-l)-1]) 

+ {H<0>(l) + (-})(0!)[(-l)-']}] 

= -1.80696. 
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Hence the residue at s = - 5 is given by 

which gives 

3(lny)y5 — 1.80696y5. 

In order to evaluate that component of the p.d.f. for which y >1, poles 

may be shifted to the RHP, as noted previously. To do this let r— —s in 

the //-function inversion integral, then 

2 

Ky)-JZ7 r~ n nb-My'(-dr). 
iTTl Jc-ioo /=i 

This transformation shifts the poles to the RHP, where the corresponding r 

values become positive, so that the residues may be evaluated for r — 

1,2,3,5,7,8,9,.... This produces h2(y), that component of the desired 

p.d.f. for which y> 1. As stated in Section 7.1.3 and again in this section, 

h2(y) is equivalent to hx{y). 

Example 7.3.2 Suppose X„ X2, and X3 are beta r.v.’s having p.d.f.’s 

Mxi)=-p^ g-j^iU-*1)2* 0<x, < 1 

/2(-x2) = '^3) x2(1 -*2)2, 0<*2< 1 

and 

/3(*3) = ^(4" 2) ~ *3)> 0<x3 < 1 

where 0, = 9,<£, = 3,02 = 8,</>2 = 3,03 = 4,<£3 = 2. The p.d.f. of the r.v. 

y= n x, 
i= 1 
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has been shown to be [47, 358] 

h(y) = 

r(12)T(ll)T(6) //3,0 (11,1), (10,1), (5,1) ' 

r(9)r(8)r(4) h3,3 y (8,1), (7,1), (3,1) ’J 

[0, 

0<y < 1 

otherwise. 

When written in the form of an //-function inversion integral, the nonzero 

portion of the p.d.f. becomes 

J_ rc+icc Iff.tr(hj + PjS) ± 

2m Jc_i00 II/_iHa, + a,-s) 

r(i2)r(ii)r(6)f 1 /•*+/« r(8+^)r(7+^)r(3+5) ; 

r(9)r(8)r(4) [2mJc-iO0 r(ii+s)r(io+5)r(5+sr 

(7.1.3) 

Note that poles occur in the numerator of the integrand for 5 = 

— 3, — 4, — 5,..., and poles occur in the denominator for s= — 5, 

- 6, - 7,... . Thus, an “overlapping” of poles occurs for 5 = - 5, 

- 6, - 7,... . Poles in the denominator corresponding to those in the 

numerator reduce the order of the poles in the numerator. In fact, in this 

particular example, the orders are reduced to the extent that poles for 

5 = - 5, - 6, — 11, - 12, - 13,... are not present. This example therefore has 

only six poles—four of order 1 (for 5= —3, —4, —7, — 10) and two of order 

2 (for s = - 8,-9). This may be shown by writing 

T(8 + j)T(7 + j)T(3 + j) 
r(ii+/)r(io+j)r(5+j) 

h{y) = 
r(12)T(ll)T(6) 

T(9)T(8)T(4) 

_r(8+s)r(7+s)r(3+5)_ 
(10 + s)( 9 + s)(8 + -s)T(8 + 5) (9 + s)(& + s)( 7 + s,)T(7 + 5) 

1 

' (4 + s)(3 + s)r(3 + s) 

=_1_ 

(10 + j)(9 + s)2(8 + s)\7 + j)(4 ■+ j)(3 + s) ' 

The evaluation follows directly from here by calculation of the residues. 

Observe that h2(y) = 0 fory > 1 in this example. 



CHAPTER 8 

Approximating the Distribution 
of an Algebraic Function 
of Independent Random Variables 

Chapter 6 proved that products, quotients, and powers of independent 
//-function r.v.’s are also //-function r.v.’s whose p.d.f.’s may be de¬ 
termined by the method of residues. However the sum of //-function r.v.’s 
is not in general an //-function r.v., and its p.d.f. cannot in general be 
obtained in exact form. Similarly, it may be difficult, infeasible, or perhaps 
even impossible to obtain, in exact form, the p.d.f. of algebraic functions of 
r.v.’s of other types. (An algebraic function of an r.v. would, of course, 
include the r.v. itself as a simple special case.) In such cases, approximating 
p.d.f.’s may often be used to advantage, and this chapter suggests some of 
these p.d.f.’s. A method developed by Posten and Woods [293] for evaluat¬ 
ing the accuracy of the approximation, based on the moments of both the 
desired and approximating p.d.f.’s, is presented, as is also the well-known 
Connish-Fisher expansion. Revelant papers dealing with the numerical 
inversion of integral transforms are cited. However, since no procedure has 
yet been developed that is generally adaptable and not tailored to specific 
situations, the latter approach is discussed only briefly. 

8.1 APPROXIMATING THE DISTRIBUTION OF 
PRODUCTS, QUOTIENTS, AND POWERS OF 
INDEPENDENT //-FUNCTION RANDOM VARIABLES 

Even though products, quotients, and powers of independent //-function 
r.v.’s are themselves //-function r.v.’s whose p.d.f.’s can be determined 
(exactly) by the method of residues, it is nevertheless true that in some 
cases a suitable approximation to the relevant p.d.f. may be more easily 
obtained. In particular, an approximating p.d.f. with a specified degree of 
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accuracy may be obtained from a knowledge of the moments of the exact 
(unknown) distribution, which moments are readily obtained from the 
Mellin transforms of the original //-function r.v.’s (Section 6.3.3). Some 
feasible approximating p.d.f.’s are cited later in this chapter, together with 
methods for determining the accuracy of the approximation. Although 
these methods are discussed primarily from the standpoint of their applica¬ 
tion to algebraic functions of sums and differences of independent //-func¬ 
tion r.v.’s, they are equally valid for approximating the p.d.f. of any r.v. or 
the algebraic function of any i.r.v.’s, as long as the moments of the desired 

p.d.f. are known. 

8.2 CALCULATING THE MOMENTS OF 
THE PROBABILITY DENSITY FUNCTION OF 
AN ALGEBRAIC FUNCTION CONSISTING OF 
SUMS AND DIFFERENCES OF 
//-FUNCTION INDEPENDENT RANDOM VARIABLES 

Some algebraic functions of //-function r.v.’s, such as the polynomial 
(6.6.1), can be reduced to a mixture of sums and differences of //-function 
r.v.’s. As Chapter 6 showed, the general form for the p.d.f. associated with 
such a function can be expressed only as an n-fold Laplace convolution of 
//-functions and is not readily evaluated. However finding the moments of 
such a function is much less difficult. 

Figure 8.2.1 is a flow chart describing the logic of a procedure to find 
the moments of the p.d.f. of an algebraic function of //-function i.r.v.’s 
where the function can be expressed as sums and products of terms 
involving only products, quotients, and powers of the variables. The 
calculated moments can then be used for approximating the p.d.f. and/or 
cumulative distribution function of the algebraic function. 

Carter [47] has written a computer program in FORTRAN language, 
named STOFAN (stochastic function analyzer), which includes procedures 
to achieve the following tasks: 

1. Input an algebraic function of //-function r.v.’s and constants (when the 
function can be expressed as sums and differences of //-function 
i.r.v.’s). 

2. Find the parameters of the distribution of products, quotients, and 
rational powers of //-function i.r.v.’s. 

3. Find the moments of the p.d.f. of an algebraic function of //-function 
i.r.v.’s. 
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Fig. 8.2.1 Flow chart for determining the first N movements of the p.d.f. of a function 

consisting of sums (and differences) of //-function i.r.v.’s. 
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4. Approximate the p.d.f. and the c.d.f. from the moments. The approxi¬ 

mation procedure is that given by Hill [148] and briefly described in 

Sections 8.3 and 8.4. 

Program STOFAN consists of a main program and several subprograms 

all coded in FORTRAN. Although the programs have been run only on 

the Univac 1106 using the standard Univac 1106/1108 FORTRAN com¬ 

piler, they should be compatible with any other computer having ANSI 

(American National Standards Institute) FORTRAN capabilities. Minor 

modifications should be relatively simple to make, since the programs are 

not “machine dependent.” 
The STOFAN program statements are not listed here. The reader 

interested in the program is referred to Carter’s thesis [47]. 

8.3 APPROXIMATING THE PROBABILITY DENSITY 
FUNCTION FROM THE MOMENTS 

Many techniques have been presented over the years to solve the so-called 

reduced or finite problem of moments, that is, the problem of determining 

or approximating a probability distribution from a finite number of its 

moments. A recent dissertation by Hill [148] is quite complete in evaluat¬ 

ing the more common of the existing methods and in presenting an explicit 

procedure for utilizing them numerically. This section describes Hill’s 

method and the approximation techniques involved. 

Hill’s procedure includes cases concerning both discrete and continuous 

distributions and assumes that in addition to a finite number of known 

moments, the moment-generating function of the probability distribution is 

known. Only the part of the procedure related to approximating the p.d.f. 

of a continuous function from a finite number of its moments is discussed 

here, since sums and differences of //-function i.r.v.’s are always continu¬ 

ous. The procedure then reduces to three basic steps: 

1. Determine whether a series approximation of the p.d.f. can be made 
from the known moments. 

2. Make a series approximation (if possible) using either the Gram- 

Charlier type A (Hermite polynomial) series or the Laguerre polynomial 
series. 

3. Fit the first four moments to the Pearson system of probability distribu¬ 
tions. 

Figure 8.3.1 is a flow chart showing the overall procedure as described by 
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Fig. 83.1 Master flow diagram for Hill’s procedure for approximating a distribution from its 

moments. 
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Hill. The variables 1C and IR have the following definitions in the flow 

chart: 

IR = 0 if the range of the distribution is (0, oo) 

IR = 1 if the range of the distribution is (- oo, oo) 

IC = 0 if the distribution is discrete 

1C = 1 if the distribution is continuous 

Hill’s theorems 1 and 2 are explained in the following sections, as are the 

Gram-Charlier A series, the Laguerre series, and Pearson curves. (Hill uses 

the Gram-Charlier B series and the term-by-term expansion when dealing 

with discrete distributions; the Laplace inversion technique is used only 

when the m.g.f. is known.) Hill also gives a FORTRAN computer program 

(named TEST) that makes most of the decisions shown in the flow chart of 

Fig. 8.3.1. 

8.4 THEOREMS RELATED TO THE 
EXISTENCE OF A SERIES SOLUTION 

Hill establishes four theorems related to the existence of a series solution 

for approximating the p.d.f. of a distribution from a specified number of 

its moments. Theorems 8.4.1 and 8.4.2 (theorems 1 and 2, in Hill’s 

notation) give conditions for the existence of any series solution for 

distributions of doubly infinite and singly infinite range, respectively, and 

Hill’s theorems 7 and 8 give conditions for a unimodal solution. Only 
theorems 1 and 2 are given here, without proof. 

In some cases it may be easier to establish the existence of the p.d.f. on 

the basis of the Laplace, Fourier, or Mellin transforms, since the analytic- 

ity of the relevant transform in a given strip is a sufficient condition for the 

uniqueness (hence the existence) of the corresponding p.d.f. However the 

following theorems give conditions that are both necessary and sufficient 
for the existence of the p.d.f.36 

Theorem 8.4.1 (Hill’s theorem 1) A necessary and sufficient condition 

that there should exist at least one nondecreasing function F(t) such that /OO 

tjdF{t), y = 0,1,2,. ..,2/i—l 
- OO 

36Theorems 8.4.1 and 8.4.2 are Hill’s version of equivalent theorems previously stated by 
other authors (see, e.g., refs 3, 335) 
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is that the quadratic form 

n 

2 Vi+jXiXj 
ij = 0 

be positive (definite or semidefinite), or equivalently, that the sequence 

v0,...,v2n-i be positive [148, pp. 24,25]. 

Theorem 8.4.2 (Hill’s theorem 2) A necessary and sufficient condition 

that there should exist a nondecreasing function F(t) such that 

r 00 
Vj= I tJdF(t); y = 0,l,...,n 

Jo 

is that the quadratic forms 

[n/2] In/2) 

2 2 Vi+jXiXj 
i=0 7=0 

and 

[(«+l)/2] [(«+1)/2] 

2 2 ®/+7+1JciJC7 
1=0 7=0 

should be positive (definite or semidefinite) [32, p. 150]. 

8.5 THE PEARSON DISTRIBUTIONS 

The Pearson system, developed by Karl Pearson in the late 1880s, consists 

of a family of 12 types of curves and a set of rules for determining which 

curve best fits the p.d.f. described by the first four moments of the 

distribution. The family of curves is generated by solutions to the differen¬ 

tial equation 

df(x) =^= (x + a)y 

dx dx b0+b{x + b2x2' 

A complete development of the curves and the associated rules is given by 

Elderton and Johnson [90], Craig [68], and Kendall and Stuart [178, pp. 

148-154]. 
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If ju,, ju2, ju3, and ju,4 represent the first four moments (about the mean) of 

the distribution to be approximated, the selection of a particular Pearson 

curve type is based in the moment ratios 

and 

£i = 4’ H2 
(8.5.1) 

(8.5.2) 

/3,(& + 3)2 

4(2y82- 3y8, - 6)(4y82 - 3/8,) • 
(8.5.3) 

These three parameters give a basis for selecting one of the 12 curve types. 

Figure 8.5.1 shows the criteria for selecting types I through VII. Types 

VIII through XII are special cases of the other types and are not included 
here. 

8.6 THE GRAM-CHARLIER TYPE A SERIES 

The Gram-Charlier type A series which is based on the normal distribu¬ 

tion and its derivatives, is well known for its use in approximating the 

p.d.f. of a distribution whose range is doubly infinite (i.e., a p.d.f. f(x)>0 

for — oo < x < oo). The general form of the series expansion of the p.d.f. of 

a distribution in terms of the standardized variable z = (x — [i)/o is given 

by 

f(z) = 2 CjHj (*)<>(*)> - oo < z < oo 
7=o 

where 

1 [y2V 1\* nlvn 

C" n\ £0\ 2/ k\(n — 

-2k 

iky. 

(v>• is defined in Theorem 8.4.1), 

*(z)=v^TexpW 

(8.6.1) 

(8.6.1a) 

(8.6.16) 
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and Hn(z) is known as a Hermite polynomial such that 

H0(z)=l, 

H\{z) = z, 

H2(z) = z2— 1, (8.6.1c) 

and, more generally, 

Hn (z) = zHn_x(z)-(n-1 )Hn_2{z). (8.6.1 d) 

Replacing z with (x — ju)/ a, where ja and a are the mean and standard 

deviation of the distribution of X, one can express the Gram-Charlier type 

A series in the form 

where 

and 

/(*)= — OO <X < 00, (8.6.2) 

(8.6.2a) 

(8.6.2Z?) 

Equation 8.6.2 is the series expansion of the p.d.f. of a distribution with 
mean /x. 

A complete derivation of the Gram-Charlier type A series is given by 

Kendall [178, pp. 154-160] and Hill [148, pp. 46-60], 

Example 8.6.1 Find the Gram-Charlier type A approximation to the 
p.d.f. of the r.v. 

Y=Xx + X2X3-5X4, (8.6.3) 

where A, is a half-normal r.v. with mean zero and standard deviation 

0=1.5 (see 6.3.8); X2 is a gamma r.v. with parameters 6 = 2, <£=1 (see 

(6.3.4)); X3 is an exponential r.v. with parameter <£ = 0.4 (see (6.3.9)); and 

X4 is a half-normal r.v. with mean zero and standard deviation 9 = 2. 
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Table 8.6.1 Moments of the Function from STOFAN“ 

1 -.67020188 + 001 11 -.20708208 + 015 
2 .82143092 + 002 12 .69242015 + 016 
3 -.12665960 + 004 13 -.24152253 + 018 
4 .23176458 + 005 14 .87604507 + 019 
5 -.48128349 + 006 15 -.32943768 + 021 
6 .11065422 + 008 16 .12828700 + 023 
7 -.27692034 + 009 17 -.51439105+024 
8 .74526766 + 010 18 .21320885 + 026 
9 -.21373536 + 012 19 -.90148586 + 027 

10 .64860079 + 013 20 .40439913 + 029 

BEGIN PROGRAM “TEST”* 
FOR APPROXIMATING A PROBABILITY DISTRIBUTION 

FROM ITS MOMENTS 

THE RANGE IS (—INFINITY, INFINITY) 

A SOLUTION EXISTS 

FOR SPECIFIED MOMENTS 

A UNIMODAL DISTRIBUTION EXISTS HAVING 

THE SPECIFIED MOMENTS 

“The numerical values of computer output (e.g., these and subse¬ 
quent moments) are stated in computer terminology. For example, 
— .67020188 + 001 denotes the number —6.7020188. 

* Program developed by T. W. Hill [148]. 

Since all the variables are //-function r.v.’s, the required calculations can 

be carried out by the computer program STOFAN. The appropriate input 

is 

START EXAMPLE 8.6.1 

ADD HALF-NORMAL 1,1.5 
ADD GAMMA L-2,1 
MULT EXPONENTIAL 1,-4 

SUB CONSTANT 5 

MULT 

END 

HALF-NORMAL 1,2 

The final STOFAN output appears in Tables 8.6.1 and 8.6.2. 

On substitution of the values of c, given in Table 8.6.2, y=0,1,..., 5, into 

(8.6.1) gives the Gram-Charlier approximation to the true p.d.f. The 

Gram-Charlier p.d.f. and c.d.f. are tabulated in Table 8.6.3 and graphed in 



Table 8.6.2 Hermite Approximation of the Probability Density Function from 

STOFAN 

yth 
j Moment (vj)a 

Standardized 
Moment 

yth Series 
Coefficient (cy) 

0 1 
1 -.67020188 + 001 
2 .82143092 + 002 
3 -.12665960 + 004 
4 .23176458 + 005 
5 -.48128349 + 006 

.00000000 

.10000000 + 001 

.95581576 + 000 

.38293196 + 001 

.95046978 + 001 

1 
.00000000 
.00000000 

-.15930263 + 000 
.34554985-001 
.44549839-003 

aThe numerical values of computer output (e.g., these and subsequent mo¬ 
ments) are stated in computer terminology. For example, —.67020188 + 001 
denotes the number —6.7020188. 

Table 8.63 Gram-Charlier Type A Approximation to the True 

Probability Density Function and Cumulative Distribution Func¬ 

tion in Example 8.6.1 
x p.d.f. c.d.f. 

-30.900 0.000358 0.000101 

-30.100 0.000525 0.000450 

-24.700 0.003871 0.010282 
-19.100 0.010043 0.049876 
-14.900 0.015541 0.101099 

-12.500 0.025989 0.149221 
-10.090 0.037832 0.199808 
-9.700 0.048500 0.251521 
-8.700 0.057566 0.304582 
-7.900 0.064254 0.353361 
-7.100 0.069894 0.407101 
-6.500 0.073158 0.450058 
-5.900 0.075417 0.494678 
-5.100 0.076677 0.555646 
-4.500 0.076239 0.601574 
-3.900 0.074622 0.646883 
-3.100 0.070750 0.705148 
-2.500 0.066716 0.746427 
-1.700 0.060140 0.797243 
-0.700 0.050647 0.852717 

0.300 0.040615 0.898355 
1.900 0.025530 0.950973 
4.300 0.009224 0.990886 
4.900 0.006566 0.995599 
5.900 0.003275 1.000412 

10.100 0.000000 1.003087 
17.700 0.000000 1.003087 
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-31.1 -23.1 -15.1 -7.1 0.9 8.9 

Fig. 8.6.1 Graph of Gram-Charlier density function for Example 8.6.1. 

Fig. 8.6.2 Graph of Gram-Charlier c.d.f, for Example 8.6.1. 

Figs. 8.6.1 and 8.6.2. Carter tabulates the p.d.f. and c.d.f. at intervals of 

0.001. 
The accuracy of this Gram-Charlier approximation can be determined 

by utilizing the method of Posten and Woods involving the Fourier sine 

series to evaluate the error of the approximation to the distribution 

function at any value ofy. (See Sections 8.12.2 and 8.12.3). One could, of 
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course, use integral transforms to determine the exact p.d.f. h(y) [in series 

form] of the r.v. y defined by (8.6.3). 
STOFAN also selects the Pearson type that best approximates the true 

distribution in Example 8.6.1. The output is given below. 

PEARSON CURVES APPROXIMATION37 

BETA(l) = .91358378 + 000 

BET A(2) = .38293196+ 001 

K= -.10000000 + 002 

USE PEARSON TYPE 1 WITH PARAMETERS 

R = 6(p2-/3l- l)/(6 + 3/?j - 2/S2) = .10622204 + 002 

A/(l)= -.16121036 + 001 

M (2) = .10234308 + 002 

A (1)= -.10385197 + 002 

A (2) = .65929568 + 002 

7(0)= - .43009267 + 001 

(7(3) = —.21709228 + 003 

The appropriate Pearson type I (beta) p.d.f. is then [178] 

Mt)=To(1 + ^) 2> ~ax<y<a2, a,<0 

/ v \-1.6121036 

= —4.3009267(1 + _,0j85,97) 

/ V \ 10.234308 

x (1 - 65^59568 ) '0-385197^ <65.929568, 

where the origin is at the mode. If the origin is taken at the start of the 

curve, one obtains the usual form of the beta distribution, namely, 

h(y) = 
B (m, + l,m2+ 1) 

ym'(l-y)m\ 

Again, the accuracy of this approximation to the true distribution can be 

evaluated by the method of Posten and Woods (Sections 8.12.2 and 8.12.3). 

37See note a, Table 8.6.1. 



THE LAGUERRE POLYNOMIAL SERIES 

8.7 THE LAGUERRE POLYNOMIAL SERIES 

263 

When a probability distribution has nonzero values for its p.d.f. only in the 

range 0<x<oo, then a series developed from the gamma distribution is 

widely used for approximating the p.d.f. from the moments of the distribu¬ 

tion. Using a derivation similar to that used for the Gram-Charlier type A 

series, one can obtain the following general form of the series expansion of 
the p.d.f. f(x): 

00 

f(x) = 2 dJL(f){x)^{x), 0< x < oo, (8.7.1) 
j-o 

where 

(~i r 
n\{\ + r)n 

Vk 

(where vk is defined in Theorem 8.4.1) 

Mx)= x'exp(-x) 

n' T(r+1) ’ 

and L(nr\ known as a Laguerre polynomial, satisfies the relations 

Lq\x) = 1 

L\r\x) = x — r — 1 

Lif\x) = x2— 2(r + 2)x + {r+ l)(r + 2) 

= (x —r — 2n + \)L%l\(x) — (n— \){n + r— \)L(nrl2{x). 

The notation (ri)m above is defined as (n)(n+ l)(n + 2)- • • (n + m— 1). 

Before the approximation above can be used, however, some value must 

be given to the parameter r. Hill [148, p. 69] shows that the value of r can 

be selected from a knowledge of the p.d.f. at x = 0. If /(0) = 0, then he 

suggests that r= 1. For /(O) =^0, r should be assigned a value of zero. In 

approximating mixtures of //-function r.v.’s, some of which have /(0) = 0 

and others having f (0)^=0, a value of 1 is assigned to r. 
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A complete derivation of the Laguerre series is given by Hill [148, pp. 

60-72], 

Example 8.7.1. Find the Laguerre polynomial series approximation to 

the p.d.f. of the r.v. 

y = 0.25 xxx2 + x3 + 7.21, 

where xx is a gamma r.v. with distribution parameters 9 = 2 and <£ = 4 (see 
(6.3.4)), x2 is a beta r.v. with parameters 0 = 2 and <£ = 0.5 (see (6.3.7)), and 
x3 is an exponential r.v. with parameter <£ = 0.4 (see (6.3.9)). 

Again, since all the variables are //-function r.v.’s, STOFAN can be 

used with the input: 

START EXAMPLE 8.7.1 

ADD CONSTANT 25 

MULT GAMMA 1,2, .4 

MULT BETA 1,2, .5 

ADD EXPONENTIAL 1,-4 
ADD CONSTANT 7.21 

END 

The final STOFAN output appears in Tables 8.7.1 and 8.7.2. 

Table 8.7.1 Moments of the Function from STOFAN3 

1 .77700000 + 001 
2 .60548443 + 002 
3 .47332041+003 
4 .37127959 + 004 
5 .29233442 + 005 
6 .23112662 + 006 
7 .18356542 + 007 
8 .14652356 + 008 
9 .11760710 + 009 

10 .94980927 + 009 

11 .77236362 + 010 
12 .63290641+011 
13 .52310513 + 012 
14 .43654145 + 013 
15 .36826923 + 014 
16 .31447846 + 015 
17 .27224017 + 016 
18 .23931349 + 017 
19 .21400109 + 018 
20 .18027778 + 019 

3The numerical values of computer output (e.g., these and subse¬ 
quent moments) are stated in computer terminology. For example, 
— 0.6702188 + 001 denotes the number —6.7020188. 
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BEGIN PROGRAM “TEST” 
FOR APPROXIMATING A PROBABILITY DISTRIBUTION 

FROM ITS MOMENTS* 

THE RANGE IS (0, INFINITY) 

A SOLUTION IS POSSIBLE USING 

ONLY THE MOMENTS UP TO 18, BECAUSE 

THE VALUE OF THE DETERMINANT 

OF ORDER 11 IS - .26771528 + 025 

A SOLUTION EXISTS 

FOR SPECIFIED MOMENTS 

A UNIMODAL DISTRIBUTION EXISTS HAVING 

THE SPECIFIED MOMENTS 

Table 8.7.2 Laguerre Approximation of the Probability Density Function from 

STOFANa 

j y'th Standardized y'th Series 

Moment* Moment Coefficient (dj) 

0 
1 

1 
.77700000 + 001 .56000000 + 000 

1 
-.72000000 + 000 

2 .60548443 + 002 .48914286 + 000 .26076190 + 000 

3 .47332041+003 .60160000 + 000 -.63250794-001 

4 .37127959 + 004 .96920935 + 000 .11539706-001 

5 .29233442 + 005 .19421014 + 001 -.16854816-002 

6 .23112662 + 006 .46634494 + 001 .20474457 - 003 

7 .18356542 + 007 .13059470 + 002 -.21202623-004 

8 .14652356 + 008 .41791849 + 002 .19019141-005 

9 .11760710 + 009 .15045213 + 003 -.14913518-006 

10 .94980927 + 009 .60181005 + 003 .10245318-007 

11 .77236362 + 010 .26479660 + 004 -.61210760-009 

12 .63290641+011 .12710239 + 005 .30979781-010 

13 .52310513 + 012 .66093247 + 005 -.12244554-011 

"The numerical values of computer output (e.g., these and subsequent mo¬ 
ments) are stated in computer terminology. For example, —0.6702188 + 001 
denotes the number —6.702188. 
* Program developed by T. W. Hill [148]. 

Substitution of the values in Table 8.7.2 of dj into (8.7.1) gives the 
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Laguerre approximation to the true p.d.f. The Laguerre p.d.f. and c.d.f. are 
briefly tabulated in Table 8.7.3. (It is feasible, of course, to tabulate them 
in much greater detail, as does Carter [47].) Their graphs are given in Figs. 

8.7.1 and 8.7.2. 

Table 8.73 Laguerre Approximation to the 

True Probability Density Function and Cu¬ 

mulative Distribution Function 

X p.d.f. c.d.f. 

7.210 0.000000 0.000000 

7.240 0.333317 0.005147 

7.250 0.430237 0.008965 

7.270 0.604680 0.019345 

7.310 0.883967 0.049390 

7.360 1.123577 0.1000015 

7.400 1.244822 0.147556 

7.440 1.316309 0.198917 

7.480 1.348003 0.252314 

7.520 1.348316 0.306326 

7.550 1.332256 0.346562 

7.590 1.293964 0.399140 

7.630 1.241041 0.449879 

7.670 1.177738 0.498281 

7.720 1.089258 0.554987 
7.760 1.014353 0.597066 

7.820 0.900096 0.654500 
7.870 0.806516 0.697154 
7.940 0.682293 0.749206 
8.020 0.554140 0.798556 
8.130 0.406165 0.851068 
8.280 0.256932 0.900681 
8.590 0.097473 0.950829 
9.410 0.027438 0.989863 
9.930 0.011174 0.999962 

10.100 0.006262 1.001434 
10.380 0.000109 1.002262 

Again, the accuracy of this Laguerre approximation can be evaluated by 
the method of Posten and Woods (Sections 8.12.2 and 8.12.3). 

PEARSON CURVES APPROXIMATION FROM STOFAN38 

BETA (1) = .31759269+ 001 
BETA (2) = .80142563 + 001 

X=.85381975 + 001 

38See note a Table 8.7.2 



7.21 7.81 8.41 9.01 9.61 10.21 

Fig. 8.7.1 Graph of Laguerre density function for Example 8.7.1. 

Fig. 8.7.2 Graph of Laguerre cumulative distribution (c.d.f.) for Example 8.7.1 
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USE PEARSON TYPE III (GAMMA) DISTRIBUTION 
WITH PARAMETERS 

£> = .26785714 + 001 ( = dn) 

P = .25947522 + 000 
A = .96870748 — 001 

7(0) = .16098245+ 001 

The Pearson type III approximation to the true p.d.f. is [90,178] 

where 

2/x2 
w =- 

P3 

2^| 

M 3 

Jh_ 
2h2 

p=wa=--i 

pp + \ 

aepT(p +1) 

mode = mean — 
Jh_ 

2p2 

and the origin is at the mode. Substitution of the foregoing values of these 
parameters gives the specific Pearson type III p.d.f. 
If the origin is shifted to the start of the distribution and a convenient scale 
is chosen, the density function assumes the familiar form of the gamma 
distribution, namely, 

h^=T{8)yS y’ S >0,0 < oo. 

8.8 THE BETA APPROXIMATION 

The beta distribution 

/(X)= B(^~b)xa~1(1~x)b~'’ °<x<1 (8-8.1) 

is a highly flexible distribution whose approximations to unimodal distri¬ 
butions with varying degrees of asymmetry is often amazingly good. The 
beta distribution is determined by its first two moments, the parameters a 
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and b being expressible in terms of the first and second moments by the 
equations 

(88-2) 

where and denote, respectively, the rth moments about the origin and 
the mean. 

The actual error can be evaluated to any specified degree of accuracy by 
a method developed by Posten and Woods [293] and discussed in Sections 
8.12.2 and 8.12.3 Example 8.13.1 illustrates the approximation of the 
distribution of a product of three beta variables with a beta distribution. 
The results, including the accuracy of the approximation, are given in 
Table 8.13.1. 

8.9 THE YON MISES 
STEP FUNCTION APPROXIMATION 

The method of Von Mises is one of successive approximation of a 
distribution function F(x) given the sequence of integer moments 
M0,Af„M2,...,M2m_1; it is based on the following theorem of Von Mises 

[388]. 

Theorem 8.9.1 If are the moments of a distribution 
F(x), which increase at m points at least, then there is a unique m-step 
distribution Vm(x) that has these moments. The m steps are in the interior 
of the smallest interval that contains all points of increase of F(x). Either 
F(x)= Vm(x) or F(x) crosses each step of Vm(x). 

It should be pointed out that Mk is the kih integer moment of the p.d.f. 

f(x)= dF/dx; that is, 

Mk= f xkf{x)dx, 
^ Range 

of x 

referred to by Von Mises as the fcth moment of the distribution F(x). 
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When the conditions of Theorem 8.9.1 are satisfied, one may proceed to 
find the desired step function, which he now knows exists. This step 
function V(x) has the same first 2m moments M0,Mv...,M2m_x as the 
distribution F(x). Furthermore, the step function Vm{x) is such that at m 

abscissa values Al,A2,...,Am the value of F(x) is contained in step inter¬ 
vals of length Sx,S2,...,Sm, respectively. The derivation of the algorithm 
for computing the abscissa values and the step sizes of the step function is 
given by Von Mises [388] and is not repeated here. However the explicit 
procedure for applying the algorithm is outlined below. 

The first step in the procedure is to determine the moments Mk,k = 

0, l,...,2m— 1 of the distribution F(x) which is being approximated. Then 
one solves the following system of linear equations simultaneously for 
ck,k = 0, l,...,2m— 1: 

c0M0+ cxMx-i-+ cm_xMm_x- Mm, 

c0Mx + cxM2 + • • • + cm_xMm= - Mm+X, 

c0Mx + cxM2+--- + cm_xMm=-M2m_x_ (8.9.1) 

Having obtained the values of ck,k = 0,l,...,2m—l one next obtains the 
abscissa Ax,A2,...,A2m-X as the roots of the equation 

xm + cm_xxm~l + cm_2xm~2 -1-+c1x + co = 0. (8.9.2) 

After the abscissas AX,A2,... ,Am have been found, the step sizes 
SvS2,...,Sm are computed from the m equations: 

m 

'2AjcSj = Mk, k=0, (8.9.3) 
7=1 

The computation is well suited to a digital computer using library pro¬ 
grams for the solution of the polynomial equation (8.9.2) and the systems 
of simultaneous equations (8.9.1) and (8.9.3). The distribution function 
F(x) is approximated with increasing accuracy as m is increased. 

Thompson and Palicio [376] give an interesting and practical applica¬ 
tion39 of Von Mises method in which they use the step function Vm(a) to 
approximate the posterior distribution of system availability a. In this 

39Copyright © 1975 by The Institute of Electrical and Electronic Engineers, Inc. Reprinted in 
part, with permission, from “Bayesian Confidence Limits for the Availability of Systems,” by 
W. E. Thompson and P. A. Palicio, IEEE Transactions on Reliability (1975), Vol R-24 pp 
118-120. 
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problem, they consider a system consisting of N independent subsystems 
arranged in series (i.e., the system fails if any subsystem fails). This system 
is characterized by N mutually statistically independent two-state renewal 
processes [64]. The times to failure u, and times to repair dt of subsystem i 
are statistically independent r.v.’s with exponential p.d.f.’s 

f (M/) = exp ( — XfUj), u,> 0 

f,(di) = exp (-ftA), dt > 0. 

The probability of finding subsystem i in the up state at an arbitrary time 
is the subsystem availability, defined as 

E{uj) 

a‘ E{ui) + E{dt) 

\i + Hi ' 

Gamma p.d.f.’s are natural conjugate [300] prior p.d.f.’s for \ and jti,; 
namely, for \, 

fM- [rw)]“ 'rV'ex P(-\4) \>o. 

The posterior p.d.f. of subsystem availability resulting from the gamma 
prior p.d.f.’s is then the Euler p.d.f. [376], [38],[344, p.3] 

r~ I 

where 

r,->0,wf>0, 15,| < 1,0 < a, < 1, (8.9.4) 

r,=Ai +a,-, wi = Bi + fii, 

= K + £/> d — A + Vi> 

u,= ’2v„, CpEA 
7=1 

d 
5, = 1 —~, Kt = 

7=1 

(i-*,r 
5(r,,w,) 

(8.9.5) 
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Here At and Z) denote the number of observations of time to failure and 
time to repair, respectively, for the zth subsystem, and Utj and Dtj denote, 
respectively, observation j of time to failure and observation j of time to 

repair for the zth subsystem. 
The required moments Mk,k = 0, l,...,2m— 1 of the posterior p.d.f. h(a) 

are obtained from the moments of the posterior p.d.f.’s of the subsystem 
availabilities. These moments are precisely the Mellin transforms of the 
Euler p.d.f.’s given by (8.9.4). Specifically, if there are N subsystems, then 

N 

Mk= n ,A4, (8.9.6) 
/= 1 

where 

and 2Fi(a,b', c; z) is the Gauss’s hypergeometric function (Appendix D.l). 
The example below, by Thompson and Palicio [376], is for a system 

consisting of two independent subsystems. 

Example 8.9.1 Use the Von Mises step function based on 36 moments 
to approximate the posterior distribution (c.d.f. H(a)) of system availabil- 

Table 8.9.1 Moments of the Probability Density Function f{a) 

M0=l Mlg = 0.0000323295220 
M19 = 0.0000221647900 
M20 = 0.0000153581097 

M2l =0.0000107481631 
M22 = 0.0000075926454 

M23 = 0.0000054110158 
M24 = 0.0000038884404 
M25 = 0.0000028163576 

A/26 = 0.0000020551131 
M21 = 0.0000015102679 
A/28 = 0.0000011173531 
M29 = 0.0000008319640 
M30 = 0.0000006232556 
M31 = 0.0000004696286 
M32 = 0.0000003558428 
M33 = 0.0000002710641 

M34 = 0.0000002075385 
A/35 = 0.0000001596788 

Mx =0.3959960052346 
M2 = 0.1701086745762 
M3 = 0.6708684832154 
M4 = 0.0378530414098 
M5 = 0.0192286501389 
M6 = 0.0101668257596 
M7 = 0.0055662340123 
Afg = 0.0031423813354 
M9 = 0.0018229907769 

M10 = 0.0010836652823 
A/,, =0.0006584819140 
Mu = 0.0004081683537 

M13 = 0.0002576416534 
A/14 = 0.0001653526462 
M, 5 = 0.0001077571769 
Ml6 = 0.0000712218678 
Mx 7 = 0.0000476940182 
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Table 8.9.2 Von Mises Step Function and BetaApproximation for Example 
8.9.1 

Abscissa 
Values 

4 

Step 
Sizes 

Sj 

Sum of 
Steps 

° S 
j~ 1 ' 

Ordinate 
Plot 

aS: \ 

q-i)+2$ 

Beta 
Approximation 

0.030604 0.000008 0.000000 0.000004 0.000005 
0.059804 0.000225 0.000008 0.000121 0.000039 
0.095634 0.002130 0.000233 0.001298 0.000668 
0.137443 0.010722 0.002363 0.007724 0.005350 
0.184663 0.034895 0.013085 0.030533 0.024721 
0.236513 0.080715 0.047980 0.088338 0.090317 
0.292141 0.140219 0.128695 0.198805 0.192776 
0.350614 0.188104 0.268914 0.362966 0.363533 
0.411006 0.198051 0.457018 0.556044 0.563061 
0.472337 0.163446 0.655069 0.736792 0.744903 
0.533657 0.105386 0.818515 0.871208 0.875252 
0.594162 0.051677 0.923901 0.949740 0.951109 
0.652768 0.018781 0.975578 0.984969 0.984422 
0.709209 0.004785 0.994359 0.996752 0.996199 
0.762326 0.000778 0.999144 0.999533 0.999313 
0.812294 0.000074 0.999922 0.999959 0.999915 
0.858734 0.000003 0.999996 0.999998 0.999993 
0.902758 0.000000(04) 0.999999 0.999999 0.999998 
1.000000 1.000000 1.000000 1.000000 

ity for a system consisting of two subsystems in series, for which both time 
to failure and time to repair are reported for each failure, and the prior 
p.d.f.’s are gamma. Assume further that six fail-repair cycles are observed 
on subsystem 1 and 12 on subsystem 2, with the following results: 

wx = rx = 6 5j = 0.000 ax =0.500 

w2= r2= 12 <52 = 0.750 a2 — 0.800. 

solution. First, the moments Mk of the p.d.f. h(a) are calculated with 
the combined use of (8.9.6) and (8.9.7) and are found to have the values 
shown in Table 8.9.1. (All calculations were made using double precision 
(17 digits) by Thompson and Palicio, but they are here given to somewhat 
lesser accuracy in the interest of brevity.) These values of Mk are then 
substituted into the set of equations (8.9.1), which are solved simulta¬ 
neously for the coefficients ck,k = 0,1 1. One then substitutes these 
coefficients into (8.9.2) and solves this equation for its roots Ax,A2,...,Am. 

Substitution of these A} into (8.9.3) yields the set of m linear equations in m 
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unknowns Sj,j =\,2,...,m, which are readily solved simultaneously to 
obtain the step sizes Sj. One now has all the necessary information from 
which to determine 18 values of the c.d.f. The results appear in Table 8.9.2. 
When the first m moments of the approximating and exact p.d.f.’s are 
identical, the error of the approximation can be determined by means of 
Theorem 8.12.3. 

8.10 THE CORNISH-FISHER EXPANSION 

Another approach to the determination of an approximate distribution 
function that approaches the true but unknown distribution function F(x) 
is to derive a new variable 

w = b0 +bix + b2x2 + bjX3 + • ■ •, (8.10.1) 

whose distribution function G(w) is approximately that of a standardized 
normal variable and can be used to obtain a satisfactory approximation to 
F(x), specifically, an approximation whose accuracy will be of a specified 
order. That is, the method consists of the “normalization” of the approxi¬ 
mating distribution. This is accomplished by beginning with Edgeworth’s 
form of the Gram-Charlier type A series as the approximating density 
function for f(x), then choosing the hs in the variable transformation 
(8.10.1) in such a way that the standardized normal distribution function 
G(w) will approximate the distribution function F(x) for corresponding 
values of w and x. The series expansion (8.10.1), called the Comish-Fisher 
expansion, permits the evaluation of f(x) and F(x) by using only a table of 
ordinates and areas for a standardized normal distribution. This method 
utilizes cumulants, which have certain properties that make them more 
useful than moments from the theoretical standpoint [178, pp. 67-71]. 

The Cornish-Fisher expansion is appropriate and useful as an approxi¬ 
mation to an unknown distribution, whose moments are known, when that 
distribution (specifically, the p.d.f.) depends on a parameter A in such a 
way that as X tends to infinity, the distribution tends to normality. For 
example, the distribution of the means of n identically distributed i.r.v.’s 
depends on the parameter A = n = sample size in such a way that as n tends 
to oo, the distribution approaches normality, provided the variance is 
finite. By use of the Cornish-Fisher expansion, one obtains a new variable 
whose distribution function approaches normality much faster than that of 
the original variable. One can then utilize the one-to-one correspondence 
between the two distribution functions to obtain a much better approxima¬ 
tion to the original distribution from the standardized normal distribution 
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than would otherwise be possible. Since an adequate presentation of the 

method would be quite lengthy, and since Kendall and Stuart, for example, 

give an excellent discussion of the methods in their book [178, pp. 

163-166], the interested reader is referred to it for details. 

8.11 NUMERICAL INVERSION OF INTEGRAL 
TRANSFORMS 

Another possible approach to the determination of the p.d.f. (or c.d.f., as 

the case may be) when the inversion integral is mathematically intractable 

consists of the numerical evaluation of the inversion integral, frequently 

referred to as the numerical inversion of integral transforms. Thus the 

determination of the p.d.f. (or c.d.f.) of a sum of i.r.v.’s by this method 

would involve the numerical inversion of a Laplace or Fourier transform. 

On the other hand, the direct determination of the p.d.f. h(y) or the c.d.f. 

H(y) of a product Y=II”V, of i.r.v.’s would involve the numerical inver¬ 

sion of the relevant Mellin transform. However in this case there is the 

alternative possibility of first determining the p.d.f. g(w) (or the c.d.f. 

G(w)) of W=\ogY by numerical inversion of the relevant Fourier or 

Laplace transform, from which the p.d.f. or c.d.f. could be obtained. That 

is, a tabulation of G(w) versus w could be easily transformed into an 

equivalent tabulation of H(y) versus y by identifying each w with the 

corresponding value y = antilog w. Thus methods for numerical inversion of 

Laplace or Fourier transforms could also be used to tabulate h(y) or H(y) 

versus y; this fact is of some importance, since it appears that thus far no 

one has constructed a method (much less a computer program) for the 

direct numerical inversion of the Mellin transform. 

The various techniques available for the numerical inversion of the 

transforms have met with limited success insofar as their general applica¬ 

tion is concerned. Each has some attribute to recommend it over the 

others. Among all the available techniques, the one that appears easiest to 

apply is that of Dubner and Abate [85]. Their technique also has the 

advantage that the order of magnitude of the error is easily preassigned by 

selection of one parameter in the computation. The computer program 

needed to realize this technique requires fewer than 20 cards—a rather 

pleasant feature. 
Nevertheless, a single method for numerically inverting the Laplace 

transform that works equally well for all types of problem encountered is 

lacking [148]. In some instances, the accuracy of the results depends on a 

judicious choice of certain initial estimates, but so far in such a situation a 

definite procedure for making the initial estimates in an objective manner 
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in the general case has not been provided (with the exception of Dubner 

and Abate’s method). Inversion of the Fourier transform by means of the 

fast Fourier transform (FFT) method [119] suffers from an inherent 

accuracy problem because of the finite word length used in digital com¬ 

puters [176]. Using the FFT, McKenzie [248] encountered some difficulties 

in its application in the numerical inversion of the Fourier transform in the 

determination of the p.d.L of products of i.r.v.’s defined on a finite range. 

Until these limitations are removed and a single satisfactory method for 

numerical inversion of a Laplace (or Fourier) transform is provided, the 

approximation of the closed form inversion of transforms by means of a 

numerical inversion method is, in my opinion, less satisfactory than the use 

of the aforementioned approximating distributions (the beta p.d.f., the 

Laguerre series, the Cornish-Fisher expansion, etc.). For this reason, and 

because of the rather large amount of space that would be required, the 

various methods for the numerical inversion of transforms are not dis¬ 

cussed in this book. The interested reader is referred to a number of 

relevant papers (e.g., refs. 156; 148, p. 92; 257, 276, 319, 94). 

8.12 EVALUATING THE ACCURACY OF AN 
APPROXIMATING DISTRIBUTION 

When the determination of the exact p.d.f. by evaluating the inversion 

integral is tedious, difficult, or impossible to obtain, some approximation 

method must be used to evaluate the associated distribution function, 

which is ultimately the function of interest. The magnitude of the problem 

is appreciably reduced inasmuch as the moments of both the exact (un¬ 

known) and approximate p.d.f.’s are known (or at least can be obtained). 

Several approaches to the problem of determining such approximations 

may be taken. The earliest approach was that of bracketing the proportion 

of a population contained within the interval ju, ± ka, by using Chebyshev’s 

inequality [277, p. 226] or modifications thereof that strengthen the results, 

such as the Gauss and Camp-Meidell inequalities [366, pp. 297-298]. 

However, even the best of the methods utilizing this approach are usually 

intolerably weak, and for this reason they are not discussed further. 

A second approach to the approximation problem is that of evaluating 

the relevant inversion integral by numerical methods (e.g., utilizing the 

FFT). Some of these numerical methods are briefly discussed in a subse¬ 
quent section. 

The most powerful approach to the problem is to use an approximating 

p.d.f. g(x), then to evaluate the accuracy with which the associated 

distribution function G(x) approximates the true but unknown distribu¬ 

tion function F(x). Of course various p.d.f.’s have long been suggested for 
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such approximations—for example, the Gram-Charlier series, the Laguerre 

series, the Pearson distributions, the Von Mises step function, and the 

Cornish-Fisher expansion—all of which have been discussed in this con¬ 

nection. However feasible and powerful methods for obtaining an accurate 

estimate of the magnitude of the error incurred when using such an 

approximate p.d.f. have been largely lacking. Recently Posten and Woods 

[293] have derived a method for determining the accuracy of the approxi¬ 

mation on the basis of a knowledge of the moments of both the approxi¬ 

mating and exact p.d.f.’s. The accuracy, as expected, will improve as the 

number of moments having identical values for both distributions in¬ 

creases. The question is, of course, the magnitude of the improvement. 

Nevertheless, the accuracy of the approximation can be determined—no 

matter what the approximating function is—as long as the moments of 

both the approximate and exact p.d.f.’s are known. The method for 

accomplishing the evaluation of this accuracy, as developed by Posten and 

Woods, is here presented with their permission. 

8.12.1 The Fourier Series 

On December 21, 1807, Joseph Fourier (1768-1830) first asserted to the 

Paris Academy that any arbitrary function defined on a finite interval can 

be represented by an infinite sum of sine and cosine functions. Although 

not the first to introduce trigonometric expansions—Clairant, D’Alembert, 

and D. Bernoulli had used them in their investigations—Fourier did prove 

that the expansion was valid for certain simple functions. Although his 

theorem could not be proved for all arbitrary functions, his method was 

correct. Moreover, his rather sweeping claim that any arbitrary function 

could be expanded in such a series stimulated their use in mathematical 

physics, as a result of which they became known as Fourier series, 

characterized by the following definition. 

Definition 8.12.1 Let g(x) be an arbitrary function defined on the interval 

(0,7r). The infinite series 

00 

2 bnsin(nx) (8.12.1) 

is the Fourier sine series of g(x) if 

The coefficients bn are called the Fourier sine coefficients of g(x). 

(8.12.2) 
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Hereafter, the shorter terms “Fourier series” and “Fourier coefficients” 

are used instead of “Fourier sine series” and “Fourier sine coefficients,” 

respectively. This should cause no confusion, since the Fourier sine series 

is the only type of Fourier series used in this chapter. 

Note that in Definition 8.12.1, no mention of convergence has been 

made. That is, a Fourier series is simply a series of the form given in the 

definition. Because of this, the following theorem is particularly significant. 

Theorem 8.12.1 (Jordan’s theorem40) If the function g(x) is of bounded 

variation on the interval (0,7r), then its Fourier series 

00 

2 Z?„sin(nx) 
n = 1 

converges at every point x in the interval (0,7r) to the value 

[g(* + ) + g(*~)] 

2 ' 

(8.12.3) 

If g(x) is continuous on the interval I = (a,b), the Fourier series is uni¬ 

formly convergent in / and converges to the value g(x+) = g(x_) = g(x). 

If the series converges in the sense of Theorem 8.12.1, it will be written 
in the customary form 

00 

g(*)= 2 bnsm(nx), 
n= 1 

remembering, of course, that the Fourier series converges to the value 

(8.12.3) at a point of discontinuity. 

Fourier’s results provided the stimulus for many fundamental investiga¬ 

tions in mathematics. Among the earliest of these was Dirichlet’s deriva¬ 

tion in 1829 of sufficient conditions for the convergence of a Fourier series. 

It should be emphasized that these conditions are sufficient. In fact, one of 

the unsolved problems of Fourier series is whether necessary and sufficient 

conditions for convergence do exist. For our purposes, it is sufficient to 

know that although a Fourier series is uniformly convergent in any interval 

not containing a point of discontinuity, the number of terms needed for an 

accuracy e becomes arbitrarily large as one approaches the point of 
discontinuity. 

40Not to be confused with Jordan’s lemma. 
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The application of Fourier series has been mostly in mathematics, 

physics, and engineering. But though Fourier series have been used in 

mathematical physics with remarkable success, their role in statistical 

distribution theory has been neglected. Posten and Woods [293] attribute 
this neglect to the following conditions. 

1. An early belief that approximations should be based on the first four 

moments of the distribution. This belief, one of the main deterrents to the 

use of Fourier series in statistical distribution theory, probably stemmed 

from the fact that both the Pearson and Charlier systems were devised to 

fit theoretical functions to empirical data. Since the sample moments Mk 

are very unreliable for k> 4, any attempt to fit a theoretical curve to 

sample data was necessarily restricted to the methods that produced a 

satisfactory approximation using no more than the first four sample 

moments. The problem of finding a satisfactory approximating distribution 

utilizing the known moments of both the approximating and exact distri¬ 

butions, eliminates any dependence on sample moments and their inherent 

unreliability. 

2. Inapplicability of Fourier series over infinite ranges, the range of 

many density functions. This appears to be a serious restriction, since it 

implies that a valid Fourier representation is restricted to the distribution 

of r.v.’s having a finite range. In many cases, however, it will be both 

possible and feasible to work with r.v.’s of singly or doubly infinite range 

by utilizing some type of transformation. For example, if 0<2f<oo, the 

transformation Y=e~x yields a variable Y confined to the interval (0,1). 

Similarly, if — oo <X < oo, the transformed variable 

Y=-ex, — oo <X < 0 

= e~x, 0<X<co 

is restricted to the range (—1,1). 
3. Lack of reliability of Fourier series in the tails of distributions, 

usually the most important area for statisticians concerned with hypothesis 

testing. 
4. Slow rate of convergence for Fourier series. The speed of conver¬ 

gence and the reliability of a Fourier series representation are both 

dependent on the smoothness of the function. In particular, if the function 

has points of discontinuity, the effect of the Gibbs phenomenon [293, pp. 

12-15; 31] will result in a slowly converging series with regions of unrelia¬ 

bility around the points of discontinuity. For this reason a Fourier series is 

not very useful as an approximation to any distribution with jump points. 

5. Certain computational difficulties: (a) the problem of calculating 

the Fourier coefficients, (b) the evaluation of the series, and (c) the lack of 

efficient computational facilities. 
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Before electronic computers were available, the evaluation of a Fourier 

series was painstaking and expensive in terms of time and effort. But with 

the modem electronic calculators—and even present-day desk calculators 

—the evaluation of a Fourier series is quite feasible. Nevertheless, to 

produce an approximating function with the reliability and speed of 

convergence necessary to determine the numerical accuracy of this ap¬ 

proximation to the true distribution function, certain modifications are 

necessary. It turns out [293] that these modifications can be accomplished 

in three ways, namely, in the choice of the function to be expanded, the 

interval of periodicity, and the transformations to be used. 

First of all, the convergence of the Fourier series can be substantially 

improved by employing Kummer’s technique, which consists of subtract¬ 

ing from a “suitable” known distribution function G(x) the desired distri¬ 

bution function F(x) and expanding the difference d(x) = G(x) - F(x) in a 

Fourier series. The choice of the function G(x) is important. 
Woods and Posten point out that in general, a relatively small number 

of terms of the Fourier expansion will suffice to approximate a function 

with a high degree of accuracy, if its periodic extension is not only 

differentiable but differentiable to a sufficiently high order. Then if the 

function d(x) = G(x) — F(x) is sufficiently smooth on the interval (0,1), the 

order of differentiability will be determined by the behavior of the ex¬ 

tended function at the points x = 0,1. By choosing G(x) such that d(0) = 

d( 1)= 0, the continuity of any extension of G(x) is ensured. Furthermore, 

G(x) may be chosen so that its form is as close to the form of a general 

distribution function as possible. This will generally flatten out d(x) and, 

as a rule, will make the derivatives of d(x) close to zero at the end points. 

Although the standard method of scaling the interval (0,7t) is to use 

the linear transformation 6 = itx, the nonlinear transformation 0 = Cos_I 

(2x— 1) is more appropriate inasmuch as it simplifies the computational 

aspects of the representation theorems derived by Posten and Woods. 

Using the aforementioned modifications, Posten and Woods derive the 

representation theorems for the purpose of evaluating the accuracy with 

which an approximating function represents the true but unknown distri¬ 

bution function, when the moments of both functions are known or 

obtainable. Some applications of these theorems to specific distribution 
functions are given in Section 8.13. 

8.12.2 Approximation Theorems Based 
on the Fourier Sine Series 

The use of the Fourier sine series to evaluate the error of an approximating 

distribution is based on the following theorems by Posten and Woods 
[293]. 
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Theorem 8.12.2 (the first generalized Fourier representation theorem). 

Let F(x) and G(x) be distribution functions over the interval (0,1). Then 

where 

F(x) = 
G(x) — 2 d*sin(n9), 0<x<l 

n = 1 

G(x), elsewhere, 

0 = Cos_1(2x — 1), 

d:=^z[EF{T;(x))-Ea(T;(x))}, 

(8.12.4a) 

(8.12.4b) 

(8.12.4c) 

(8.12.4d) 

Ef(h(x)) = J h(x)dF(x), (8.12.4e) 

and T*(x) are the Chebyshev polynomials defined on the interval (0,1) as 

T* (x) = cos[nCos_1(2x — 1)], (8.12.4f) 

where n is a nonnegative integer. 

Theorem 8.12.3 (the second generalized Fourier representation theorem). 

Let F(x) and G(x) be distribution functions over the interval (—1,1). 

Then 

F(x) = 
G(x)— ^ dn sinn9, — 1 < x < 1 

n= 1 

G (x), elsewhere, 

(8.12.5a) 

(8.12.5b) 

where 

0 = Cos_1(x), (8.12.5c) 

d. = [Er(7;(jc))-Ec(T,(x))\ (8.12.5d) 

EF(h(x)) = Jh(x)dF(x), (8.12.5e) 

and Tn(x) are the Chebyshev polynomials defined over the interval (—1,1) 

by 

7^(x) = cos[/iCos-1(x)], (8.12.5f) 

n being a nonnegative integer. 
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The theorems above are restricted to the r.v.’s defined over the intervals 

(0,1) or (-1,1). As has been pointed out, however, these Fourier repre¬ 

sentation theorems may be used to evaluate the distribution of any random 

variable X as long as there exists a transformation y = G (x) such that 

Y=G(X) ranges over either of the intervals (0,1) or (—1,1) and the 

moments of Y are known. The requirement that the moments be known is 

essential and is the basis for the evaluation of the error incurred when 

G(x) is used to approximate F(x). 
The following theorems are relevant. The proofs are straightforward and 

are not given here. 

Theorem 8.12.4. If X is an r.v. over the interval (0, oo) with m.g.f. M(t), 

then Y=e~x is an r.v. over the interval (0,1) with moments E[YK] = 

— K). 

Theorem 8.12.5. If X is an r.v. over the interval (—00,00) with p.d.f. f(x), 

and Y is defined as 

Y——ex, — 00 < A < 0 

= e~x, 0<A<oo, 

then Y is an r.v. over the interval (—1,1) with p.d.f. 

■|<>,<0 
h + (y), 0<y<l 

where 

0<y<L 

The m.g.f. of h(y) is 

= M + (t), 0<y<l, 

M (0= f e {y)dy, 

M + (t)= fa°e^ + (y)4>. 
Jo 

where 
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Theorem 8.12.6. If X is an r.v. over the interval (a, go) with m.g.f. M(t), 

then Y=X-a is an r.v. over the interval (0,oo) with m.g.f. e~alM(t). 

Theorem 8.12.7. If X is an r.v. over the interval ( — oo ,a) with m.g.f. M(t), 

then Y = a — X is an r.v. over the interval (0, oo) with m.g.f. ea'M( — t). 

Theorem 8.12.8. If X is an r.v. over the interval (a, b) with moments 

E[XK] = n'K, then Y = {X — a)/(b — a) is an r.v. over the interval (0,1) with 

moments 

Theorem 8.12.9. If X is an r.v. over the interval (a, b) with moments 

E[Xk] = h'k, then Y = (X — b)/(a- b) is an r.v. over the interval (0,1) with 

moments 

E[Y"]-(a-b)-’ i 
K = 0 V ’ 

Theorem 8.12.10. If X is an r.v. over the interval (a,b) with moments 

E[XK] = [i'K, then Y = [2X-(a +b)]/(b-a) is an r.v. over the interval 

(—1,1) with moments 

Posten and Woods [293] point out that in some cases one may find the 

simple approximating p.d.f. 

9 

to be satisfactory, in which case the accuracy of the approximation to F(x) 

may be determined from the following two theorems, which they call the 

first and second Fourier representation theorems. 

Theorem 8.12.11. (the first Fourier representation theorem). If X is an 

r.v. over the interval (0,1) with distribution function F(x), then 

ft 
ir(x) = J 1-2 bnsin(n0), 0<x<l 

7T _ , 

0, A < 0 (8.12.6a) 

(8.12.6b) 

1, A> 1, (8.12.6c) 
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where 6 = cos '(2x—1), bn =(2/m)E(T%(X)), and E(T*{X)) is the ex¬ 

pected value of the Chebyshev polynomials T*(X) defined by (8.12.4f). 

Theorem 8.12.12. (the second Fourier representation theorem). If X is an 

r.v. over the interval (-1,1) with distribution function F{x), then 

0, x < — 1 (8.12.7a) 

F(x) = - 
77 

2 bnsin(n9), 
n = 1 

— 1 < X < 1 (8.12.7b) 

1, x> 1, (8.12.7c) 

where 9 — Cos lx, bn=(2/m)E{Tn(X)), and E(Tn(X)) is the expected 

value of the Chebyshev polynomials Tn defined over the interval (— 1,1) by 

(8.12.5f). 

8.12.3 Error Analysis Based on the Fourier Theorems 

In using the aforementioned Fourier theorems to evaluate the error in¬ 

curred when replacing a true distribution function with an approximating 

distribution function, one must, of course, know the accuracy of the 

Fourier series involved. As Posten and Woods point out, the accuracy of 

the relevant Fourier series is governed by errors from three sources: 

1. The truncation of the series. 

2. The rounding of the Fourier coefficients. 

3. The method of evaluating the truncated series. 

Since the absolute value of the sine function is less than unity, the effect of 

the rounding error can generally be minimized by using a guarding digit. 

That is, rounding the coefficients to m decimal places in the calculation of 

'2nbnsm(n0) should result, as a rule, in a rounding error of approximately 

one unit in the (m— l)st decimal digit. Similarly, Clenshaw [56] has shown 

that the error associated with the evaluation of a series with the aid of a 

three-term recurrence relation is negligible if a guarding digit is retained. 

The question, then, is this: what size error is made if the series is 

terminated after n terms, where n is not too small but not arbitrarily large? 

Posten and Woods discuss this problem and present three methods, two for 

determining bounds on the truncation error and another for approximating 

the truncation error. As a result, they recommend the following procedure 

to control the accuracy of the Fourier series in evaluating the error 
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incurred by approximating the true distribution function F(x) by another 

distribution function G(x): 

1. Evaluate the Fourier coefficients until they are no longer significant 

relative to the desired accuracy. This will eliminate the effects due to 

truncating the series. 

2. Retain one of two guarding digits in all the intermediate computations. 

This will eliminate the effects due to rounding and the method of 

evaluating the series. Only the final answer is rounded to the required 

number of digits. 

To apply the Fourier or generalized Fourier theorems, one must evaluate 

dk,dk, 2£=sin(kO),2*=xdk sin(k9), where 

d* = Kf~ c*g> (8.12.8a) 

dk ~ bkf— ckg’ (8.12.8b) 

and bk, ck, and bk, ck, are Fourier coefficients involving, respectively, the 

expected values of the Chebyshev polynomials that are valid for the ranges 

0 < x < 1 and — 1 < x < 1. Specifically, 

0<x< I, (8.12.9a) 

£,(7?)= ('Tlg(x) dx. (8.12.9b) 

= 2 <jXjg{x) 
7 = 0 

(8.12.9c) 

£/(77)= (‘n(x)f(x)dx 

= 2 a*kjxjAx) 
7 = 0 

(8.12.9d) 

where Tg(x) and Tk(x) denote, respectively, the Chebyshev polynomials 
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for the ranges 0<x< 1 and — 1 <x < 1. Also, 

Eg(Tk)= [' Tk(x)g(x)dx, 
J — 1 

k 

= 2 akjxJg(x)’ - i < i, 
7 = 0 

bkrj^Ef(Tk(x)), 

Ef(Tk) = f TJ(x)dx, 

= 2 <*kjxJf(x)’ 
7 = 0 

(8.12.10a) 

(8.12.10b) 

(8.12.10c) 

(8.12. lOd) 

Once these Fourier coefficients are known, finite series ’Znk = xd* sm(kQ) and 

'2nk = xdksin(k9) corresponding, respectively, to p.d.f.’s defined on the 

ranges (0,1) and (-1,1), can best be calculated by Goertzel’s algorithm 

[293], which is stated below. 

Goertzel’s Algorithm 

If S = '2nk = ldk sin(kO) for given d* and 9, then S = Uxsin9, where Ux is 

found from the recurrence relation 

Uk = d* + 2(cos0)(4+i— Uk+2, k = n,n— 1, —, 1 

and Un+2 = Un+X =0. (The algorithm is, of course, equally valid when d£ is 

replaced by dk, i.e., when the range of x is (—1,1).) 
In the particular case for which # = Cos-1(2x—1), the recurrence rela¬ 

tion becomes 

Uk = dt + (4x-2)Ukk-Ukkl (8.12.11a) 

and 

S = 2£/,Vx-x2 . (8.12.11b) 

The algorithm is useful because it avoids the necessity of evaluating 

0 = Cos_1(2x — 1) or any other trigonometric function. 
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Returning now to the calculation of b* and c*, one notes that 

(8.12.9b,d) and (8.12.10b,d) utilize the fact that both Tk(x) and T*(x) are 

&th degree polynomials in x, hence are expressible in the forms 

Tk(x) = 2 %xJ, (8.12.12a) 
7=o 

T*kix) = 2 (8.12.12b) 
7 = 0 

where the Chebyshev coefficients akj and akJ have been tabulated rather 

extensively. If tables of Chebyshev polynomials are available, the expected 

values EG(Tk), EF(T*) and EG(Tk), EF(Tk) may be readily obtained from 

(8.12.9b,d) and (8.12.10b,d). Then d* and dk may be evaluated from 

(8.12.8a,b), (8.12.9a-d), and (8.12.10a-d). If such tables are not available, 

the recurrence relations 

7?+2« = (4*-2)7?+,M- (8.12.13a) 

where 

and 

where 

7J(x)=l, 

T^{x) = 2x — 1, (8.12.13b) 

Tk+,M = 2xTk (x) - T„_M, (8.12.14a) 

r,W=i | 
T2(x) = x2-i j 

(8.12.14b) 

can be used. Either way, the coefficients b* and c* may be determined by 

using (8.12.9a-d) in conjunction with (8.12.13a,b), and are expressed in 

terms of the moments of the approximate and exact distributions about the 

origin. The coefficient d* may then be obtained from (8.12.8a). Similarly, 

the coefficients bk and ck may be determined either with or without tables 

of Chebyshev polynomials, after which dk is obtained from (8.12.8b). In 

either case, the result is expressed in terms of the moments of the 

approximate and exact distributions. 
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It bears stating that if (8.12.13a, b) are utilized in lieu of tables of 

Chebyshev polynomials, b£ and c£ are expressible in the forms 

h* = (-nk- y (-4V (~> + k l^-E,(xk) (8.12.15a) 

77 7 = 0 

and 

(mi5b) 

from which it follows (8.12.8a) that 

* (—4VO+ 
(8-12-,6) 

where \i'kg and pkf are, respectively, the /cth moments of the approximating 

and exact p.d.f.’s g(x) and f(x) about the origin. 
Now that d* and dk have been evaluated, it remains to evaluate the 

truncated series ’2lnk=ld* sin(k9) and Ytnk=\dks\n{k9). As Posten and Woods 

point out, the evaluation of the truncated series is not a trivial task. First of 

all, the value of 9 must be calculated, and this calculation must be quite 

accurate, to eliminate serious error in the calculation of kO as k gets larger. 

Also, it requires the accurate evaluation of the sine function for n different 

values, which even for a moderate size computer is quite time-consuming. 

Goertzel’s algorithm, previously stated, seems to be the best method for 

evaluating the aforementioned truncated series. This is accomplished by 

solving the recursion formula of Goertzel’s algorithm progressively for Ul 

and then evaluating £/,sin(0), since f/1sin(0)=.S' = 2^=1^*sin(k0), the 

error approximation. When applying Goertzel’s algorithm to determine the 

truncated series in the first general Fourier representation theorem, in 

which 9 = Cos-1 (2.x— 1), the recurrence relation becomes 

Uk ~ d* F (4x 2)Uk+i Uk+2> 

and the truncated series 

S = 2UlVx-x2 

(8.12.17) 

(8.12.17a) 

then gives the desired error approximation. 
To determine the error incurred by using the distribution function G(x) 

to approximate the distribution function F(x) corresponding to a particu¬ 

lar percentage point p, one must first ascertain the value of x. This can be 

accomplished by various iteration methods. The one recommended by 

Posten and Woods is based on the work of Traub [383], namely, the 



Fig. 8.12.1 Phase I: the calculation of the coefficients d 

289 



290 APPROXIMATING THE DISTRIBUTION OF ALGEBRAIC FUNCTION 

iteration formula (where y = G(x)) 

_yk~P__ 
Xk+l~Xk yk-yk-1 [ yk yk—2 yk-\~yk-i 

Xk-Xk_l Xk Xk _ 2 Xk_l-Xk_2 

(8.12.18) 

whose computational efficiency is 1.84, as compared with 1.65 for the 

Newton-Raphson method and 1.62 for the secant method [293]. 

Having specified a value of the r.v. x, one can proceed to use the first 

generalized Fourier representation theorem to determine the error S — 

'£nk = idk sin(k0) in evaluating the distribution function F(x) by G(x) at this 

value of x. If a computer is used, the evaluation of the truncated series S is 

logically carried out in three phases, as indicated by the flow charts of 

Figs. 8.12.1, 8.12.2, and 8.12.3 [293, pp. 51,54,55]. The flow charts are 

Fig. 8.12.2 Phase II: the evaluation of p = F(x). 



Fig. 8.123 Phase III: the computation of a percentage point x. 
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self-explanatory, except possibly for the two constants m,e. When working 

with an infinite series, one must truncate the series after a finite number of 

terms. The constants m,e are used to regulate the number of terms in the 

truncated series, m specifying the minimum number of terms and e the 

maximum number. 
The flow charts in Figs. 8.12.1 to 8.12.3 pertain to the cases in which the 

r.v. x ranges over the interval (0,1). If x ranges over the interval (—1,1), 

the following modification must be made: 

Fig. 8.12.1: akj is the coefficient of xj in Tk(x) instead of 7£(x). 

Fig. 8.12.3: The equationp = G(x)- £/,V 1-x2 is used. 

8.13 EXAMPLES OF ERROR EVALUATION 

The following examples illustrate some of the aforementioned procedures 

for evaluating the accuracy of approximation distributions. In particular, 

two examples are given to illustrate the use of a Fourier series in evaluating 

the accuracy of approximation distributions when the variable ranges over 

the intervals (0,1) and (0, oo). 

Example 8.13.1. Find the beta approximation to the cumulative distri¬ 

bution H(Y) of the product Y=Tlj=lXj of three beta r.v.’s having p.d.f.’s 

(8.8.1) with a, = 5, bx= 2, a2 = 6, b2 = l, a3 = 6, b2 = 3, and evaluate the 

accuracy of the approximation to four decimal places. 

The 5th moments of fj(xj),j= 1,2,3 are given by the Mellin transforms 

«.aw)= r(a, + frj)r(a, + s-l) 

r(<af + 6f + j-l)r(a/) ’ 
(8.13.1) 

so that the 5th moment of the p.d.f. h(y) is 

3 
= M,(h(y))= n 

J = 

r(q+^)r(q+5-i) 

i r(fl>+^.+5-i)r(a,.) 
(8.13.2) 

The desired moments n\ and ii2 are then 

Mi{Ky))=^ 

and 
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respectively, and 

\h. = M2 ~ Mi2 

48 \ 14 ) 

43 

2352 ‘ 

Substituting these values for fi\ and ju,2 in (8.8.2) one obtains the values 

b = 7.430348 and a = 4.127971, (8.13.3) 

which gives the approximating beta p.d.f. 

h(y) = _i_y3.127971/1 _ \ 6.430348 

5(4.127971,7.430348) V ’ 
(8.13.4) 

Integration of h(y) yields the desired approximating beta c.d.f. (Table 

8.13.IB). 

To find the accuracy of the approximation, one uses Theorem 8.12.2 and 

calculates 

n 
2 d*s\n{k0), (8.13.5) 

k = 1 

Table 8.13.1A Data Required for Evaluating Accuracy 
of the Approximating Beta Distribution 

E„(y) EG(y) K dt 

1.000000 1.000000 0 0 

0.357143 0.357143 1 0 
0.145833 0.145833 2 0 

0.065993 0.065913 3 0.000547 

0.032397 0.032272 4 -0.000742 

0.016991 0.016860 5 -0.000252 

0.009414 0.009294 6 0.000966 

0.005462 0.005361 7 -0.000380 

0.003297 0.003215 8 -0.000346 

0.002059 0.001993 9 0.000338 

0.001325 0.001273 10 -0.000076 

0.000875 0.000834 11 0.000005 
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Table 8.13.1B Accuracy of the Beta Approximation to 

Four Decimal Places 

Y 

Beta Distribution 
Function 

H(y) Error F(y) 

0. 0. 0. 0. 

0.05 0.0009 0.0002 0.0007 

0.1 0.0125 0.0015 0.0110 

0.2 0.1243 0.0012 0.1231 

0.3 0.3636 -0.0021 0.3657 

0.4 0.6376 -0.0023 0.6399 

0.5 0.8451 -0.0001 0.8452 

0.6 0.9541 0.0011 0.9530 

0.7 0.9920 0.0006 0.9914 

0.8 0.9994 0.0001 0.9993 

0.9 1.0000 0.0000 1.0000 

0.95 1.000000 -0.0000 1.0000 

0.99 1.000000 0.0000 1.0000 

with F replaced by H, and then applies Goertzel’s algorithm. Using 

(8.13.1), (8.13.2), (8.12.15a,b), and (8.12.16), one first evaluates the Fourier 

coefficients d* until reaching one that is zero when rounded to four 

decimal places. The values of 6*, c*, and d* are calculated, from which it 

is seen that d*0=- 0.000076 and d*u =0.000005 (Table 8.13.1 A). Thus, d*u is 

the first Fourier coefficient that satisfies the accuracy requirement. That is, 

the first 11 moments are required to evaluate the accuracy of the ap¬ 

proximate distribution G(x) to four decimal places. Six decimal places (i.e., 

two guarding digits) are used throughout the calculations; the final answer 

is then correct to four decimal places. The results are summarized in Table 

8.13.IB for selected values of the r.v. Y. 

Example 8.13.2. Using the first five moments of the exact and the 

approximate distributions, evaluate the accuracy of the Laguerre ap¬ 

proximation G(w) to the cumulative distribution F(w) of the sum W= 

Xl + X2 of the half-normal and exponential i.r.v.’s with p.d.f.’s 

/i(*i) = 0<x, < oo 

f2(x2) = e x\ 0<x2<oo, 

where the Laguerre p.d.f. is based on the first three moments of g(w). 
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Since the range of the r.v. w is from 0 to oo, one cannot directly apply 

the generalized Fourier representation theorem (Theorem 8.12.2) to 

evaluate the accuracy of the Laguerre approximation. It is first necessary 

to find the Laguerre p.d.f. g(w) whose first three moments are identical 

with those of f(w). Then the moments of the corresponding transformed 

density functions p(y) and f(y) must be determined, where y = e~w. From 

a knowledge of these moments, the accuracy of the approximate distribu¬ 
tion function may be evaluated. 

First, note that the m.g.f.’s of /,(*j) and /2(x2) are, respectively, 

where u = xx — t, 

<f>(t) = f eu2/2du, (8.13.6) 
—t 

and 

Hence the m.g.f. for f(w) is 

so that 

(8.13.7) 

It then follows immediately from (8.13.7) that the first three moments of 
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the exact p.d.f. f(w) are 

ju':/=(4/V2^) +0(6)+ 4.595769122 

2 
Ml :/: 

V277 
+1, 

= 1.797884561 

M3:/ 
16 

V2tt 

16 

V2n 

— 2O(0)( —9), (0(0) = 0.5) 

+ 9 

= 15.38307649. 

The Laguerre polynomial (p.d.f.) based on these three moments is 

g(w)= ^ ^Ljf)(w)ij/(w), 0<w<oo,r = 0, (8.13.8) 
7 = 0 

where 

d = ( V (/I)(_ u' n = o 1 2 3 
’ n!(l + r)„+„Uj( 0 (1+r)/c- 

*(l+^)« 

xP(w) = 
wre w 

r(r+l)* 

(8.13.9) 

(8.13.10) 

and 

(n)m = n(n + l)(n + 2)- • • (n + m- 1), 

L(°)(h’)=1, 

L\°\w) = w- 1, 

L^°\w) = w2 — 4w + 2, 

L(0)(vv) = h,3_9w;2+18m;_6 
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On evaluating (8.13.9) for n = 0,1,2,3, one obtains 

*4 = Mo: w 

= 1 

</, =0.797884561 

d2 = —0.1489422805 

rf3 = 0.0106410136. 

Also, from (8.13.10) with r — 0, one has 

\p(w) = e~w. 

Using these results in (8.13.8), one obtains the desired Laguerre p.d.f. 

g(w)=[0.0106410136w3-0.2447114029w2+1.585191928w 

-0.1596152036 ]e~w. (8.13.11) 

It remains to determine the first five moments of p{y) and h(y), denoted, 
respectively, by \xk.p and ju,k:h, k—1,2,3,4,5, where y — e~w. Specifically, 
since w = — lny, the transformed Laguerre density function is 

p(y) = 0.0106410136(ln ^ J -0.2447114029^1n ~ j2 

+ 1.585191928^1n j -0.1596152036 

and the kth moment is 

In particular, 

P-I.p = E[yk] 

= ['ykp(y)dy- 
J0 

p\ :p = 0.2593029096, 

p'2:p = 0.1055888212, 

/4,= 0.0517728620, 

^, = 0.0276714076, 

^, = 0.0152139928. 
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Similarly, f(y) is transformed into the density function h(y) whose kth 

moment is 

[>*] 
= E[e~k(x'+X2)] 

= f °° f°°e2k(x,+X2)fi(x1)f2(x2)dxldx2 
Jo Jo 

where $(•) is defined by (8.13.6). In particular, for k= 1,2,3,4,5, one has 

H\.h = 0.2615782918, 

H'2:h = 0.1120680006, 

H'3.h = 0.0607569727, 

H'4:h = 0.0377642066, 

H'5:h = 0.0256441. 

Finally, to evaluate the error of the approximation, one utilizes Goert- 

zel’s algorithm 

Uk = d*k + (4y — 2)Uk+l — Uk+2 

to determine, recursively, the quantities Uk, k = 5,4,3,2,1, from which one 

then determines the error 5 = 2 U^y-y2 incurred by using the distribu¬ 
tion function P(y) to estimate H(y) for a specified value of y. The d£ are, 
of course, calculated by way of (8.12.16), where p'kh and n'kp are the kth 

moments of h(y) and p(y), respectively. 
The values of d* are given in Table 8.13.2, which indicates that the first 

value of d* that is zero when rounded to two decimal places is d*. Hence 
the calculations will be carried out to four decimal places (i.e., two 
guarding digits will be used) and the final calculation 5 will be rounded to 
two decimal places. That is, the error values listed in Table 8.13.2 are 
correct to two decimal places. The error in the distribution function P(y), 

denoted by e(P(y)), is evaluated for y = 0.1,0.2,0.3,0.4,0.6,0.7,0.8 and for 
those values of y corresponding to w = E[w] + kow, k= —1.5, 

— 1.0,0,1,2,3. Since y = e~w varies inversely with w, P(y) corresponds to 
the complementary distribution function 1 — H(w), where w= — lny, 0<y 
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Table 8.13.2 Evaluation of the Accuracy of the Laguerre Approximation in 
Example 8.13.2 to Two Decimal Places 

k dt w Y G(w) 
Error 

e(G(w» F(y)=l-[(G(w)-e(G(w))] 

1 0.0029 0.0464 0.9546 1.0060 0.01 0.00 
2 0.0107 0.2231 0.8000 0.9986 0.02 0.02 
3 0.0037 0.3567 0.7000 0.9707 0.02 0.05 
4 -0.0070 0.5108 0.6000 0.9249 0.01 0.09 
5 0.0007 0.6302 0.5325 0.8771 0.00 0.11 

0.9163 0.4000 0.7546 -0.01 0.24 
1.2040 0.3000 0.6282 -0.01 0.26 
1.6094 0.2000 0.4660 -0.01 0.52 
1.7979 0.1656 0.4005 -0.01 0.59 
2.3026 0.1000 0.2585 -0.00 0.74 

2.9655 0.0515 0.2065 0.00 0.79 
4.1332 0.0160 0.0386 0.00 0.96 

5.3008 0.0050 0.0085 0.00 0.99 

< 1. That is, 

e(^(j')) = e(l~G(w)) 

= e(l)-e(G(w)) 

= -e(G(w)). 

Thus, the error in P(y) is numerically equal to that in G(w) but opposite 

in sign. Finally, since g(w) maps into p(y) and h(w) maps into f(y), it 

follows that 1 — (G(w)— e(7(w)) is a valid approximation to the exact 

distribution function F(y). 

To evaluate the accuracy of an approximating distribution of doubly 

infinite range (—00,00), one can employ the transformation 

f — ex, — 00 <X <0 

1 e~x, 0<X<oo 

and proceed in the same manner. That is, the approximating distribution 

with p.d.f. g(w) is obtained on the basis of a specified number of moments 
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of the exact distribution with p.d.f. /(w). These distributions are then 

transformed into new distributions with p.d.f.’s p(y) and f{y), and the 

required moments of these distributions are determined. From this point 

the procedure for the evaluation of the accuracy of the approximation 

G(w) is the same as that for the approximating distribution of singly 

infinite range (0, oo). 



CHAPTER 9 

Distribution Problems 
in Statistics 

The entire field of statistics is intimately connected with statistical 
inference. Furthermore, the basis for the solution of all problems in 
statistical inference, whether applied or theoretical, is a knowledge of the 
distributions of relevant statistics. Thus to reach a decision concerning the 
value of a population statistic, one must know the sampling distribution of 
that statistic. For example, in comparing two means from normal popula¬ 
tions with unknown but identical variances, one needs to utilize the 
sampling distribution of the central t variable. If the variances of 
the normal populations are not identical, a different distribution (such as 
the Behrens-Fisher distribution) must be used. Although these sampling 
distributions often may be obtained by several methods (e.g., the m.g.f., 
the geometric method [215,129,104], and the use of joint distributions 
[201]), the natural and most direct method is that of integral transforms 
and convolutions. This method provides a unifying approach to the analy¬ 
sis of distribution problems in statistics for the following reasons. 

1. It is a well-defined, exact method for the derivation of the distribu¬ 
tion of sums, differences, products, quotients, and more generally, alge¬ 
braic functions of r.v.’s. Moreover, a simple condition (the analyticity of 
the transforms in a specified strip) ensures the uniqueness of the resultant 

distributions. 
2. It is an analytical method amenable to computer evaluation and 

analysis, yielding the exact sampling distribution of the relevant statistic. It 
also provides an important by-product to such a sampling distribution, 
namely, the moments of the distribution, often when the distribution is 
itself unknown (as, e.g., in the case of product distributions). 

3. It provides m.g.f.’s not subject to the deficiencies of the classical 
m.g.f. (see Section 3.6). In particular, the characteristic function (Fourier 
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transform) 
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F, (/(*))-£[*“-] 

generates the moments (about the origin) of the p.d.f. /(x), the /nth 

moment ja'm being 

/ _ 
^ imm\ dtm 

F,(f(x)) 
i = 0 

Similarly, the Laplace transform 

4(/(*)) = £[c-“] 

is also a bona fide m.g.f., since 

4 (/(*)) 

Likewise, the Mellin transform 

M,(f(x)) = E[x-'] 

is an m.g.f., since 

m\ 

M;=M,(/(x))|j=m+l. 

4. It affords a direct and simple means of making the transition from a 

lower to a higher dimension in the analysis of distribution problems 

involving i.r.v.’s. This is because the basic structural form of the transform 

method is the same regardless of the dimension of the problem. Thus the 

derivation of the p.d.f. or distribution function of either the sum, dif¬ 

ference, product, or quotient of n i.r.v.’s is achieved by inverting an 

integral transform consisting of the product of n integral transforms, 

regardless of the value of n. When the method of residues is applicable (as 

it usually is), this is a matter of evaluating and summing the residues at the 

various poles by means of evaluating mth order derivatives at poles of 

order m < n. 

5. It provides a natural and simple means for decomposing the p.d.f. of 

a sum of i.r.v.’s, some or all of which are of finite range, into component 

p.d.f.’s, and automatically determines the subrange over which each com¬ 

ponent p.d.f. is valid (see Sections 3.2.1 and 3.3.1). 
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6. It provides a direct and efficient method for finding the p.d.f. of 

algebraic functions of i.r.v.’s. As Chapter 5 pointed out, the relevant 

transform for an algebraic function of i.r.v.’s can be obtained without the 

necessity of determining the p.d.f. of the auxiliary variables accumulated 

along the way. (For example, if h(u) is the unknown p.d.f. of the r.v. 

u=x,x2+± 

one need not determine the p.d.f.’s of the auxiliary variables XxX2 and 

1/X3 to obtain the Fourier transform of the p.d.f. h(u), from which both 

the p.d.f. and its moments may be determined.) This is accomplished, of 

course, by the use of Prasad’s theorems (Chapter 5). If the inversion 

integral yielding the desired p.d.f. is difficult to obtain in exact form, 

satisfactory approximations to the p.d.f. usually may be obtained from the 

exact values of the moments by one of the approximating methods of 
Chapter 8. 

7. It expedites the evaluation of the error incurred by approximating a 

desired p.d.f. with another density function by comparing the exact mo¬ 

ments of the former (generated by the relevant integral transform) with the 

moments of the latter (also generated by a relevant transform). The error 

of the approximation can be evaluated to any specified accuracy by 

utilizing a (determinate) number of moments of the approximating and 

exact (but unknown) density function, as explained in Chapter 8. 

8. It provides a simpler and more direct insight into some of the 

characteristics of a desired but unknown distribution. 

(a) Examination of the Mellin transform of the density function of the 

quotient of two noncentral normal i.r.v.’s (Chapter 4) quickly reveals the 

nonexistence of the mth order moments of the distribution, m> 0. 

(b) In determining whether the distribution of linear functions of 

dependent normal r.v.’s is normal (Section 9.5), one finds the characteristic 

function an extremely helpful (and perhaps necessary) tool. One reason for 

this is that an analytic characteristic function determines the correspond¬ 

ing p.d.f. uniquely. Moment-generating functions lose their usefulness in 

this problem because of the dependence among the normal variables 

involved. 

9. It provides a convenient and powerful basis for classifying distribu¬ 

tions, the potential of which is illustrated by the following three examples. 

(a) //-function r.v.’s, their products, quotients, and powers, constitute a 

class or set of distributions that is closed under the operations of multi¬ 

plication, division, and exponentiation—but not under addition or subtrac¬ 

tion. That is, products, quotients, and powers (but in general not sums or 
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differences41) of //-function r.v.’s are themselves //-function r.v.’s. The 

proof of this is readily accomplished in Chapter 6 by proving that the 

Mellin transforms of such distributions are the Mellin transforms of 

//-function variates. 
(,b) The set of bivariate r.v.’s X, Y for which the quotient of then- 

coordinates follows some known distribution is characterized by the fact 

that the Mellin transform of the joint density function satisfies a specific 

set of conditions. Specific sets of conditions have been derived by various 

authors (see Section 9.14) for which the distribution of the quotient is (1) 

Cauchy and (2) Snedecor’s F. 

(c) If the product 

u=x,x2--xn 

of n i.r.v.’s has a beta distribution, the component r.v.’s Xj,j= 1,2,...,n are 

not necessarily beta variables. Kotlarski [183] has determined necessary 

and sufficient conditions under which the product Y=XlX2- • • Xn of n 

positive i.r.v.’s Xj will have a beta distribution. The conditions pertain to 

the Mellin transforms of the density functions of the component r.v.’s 

(Section 9.13). 

This chapter discusses the derivation of density and distribution functions 

of various r.v.’s and of functions of r.v.’s that are important in the field of 

statistics, from both the theoretical and applied standpoints. The important 

and useful role of integral transforms and the unifying thread they provide, 

are clearly evident. 

9.1 THE SAMPLING DISTRIBUTION OF MEANS 

One of the oldest problems in statistics is that of finding the distribution of 

the sample arithmetic mean. Two other types of mean, geometric and 

harmonic, are in use in elementary statistics. Although they are not as 

important as the arithmetic mean, they do have considerable application to 

the use of index numbers in the field of economics. This section discusses 

the use of integral transforms in deriving the sampling distribution of these 

three means. 

4‘Sums of //-function r.v.’s (e.g., gamma r.v.’s) that possess the reproductive property with 

respect to addition will, of course, be //-function r.v.’s, but sums of //-function r.v.’s in 

general will not be //-function r.v.’s. 
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9.1.1 Arithmetic Mean 

The derivation of the sampling distribution of the arithmetic mean is best 

accomplished by utilizing the characteristic function, the complex Fourier 

(bilaterial Laplace), or the ordinary Laplace transform, whichever is most 

appropriate for the problem at hand. In this connection, the following 

theorem is useful. 

Theorem 9.1.1. The characteristic function (Fourier transform) of the 

p.d.f. g(x) of the mean x = (l/«)2”=1x of continuous i.r.v.’s x- with p.d.f. 

f/Xj), is 

F, ( g(x)) = ft F„„ (Jj (*,)). (9.1.1) 

proof. By definition, 

F,(g(x)) = E[e"*} 

/OO r 00 r CO J ■■ exp 
”00 ^ — 00 J — 00 

n rco 

= II I eltXj/nf(Xj)dXj 

j — 1 J — 00 

= n Ft/n{f(xj)). 

' it(xl +x2 + ■ • +x)‘ 

n 
f(x\)f(x2)f(xn) n dXj 

(9.1.2) 

If the r.v.’s x are identically distributed with p.d.f./(x), (9.1.2) becomes 

F,(g(x)) = [F[/„(f(xj))}n ■ (9.1.3) 

In either case, the desired p.d.f. g(x) is obtained by evaluating the Fourier 

inversion integral 

g(x)~ 2~ J e i,xFfg(x))dt. (9.1.4) 

In the same manner, if the i.r.v.’s are of finite or singly infinite range, it 

is readily established that 

e'* fi Lr/n(fj(xj))dr, 
j= i 

(9.1.5) 
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where 

(9.1.6) 

The partitioning procedures encountered in deriving the p.d.f. h(w) of 

sums W='Z"XJ of i.r.v.’s are also inherent in the derivation of the p.d.f. 

g(x) of the mean, particularly when the mean involves i.r.v.’s of finite 

range or a mixture of i.r.v.’s of both finite and infinite ranges. Of course 

the p.d.f. of 3c is directly obtainable from that of W by utilizing the 

transformation x = w/n. Specifically, 

(9.1.7) g(x) = nf(nx). 

Again, as was noted in the derivation of the distribution of sums of 

i.r.v.’s, the problem is considerably simpler when the i.r.v.’s are identically 

distributed than when they are not. The following examples are illustrative. 

Example 9.1.1. Find the p.d.f. g(x) of the arithmetic mean X = 

(1 /n)Z"Xj of n identically distributed normal i.r.v.’s with p.d.f. 

/(*) = e~x2/°2, -oo <*<oo. 
V27to 

From (9.1.3), 

Ft(g(x))=[Ft/n(f(x))]n, 

where 

oV27T 
e 

Then 

= e -t2°2/(2n) 
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and 

1 r00 

S(*)=2v)_ e ,,XFt(s{x))dt 

inx 

a .2 
dt 

e~ X1 / (2°2 / n) (9.1.8) 

Thus, as is well known, g(x) is a normal distribution with mean 0 and 

variance a2/n. The term a/Vn is known as the standard error of the 

mean. 

Example 9,1.2. Find the p.d.f. g(x)of the arithmetic mean X = \'2?i=xXi 

of three exponential i.r.v.’s with p.d.f. 

f\{xx) = axe~a'x', 0<Xj<oo, 

f2(x2) — a ie~a2*2’ 0<x2<oo, 

h(x?) = a^~“3X\ 0<x3<oo. 

To find g(x), note first that 

so that 
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Then 
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_ j rc+i oo 2.1 QxU2Oj6 

8^ 2tn'X-.-oo (/• + 3a1)(r + 3a2)(r + 3tf3) 
dr 

— 3axa2a2 
, — 3a,x e-3a2x 

(a2-ax)(a3-ax) (ax- a2)(a3- a2) 

-3 a,x 

+ 
(ax-a3)(a2-a3) 

a^dj. (9.1.9) 

9.1.2 Geometric Mean 

Camp [45] has derived the distribution of the geometric mean of a sample 

of n identically distributed nonnegative i.r.v.’s by applying the geometric 

method to the logarithm of the geometric mean. His examples were limited 

to distributions that are “reproductive” with respect to multiplication; that 

is, the product variable has the same type of distribution as does the 

original variable. In contrast, the Mellin transform method derives the 

distribution of the geometric mean directly, without recourse to the loga¬ 

rithm of the geometric mean. It is equally applicable, regardless of whether 

the (nonnegative) i.r.v.’s are identically distributed or reproductive with 

respect to multiplication. 
The distribution of the geometric mean of n nonnegative i.r.v.’s follows 

directly from the distribution of products. Thus if h(y) is the product 

Y=iy=xXj of n i.r.v.’s Xj with p.d.f.’sfj(Xj),j = 1,2,then by definition 

the corresponding geometric mean is U= Yx^n and, therefore, has p.d.f. 

g{u) — nun~xh{un). (9.1.10) 

On the other hand, g(u) can be obtained directly through the use of the 

Mellin transform. In particular, 

Ms(g(u)) = M(s+n-\)/n(h(y)), (9.1.11) 

which follows directly from utilizing properties 2 and 10 (Section 2.8.2) 

relative to Ms(h(y)). Then g(u) is given by the inversion integral 

S(u)=nhf u~SM(s+n-i)/n{h(y))ds, (9.1.12) 
Z777 jc— /oo 
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where the Bromwich path (c — i°°,c +100) is a straight line in the strip or 

half-plane in which the Mellin transform Ms(g(u)) is analytic. Evaluation 

of the inversion integral can usually be accomplished by the residue 

theorem. 

An interesting application of the geometric mean occurs in connection 

with the distribution of the statistic 

K=L?'2 

where rij is the number of elements in the y'th sample, sj is the variance of 

the y'th sample, and 

k 

2 nr 

The statistic XHi is an appropriate criterion for testing the statistical 

hypothesis that k random samples of sizes rij, j—1,2,...,k came from k 

populations with standard deviations Oj, j = \ ,2,...,k. When written in the 

form of Lx=Xj/N, where N isthe number of observations in the pooled 

samples, the criterion becomes the ratio of the weighted geometric to the 

weighted arithmetic mean of the k sample variances [408, editorial note, p. 

124]. In 1937 Wilks derived the first two moments of Lf \ but stated [408] 

that “the higher moments of Lf1 become more and more complicated so 

that there is little hope of finding a workable form of the exact distribution 

of LfActually, the exact distribution of L, is an //-function, as we now 

show, hence can be obtained by using Mellin transforms. The distribution 

is in the form of an infinite series and can be evaluated to any required 

degree of accuracy with the use of an electronic computer. 
Note that one can, without loss of generality, utilize the standardized 

form of L,, namely, 
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where 
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Y= 
n*-«? 

2 V* 
j-1 

is the product of the variances sj of samples of size n.j drawn at random 

from k normal populations N ( \ip aj), and 

Denote the p.d.f.’s of xj=njsf/oJ2, V, and tx, respectively, by^(xy2), g(v), 

and /?(/,), and note that 

where 

fj{xj) = ce xj/2(xj) 
\("j~ 3)/2 

X/ > o, 

_1_ 

2to-l)/2r((/i,—1)/2) ‘ 

That isis a chi-square distribution with rij— 1 degrees of freedom; but 

more important, it is also an //-function variate. Similarly, the sum of k 

chi-square variables each with rij — 1 degrees of freedom is also a chi-square 

variable with 1) degrees of freedom. Thus V is an //-function 

r.v., as discussed in connection with the half-Student distribution in 

Section 6.3.4. Also, Y is an //-function r.v., and since a rational power of 

an //-function r.v. is an //-function r.v., Y1/7N is an //-function r.v. Finally, 

since the quotient of two //-function r.v.’s is an //-function r.v., it follows 

that 

yl/N 

V 

is an //-function r.v. By a straightforward application of Theorems 6.4.1, 

6.4.2, and 6.4.3, one can show (Exercise 9.30) that £, is an //-function r.v. 
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*(/,) 

N-K 

N-K\ 

2 ) 

( 
N-K 

2 

_L _L\ ( 
N ’ A/’'"’\ 2 1 -M N ’ A / 

(9.1.13) 

The analytical (series) form of the p.d.f. h(lx) can be obtained by using the 

model developed in Chapter 7, which enables one to evaluate any H- 

function inversion integral whose parameters are known. Likewise, the 

corresponding c.d.f. //(/,) can be obtained in analytical (series) form by a 

companion model developed in Chapter 7, which again requires only a 

knowledge of the parameters in the //-function //(/,) as given by (9.1.13). 

It bears stating that if one sets aj = a2, j= the distribution 

function of £j can be used to test the null hypothesis that k samples came 

from k normal populations with identical variances. In fact, it was Ney- 

man and Pearson who, in 1931, discussed in some detail a method for 

testing this null hypothesis based on the statistic L, [271]. Later, Mood 

[259] examined the behavior of L, for large values of k. In 1932 Wilks [405] 

was concerned with devising a statistic for use in testing this null hypothe¬ 

sis in connection with a multivariate analysis of variance test. As a result, 

he proposed what is now variously called Wilks’s statistic, Wilks’s A 

criterion, and Wilks’s likelihood ratio criterion. (Wilks himself designated 

the criterion by W in his 1932 Biometrika paper.) This criterion provided a 

multivariate generalization of what is today called the analysis of variance 

F test. Specifically, if the “among” sum of squares in analysis of variance is 

generalized to a pXp matrix A of sums of squares and products and the 

“within” sum of squares is likewise generalized to a pXp matrix B, the 

criterion is defined as the ratio of determinants. In particular, 

A_ det(£) 

dct(A + B) 

Wilks derived in integral form the distribution of A that holds when the 

null hypothesis is true. 
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More recently, a number of authors have derived the null density and 

distribution functions of A for various special cases, in particular, the 

distributions for the special cases p or q < 2, and p and q < 4 (see Anderson 

[14, Chapter 8]). Also, Wilks’s criterion A, as defined above, is a special 

case of the statistic analyzed by Brookner and Wald [41] when the number 

of groups is two. Later Rao [302] obtained the first three terms of a series 

more rapidly convergent than the infinite series expansion derived by 

Brookner and Wald for the exact cumulative distribution. Then in 1966 

Schatzoff [320] proved that under the null hypothesis, both the density and 

distribution functions of A have exact closed form representations when p 

or q is even. This result followed from their observation that A was 

distributed as a product of p beta i.r.v.’s and that consequently, —logA 

was distributed as a sum of p i.r.v.’s. Schatzoff used the process of 

successive convolution to obtain a recursive algorithm for determining the 

density and distribution functions on a digital computer. He also con¬ 

structed tables of correction factors for converting chi-square percentiles to 

exact percentiles of a logarithmic function of A. 
Thus although considerable work has been done relative to the deriva¬ 

tion of the null density and distribution functions of A, these distributions 

have not been derived for the general case. Furthermore, relatively little 

progress has been made thus far in the way of deriving the exact density 

and distribution functions of A when the null hypothesis is not true. 

Example 9.1.2. Find the sampling distribution of the geometric mean 

of n identically distributed uniform i.r.v.’s 

/(*,)= 1, 0< x, < 1, /= 1,2,...,«. 

In Chapter 4, the Mellin transform of 7= II"Xj was found to be 

Hence from (9.1.11), it follows that 

(9.1.14) 

Inversion of the Mellin transform (9.1.14) then yields 

0 < v < 1. (9.1.15) 
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Standard Error of the Geometric Mean 

Norris [273] has shown that the standard error of the geometric mean of a 

random sample of n positive i.r. v.’s Xx,X2,...,Xn is 

°G = 

^l°\nx 

where 9X is the population geometric mean of the variates and a,nx is the 

standard deviation of the logarithms in the population as given by 

am*=[£{[ln.x-£(lnx)]2} 
21 -|!/2 

The estimate of the standard deviation of the geometric mean is 

sg=g ,- 
Vrt-1 

where G is the sample geometric mean; that is, G is also the estimate of 9X, 

and ^lnjc the estimate of oXnx, with n — 1 degrees of freedom. The derivation 

of the formula for sG can be accomplished by applying the central limit 

theorem, which is not done here. The interested reader is referred to the 
paper by Norris. 

It perhaps bears stating at this point that for a positive r.v. X, 

eVx < }Je(x) , 

as Murthy and Pillai have shown [266]; and more generally, as proved by 
Sclove et al. [324], that 

E[XS]>{E[X])S 

for all real s not in (0,1). 

9.1.3 Harmonic Mean 

The harmonic mean of n i.r.v.’s Xj with p.d.f.’s fj(xj) is defined to be the 

reciprocal of the arithmetic mean of the reciprocals 1/A 

(9.1.16) 
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Thus the p.d.f. k(u) of the r.v. U can be found in two steps. The first step 

is to utilize the Fourier (or Laplace) transforms (when they exist) of the 

p.d.f.’s hj{wj) of the reciprocal r.v.’s Wj—X/Xj to find the p.d.f. h(w) of 

W=(l/n)2]=l(l/XJ). One can then find the p.d.f. k(u) from h{w) by 

means of the transformation U=\/W, which is the second step. 

Thus if Xj is defined on the interval (0, oo) and has p.d.f. and the 

reciprocal variable Wj—X/Xj has p.d.f. g(wj), then 

(9.1.17) 

where 

Lr(h(w))= ft Lr(gj(Wj)), 0< w < oo, (9.1.18) 
j= i 

(9.1.19) 

and the Bromwich path (c —/oo,c + /oo) is any vertical line parallel to the 

imaginary axis and lying within the strip of analyticity of Lr(h(w)). Finally, 

letting U=X/W, one obtains 

(9.1.20) 

which is the desired p.d.f. of the harmonic mean of Xp j =X,2,...,n. 

If the r.v.’s Xj are restricted to the range (a^bj), the integral (9.1.19) is 

evaluated between finite limits instead of zero and infinity. The limits of 

integration of the integral (9.1.19) are changed accordingly, and the rele¬ 

vant Bromwich path is chosen for the inversion integral (9.1.17). 

It is well known and rather easily proved [110,266] that if X is an r.v. 

that is positive and not identically equal to a constant, 

F — >—-— 
[X\ E[X] ‘ 

More generally, for such an r.v. 

as Gurland has shown [139]. 
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Standard Error of the Harmonic Mean 

The standard error of the harmonic mean of a random sample of n positive 

i.r.v.’s Xl,X2,...,X„ is [273] 

JH 
^2a\/X 

where the population harmonic mean of the variates is 

so that the standard deviation of \/X in the population is 

1/2 
„ I . „ / 1 \ I 

°\/X~ 

The estimate of the standard error of the harmonic mean, with n — 1 

degrees of freedom, is 

/ 2] 1 
H 

>-£(j ?)] ) 

1 s \/x 

H 2 /-r ’ 
a2 Vn — 1 

a=l/H = (\/n)^1(l/Xi) being the estimate of a, and sx,Xj the standard 

deviation of the reciprocals of the sample items. 

As in the case of the geometric mean, the formula above for sH is stated 

without proof. The interested reader is again referred to the Norris paper 

for the proof. 

9.2 THE t, F, AND CHI-SQUARE DISTRIBUTIONS 

Although the central and noncentral t, F, and chi-square distributions may 

be obtained in various ways, the most direct and satisfactory method is 

that of integral transforms, as is evident in the following sections. 

9.2.1 The Student-Fisher t Distribution 

T= 
U 

V(K/w) 

Consider the ratio 
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of the standard normal r.v. U with p.d.f. f(u) and a chi-square r.v. V with 

m degrees of freedom and p.d.f. g(v), where U and V are independent. Let 

h(t) denote the p.d.f. of t. It is now shown that 

Ms(h + (t)) = Ms(f+(u))M_s+2(g(v)) 

mil 2 

\Ar 

0<Re(s)<m+ 1, 

which, on inversion, yields 

h(t)- 
V(7rw) r(y) 

_(m+0 
2 

To find the Mellin transform of h(t), one needs first to find the Mellin 

transform of the product of f(u) and g( 1/(x/Vm )), where x= is the 

chi r.v. with m degrees of freedom and p.d.f. k(x)- Now, 

}0-3)/2 , . 

Re(5)>° 

and (Table D.2, formula 6). 

MMx)) = 
20 i)/2 / 5- + /rz — 1 \ 

T(m/2y{ 2 )’ 
Re(.s)> —{m — 1). 

Then 

M. 

and from the scaling property (Section 2.8.2), 

K\ g\ 
m r/22(-*+l)/2 / -s + m + \ 

X/Vm T(m/2) 
Re(s,)> — (m+1). 
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M\h •(ir)) (x/V^) 

m s/2r 
( — 5 + m + 1) \ / s Hi) 

(9.2.1) 

2M?) 
Now it is well known [95 (19), p. 310] that 

A/j((l + a/)-r) = a~sB(s,r — 5), 0<Re(s)<Re(r), a>0, 0</<oo 

a~5r(s)r(/- — s) 

W) ' 

From the exponentiation property (Section 2.8.2), it follows that 

m,(0+»'TO= 
a */2r(s/2)r(r-j/2) 

r (r) 
(9.2.1a) 

with the same constraints as above on s, r, a, and t. If a = \/m and 

r = (m + l)/2, (9.2.1a) becomes 

M. ((■*3 
t2 \ —(m+l)/2\ m 

It1) 
. (9.2.1b) 

Thus (9.2.1) is expressible in the form 

M 
.• 

Or equivalently, 

rlm±i\ 
\ 2 j l ,2 \ -(".+1)/2 

MAh + it))-_ + 
2V^r(f) 

0< /<00. 
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Hence h+(t) is obtained by evaluating the Mellin inversion integral 

h + (Q=^fC+'°°t-s/2Ms(h+(t))d(j), 0<c<r, 0<r<oo, 

which, in light of (9.2.1a) becomes 

h+(t) = 
W) 

V irm T (f)K) m+ 1 
0< t< oo. 

Furthermore, since the standardized normal distribution is symmetrical 

about the origin, it follows immediately that 

/t(0-a+(0- -r- 

V77 m r 

Consequently, 

h(t) = 

(f)(i+£) 

i^) 

2 \("J+l)/2 
— 00 < t < 0. 

t2 \(m+l)/2 
00 < t< 00, 

V^r(f)(, + £) 

which is the well-known Student-Fisher t distribution. 

9.2.2* The Noncentral t Distribution 

Let fx(U) be the p.d.f. of the normal r.v. with mean 5 and variance 1, and 

/2( V) the p.d.f. of a chi-square r.v. V with m degrees of freedom, where U 

and V are stochastically independent. Then the quotient 

T= ■■ ■ U (9.2.2) 
V V/m 

is said to have a noncentral t distribution, denoted by h(t), with m degrees 

of freedom and noncentrality parameter S. This noncentral t distribution is 

of considerable importance in hypothesis testing, since it yields the power 
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of the widely used t tests [179, p. 255]. The classical t distribution is, of 

course, the special case for which 5 = 0. 

To obtain the p.d.f. h(t) of the noncentral t distribution by means of 

Mellin transforms—which would seem to be the natural approach to take 

—one can evaluate the Mellin inversion integral 

e ~ 6‘'aT(s)D (- S )r( - +1 -1) 
1 rc + i oo \ 2 

= ^- I (/)--ds, 
2 mJc-i« V2¥ r(y) 

Re(.s) > 0, 

(9.2.3) 

where D_s( — 5) denotes the parabolic cylinder function (defined in Ap¬ 

pendix D.l). Likewise, to obtain the distribution function H(t)—which is 

of primary interest—one would evaluate the corresponding inversion in¬ 

tegral 

H(t) = 1 
1 rc + ico Ms+l 

| (0 - 2mJc_ix s 
ds. (9.2.4) 

Clearly, the evaluation of the inversion integrals (9.2.2) and (9.2.3) is a 

rather arduous task. The difficulty stems from the complexity of the 

parabolic cylinder function, which is not easily generated on a computer, 

even when it is expressed in terms of the more manageable gamma and 

hypergeometric functions. Expressions for the p.d.f. and c.d.f. that are 

equivalent to (9.2.3) and (9.2.4), respectively, can be obtained in a simpler 

manner by expressing the Mellin transform of /(U) in the form 

- co < U<0 

= 0 < l/< oo. 

where 

\Tlrr 
.2(,/2)-ie-a72 2 if 8 

j =0 r- \ V2 

1 

V2v 

2U/2)-\e-82/2 Ms(fr(u))= 
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(See Section 4.6.2, (4.6.39) and (4.6.42).) Note that W]m =x/Vm , 

where x is a chi-variable with m degrees of freedom. Let g(w) be the p.d.f. 

of tr=(x/Vw T1; then 

Ms(g(w))2( s + l)/2m{ •s+2)- 

•(f) 
Also, 

M,(h - (■- 0) - U))M,( g(W)), - oo <1 < 0, 

M,(h + (t)) = M,(f+(U))M,(g(W)), 0«<co, 

so that 

h~{t) = -^—. fC + ,C°t sMs(h (t))ds, 0<c<m + 1 
Ini Jc—i00 

1 rc + ic 

2wi Jc— too 

x 11(-«V2yr(^)^ 
j = 0 J• \ z ' 

— s + m+ 1 

*r(f) 
ds (9.2.5) 

and 

h + (t)=^~ fC+ 0°t~sMs(h+(t))ds, 0<c<m+l 
ZtTI Jc — ice 

1 

2-77/ 

/*c + 

•' c — i 

c + i oo r’e-82'2 3 
2 ) 

(9.2.6) 
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Consider the integrals corresponding to (9.2.5) and (9.2.6) but evaluated 
over the contours CL and CR (Fig. 2.9.1). It is clear that the integrand in 
each of these integrals is an infinite series, and the question arises as to 
whether the series can be integrated termwise over the indicated contours 
(i.e., whether the integral and summation signs may be interchanged). That 
this interchange can be made without changing the value of the contour 
integrals can be shown by establishing that each infinite series is uniformly 
convergent with respect to s and noting that each term in either series is 
continuous on CL and CR. Application of a well-known theorem [415, 
Theorem 5, p. 351] in complex variable theory, which states that the 
integral of a uniformly convergent series of continuous functions along any 
curve C can be found by termwise integration of the series, then validates 
the interchange of the summation and integral signs. Specifically, 

(9.2.7) 

(9.2.8) 

When |t|<l each of the integrals in (9.2.7) and (9.2.8) satisfies the 
conditions of Jordan’s lemma when evaluated over the Bromwich contour 
CL. Similarly, when |/|> 1, the conditions of Jordan’s lemma are satisfied 
for evaluation of the integral over the contour CR. Thus in either case, the 
value of the integral over the circular arc approaches zero as the radius of 
the circle approaches infinity, except possibly for the value t= 1. However 
when /= 1, it can be shown that the value of the inversion integral also 
approaches zero on the circular arc as the radius approaches infinity. 
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Consequently, both inversion integrals can be evaluated by the method of 

residues in the manner shown below. 
Consider first the integral (9.2.7) when — 1 < / < 0, and utilize the iden¬ 

tity 

(9.2.9) 

when integrating over the contour CL. (The denominator in (9.2.9) will be 
defined to be 1 when j = 0, so that the identity holds for all values of j.) 

Then, from the residue theorem, 

M0 = 2 Rjv -1<*<o» 
7 = 0 

where RjX denotes the sum of the residues at the poles s = - (J + 2k), 

k = 0,1,2,.... That is, 

I + . (9.2.10) 
* = 0V ’ s=-U+2k) 

where I~(t) is the integrand in (9.2.7). Utilizing the identity (9.2.9) in 
(9.2.10) one has 

Rn= 2 tJ+2ke~sl/2m{J+2k+\) 

m + \+j + 2k 

A:=0 

,r( ̂
r(f) 

(9.2.11) 

Similarly, consider the integral (9.2.8) when 0 < t < 1, and again utilize the 
identity (9.2.9) when integrating over the contour CL. Again, from the 
residue theorem, 

00 

K(<)= 2 k/i. 
j-0 

0< / < 1, 
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where Rjx denotes the sum of the residues at the poles s=—(J + 2k), 
k = 0,1,2,.... Specifically, 

«/,= I (^+*W) , (9.2.12) 
k~ 0 ' s=— (j + 2k) 

where I+(t) denotes the integrand in (9.2.8). Application of the identity 
(9.2.9) to (9.2.12), yields the residue 

tj -2k 

k~Q V27t r (i) 
e~81'2 m('+2*-4)Ay^(sV2)'r( m+1 +j + 2k \ 

(9.2.13) 

It remains to evaluate the inversion integrals (9.2.7) and (9.2.8) when 
|t|>l. This can be accomplished in a similar manner by utilizing the 
identity 

s + m+ 1 

+*)r( 
■s + m+ 1 

— s + m+ 1 
+ k + 1 

— 5 + ra + 1 \ / —5 + m+l 
+ 1 )...(. ■s + m+ 1 

(9.2.14) 
+ k — 1 

and evaluating the integrals (9.2.7) and (9.2.9) by means of the residue 
theorem over the contour CR (Fig. 2.9.16). (Again the denominator on the 
right-hand side of (9.2.14) will be defined to be 1 when k = 0, so that 
(9.2.14) is true for all values of k.) Thus 

00 

h2 (0 = 2 Rfl, - 00 <t < - 1, 
7=0 

where Rj2 denotes the sum of the residues at the poles s = m+\+2k, 
k = 0,1,2,.... That is, 

( — s + m+ 1 
(-2- 

+ k)I (t) 
s — m+ 1 +2k 

where I (t) as above denotes the integrand in (9.2.7) with T(-.y + ra + 
l)/2 replaced by its equivalent as obtained from (9.2.14). Application of 
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the residue theorem then yields 

rj2= 2 /-<"+ 
k = 0 

x(-sViy 

e-s2/2 / n 
I+2*>--m\m~2k+ 2) 

V2tt 

m + \+j + 2k\ 

1)* ri 2 J 

r(!) 
j\k\ 

(9.2.15) 

Similarly, 

K(t)= 2 */2> 1 < / < oo, 
7=o 

where i^2 is now the residue 

0° / 

2 
& = 0 v 

— 5 + m+ 1 
+*)/+« 

s — m+ 1 + 2k 

and I+(t) as above now denotes the integrand in (9.2.8) with T[( —s + m + 
\)/2 + k] replaced by its equivalent as obtained from (9.2.14). The result is 

r'2= f g-a2/^(-"-^+i)/2(6V2 
J k=o V2tt j\k\ 

m + 1 +j + 2k \ 

) 
X 

V2^r(f) 

Combining all these results, one has 

(9.2.16) 

where 

h(t) = h2 (t), — 00 < I < — 1 

= M0> -1< r<0 

=V(0> 0< i< 1 

-K(t), 1 < t< 00, 

*2_(0- 2 ^2. 
7 = 0 

— 00 < t< — 

00 

MO- 2 
7-0 

-l</<0, 

*l+M“ 2 
7 = 0 

0</<l, 

(9.2.17) 
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hi{t)= 2 X<t< oo. 
7 = 0 

Finally, because of the relationship (4.3.10b), namely, 

(9.2.18) 

between the Mellin transform of the complementary distribution function 

G{t) = 1 — H(t) and that of the p.d.f. h(t), it is readily shown that 

H(t)=\-G2+(t), l<t<oo 

= l-G,+ (0-G2+(l), 0<t<l 

= l-Gf(/)-G1+(0)-G2+(l), -l<t<0 

= 1-G2-W-C,-(i)-C2+(1)-G,+(0) (<-l. (9.2.19) 

where 

Gf (0- 
- S2/2 

V2 +2 2 V 2 y=l A =0 

(-1)*/-(w + 2*)c-*2/2 

x(-sV2 yr| 

yU!r(m/2)V2¥ 

m + 2/:-l-y-l-1 \ 
-00<(<1, 

c,-(0- 
-S2/2 * oo 

^+2 2 
V2 7=1 A: =0 

(_!)V + 1+2^-52/2 

j\k\T(m/2)V2^r 
m{ J+2k+\) 

x (- 6 V2 )Jr(m+M2—+2) l</<0, 

§2/2 00 00 

c.+ (/) = ^=-+2 2 
V2 7=1A=0 

(_ ]^^7+l+2^e-52/2 

y!A:!r(m/2)V2w 
m(7 + 2A + l) 

^2+(0 = 

x (5V2 

82/2 00 00 

V2 7= 1 / = 0 

i / y + 2A: + m + 2 \ 

1 
0 < / < 1, 

j\k\T(m/2)V2ir 

X (5V2 yr| 
m + 2A: +y 4-1 \ 

1 < t< oo. 
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As can be seen, the complementary distribution function G(t), as well as 

H(t), is expressed in terms of gamma functions. It is interesting to note 

that both Hawkins [146] and Craig [70] have shown that this complemen¬ 

tary distribution function is expressible in terms of incomplete gamma 

functions, namely, 

P[T>t\m,8] = G(t) 

(sV2 y 1 ^ 

= le-s2/2 y 
2 jT0 T(j/2+\) 

where a = n/(n +12), and Ix{a,b) is the incomplete beta function 

Ix(a,b)= f ua~x{\-u)b~xdu. (9.2.20) 

The reader is referred to the papers by Hawkins and Craig for details of 

the derivation of this result. 
It is also noteworthy (as Rahman and Saleh point out [299]) that the 

noncentral t distribution function does not seem to be expressible as a 

single special function in the general case. This is in sharp contrast with the 

noncentral chi-square and noncentral F distribution functions, each of 

which is a special case of a Bessel type I distribution (see Section 9.9.7). 

It bears stating that the distribution function (9.2.19) can be used to test 

the hypothesis that two random samples came from two normal popula¬ 

tions whose variances are o? and a\ and whose means differ by an amount 

8. This involves utilizing the statistic T as defined by (9.2.2), where 

U= 

V= 

*X-*2 

^o2x/nx + oj/n2 

lnxs\ n2s\ \ 

\ ) 

(nx + n2-l) 

1/2 

and Xx, X2, s?, s2 are the means and variances of two samples of sizes nx, n2 

drawn at random from two normal populations with means and variances 
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Mi* M2> au °2’ where ju^ —ju,2 = 5. Since U is now a normal r.v. with mean 

and variance 1, while V has a chi-square distribution with m = nx + n2 — 2 

degrees of freedom, and U and V are independent, the density and 

distribution functions (9.2.17) and (9.2.19), with 8 replaced with 8', are 

applicable for testing whether the means of the aforementioned normal 
populations differ by an amount 5 (see, e.g., ref. 166). 

9.23 Analogues of Student’s t 

Various authors—Walsh [390], Siddiqui [337], Birnbaum and Vincze [29], 

Birnbaum and Friedman [114], and others—have considered a different 

statistic similar to Student’s t, usually based on order statistics, which can 

be applied under very general conditions. More or less typical of these 

analogues of Student’s t is the one originally studied by Siddiqui and 

recently tabulated by Birnbaum and Friedman [114]. It is defined, for a 
given integer r, 1 < r < m, as 

C' = _ 

m’r X, 
X(m+1) M 

(m + 1 + r) ' ‘(m+l-r) 

where X is an r.v. with continuous distribution function F(x) = Pr[V < 

x],X(l) <V(2) < • • • <V(2m+I) is an ordered sample of size 2m +1, ju is the 

population median of X, and is the sample median. It is 

interesting to note the similarity between the structure of this analogue and 

that of Student’s t. As pointed out by Birnbaum and Friedman, in each 

case the numerator is the difference between a population location param¬ 

eter and a sample estimate of that parameter, whereas the denominator is a 

sample estimate of a scale parameter, the latter being the interquartile 

range in the case of the analogue. Unlike the t-statistic, Sm r has the 

practical advantage that it can be computed when only very few order 

statistics are available, even when all the other values are “censored” out. 

Birnbaum [28,29] has shown that if the r.v. X has the distribution function 

F(x) and p.d.f. f(x)= F\x), the distribution function of Sm r is given by 
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m-—(2m+1>!— 
[im~ r)'(r~ i)-]2 

J W = 11 

■Fm-r(u)[F(v)-F(u)]r 1[F(w)-F(t))]r '[ 1 — /r(w)]'” rdwdudv. 

Bimbaum and Friedman [114] have constructed tables for this probability 

distribution function giving exact critical values of Sm r for small sample 

sizes (n < 10), under the assumption that X has a normal probability 

distribution. A table of asymptotic critical values for Sm r is also given, 

which can be used for large sample sizes even when X is not normally 

distributed. As Bimbaum and Friedman point out, these tables permit the 

practical use of Sm, in some situations in which Student’s t cannot be 

used. 

9.2.4 The Snedecor F Distribution 

Let U and V be independent chi-square r.v.’s with m and n degrees of 

freedom, and p.d.f.’s /(w) and g(v), respectively. Then 

u(m/2)-le-u/2' 0<u<oo, f(u) = 
2m/2r(m/2) 

If one denotes the p.d.f. of F=(U/m)/(V/ri) by h(F), it follows that 
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which is the Mellin transform [95, (15), p. 349] of the well-known F 
distribution 

m + n > 

2 

0<F<oo, m> 0, n> 0. 

9.2.5* The Noncentral F Distribution 

If the r.v.’s U and V possess independent noncentral chi-square distribu¬ 
tions, then the p.d.f. h(w) of the r.v. 

is called the noncentral F density function [167]. It may be derived in 

various ways, but the natural and preferable approach is to use the Mellin 

transform. In Section 9.9.7 the distribution of the ratio of two noncentral 

chi-square i.r.v.’s is derived, the result being the noncentral F distribution 

whose parameters are determined from those of the original noncentral 

chi-square distributions. The reader is referred to Section 9.9.7 for the 

explicit form of the resulting noncentral F distribution. 

9.2.6 The Chi-Square Distribution 

Let Xj be a standardized normal r.v. with p.d.f. 

— 00 < Xj < 00. 

Consider the p.d.f. g(w), where w = 2\xj. Since the characteristic func¬ 
tion of f(xj) is 
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the characteristic function of g(w) is 

which is readily recognized (Table D.2) as the characteristic function of a 

chi-square distribution with n degrees of freedom. (The reader is asked to 

verify this by inverting the characteristic function Ft(g(w)); see Exercise 

9.29.) 
That is, the sum of the squares of n normally and independently 

distributed r.v.’s with mean zero and standard deviation one has, as is well 

known, a chi-square distribution with n degrees of freedom. 

9.2.7* The Noncentral Chi-Square Distribution 

As was seen in the preceding section, the sum 

l 

of n standardized normal i.r.v.’s N (0,1) has a chi-square distribution with n 
degrees of freedom. It is natural, then, to label the p.d.f. h(W) of the sum 

JV=2"X2 of the squares of n noncentral normal i.r.v.’s N(nj,a) as a 

noncentral chi-square distribution. This distribution is, of course, well 

known and can be derived in various ways. However, the natural approach 

is to use the characteristic function (Fourier transform), which, as 

McNolty [249] points out, has considerable utility for this type of problem. 

McNolty has derived the noncentral chi-square distribution by means of 

the characteristic function. His procedure is presented here,42 including 

some further details of the derivation.43 

Consider the r.v. 

W= 2 XJ 
j= i 

where the i.r.v.’s Xj have the p.d.f. /(xy) = (l/V2tt )exp[-(xy — ty)2]/2a2, 

and denote the p.d.f. of W by g(w). Then the characteristic function 

42With the permission of the Executive Secretary of the Institute of Mathematical Statistics. 
43The procedure in this section differs somewhat from that of McNolty because of an error in 
one part of the cited reference. This error was corrected by McNolty and the corrected 

version conveyed to the author by letter. 



THE t, F, AND CHI-SQUARE DISTRIBUTIONS 331 

of fj(Xj) is 

F< (fj (*,-)) = f (Xj) dxj 

1 / l% 

(l-2//a2)eXP( 1-2 ita 2 ’ 

so that, since the x- are independent, 

^,(g(w)) = exp 
itr 

(1-2 ita2)n/2 V 1—2 ita 
’ 

where r2 = 2,"[Ji2. The p.d.f. g(w) is then obtained by evaluating the 
inversion integral 

1 r °o 

vLj'"' 
1 

exp 
(1 — 2/ia2)"/2 

Letting z = (Vw /r)( 1 — lita2), (9.2.21) becomes 

#(w)= — 

-^V 
1 — lita2 ) 

(9.2.21) 

'(V^ /r) — IOO 

v (” —2)/2 

i 1 +
 

| exp 
2a2 

+ ico Vvv r l z2+ 1 \ 
exp 

/oo 2a2 V z / 

dz 
-n/2 ’ 

w>0. (9.2.22) 

The problem is to evaluate this integral. 

Since (as we show shortly) there is a branch point [229, p. 14] at the 

origin when n is odd and no branch point anywhere when n is even, 

the two cases must be treated separately. Consider first the evaluation of 

the integral in (9.2.22) over the indicated Bromwich path when n is even. 

Note that this Bromwich path is part of the (closed) Bromwich contour 

Q= Sr, (Fig. 9.2.1a), 
J-1 

where f2 and T4 contain the end points of the vertical diameter but f3 does 
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Fig. 9.2.1 Bromwich contours utilized in deriving the noncentral chi-square distribution. 

not. Note also that 

where 

f exP 
JcL 

Vvv r 

2 a2 

dz 

z"/2 
— 2mRx, (9.2.23) 

1 • d(n/2)-. | Vw r ( z2+ 1 \ \ 

{n/2- 1)! dz(n/2)-ieXP[ 2a2 { z jjj 

(9.2.24) 

(a modified Bessel function of the first kind of order (n/2)- 1) is the 

residue at the pole z = 0, the only pole occurring in the integrand. Let / 
denote the integral 

j = 2,3,4 (Fig. 9.2.1a). (9.2.25) 

Jim |7,-| =0, y = 2,3,4 
R—*oo 

Then, if 
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the integral in (9.2.22) becomes equal, as R tends to infinity, to the integral 
(9.2.23), and (9.2.22) becomes, For n even, 

exp —-(m> + r2) 
2o2 

hn/2) (9.2.26) 

1 

2 a2 

Vw Yn/2)-' 

—) exp 

00 

x 2 
J-o 

(Vw r/2a2)2j'+<n/2)-1 

rO+i)rO+(n/2)) ’ 
0< w< oo. 

It remains, therefore, to establish that 

lim 7 =0, y = 2,3,4. 
R—»oo 

(9.2.26a) 

Note first that the value of the integral (9.2.25) over each arc r) is 

greatest when n = 2, which is the smallest even integer being considered. 

Thus it is sufficient to show that when n=2, the integral (9.2.25), j — 2,3, 

approaches zero as R goes to infinity. Now on the arc T3, one has z = Re 

and dz = iRe,0d9. Then 

f ~az + a/z dz 

J r3 z 

- lim f(3V2) Sexp(aRcos9+ iRsin9+ -rjrCosO-\d0 
6-0 P/2)+ 5 R R >\iRe‘9) 

and 

|/3| < lim [(3n/2) Sexp(aRcos9 + (-^r)cos9)d9. 
6-0 J(„/2) + S V / 

Note also that since 9 is on the open interval tt/2<9 <3tt/2, cos 9<0, 

and 

lim [(3”/2) Sexp(aRcos9 + (-^r)cos9)d9 = 0, 
R—>cc J<tt/2) + 8 V ' ^ ' ' 

8—>0 K ' ’ 

hence 

%
 4

^ 
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Next, consider the integral 

TV2 
12= I exp 

J<t> 

Vw , 

2 a2 m 

dz 
M/2)/2 

Again, for simplicity, let a=Vw r/2a2; then, for large values of R, 

i2= r/2eaz+a/z— 
* th Z 

where 

/'= f + a/z dz 

z 

-l 

Vw/r , (fa 
' paz +a/z 

and /2 is a line segment perpendicular to (Fig. 9.2.1a). Note that 

ea/z = e“/(x + iy) 

= exp 
ax lay 

x2+y2 x2+y2 

Hence 

r,_ rv^ /rea(x- 

-'0 
exp 

/ay dx 

{x2+y2) x2+y2) ^x2+y2 

so that 

|/^| < f V” /reaxeax/(x2+y2)_^X___ 

J° ^x2+y2 ' 

Note that for the specific Bromwich path indicated, x is a positive finite 

constant. Also, »oo necessarily as f?—>oo, and vice versa. Thus, by 
choosing y sufficiently large, 

eaX/(x2+y2)/^x2+y2 <£ 
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where e is any positive number, however small, in which case 

335 

and 

lim |/2|=0. 

And since /2^T2 as /?—»00, it follows that 

lim 12= lim 1'2 
R—fCO R—>co 

= 0. 

Similarly, it can be shown that the value of the integral in (9.2.25) over 

the arc T4 approaches zero as R goes to infinity, from which the validity of 

the p.d.f. g(w), as given by (9.2.26a), follows when n is even. 

Consider next the evaluation of the integral in (9.2.22) when n is odd. To 

expedite the evaluation in this case, write (9.2.22) in the form 

g(w) = 

n odd (9.2.22a) 

and let m + n/2 = A + 1. Note that when 0 < A + 1 < 1 (or equivalently, when 

- 1 <X<0), a branch point [229, p. 14] occurs at the origin. That is, when 

0<X + 1 < 1, the exponent in zx+1 has a value between 0 and 1, so that (as 

we show shortly) zA+1—hence the integral in (9.2.23)—is not single valued 

at the origin for the usual contour of integration CL (Fig. 2.9.1a). The 

importance of this insofar as the problem at hand is concerned stems from 

the inapplicability of the residue theorem (as well as many other theorems) 

when the integrand of the inversion integral is not single valued at all 

points on the contour of integration. When the integrand is not single 

valued, it is necessary to replace the closed contour (in this case, CL) by 

another contour T = Sir7 (Fig. 9.2.16) having two branches on each of 

which zA + 1 (hence, the integrand in (9.2.22)) is single valued. 

To see the necessity for utilizing such a contour, consider the situation 

when A+ 1 = \. Write 

= R VV*/2 
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and begin with the point A :(R,0), that is, the point on a circle of radius R 

and centered at the origin, for which 9 = 0 and in which case w = R ^ . 

Now let 9 increase counterclockwise to 9 = 2m. For 9 = 2m, one notes that 

w=-R1/2 (since eim = -1). Thus even though 9 has made a complete 

circuit from zero to 277 inclusive, the value of w is not the same as its initial 

value (i.e., one has not yet returned to the initial point A ). However when 9 

increases to 47r, one arrives at the beginning point A : (R,2m) = (R, O). 

Clearly, w (hence the integrand in (9.2.24)) is not single valued at the 

origin, in which case one says that there is a branch point at the origin. 

That is, the values 0< #<2m generate one branch of the function w = zl//2, 

whereas the values 27r< 9 < 4m generate the other branch of the function. 

Note that w is single valued on each branch, since the value 9 = 4m is 

excluded. Thus to exclude the value 9 = 4m, one can use the contour 

r = 2*=ir/ (Fig. 9.2.16), which does not cross the real axis and on which 

the integrand of (9.2.23) is single valued. 
Since the integrand in (9.2.22) is single valued at all points on the 

contour T and also has no poles on or inside this contour, it follows from 

Cauchy’s theorem that the integral over T is zero. That is, 

(9.2.27) 

Now, in the same manner as before, it can be shown that 

lim 
R—>oo 
lim f = lim f =0 for A > — 1 = 0 for A > — 1 

R~*co Jy2 R->oo ^r8 

and 

/?—»oo /?-*» *'r7 

and clearly 

lim f = lim f = 0 for A > — 1, 

lim | =0 for A<0, 
d^> o J r5 

so that 
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Hence 

/< 
J ( V 

ii 
(V* A) — i oo 

exp 
2o2 

dz 
,A + 1 

= [-(/4 + /6)], (9.2.28) 

It remains, then, to evaluate the integrals /4 and /6. Note that z takes on 

only real values over both the contours T4 and T6; that is, z = x and 9 = 90, 

where 90= 77 and 90~ — m in the limit as d->0. Thus, 

z = xe‘9. 

dz = e,e°dx 

= [ cos 90 + i sin 90 ] dx, 

. — (A+ 1)_ v-~(A+ 1) x (X+1)[cos(A + 1)^0 — /sin(A-T 1)0O], 

and we have 

74 = (cos(A+1)77 —/sin(A+1)77)^ exp| 
Vvv r \ dx 

= (-cos(A+1)77+/sin(A+1)77)^* expl 

2a2 / xx+1 ’ 

0 / Vw r \ dx 
2 I „a+ 1 ’ 

2a2 J x 
-1 <A<0. 

Similarly, remembering that the integration is carried out in opposite 

directions over the contours T4 and T6, we have 

h = (cos(A + 1)( - 77)) - sin(A + 1)( - 77)^°°exp| j 

= (cos(A +1)77 + 1 sin(A + 1)77) jT exp| j , 

dx 

xx+1 

-1 <A<0. 
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Thus, for a circle of fixed radius x = R (Fig. 9.2.1 b), it follows that 

-(/4+/6)= -2/(sinA7r)J x~(A+1)exp| dx, -1 <A<0. 

Hence (9.2.27) becomes 

X (Vw / r) — too \ Z(J /Z 

X X x_^wexp 
Vvv 

(A+1Wnl—v — r X I dx, — 1<A<0 
2a 

= — 2/sinA77- 
Vw , 

2o2 I Jo 
u (A+1)e Udu 

Vw r \X _ 277i ( Vw r 

2 a2 
= -2isin(Aw)r(-X)|— J - ) ' (9.2.29) 

since for any noninteger argument y [18] 

sinv=yr(_v)r(->>) 

— 7r 

ro+i)r(->)- 

Equation 9.2.28 is valid for — 1 <A<0, and since both sides of (9.2.28) are 

analytic functions of A throughout the region — oo<A<oo, it follows by 

analytic continuation [229, p. 122] that (9.2.29) holds for — oo <A< oo and 

consequently, for the m + n/2 values of A involved in (9.2.22a). 

Thus (9.2.22a) is now expressible in the form 

/ J \(«/2) 
wO-2)/2exp 

2a2 
(w + r2) 

wr 2 \ m 

2_4 22a 

' = o r(m+l)r(m+|j ’ 
n odd. (9.2.30) 

But (9.2.26a) with n even can be written in precisely the same form as 
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(9.2.30), so that (9.2.30) is the density function for w when n is either even 
or odd. 

Finally, letting a = r2/lo2 and x'2 = w>/a2, (9.2.30) takes on the more 

familiar form of the noncentral chi-square distribution, namely, 

v iax'2) 
0<X'2<°o. (9-2.31) 

93 THE DISTRIBUTION OF THE VARIANCE 
OF A SAMPLE FROM A NORMAL POPULATION N(/i,a2)44 

The following lemma, due to R. A. Fisher [104], is particularly useful in 

deriving the distribution of the variance and covariance. 

Lemma 9.3 

Consider the sample as a point (or points, in the case of multivariate 

distributions) in an ^-dimensional Euclidean space. Then, if the probability 

density at any point is a function of the distance from the origin, the mean 

value of a function of the distance from the origin and of other geometric 

invariants of the system for Xj,yj,...,j=\,2,...,n satisfying the conditions 

'Z'lXj^ = 0,27^ = 0,..., will be the same as for the same function for inde¬ 

pendent variables in (n — l)-dimensional space. 

Consider now the distribution of the variance of a random sample of n 
items Xl,X2,...,Xn from the normal population 

00 < x < 00 

and let W= X2+ ■ • • +X2 = nS2, subject to Then from Lemma 

44The derivations in Sections 9.3 and 9.4 are essentially those of Kullback [193] and are 

reprinted with the permission of the Executive Secretary of the Institute of Mathematical 

Statistics. 
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9.3, the characteristic function of g(w) is 

1 

aV27r 
+ itx2 \dx 

n— 1 

= (l-2/0'(1/2X""1) (9.3.1) 

which is readily recognized (Table D.2) as the characteristic function of a 

chi-square distribution with n — 1 degrees of freedom. That is, 

(1 -2/r)("~1)/2 
dt (9.3.2) 

w(n-3)/2e-(w/2o2) 

(2a2)("~1)/2T[(n —1)/2] ’ 

(9.3.2a) 

If h(s2) denotes the p.d.f. of the r.v. S’2, it follows immediately from 

(9.3.2a) and the relationships W=nS2, dw = ndS2 (where dw and dS2 are 

differentials) that 

(n-l)/2 (S2y"~3)/2e-(ns2/2(j2) 

r[(n-l)/2] 
(9.3.3) 

9.4* THE DISTRIBUTION OF THE COVARIANCE 
OF A SAMPLE OF N FROM A 
BIVARIATE NORMAL POPULATION 

Let 

U= 2 XjYj, 
(\-p2)oxoyj=x 

where X} and Yj are r.v.’s having the joint p.d.f. 

(9.4.1) 

f(xj>yj)= 
'2-'lTOxOy\j\ — P2 

exp 
2(1 -P2) 

_ 2Pxjyj + yf 
oxoy 

°y 

— OO <Xj< 00, - oo <yj < oo 
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and U has p.d.f. g(u). Then the joint characteristic function of f(x-,y) is 

exp /oo r c 

/ 

1 

(1-p2) 

xj 2(1 +it)pxjyj^yj 

X A y '-'y 

2 iToxoy-\I\-p2 

If one now imposes the conditions 

and 2^ = 0 

and lets Sxy = 27x,_y,-, then 

U= 
npS xy 

(l-p2)axay ’ 

and the characteristic function of g{u) is 

(l-p2)(-"1)/2 

F,(g(u)) = 2/t , .A2l("-l)/2 
[l-p2(l+//)2] 

Then, 

,, (i-pT“,/2 

g(u)=-u-i_„ 

Now consider the integral 

= J_ r* 

2it 

[i-p2(i+//)2]<n_1,/2 

e “udt 

{[l-p(l+ //)][ l+p(l+ //)]} 
(«-1)/2 

and let 1 — p(l + //)= — pz/u; then 

j_ u(n-3)/2eu(P-\)/P /•_[(!-p)/p]„ + /oo_ 

(2nYn l^22iri -\(l-p)/p]u~iao (— zYn 

e Zdz 

dxjctyj 

(9.4.2) 

dt. (9.4.3) 

(9.4.4) 

(2pfn l)/^227ri -'-[(i-p)/p]w-/'oo ( — z)(n 1)^2(1 +zp/2ufn 1)//2 

(9.4.5) 
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Since it can be shown that 

lim 
Z-+ 00 ( — z)(" - !>/2( 1 + zp/2uY" ~ v>/1 

the integral is convergent and is expressible as 

-M(»-3)/2e»(P-l)/P ,(Q+)_e~zdz_ 

(2p)(”-1)/227n ( —z)("_1)/2(l +zp/2m)(”_,)/2 * 

where /(”+) indicates that the path of integration starts at infinity on the 

real axis, encircles the origin in the positive direction, and returns to the 

starting point (see, e.g., ref. 402, pp. 239, 333). Note that (1 —p)/p<2/p, so 

that the point z— -2p/up is outside the contour, in which case 

1 r(o+)_e Zdz_^ 

Joe {-zfn~X)/\\ + zp/2u){n~X)/2 Z 

eu/p r(n ~(n~2) 2u\ 
T[(n —1)/2] 1 1 \ 2 ’Pj’ 

(9.4.7) 

where XFX (a,c,z) is the confluent hypergeometric function defined in 

Appendix D.2. Furthermore, since ,F, (0,m,z)= lF[(0, — m,z), (9.4.3) be¬ 

comes 

uSn -9/2e 

*<«)-( i-p2)'"-"72- 
-l)/2 

(9.4.8) 

If one now begins with the definition 

f°°e-*'(t2-ir-(1/2)dt 

2m^m + \ 1 

for the Bessel function of the second kind and imaginary argument, it can 
be shown that 

Km(x) = VTT X 1/22 1/21F1(0,m,2x), 
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so that 

£(w) = 

(iV)‘"-1)/V”-1 2 3>/Vk(,,_2)/2(|) 

Vi 

Finally, setting 

v-a. 
p 

nS 
xy 

(1 ~P2)axay ’ 

one finds the p.d.f. g(v) of the covariance V to be 

(1 - ~ l,/2e"‘v("^2K(,.2)/2( v) 

VtT 2(”_2)/2r[(n _ 1)/2] 

which agrees with the results of Pearson et al. [281]. 

g(v): 

(9.4.9) 

(9.4.10) 

9.5 THE DISTRIBUTION OF LINEAR FUNCTIONS 
OF NORMAL VARIABLES 

Authors of textbooks in elementary mathematical statistics or probability 

theory usually prove that linear combinations of independent normally 

distributed r.v.’s are normally distributed. Because of this, it is often 

loosely stated that “linear combinations of normally distributed r.v.’s are 

normally distributed.” It is true, of course, that if the summands have a 

multivariate normal distribution, linear combinations of these r.v.’s are 

also normally distributed [313]. However it is not difficult to cite examples, 

as several authors have done [313,175,4,141], of linear combinations of 

normally distributed r.v.’s that are not normally distributed. 

More specifically, if U and V are normal i.r.v.’s, it is well known that 

U+ V is also normally distributed. Conversely, a well-known theorem of 

Cramer [73] states that if U, V are independent and U+V is normal, each 

U and V must be normal. If, however, the assumption of independence of 

U and V is dropped, one could, as Kale has shown, have the following 

possibilities [175]: 

1. U and V are marginally normal and U+V is also normal. 

2. U and V are marginally normal but U+V is not normal. 

3. U and V are marginally not normal but U+V is normal. 



DISTRIBUTION PROBLEMS IN STATISTICS 344 

For a proof of these results, the reader is referred to the paper by Kale, 

who points out that situation 1 is readily verified, but situations 2 and 3 are 

not easy to come by. Rosenberg [313] has given an example of 2 but not of 

3. Ferguson [101] notes that most textbook examples of (U, V) marginally 

normal but not jointly normal are examples of case 2. Because of this, Kale 

[175] considers a class of p.d.f.’s that are useful in demonstrating both 

situations 2 and 3. His approach, utilizing the characteristic function, is to 

construct an example of r.v.’s X, Y that are both normal but are such that 

no linear combination aX+bY, (ab0) is normal. Further examples are 

given by Behboodian [24], Albert and Tittle [4], and Ruymgaart [317]. 

9.6* THE BEHRENS-FISHER DISTRIBUTION 

It is well known that when one uses the Student-Fisher t test to determine 

whether two sample means came from normal populations whose means 

differ by a stated amount, he must assume that the variances of these 

normal populations are identical. If this assumption is not satisfied, the t 

test is not valid. 
Various alternative tests—both exact and approximate—have been sug¬ 

gested for use when the population variances are not identical. The best 

known of these tests is probably the Behrens-Fisher / test [161]. It utilizes 

the d statistic defined by 

d=/,sin# — t2cos9, (9.6.1) 

which is the weighted difference of two independent t variables with 

different degrees of freedom vx and v2, and was first obtained by Behrens 

[25] in integral form. In 1935 Fisher [106] verified this result and extended 

Behrens’ theory. A table was constructed by Sukhatme [372] in 1938 

covering values of vx and v2 at 6, 8, 12, 24, and oo and values of tan# for 

@ = 0°(15o)90°. A few years later Fisher [107] derived asymptotic expan¬ 

sions for calculating the probabilities in any specific case and provided a 

further set of tables for the cases when either vx or v2 is small and odd. 

Ruben [316] attempted, with partial success, to obtain the exact distribu¬ 

tion of the ^-statistic. He succeeded only in expressing it in integral form 

while interpreting the ^-statistic as the ratio of two i.r.v.’s, the numerator of 

which is a /-variable and the denominator a function of a beta variable. He 

then gave explicit forms of the distribution of the ^-statistic as a finite or 

infinite series involving incomplete beta function ratios or incomplete 

gamma function ratios for the particular cases in which (1) vx = v2 with 

0 = 45° and (2) one of the components is normal. 
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Several years after Ruben published his results, Rahman and Saleh [299] 

used characteristic functions to estabhsh that the p.d.f. of the ^-statistic 

can be written in several equivalent integral forms, and at least one of 

them is recognizable as an Appell function. Specifically, they noted that 

the characteristic functions of the two i.r.v.’s tk, k= 1,2, in (9.6.1) are 

«#>*(*)=( exp (itkx)f(tk)dtk, k= 1,2 
J — no 

where 

/('*) = 

V"*# t) 1 + — 
("* + 0/2 

k=\,2, 

so that the characteristic function of the ^/-statistic (9.6.1) is expressible in 
the form 

4>(x) = <£,(.* sin0)4>2( — *cos0) 

«)■«) 

where and K„2/2(a2x) are modified Hankel functions, while 

a\ = -xsin#, a2=W2 xcos9 and B2(\,k/2) is the familiar Beta func¬ 

tion. [See Equations (4.4.42a, b).] They then inverted this characteristic 

function and expressed the resultant p.d.f. of the ^-statistic in terms of an 

Appel function which lends itself to easy computation of the tail probabil¬ 

ity for any pair (vuv2) degrees of freedom. In particular, after considerable 

detailed analysis, they established the fact that the p.d.f. of the ^/-statistic 

(9.6.1) is expressible in the convergent form (where t is written for d) 

XT’, 
*1+1 — (^1 -+ ^2) *l + *2+l 

2 ’ 2 ’ 2 

vx + v2 + 2 

(9.6.2) 
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where r, are functions of t [299] and Fx {•} denotes the Appell function 

Fx(a,p,/3',y;x,y)= 2 
m, n 

= r. r Cu°-'(\-ur‘-\\-ux)-l‘(\-uy)-l3du. (9.6.3) 
r(a)r(y — a) A) 

As Rahman and Saleh point out, in the special case v x = v2 = v, the p.d.f. of 

the ^-statistic becomes 

where 2Fx(a,b; c,x) is the ordinary hypergeometric function defined in 

Appendix D.l. This leads directly to Ruben’s result [316] for the special 

case p, = v2=v and 0 = 45°. 

Unfortunately, as Rahman and Saleh note, the distribution function of 

the ^-statistic does not seem to be expressible as a single special function in 

the general case. They go on to state that the distribution function can be 

written as an infinite series of Appell functions, but without presenting the 

series. 

Chapman [49] derived a series representation for the characteristic 

function of Wn n when n is an odd integer and indicated briefly how one 

might obtain the corresponding p.d.f./„ „(u>) from this, where 

wm = u- vn m,n m n 

and Um, Vn are classical t variables with m>0 and n>0 degrees of 

freedom. Ghosh [120] gives formulas and values of the percentage points 

and the incomplete probability integral for the distribution of the sum 

Um + Vn or difference Um - Vn of two independent t variables. 

Confidence limits and approximate solutions to the Behrens-Fisher 

problem have been developed by various workers (e.g., Scheffe [321, 322] 

and Murphy [265]). In particular, Lee and Gurland [202] have developed a 

technique for obtaining the size and power of a wide class of tests, 

including virtually all those appearing in the literature on the Behrens- 
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Fisher problem. Similarly, Scheffe [322] discusses some six solutions (both 

exact and approximate) of the Behrens-Fisher problem in terms of interval 

estimation and testing. Included in his discussion are approximations for 

the power of three of these tests that he prefers and judges to be practical. 

9.7 DISTRIBUTION OF THE PRODUCT 
AND QUOTIENT OF ORDER STATISTICS 

If the r.v.’s Xl,X2,...,X„ are rearranged in ascending order of magnitude 

^(i)<X(2), 

then *(0 is called the ith order statistic, /= 1,2,...,«. The unordered r.v.’s 

Xj are usually—but not necessarily—statistically independent and identi¬ 

cally distributed. In contrast, the ordered r.v.’s X^,i = 1,2are neces¬ 

sarily dependent. Although the distributions of products and quotients 

found in the literature deal primarily with i.r.v.’s, the distribution of the 

product and quotient of the extreme order statistics A(1), X(n) and that of 

consecutive order statistics, A((), A(/+I) are often found useful in ranking 

[129] and selection [130] problems. 

Subrahmanian [371] has derived the distribution of the product and 

quotient of order statistics from a uniform distribution, and some of the 

results are summarized in this section. He has also derived the distribution 

of the product and quotient of order statistics from a negative exponential 

distribution (Exercises 9.9 and 9.10). In a paper recently submitted for 

publication, Trudel and Malik [236] have derived the distribution of the 

product and quotient of order statistics from Pareto, power and Weibull 

distributions. The results for the Pareto and Weibull distributions are 

stated (with the permission of the authors) in Sections 9.7.2 and 9.7.3. For 

proofs of these results, the reader is referred to the paper by Trudel and 

Malik. 
For convenience in future reference, the reader is reminded that the 

joint p.d.f. of the z'th and yth order statistics V(/>0 ^ 1 <7 </j) is 

[76, p. 9] 

= (/- i,!(y-/-i)!(/!-y)! [1 

X [ 1 -F(Xj)]"-Jf(x()f(xj)}. 

(9.7.1) 

where f(x) is the p.d.f. of the r.v. X. 
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To obtain results for products and quotients of extreme order statistics, 

one merely sets / = 1 and j = n in the general formulas for /th and y'th order 

statistics. 

9.7.1* Distribution of the Product and Quotient of 
Order Statistics from the Uniform Distribution 

Let X(l)X<j) be the /th and yth order statistics based on a random 

sample of size n from the uniform distribution over the interval (0,1). The 

joint p.d.f. of X^ipXy) is then [371] 

*(*<«.*</>) (;—l)!(y— 

X (1 — x(j)) - x(l)y ' 1, 0<x(f)< x(y-) < 1 

and zero elsewhere. The Mellin transform of (9.7.2) is 

, n! r(s1 + i-l)r(s1 + s2+J-2) 

~ (i - 1)! r(jj +j- l)r(j, + s2 + n - 1) • 

(9.7.2) 

(9.7.3) 

Putting Sj = s2 = t, one obtains the Mellin transform of the p.d.f. h(y) of the 

product Y = X(i)Xyy of the /th and yth order statistics, namely, 

Mt(h(y)) = 
n\ T(/ + / — 1)T(2/ +j — 2) 

(/-!)! T(/+y —l)T(2/ + n—1) 
(9.7.4) 

The inverse of the transform (9.7.4) is (see Consul [61]) 

h(y) = --n'y0/2> -(i_yy-< Y 
W 2(,'-l)!(„-»!0w)!1 A1 ’ \ kV 

k/2 

iFi 
• . j + k . , . . , , 
j-i, —z-i+\\j —1 + \\ 1 —y 0<y<l 

= 0 elsewhere. (9.7.5) 

In (9.7.5), 2Fx(a,b,c,w) is the well-known hypergeometric function (Appen¬ 
dix D.l). 
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If / = 1,7 = n, (9.7.5) becomes the p.d.f. of the product of extreme order 
statistics, namely, 

1 ri 1 n-l,-;n;\-y 0<y < 1. (9.7.6) 

To obtain the Mellin transform of the p.d.f. g(v) of the quotient 
V=X(i)/X(J), one simply sets st = t, s2= -1 + 2 in (9.7.3) so that 

M,g(v) 
Q-I)!r(i+/-1) 

(9.7.7) 

The inverse of (9.7.7) is then seen to be [95 (20), p. 349] 

w) 
g(v) = mw-i) :-—v‘ '(l-u)7 ' \ 0<U<1. (9.7.8) 

9.7.2* Distribution of Product and Quotient of 
Order Statistics from a Pareto Distribution 

The p.d.f. and c.d.f. of the Pareto distribution are, respectively, 

f(x) = vavx~^v+X) 

and 

where x> a and a,v>0. The joint p.d.f. (9.7.1) then becomes 

J-i-l 

g(X( i), *U)) = kv2alvx{ijv+X)xu\v+X) 

xw-m° 

where jc(f) < x(j), x(i) > a, 0 < / < j < n, a > 0, v > 0, and 

X:\-e 

-(?) 
»-i 

n-j 

k = 
n\ 

(/ — 1)! 0 — / — 1)! (« —y)! 

The p.d.f. h(y) of the product 

(9.7.9) 

Y-X(iyX(j) 
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is then [236] 
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r=0 s=0 \ r S / 

1nn2v(r+n~j+ O n'.va 

(/ —\)\{j—i—\)\{n—j)\{2r + n + i—2j — s+\) 

( \—v(2r + n + i — 2j—s+\) 

Vv” / 

,yV(J-r-n-l)-l 1 

where 0 < / <j < n, 0<u<co, and a, v > 0. Similarly, the p.d.f. h(u) of the 
quotient 

U= 
X<0 

is [236] 

h(u) = — 
V 7 avB{n-j+\,j-\) 

u 

with 0< i<j < n,0< u < l,a,u>0. 

9.7.3* Distribution of the Product and Quotient of 
Order Statistics from a Weibull Distribution 

It is well known that the p.d.f. and c.d.f. of the Weibull distribution are 
expressible, respectively, in the forms 

/(*)= ^x“_1exp( —|-j, x,a,9 >0, 

F(x)=l-exp|—x,a,6> 0. 

Let Xi0 and xu> be the zth and yth order statistics (/ <j) for a random 
sample of size n drawn from this Weibull population. Then the joint 
distribution g(x(/),xw) of these order statistics is given by 

II ■~s 

''So £
 

X
 

c
 a 1 

o
 

X
 

1
-

 

1 / — x (0 \ 1 
/- ! 

1 exp( 9) 

7-1-1 
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where 0<x^<x^<co, 0<i<J<n, a,9>0, and k is given by (9.7.9). 
Again, letting 

Y Xn)X(j), i<j 

and 

X(i) 
i<j, 

AU) 

Trudel and Malik [236] establish that the corresponding p.d.f.’s are, respec¬ 
tively, 

+ w 

1 — exp 
— 

9 

i— 1 f ~(ya/2w) ) 

6XP(-— j 

•expi 
w9 

j-i- 1 

dw,0<i <j <n, 0<u < oo,a,9 >0 

and 

am-*'s' sVirf-'-'K'T1) 
r=0 5=0 \ r J\ s J 

■aua~l[(n—j + r+ l) + (y — i — r + i)«“] ~2, 

where k is given by (9.7.9). Note that for a = 1 one obtains the p.d.f.’s h(y) 

and h(u) of the product and quotient of order statistics for an exponential 

9.7.4 Approximations to the Distributions 
of Order Statistics 

Tiku and Malik [378] have obtained approximations to the distributions of 
order statistics based on the chi-square and t distributions, which are easy 
to compute and provide reasonably accurate values for the percentage 
points and probability integrals of the distributions. For a discussion of the 
derivation of these approximations, the reader is referred to their paper. 
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9.8* BESSEL FUNCTION DISTRIBUTIONS 

It is interesting—and somewhat surprising—that Bessel function r.v.’s play 
a rather important role in statistics. In the first place, a number of 
important and well-known distributions [190] are Bessel function distribu¬ 
tions, mostly of types I and II. Specifically, as we show later, the rando¬ 
mized gamma, chi-square, and noncentral chi-square distributions are 
special cases of the type I Bessel function with p.d.f. 

f(x,p,6,\) = Cx^-W2e-ex'Ix_1(pV^), x>0, (9.8.1) 

where 

C = 9 >0,A>0, p>0 (9.8.2) 

and /„ is the modified Bessel function of the first kind given by 

/ (w)= y (9.8.3) 

Similarly, the chi, noncentral chi with two degrees of freedom, Rayleigh, 
and folded normal [166, p. 93] are all special cases of the type II Bessel 
function with p.d.f. 

g(x,/3,9, X) = Dxxe ~ (fe2)/24 _, (fix), x>0, (9.8.4) 

where 

D = (^)A 9>0, A>0, p>0 (9.8.5) 

and I„(w) is defined as in (9.8.3). Moreover, various other distributions fall 
into the Bessel function categories,, as, for example, radial distributions in 
engineering [251], distributions associated with military operations research 
problems involving radar discrimination [255], and distributions used in 
the analysis of urban population problems [399]. Several distributions 
encountered in “randomization,” such as randomized gamma distribution 
and distributions arising in connection with first passage problems in 
stochastic processes [100], are special cases of the Bessel function distribu¬ 
tions. 

The section that follows gives the distributions of sums, differences, 
products, quotients, and linear functions of type I Bessel i.r.v.’s, as well as 
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the distribution of products and quotients of type II Bessel i.r.v.’s, citing 
important special cases relevant to distributions in statistics. The results 
are essentially a summary of those given in a paper by Kotz and Srinivasan 
[190] and are presented here45 because this paper is not readily available. 

9.9 DISTRIBUTION OF SUMS, DIFFERENCES, PRODUCTS 
QUOTIENTS, AND LINEAR FUNCTIONS OF BESSEL 
FUNCTION INDEPENDENT RANDOM VARIABLES 

Bessel functions are closely related to a number of important distributions 
in statistics. For example, several common distributions in statistics will be 
seen to be special cases of type I and type II Bessel function i.r.v.’s. Also, 
the reproductive property of type I Bessel i.r.v.’s will be noted. This 
property, together with a knowledge of the distribution of the product and 
quotient of type I and type II Bessel i.r.v.’s, provides a direct means of 
readily obtaining the distribution of sums, differences, products, and 
quotients of certain important i.r.v.’s (such as chi-square, noncentral chi- 
square, and Rayleigh r.v.’s) which are special cases of type I or type II 
Bessel function r.v.’s. The results in Sections 9.9.1-9.9.9 are due primarily 
to Laha46 [195] and Kotz and Srinivasan [190]. 

9.9.1.* The Distribution of the Sum and Mean 
of n Bessel Type I Independent Random Variables 

The p.d.fof a Bessel type I r.v. as defined by Watson [392] has 
been given in (9.8.1). (Throughout this section, for simplicity, this p.d.f. is 
denoted by Its characteristic function is, by definition, 

^ (/(*))= [a°ei,xf(x)dx 
Jo 

(9.9.1) 

Putting t = 0 and noting that 

Fo(f(x))= f f(x)dx=l, 
Jo 

45With the permission of the Editor of the Institute of Statistical Mathematics, Tokyo. 

46The results obtained by Laha in Sections 9.9.1 to 9.9.9 were derived by him in a paper 

entitled “On Some Properties of Bessel Function Distributions,” Bulletin of the Calcutta 

Mathematical Society, Vol. 46 (1954), pp. 59-71, and are given here with the permission of the 

Editor of that journal. 
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one has 
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(IP 0xe P2/46 = const. (9.9.2) 

Thus the distribution of the Bessel r.v. X will be given by 

V A— 1 

^W = (4) " (9.9.3) 

so that the corresponding characteristic function becomes 

^ (/(*)) = (l“f) exP 
402(\-it/9) 

(9.9.4) 

Also, since the r.v.’s are independent, the characteristic function of the 
p.d.f. g(w) of the sum W— Xx +X2 + • • • +Xn is 

nf, (/(*,)) 

= (1 — </)Alexp 
<t/3o 

4(1 - it) 
(9.9.5) 

where 

A0= 2 K 
7=1 

&2= 2 A2- 
7=1 

Laha [195] inverts this characteristic function to obtain 

g(W) = (^) exP| - w- - j- }7Xo_i(PqWx/2), (9.9.6) 

which is seen to be a type I Bessel function. Thus he has established the 
reproductive property of type I Bessel i.r.v.’s, which for convenience in 
future referencing is stated below in theorem form. 

Theorem 9.9.1. The distribution of the sum of n type I Bessel i.r.v.’s is a 
type I Bessel r.v. 
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Laha also used the characteristic function to establish the following 
corollaries to Theorem 9.9.1 [195]. 

Corollary 9.9.1a. The distribution of the mean of samples of n i.r.v.’s 
drawn at random from a type I Bessel population is a type I Bessel r.v. 

Corollary 9.9.1b. The sampling distribution of the mean of n i.r.v.’s drawn 
at random from a gamma population is a gamma distribution. 

Corollaries 9.9.1a and 9.9.1b were previously derived by Bose [33] and 
Irwin [158], respectively. 

9.9.2* The Distribution of the Sum of 
p Noncentral Chi-Square Independent Random Variables 

Theorem 9.9.2*. The sum of p noncentral chi-square i.r.v.’s with parame¬ 
ters 82 and with rij degrees of freedom (J=l,2,...,p) has a noncentral 
chi-square distribution with parameters 5 2 = 2(5/ and with « = 2(n/ de¬ 
grees of freedom. 

As Laha [195] points out, once it is established that the distribution of 
the noncentral chi-square r.v. is an I-type Bessel function (as Section 9.9.7 
points out), Theorem 9.9.2 follows from the reproductive property of type I 
Bessel r.v. Tang earlier (1938) established this reproductive property of the 
nonc^ntral chi-square r.v. by another method [374]. 

9.9.3* The Distribution of the Difference of Type I Bessel 
and Gamma Independent Random Variables 

Theorem 9.93. The distribution of the difference of two type I Bessel 
i.r.v.’s is expressible in terms of Whittaker functions. 

Laha establishes this theorem by finding the distribution of the dif¬ 
ference U=Xx — X2 of two type I Bessel i.r.v.’s Xj with p.d.f.’s 

f(xj) = constxfr l)/2e xJl^_x(pjxJ/2), j= 1,2. (9.9.7) 

To avoid unnecessary complication, he considers the case for which 
P\ = Pi~ P\ the Fourier transform of the p.d.f. g(u) of the difference 
u = xx — x2 then becomes 

Ft{g(u)) = e /?2/2exp 
P2 

(l-it)~Xl(l + ity\ (9.9.8) 
2(1 + //)(! — //) 
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Inversion of the Fourier transform (9.9.8) is expedited by using the 
substitution 1 — it = — z/u and expanding the exponent in the resultant 
integrand as a power series in u. 

Utilizing the facts [402, p. 340] that 

1 r-u + iao__j- - eu(2U)0/2)(X2~X,) 

I™ J-ti-ioo (-z)x' + r(\ + z/2u)x>+r 2 r(\i + r) 

X ^l/2(A,-X2),l/2(l-A,-A2-2r)(2w) 

(9.9.9) 

and that WK m(u)= WK _m(u), where WK m(u) is Whittaker’s function, one 
finds that the inversion of the characteristic function (9.9.8) yields 

g(u) 

e 
p2 Xl+X2 _ 

2 
2<XI + 7)/2 

£ /32rur 

r=o rir(X, + r)22r 

X ^l/2(X, -X2), l/2(rf, + A2 + 2r — l)(2w), (9.9.10) 

which establishes Theorem 9.9.3. 
For the particular case Xx=X2 = X, the relationship 

/ 2u \ 
Km(u) 

holds, where Km(u) is the modified Bessel function of the second kind 
(Appendix D.l), in which case (9.9.10) reduces to the form 

gO) e 072 
m(1/2)(2X -1) 

2(1/2)(2A—1) 
Vtt r=o r!r(A1 + r)22r 

(9.9.11) 

Corollary 9.9.3a. The p.d.f. g(u) of the difference U=Xx — X2 of two 
gamma i.r.v.’s Xx and X2 is expressible in terms of Whittaker functions. 

As Laha points out, this result follows immediately by letting /?.-»0 in 
(9.9.7), in which case (9.9.10) reduces to 

m(1/2)(2A-1) ! j 

2(I/2)(2A_1) tt1/2 T(\) '^A~0/2)(w) (9.9.12) 

and becomes the p.d.f. of the difference of two gamma i.r.v.’s. 
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Corollary 9.9.3b. The distribution of the difference of a type I Bessel 
variate and a gamma variate is expressible in terms of Whittaker functions. 

Laha establishes this corollary by putting /?, = /? and /S2 = 0, thereby 
obtaining the characteristic function of the p.d.f. g(u) of the difference 
U= Xl — X2 of type I Bessel and gamma i.r.v.’s: 

f,(*(«)) = e“',V4exp—+ (9.9.13) 

As before, he utilizes the transformation \ — it= — z/u, expands the expo¬ 
nent in the inversion integral, and integrates termwise (which is permissi¬ 
ble, since the series is uniformly convergent), the result being 

g(u) = e p2/A 
u(\/2)(\,+\2)-l 00 / /3\2r( uy/2 

2(I/2)(X, + X2) ,!(!)(!)' 
X 

1 
/•!r(X, + r) ^i-^+'-)/2,(xl+x2+r-i)/2(2«), (9.9.14) 

which establishes the corollary. 
Laha notes that in the particular case when A1=A2=X, the density 

function (9.9.14) reduces to 

g(u) = e P2/4- ux~l v (P\2r(uY/2 1 
2a !(!)(!) r!T(A + r) 

^(l/2)r,(l/2)(2X-l + r)( 2u)t 

(9.9.15) 

and for A=|, the p.d.f. (9.9.14) simplifies further to become 

hri^r(fPwe-o. (9.9.16, 
V27TU r = 0 (2r)! 

9.9.4* The Distribution of a Linear Function of 
Type I Bessel Independent Random Variables 

Let Xj be m type I Bessel i.r.v.’s with p.d.f. f(xj) as given by (9.9.7), 
j= l,2,...,m. One seeks the p.d.f. g(u) of the linear function 

u = /(/,*,+ /2x2 + ••• +lmxj, (9.9.17) 

where, without loss of generality, one may assume that lj > 1 for every j. 
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From (9.9.4) it follows that the characteristic function of f(x) is 

oo R2r 

j= 1,2,....m, (9.9.18) 
r=o 2 r\ 

so that the characteristic function for the p.d.f. of g(u/l), where /2 = 

27=,//, is 

Ft 

m 00 

n e-#/4 2 
r = 0 22V! 

(i-'V) 

= exp 
"y-. 4 

ft 
2 rm 

m 

n 2lr'+ "+2r’"r,' • • • r > ri,r2,...rm = 0 ^ '1- ’m- 

(1 - //, /) “(A| + ri) • • • (1 - ilm t) ~(x"+rm). (9.9.19) 

Inverting this characteristic function, Laha establishes the following theo¬ 
rem. 

Theorem 9.9.4. The p.d.f. g(u/l) of the linear function (9.9.17), /, > 1 for 
every j, is 

2rm 
w 

,,^=0 22r,++2r",r1!'"rm\ 

2 ar 
U'\u/l) 

J.j{\j + rj) + r-\ 

r = 0 r(A,+X2+ • • • +\„ + r, + • • • + rm + r) 
(9.9.20) 

Corollary 9.9.5. The p.d.f. g(u/X) of a linear function (9.9.17) of gamma 
variates, where Xj has p.d.f. 

f(*j) T(l) 
xj ]e XJ, 0 < x < oo and lj > 1 

is 

e-u/\u/lf'+'+K' + r~x 

F(A,+ • • • + \„ + r) 
0<n< oo, 
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where 

and 

ar = 2 
r, + r2+ • • + r„ 

[a,r“ 2 r. a„ 

a =l~ih+rj) V + rj + r 0 2 
r = 0 r\ 

This corollary follows immediately as the special case of Theorem 9.9.4 
for which fy: = 0J = 1,2,..., m. 

Exponentially Correlated Gamma Variables 

Corollary 9.9.5 pertains to linear functions of independent gamma r.v.’s. 
Kotz and Adams [189] point out that the distribution of the sum of 
correlated gamma variables has many applications in engineering, 
meteorology, and insurance [188,138,387,399] and therefore merits study. 
Gurland [138] has derived the distribution of a correlated sum of gamma 
r.v.’s when there is a constant correlation between each pair of variables in 
the sum. Kotz and Adams extend this result for the case of “an exponen¬ 
tial autocorrelation scheme” between the variables, where each one of the 
variables has the marginal density given by 

f(x)=[T{r)9r]~xe-x/exr-\ x>0 

= 0, jc<0. (9.9.21) 

They derive the distributions of the sum of such correlated gamma 
variables by utilizing the characteristic function. Specifically, they derive 
the distribution of the sum of identically distributed gamma r.v.’s corre¬ 
lated according to an “exponential” autocorrelation law 

Pkj = Plk~jl (k,j=l,2,...,n), 

where pkj is the correlation coefficient between the &th and the y'th random 
variables and 0 < p < 1 is a given number. 

To derive this distribution, they began by considering the characteristic 
function 

4.t.)-\i-mr\-r. 
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where 6 and r are positive constants, I is the nXn identity matrix, T is the 
nXn diagonal matrix with the elements ^ = tj, and V is an arbitrary nXn 

positive definite matrix. This characteristic function leads to a joint p.d.f. 
whose marginals are given by (9.9.21) and whose matrix of second mo¬ 
ments is some positive definite matrix, denoted by V*. If the elements of V 

are given by vij=p^,~J\ ij —1,2,...,n, it is readily verified by differentiat¬ 
ing the foregoing characteristic function that the correspond¬ 
ing elements of V* will be given by 

v* = r02p2\‘ j\ ij= 1,2,...,«. 

The characteristic function of the distribution of the sum of the random 
variables whose joint distribution has the characteristic function 

<f>(tvt2,...,tn) is 

<p(t) = \I— iOtV\~r, 

which is expressible in the form 

<j>(t) = II {\ — iQ\jt)~r, (9.9.22) 
j=i 

where the Aj are the characteristic roots of the matrix V. 

The distribution function of the gamma variable with positive parame¬ 
ters r and 6, denoted here by Fr(-), is given by 

Fr(x) = 
1 

0T(r) 
-"/V-1 du, 

= 0, x < 0. 

x>0 

Let Y be the r.v. whose characteristic function is given by (9.9.22). Then Y 

has the same distribution as the r.v. 

x= 2 XjXj, 
7 = 1 

where XjJ = 1,2,_,« are identically distributed i.r.v.’s, each following the 
aforementioned gamma distribution Fr(x) with parameters r and 9. Using 
a method developed by Pitman and Robbins [310] and a theorem estab¬ 
lished by Box [36, Theorem 2.3] Kotz and Adams then readily obtain the 
distribution function of Y, namely, 

P[Y<y} = 2 C*F„+J£r) 
/c = 0 VA ' 

= 2 
*=o 9T(nr + k) r«)' 
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where A* = min, A, and the coefficients ck are determined by the identity 

n 
7=1 

= 2 ckz> 
k = 0 

The upper bound on the error of truncation, given by Pitman and Robbins 
[310], is 

0<Pr (Y<y)~ 
pi pi 

p i 

Kotz and Adams show that the characteristic roots \j(J = 1,2,...,«) of the 
matrix V={p^‘~^} can be calculated from the formula 

Ay = (1 - 2pcosQj + p2) ^l-p2), j=l,2,...,n, 

where Qj are the values that satisfy one or the other of the equations 

sin| y = p sin | j# 

and 

cos | J# = p cos| J 9. 

9.9.5* Distribution of the Product of Two Type I 
Bessel Independent Random Variables 

As already stated, a random variable X is said to have a type I Bessel 
function distribution if its p.d.f. f(x) is given by (9.8.1), where /„(w) is the 
modified Bessel function of the first kind defined in Appendix D.l. The 
Mellin transform of f(x) is 

Ms(f(x)) = cfC°xs-lx^-^2e-0xIx_i{l3V^)dx. 
Jo 

On substituting the series expression (9.8.3) for Ix_x((3Vx ) and integrat¬ 
ing termwise (since the series is clearly uniformly convergent), one obtains 

Ms(f(x))=C 2 
m = 0 

(/3/2)2m+x~l 

m\T(m + X) 

— 9x^s + m + \~2 dx 

e~p2/M °° [ f3/(2V0 )]2mr(5 + m-l-A— 1) 

0S~X m?0 m!T(m + A) 
(9.9.23) 
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Consider now the product Y=XxX2 of two type I Bessel function i.r.v.’s 
Xx and X2, and denote the p.d.f. of Y by h(y). Then 

M,(*W)=«,(/(^i))A<,(/W) 

exp {-[/3f/(49l)]+/3i/(402)} °° [ /^i/(2V^7 )] TCs + fc+Xj-l) 

(9x92) 
s— 1 

k = 0 k\T(k + Xx) 

2 
w = 0 

[/)2/(2V^)]2”r(S + m+A2-l) 

m\T(m + A2) 

20-0 
00 J J [i8,/(2V^)l '[A/(2V^)1 

= C(9v92,^,M 2 2 ..A' 
7=0 i-o *!(/- l)!T(i + XI)r(y-1+X2) 

• r(.s+i+Aj — i)r(.y +j—i+\2— i), 

where 

exp{ ~ [ P\ /{^9x) + /{492)Y) 
C{9x,92,px,p2,s)=--—-— • 

(W1 

Kotz and Srinivasan [190] have evaluated the inversion integral 

(9.9.24) 

1 rc + i oo 

h(y)=2rif_- y~SMs(h(y))ds (9.9.25) 

over the Bromwich path (c-/oo,c + ioo), consisting of any line parallel to 
the imaginary axis and lying within the strip of analyticity of Ms(h(y)), to 
obtain the desired p.d.f. of the product variable y. Their evaluation of the 
inversion integral above centers primarily about the evaluation of the 
integral 

1 rc + ica y ^r(5 + i + Aj — l)r(j +j — i + X2 — 1) l rc+ 

2 m Jc_, 
ds, c> 0. (9.9.26) 

(W1 

Letting u=y9x92, they reduce the integral (9.9.26) to the form 

9\92 rc+ico 

-j— u-sT(s + i+Xx-l)T(s+j-i+X2-l)ds, (9.9.27) 

which can now be evaluated by using a table of integral transforms [95 
(17), p. 349] and becomes 

2»,#2»<^«.^-«/^(1,_x>+2,_7)/2(2VS), (9.9.28) 
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where Kv(x) (tabulated in ref. 2) is the modified Bessel function of the 
third kind (Appendix D.l). Kotz and Srinivasan now complete the evalua¬ 
tion of the inversion integral (9.9.25), the resultant p.d.f. is 

h{y) = 2 exp 
Pi + Pi 
49x 4 e2 

(Xi-t-X2) 

X(9x62) 2 y 
A,+A2-2 00 

2 
J-0 

l [(P,Ve2 )/(P2V», )}2,Kh-w-j(2VeA^) 
h -!0-i)!r(i+x,)ro-i+x2) 

y > 0. (9.9.29) 

9.9.6* Distribution of the Quotient of Type I 
Bessel Independent Random Variables 

To derive the p.d.f. g(v) of the quotient V=Xx/X2 of two type I Bessel 
i.r.v.’s, Kotz and Srinivasan [190] express the Mellin transform of g(v) in 
terms of the Mellin transforms of the density functions Xx and X2: 

M,(g(v)) = MAf(x<U(9-9.30) 

Applying (9.9.23) to the right-hand side of (9.9.30) gives 

[/y^V^fTv+fc+x.-i) 
*(»)) = exp { - K + R 

49} 492 2 
k = 0 k\T{k+\x)9{ s— 1 

| [ft/(2V0)];T(-j + m+X2+l) 

m — 0 m\T(m + \2)92 1 — s 

= exp' L [ Pi , Pi 1 If P2 
\ 

49X 492 
. (2 ) . 

2j 

i = 0 

p ,yp2 

p2V«, 
2 i 1 

i! 0 - i)! r(i + X, )r(y - i+X2) 

X 
r(5+/+Aj — i)r(—s +_/_ /+A2+1) 

9SX~X9X~S 
(9.9.31) 
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Kotz and Srinivasan accomplished the inversion of the Mellin transform 

(9.9.31) by noting that 

i rc+ioo r(s + / + A, — l)r( — s+j— i+A2 + 1) 
/ y-s---ds 

Z7TI Jc — icc #r'«: 
1 —s 

(9.9.32) 

which is seen [95 (15), p. 349] to be equivalent to 

0, (yd iV+x,~1| 
^-r(A, +X2 +/)( 

9, 
1 + 

y9\ 

9, 

- a i a 2 y 

Using this result, they then completed the inversion of the Mellin trans¬ 
form (9.9.31), obtaining 

«(*>)= 
exp{ - [ j8,2/(49,) + ftVW] }/■-'», 

(0,.y + f>2)x'+x’ 

“ /ft\*r(\,+*2+/) x //*, V“_/_ 

ff0\2/ (oiy+e2y £<\M i!0-/)!r(i+x,)ro-/+x2)’ 

y > 0. (9.9.33) 

9.9.7 Special Cases of Type I Bessel Functions 

Kotz and Srinivasan [190] have identified the following distributions as 
special cases of type I Bessel functions. 

Chi-Square distribution 

Setting /3 = 0, X=n/2, and 9 = \ in (9.8.1), one obtains the well-known 
chi-square p.d.f. with n degrees of freedom (cf. Table D.2, probability law 

5). 

Distribution of Product and Quotient of 

Two Chi-Square Independent Random Variables 

Setting /?! = /?2 = 0, Xx = nl/2,X2-n2/2,9x = 92 = \ in (9.9.29) yields the 
p.d.f. h(y) of the product Y—XxX2 of two independent chi-square vari- 
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ables with nx and n2 degrees of freedom, namely, 

h(y) = 
-v[("./4)^(-/4>-')a-(„_.j/4(Vj.) 

2[(n\ + n2/2-\))T(ni/2)T(n2/2) ’ 
y > 0. (9.9.34) 

By making the same substitutions in (9.9.33), one arrives at the p.d.f. 
g(y) of the quotient Y—Xx/X2 of two chi-square i.r.v.’s with nx and n2 
degrees of freedom, namely, 

g(y) = 
T(nx/2 + n2/2) y^/2)-i 

T{nx/2)T{n2/2) (1+;,)<«.+*>/2' 
y> 0, (9.9.35) 

which is the well-known F distribution with nx,n2 degrees of freedom (see 
Section 9.2.4). 

Noncentral Chi-Square Distribution 

Putting A = n/2 and 9 = \ in (9.8.1), one obtains the p.d.f. of the noncentral 
chi-square variable x'2 with noncentrality parameter yS and n degrees of 
freedom: 

*(x'2) *= e ^>/2(x'2)<("/2) - ,)/2a„/2) _, ()• x'2>0. 

(9.9.36) 

Distribution of Product and Quotient of a 

Noncentral Chi-Square (fi^nj) Variable and a 

Noncentral Chi-Square (/32, n2) Variable 

Substituting A, = nx/2,X2 = n2/2,9x = 92= \ in (9.9.29) and (9.9.33), one 
arrives at the p.d.f.’s h(z) and g(y) for the product and quotient, respec¬ 
tively, of a chi-square (/3x,nx) and a chi-square (/32,n2) variate where J3X, /32 

are noncentrality parameters and nx,n2 denote degrees of freedom. Specifi¬ 
cally, 

*(>>)=■ exp 
P\ Pi \] H»,/4+V4)- 1 £ / ft \v ,n 
2 2) 2(«,/2+n2/2)-l 2 ) y 

J ( P\/P2)2‘K((n,/2)-(^/2)*2l-J)/2'^y 

,-o i!(y-i)!r(»,/2+/)r(V2+J-i) ’ 
>> >0 (9.9.37) 
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and 

exp — {(fi?/2 + f3%/2)} vn' 1/2 “ / p2 \2J. 

(\+v)(n'+rh)/2 y?o\V2 

ln i n2 \ 

y (j8,/fero‘_ 
,e„ /! (y - o! r( «, /2 + 0r(«2/2 + y - /) ’ 

o > 0, (9.9.38) 

where K„{-) is the modified Bessel function of the third kind (Appendix 

D.l). 

Randomized Gamma Distribution 

On setting p = 2Vr/1, 0= 1, and A = p+1 in (9.8.1), one obtains the p.d.f. 
/(x) of the randomized gamma distribution [100]: 

/(x) = e"^+JC>y(^)P /P(2V^), x >0, (9.9.39) 

where / (•) is the modified Bessel function of the first kind (Appendix 
D.l). 

Distribution of Product and Quotient of 

Two Independent Randomized Gamma Variates 

To obtain the distribution of the product Y=X1X2 and quotient V— 

Xx/X2 of two independent randomized gamma variates with respective 
parameters P\,Pi,P2,p2, one makes the substitutions /3i = 2\rpi 9{= 1, and 
A, = p, + 1, /=1,2, in (9.9.29) and (9.9.32), respectively. The p.d.f. for the 
product is then found to be 

h(y) = 2e-^' + ^2 yj/1vk 
j=o 

tL (fh/^)%Pl-Pi+2i-j)/2(2Vy) 

i=o 0*r(f+ Pi + l)T(y —i+p2+ 1) ’ 
y>0, (9.9.40) 



SUMS, PRODUCTS, QUOTIENTS, AND LINEAR FUNCTIONS 367 

where A^(-) is the modified Bessel function of the third kind (Appendix 
D.l), whereas that for the quotient is 

e~(Mi+feV' y ^r(Pl+p2+2+y) 
(l + u)Pl+P2+2>=o (1 + uy- 

!(y-/)!r(/+pi + i)r(y-/+p2+1) ’ 
v>0. (9.9.41) 

9.9.8* Distribution of Product and Quotient of 
Type II Bessel Independent Random Variables 

An r.v. is said to have a type II Bessel function distribution if its p.d.f. is 
given by 

/(*; P, 0, X) = Dxxe~9x2'2Ix_,(px), x>0, (9.9.42) 

where 

£> = (-^)X 9xe~^29, 9> 0, A>0, p> 0 (9.9.43) 

and Iv(w) is the modified Bessel function of the first kind (Appendix D.l). 
The p.d.f.’s h(y) and g(v) of the product Y=XlX2 and quotient V= 

X\/X2 of two type II Bessel i.r.v.’s are obtained by following the same 
procedures as were used to determine the p.d.f.’s of the product and 
quotient of two type I Bessel i.r.v.’s. The results below were established by 
Kotz and Srinivasan [190] and are stated here without proof. 

Pi Pi = exp 
[ \2», 

+ 
20- 

00 

V {*-) I y-0\V2 y \ ^2 

j 
. V (Pl/02 )2'(©2 

Zj 
/«0 *•!(/- 

(01@2)(X|+X2)/2 — 
2^ i + ^2 — 2 

y>0 (9.9.44) 
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and 

(/?>/&) V'' 
o > 0, (9.9.45) 

where Kv{-) is the modified Bessel function of the third kind (Appendix 

D.l). 

9.9.9 Special Cases of Type II Bessel Functions 

As Kotz and Srinivasan [190] note, the distributions listed below are 
specific cases of type II Bessel functions. 

Chi-Distribution 

Setting /? = 0, 9 = 9'/o2, and A =9' (then writing 9 for 9') in (9.9.42) gives 

x>0, (9.9.46) 

which can then be transformed into the chi distribution with n degrees of 
freedom by means of the substitutions 9 = n/2 and o = \. 

Distribution of Product and Quotient 

of Chi Independent Random Variables 

Let Xx and X2 be i.r.v.’s having the p.d.f. (9.9.46) with parameters 9X, o2 

and 92, o2, respectively. Then, by making corresponding substitutions in 
(9.9.44), one obtains the p.d.f. h(y) of Y= XxX2 

h(y) = 
r(0,)r(02) 

yVOA 
xK^-e2)/2 ^ y> o, (9.9.47) 
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where again A^(-) is the modified Bessel function of the third kind. 
Similarly, for the quotient V=Xx/X2 one has from (9.9.45) the p.d.f. of V: 

2T(»,+ »,)(», 
v>0. (9.9.48) 

Kotz and Srinivasan point out [190] that the Maxwell-Boltzmann and 
Rayleigh distributions, which are especially useful as radial distributions in 
engineering and physical problems, are special cases of the distribution 
(9.9.46). 

Distribution of Product and Quotient of 

the Noncentral Chi Distribution 

If one lets fi = (3'/o2, 0=1/o2, and A=1 in (9.9.42), the result is the 
noncentral chi distribution with p.d.f. with two degrees of freedom: 

/(x;^,a2)=-^expj-^(/52 + a2)J/0^J, x>0. (9.9.49) 

It follows from (9.9.44) and (9.9.45), respectively, that the p.d.f.’s h(y) and 
g(v) of the product Y=X1X2 and quotient V=Xx/X2 of two independent 
noncentral chi variables are 

/z(y) = exp /_ [ Pi , Pi 1 \ y V [ Pi | 

1 2a2 2a2 j a\°2 7 = 0 V2 o2 

2 \P lg2/(^2gl)] 

g(v) = 2o2oj 

'=° 0‘02(0'-002 

exp{ - [ Pi/foi) + &7(2af)]}V 

y> 0 (9.9.50) 

(ojv2 + o2f 

. f [P2ojV2o2}2\j+\)\ 

7=o (ojv2+ofy 

y (Pl^/Plf'M01)4* 

f-o (*02(C/-002 

v>0. (9.9.51) 
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Folded or Half-Gaussian Distribution 

On making the substitutions /? = 0, 6= 1/a2, and A — \ in (9.9.42), one has 

f(x;o2) = 
rV2 

x2/(2a2) 0< x< co, 

which is the folded or half-Gaussian distribution. The p.d.f. s of the 
product Y=X]X2 and the quotient V=X1/X2 of two folded Gaussian 

i.r.v.’s are, respectively, 

and 

h(y) = —4—\ ttoxo2 \ oxo2 ) 
y> 0 (9.9.52) 

g(v) = 
2oxo2 

7T(o2x+ojv2) ’ 

v>0. (9.9.53) 

Other Distributions Related to 

Type II Bessel Variables 

Kotz and Srinivasan [190] have shown that the generalized gamma r.v. as 
defined by Stacy (see [363]) is also a type II Bessel variable. They used the 
methods of this section to derive the p.d.f.’s of the product and quotient of 
two generalized gamma i.r.v.’s but did not publish their results. Malik [231] 
derived the p.d.f. h(u) of the product U=XxX2 of two generalized gamma 
i.r.v.’s XUX2 having p.d.f.’s with the same shape parameterPi=p2=P'. 

*>0, aj,dj,Pj> 0, 7 = 1,2. (9.9.54) 

In particular, he utilized the Mellin convolution 

h(u>=C(}2)MxM4dX2 
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Making the transformation (x2/axy = t and noting that 

j\-t~z2/Atr^dt=2^yvKv{z), 

where Kv(z) is the modified Bessel function of the second kind of order v 

(Appendix D.l), he showed that the foregoing density function reduces to 

Making the transformation Z = 2(t/a1a2)/’/2 and using the fact [389, p. 80] 
that for some integer n > 0 

K,+m)(Z) = {jz) ' e~Z ^yn + r)-[rl(n-r)\(2zY]~\ 

Malik showed that the distribution function above becomes 

H(u) 22~(di/P')-(d2/p) 

where 

^ l d d 

\J U \p/2 d2 3 1 2 > — ■>- - r— -r 
\ axa2 ) P P 2 

I(V’P) = 
Jv0e~vvpdv 

f™e~vvpdv 
(9.9.55) 

is the incomplete gamma function, which has been tabulated by Pearson 
[283]. (It should not be confused with the well-known gamma function, 
previously defined by (4.4.43).) 

Similarly, by using a Mellin (quotient) convolution, Malik [230] derived 
the quotient of two generalized gamma i.r.v.’s. Using characteristic func¬ 
tions, he later derived [235] the exact distribution of a linear function and 
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the ratio of two such linear functions of generalized gamma i.r.v.’s Xj 

whose p.d.f.’s are given by (9.9.54). Denoting the linear function by 

Y- 2 VO 
7=1 

and its p.d.f. by g(y), he found its characteristic function to be 

00 

F,{g{y))= 2 Pn{apdpPprj)’ 
rhr2,...,rn 

where 

r(4 + -rW('V)'/ 

p.M’M)- .5, 
Pj Pj 

Making use of the fact that 

f e ,ly(it)Rndt 
277 J - QQ 

(where Rn = r, + r2 + • • • + r„) and 

tt- f°° e~i,x(\-it)~rdt = 
2 77 J _ m 

e~xxr~1 

r(r) ’ 

he then inverted this characteristic function and obtained 

op ^ / d \ p yv r i 

g(y)= 2 Pn(apdpPprj) 2 l^)(-l)r+^ 
0./-2.r, r-0V r / 

His derivation of the p.d.f. /i(u) of the ratio 
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where Xj and Xj are generalized gamma i.r.v.’s having the p.d.f. (9.9.54), is 
somewhat longer and is not given here. Incidentally, Malik points out that 
there are several problems in the physical sciences calling for the distribu¬ 
tion of a product, quotient, linear function, and the ratio of two indepen¬ 
dent linear functions of generalized gamma i.r.v.’s. 

9.10* THE DISTRIBUTION OF A LINEAR COMBINATION 
OF A FINITE NUMBER OF TRUNCATED 
INDEPENDENT EXPONENTIAL VARIABLES 

Using the Laplace transform, Nath [269] has derived the distribution of 
any linear combination of a finite number of truncated exponential 
variates from n populations, either distinct or identical. Specifically, he has 
shown that if Xt, i=l,2,...,n are truncated exponential i.r.v.’s with 

/(x,) = a,(l — e a,e) 1 e °iXi, a(>0,0<x; <6l < oo 

= 0, elsewhere, 

then the p.d.f. of the sum 
n 

r= 2 c,x„ 
i = 1 

where the C,’s are arbitrary positive constants, is 

n 

+ 2 + 
J\<J2= 1 

+ ••• +(—!)” 1 2 exP 
j\<jl< ••• <jn- 1 = 1 

n 

2 8jA y- 2 h 
= 1 h= 1 

-1 n-1 

where 
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and //(*) denotes the function that is one whenever its argument (*) is 
nonnegative and zero otherwise. This result was accomplished by writing 
the Laplace transform in the form 

L(sOO)- n k,s, 
l = 1 

1- 
exp{-(r + S, )</>,} 

r + S: 

in series form and evaluating each term of the corresponding Laplace 
inversion integral by contour integration or by using a standard table of 
Laplace transforms. (In this derivation, a lower bound of zero on C, and a, 
was chosen to avoid certain technical difficulties.) 

When the i.r.v.’s Xt, i=l,2,...,n are identically distributed with 0, = 0, 
ai = a, and C, = 1 for all /, the p.d.f. above of the sum Y simplifies to 

/ ry- — cty V 

g(y)= 2 (-1 )"(^)U<*<y<(” + W 
\n v- m = 0 

9.11* DISTRIBUTION OF THE PRODUCT 
OF GENERALIZED E-VARIABLES 

Recently, Shah and Rathie [331] have derived the exact distribution of the 
product of generalized E-variables, an r.v. X being defined as a generalized 
E-variable if it has the p.d.f. 

kxp ~1 
f(x;p,m,a,h)=-, a,m,p,h,x> 0, 

{\ + <xxh)m 

where 

hap/h p 

B(p/h,m—p/h) ' m"> h 

and B denotes the well-known beta function (see (4.4.42a, b)). (Hereafter, 
f(x;p,m,a,h) will be denoted by the simpler form f(x).) Their result is 
stated below in the form of a theorem, and was obtained by using the 
Mellin transform and the residue theorem. 

Theorem 9.11.1. Let XuX2,...,Xn be n independent generalized E-vari- 
ables with p.d.f. 

/(*/)“ 
kiXp-' 

0 + wT' 
Kxi> 0; i'=l,2,..., n. 
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where 

h;af'/h Pi 
K = -Z7——7—77777, mi>T for a11 L KPi/K™-(Pi/h,)) ^ 

The p.d.f. h(y) of the product 7=II',= 1A’,- is the //-function 

*G-)-c H" y ft a}Jhi 

ll 2 3 4~mn+Pn 1 1 
hi K ’ K 

>i~l l >«~l\ l 
hi thl hn y hn 

for ai,mi,pi,hi> 0, and 

c= n a 1 /h, 

= 1 {{Pi/h^im-pi/h^}} ' 

When all the ht have identical values, say h( = h, i= 1,2,the p.d.f. 
h{y) reduces to a Meijer G-function: 

Ky)=chGyn y n a, 
i = 1 

i , P\~l , ^-l 

for a„ w„p;, h > 0. 

Shah and Rathie point out the following special cases of the generalized 
T-distribution: 

1. When h = 1,m = (ml + m2)/2,a = mx/m2,p = ml/2 with mx,m2 positive 
integers, the generalized F-function becomes the p.d.f. for the product 
of Snedecor F i.r.v.’s (see Section 9.2.4). 

2. When h= \,a=\,p>0,m>p, the generalized F distribution reduces to 
the p.d.f. for the product of beta i.r.v.’s of the second kind (see Exercise 
4.25). 

3. When A = 2,a = \/n,p= \,m = (n+ l)/2, one obtains the p.d.f. of the 
product of n independent folded Student i.r.v.’s (see (6.3.14)). 

4. When h = 2,p=\,m=\,a = l, the generalized F p.d.f. becomes the p.d.f. 
of folded Cauchy i.r.v.’s (see [166, p. 163]). 
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9.12* THE DISTRIBUTION OF PRODUCTS OF 
POWERS OF GENERALIZED DIRICHLET COMPONENTS 

The r.v. X has been defined by Stacy [363] as having a generalized gamma 
distribution if P(Y<0) = 0 and for x > 0, a,d,p positive constants, the p.d.f. 

is given by 

/(*) 
^ a-!g-(*/<*/ 

adT(d/p) 

Now let Xt be independent generalized gamma r.v.’s with corresponding 

parameters (a^d^p,). Also, let 

Yi xl + x2+... + xN+l 
i=\,...,N+ 1. (9.12.1) 

The vector (Yy,Y2,...,YN) is then said to have a generalized Dirichlet 
distribution [72,168], Rogers and Young [312] have proved the following 
theorem concerning the p.d.f. of (YX,Y2,..., YN). 

Theorem 9.12.1. In (9.12.1), Yx >0, Y,+ • • • + YN+l = 1, and the p.d.f. of 

the vector (T) + • • • + YN) is 

(a) 
n »+xxPiyf'-' 

of'-'VMM 

where 

=P-exp[-(f)' 

=(—!—) s (-ty s 
\Pn+1 / i = 0 r,+ ... +rN=j y = u r, 

N 

n "=\(y,/atY,r' 
r,'- 

X (£*±ip 
v y n+1 / 

v4 + 2 P,r, 
\ ^ t-i 1 / r 

r Pn+ i 

(b) 
p^va/p)^; 

4-i 

nla*v(djp){'il(yJay}ZA/p 
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nlT(d,/p)(2.0,n?‘i‘/p 
whenpx — ■ ■ ■ =pN+l=p and a, = • • • = aN+x = a; 

when 

P\~ ''' =PN+X = \ and «!=••• =aN+l = a. 

In the case when the p, are all equal to p, the independent variables 
involved have the same shape parameter and when this p has the value 1, 
the Xj are just two parameter gamma variables. The density in (d) then 
reduces to that of the ordinary Dirichlet distribution, and its derivation 
from gamma variables is well known [168]. 

Rogers and Young have also proved the theorem stated below concern¬ 
ing the distribution of products of powers of generalized Dirichlet compo¬ 
nents [312]. 

Theorem 9.12.2. If (YX,...,YN) is a Dirichlet r.v. with parameters 
du...,dN+l, and kv...,kN+l are nonnegative, then the density of II,Yp, 
where YN+, = 1 — Yj — • • • — YN, is given in terms of an 77-function as 

The proof, which depends on an auxiliary theorem, is not given here. 

9.13* ON GROUPS OF n INDEPENDENT RANDOM 
VARIABLES WHOSE PRODUCT FOLLOWS THE 
BETA DISTRIBUTION 

It is well known that if there are n i.r.v.’s X 

beta distributions with p.d.f. 
having 

= 0, otherwise, (9.13.1) 



378 DISTRIBUTION PROBLEMS IN STATISTICS 

where all the numbers p0,satisfy the condition 

®<Po<Pi < ••• <Pn=P (9.13.2) 

then their product 

U=X (9.13.3) 

has a beta distribution with p.d.f. fPoP_Po(x) [160], 
The following question arises: if the product 

U=X1-X2---Xn 

PO’P P 0 

(9.13.4) 

of n i.r.v.’s has a beta distribution with p.d.f. fPoP_po(x), must the factors Xk 

also have beta distributions? Kotlarski [183] has shown that the answer is 
no; that is, there exist groups of n i.r.v.’s that do not have beta distribu¬ 
tions though their product has a beta distribution. Specifically, he has 
determined the set of groups (XuX2,...,Xn) of i.r.v.’s, denoted by ^PoiP, 

whose product follows the beta distribution Xpop. He established that for 
the enumeration of the set ®Po,Pn-Po, it is sufficient to solve the equation 

B(Po + s,pn-p0) 

B(P0>Pn ~PO) 
K(f(xi))Ms(f(x2))- • • Ms(f(xn)) = Re(s) > Pq, 

(9.13.5) 

in terms of Mellin transforms 

r oo 

= / xsf(x)dx 
Jo 

(9.13.6) 

of positive r.v.’s. His results are stated in Theorem 9.13.1. 

Theorem 9.13.1. For a group of n positive i.r.v.’s (Xx,X2,..., Xn) to belong 
to the set &Po>Pn-Po it is necessary and sufficient that their Mellin transforms 
(9.13.6) are given for s = it (t real) in the form 

where P\,p2,1 are arbitrary positive numbers satisfying conditions 
(9.13.2), the functions ak(t),/3k(t) are real and continuous on the whole axis 
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t satisfying conditions 

2 «*(0 = 0, 2 &(0 = 0, 
A=1 A=1 

«*(0) = 0, &(0) = 0, 

B(Pk-»Pk-Pk-i) 
«*(0<ln 

5 Ok-i+ **>/>* “P*-i) 
(9.13.8) 

and the functions (9.13.7) are positive definite functions. 
The following example by Kotlarski is illustrative. 

Example 9.13.1. Determine a group (XuX2,...,Xn) belonging to 

^po-p-po Using the formulas 

B{p,q) = 
np)?{q) 

r(p + q) ’ 
Re(p) >0, Re(?)>0 (9.13.9) 

and 

T(mw)- 
m mw —(1/2) m 

(27r)(m_1)/2 r 

one can write (9.13.5) in the form 

5r(w+^-), Re(vv) >0, (9.13.10) 

B I 
P0+r~\ + S Pn-P0 

MsU{X\))‘ ' ‘ MsU(Xn)) = 11 
m m 

= i jPo+r-l pn~p0 
(9.13.11) 

m m 

Dividing the set of positive integers /? = {l,2,...,m}, m>n, into n mutu¬ 
ally exclusive and exhaustive subsets R{,R2,one can write 

B 
p0+r-l+s p-p0 

Ms(h(xk))= n 
r(ERk 

m m 

p0+r-\ p-p0 
B 

m m 

k= \,2,...,n. (9.13.12) 
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The variables Xk corresponding to the Mellin transforms (9.13.12) are 

Xk= II Yr, k= 1,2, 
r(=Rk 

(9.13.13) 

where the Yr are positive i.r.v.’s having p.d.f.’s 

gr(y) = 
m 

p0+r-\ p-p0 
B I 

m m 

yPo + r ](1 — ^"1),exp| — 1 j, 0< y < 1 

= 0, otherwise. (9.13.14) 

9.14* ON BIVARIATE RANDOM VARIABLES WHERE 
THE QUOTIENT OF THEIR COORDINATES 
FOLLOWS SOME KNOWN DISTRIBUTION 

Let XVX2 be a pair of i.r.v.’s, symmetrical about the origin, having the 
same distribution function F(x), and for which the p.d.f. f(v) of the 
quotient 

V=X (9.14.1) 

is Cauchy. It is, of course, well known that V has the Cauchy distribution 
when F(x) is normal with zero mean. The question arises whether the 
normal distribution can be characterized by this property. Various authors 
—Mauldon [247], Laha [196], and Steck [368]—have shown this supposi¬ 
tion to be false. That is, there exist distribution functions F(x) differing 
from the normal for which the quotient (9.14.1) follows the Cauchy law. 
Laha [196], for instance, cites the counter example 

V2 1 
/(*) =-7, - cc <x < oo, (9.14.2) 

it \+x4 

which also has the property that the quotient (9.14.1) follows the Cauchy 
law. Later Laha [197] and Kotlarski [182] carried out independent studies 
in which they characterized the set A of r.v.’s whose quotient follows the 
Cauchy law by the properties of their Mellin transform 

Ms (/(*))= f |x|'dF(x). 
J ~ OO 
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Kotlarski [185] then extended his study to the case of a bivariate r.v. (X, T) 
having distribution function F(x,y) in which the coordinates (not neces¬ 
sarily independent) have identical marginal distributions F(x, oo) = 
F(cc,x), — oo<x<oo, and the quotient follows the Cauchy law. He 
discribed the set A of such distribution functions by using their two- 
dimensional Mellin transforms 

Mr<,(f(x,y)) = E[X'Y’] 

r oo r oo 

= I I xrysdF(x,y), x>0, y>0, 
*/o Jo 

(9.14.3) 

The p.d.f. f(x,y) is always defined in the set of pairs (r,s) of complex 
variables 

£={(/•,*) ax <Re(r)<a2, bx <Re(s) <b2), 

where a, <0<a2,bl<0<b2. 

Similarly, using the same method, Kotlarski delineates the set $ of 
distribution functions F(x,y) of bivariate r.v.’s (X, Y) having positive 
coordinates (not necessarily independent or identically distributed) in 
which the quotient (9.14.1) follows Snedecor’s law. Mauldon [247] also 
considered this problem. 

In particular, Kotlarski showed that the quotient (9.14.1) belongs to the 
set A if the Mellin transform (9.14.3) satisfies the conditions 

KM(x>y))=MsAf(x>y)) (9- 14-4a) 

and 

K--Mx’y))=^72r “1<Re(r)<l- (914-4b) 

His complete results relative to the set A are summarized in Theorem 
9.14.1. 

Theorem 9.14.1. For a distribution function F(x,y) satisfying conditions 
(9.14.5a, b) to belong to the set A, it is necessary and sufficient that its 
Mellin transform (9.14.3) be represented in the form (9.14.6), where a(r,j') 
and fi(r,s) satisfy conditions (9.14.7) and (9.14.8) and the function (9.14.6) 
is positive definite. 
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The conditions referred to in Theorem 9.14.1 are stated below: 

T(0,y) = F(*,0) = 0, (9.14.5a) 

F(x,y) = F(y,x) (9.14.5b) 

Mir,is(f(x’y))= [ch(y )-ch( y) 7 exp[a(t,5)+ //?(r,5)], (9.14.6) 

a(r, -r) = 0, fi(s, 5)= 0, (9.14.7a) 

a(r,s) = a(s,r), P(r,s) = /3(s,r), (9.14.7b) 

a(-r,-s) = a(s,r), /3(-r,-s)=-p(r,s) (9.14.7c) 

a(r,s) < ^log[ch(7rr/2)-ch(7r5/2)] (9.14.8) 

a(r,s),fi(r, s) should be real and continuous on the whole plane (r,s). 
The following example, given by Kotlarski, is illustrative. 

Example 9.14.1. Let the distribution function F(x,y) be given by the 
density 

f(x>y)=fo(x2+y2), x>0,y>0 

= 0, otherwise, (9.14.9) 

in which the function f0(z) is in such a form that (9.14.9) is a p.d.f. Then 
the Mellin transform of the p.d.f. (9.14.9) 

r 00 r 00 

K,s(f(x>y))= / xry%(x2+y2)dxdy 
Jo -'o 

= f ur+s+1f0(u2)du f /2cosr(j>sins<j>d<f> 

= 5/o“"<'+’)/2/o(") A- j s( 
1 1 + r 1+^ 

*(,+,)• r(l±r)r(I±i), (9.14.10) 
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where 

= irfoUw/%(u)du 

4T(l + w/2) 7T 
(9.14.11) 

One notes that the Mellin transform (9.14.10) satisfies the conditions 

(9.14.4a, b), from which it follows that the distribution (9.14.9) belongs to 
A. 

Kotlarski establishes a similar result with regard to Snedecor’s F distri¬ 

bution. Thus let Xx and X2 be two i.r.v.’s having gamma distributions with 
densities 

/*(*) = 
a Pk 

l r(Pi) J 

= 0, A < 0, 

xPk~xe~ax A > 0 

(9.14.12) 

A: = 1,2, where the constants a,pk are positive. It is well known that the 

quotient (9.14.1) has the Snedecor F distribution whose p.d.f. is 

«>0 

= 0, otherwise. (9.14.13) 

Kotlarski delineates the set of bivariate distribution functions F(a,>>)—de¬ 

noted by <(>—whose coordinates take only positive values and are not 

necessarily independent, and whose quotient (9.14.2) follows the Snedecor 

distribution (9.14.13). The functions in the set 4> are characterized by their 

Mellin transforms, which must satisfy the condition 

K,-r(f(x>y)) 
r(/>i + /Q T(p2-r) 

r(/h) ' T(p2) 
~P\ <Re(r)< —p2. 

(9.14.14) 

More specifically, the conditions are summarized in Theorem 9.14.2. 

Theorem 9.14.2. For a distribution function F(x,y) to belong to the set 4>, 

it is necessary and sufficient that its Mellin transform (9.14.3) be repre¬ 

sented in the form (9.14.15) where a(r,s) and /3(r,s) satisfy conditions 

(9.14.16) and (9.14.17), and the function (9.14.18) is positive definite. 
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The conditions referred to in Theorem 9.14.2 are stated below: 

' T(px + ir) ‘ ’ r(/?2+») ‘ 
rQ>.) r(p2) Mir,iS (f(x,y))= 

a(r,-r) = 0, f3(s,-s) = 0, 

a(-r, -s) = a(r,s) 

P(~r, ~s)= ~fi(r,s), 

<x(r,s)< log 

ea(r,s) + i/3(r,s), (9.14.15) 

(9.14.16) 

[ r(/>,) 1 W 1 

[ r(px + ir) T(/>2+m) 
(9.14.17) 

a(r,s), fi(r,s) should be real and continuous on the 

whole plane (r,s). 

The reader may find the following example, due to Kotlarski, illuminat¬ 

ing. 

Example 9.14.2. Let the distribution function F(x,y) have the density 

f(x,y) = xp'~ y:■ - %(x +y), x>0,y>0 

= 0, otherwise, (9.14.18) 

where the constant in the function f0(z) is chosen in such a way that the 

function (9.14.18) is a density function. Clearly, the Mellin transform of 

(9.14.18) is 

r oo r oo 

Mrs(f(x,y))= f f xp'+r~iyP2+s~%(x+y)dxdy. (9.14.19) 
•/o */o 

Note that if one substitutes 

x = pcos29,y =psin20 (9.14.20) 

the area of integration is changed into 

0<p< oo, O<0<~ (9.14.21) 

and the Jacobian is 

./ = 2psin0cos0. (9.14.22) 
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The Mellin transform (9.14.19) then becomes 

„ ^ JoPP'+p>+r+s~%(p)dpw _ 
Mr,s (/(*o0) = ■ ?TV -t r(/>, + r)T(p2+s) 

21 \P 1 +P2+r + S) 

= //(r + j)r(/?, + r)r(/>2 + j), (9.14.23) 

where 

H (w)=---, 
2r(/’l+/>2+M') 

i/(o)=[r(;,)r(p2)]_1. 

Note that the Mellin transform (9.14.19) satisfies (9.14.14), from which it 

follows that the density function (9.14.18) belongs to <I>. 

9.15* INTEGRAL TRANSFORMS AND 
MULTIVARIATE STATISTICAL ANALYSIS 

Many of the problems of univariate statistical analysis have direct counter¬ 

parts in multivariate statistical analysis. For example, Hotelling’s T2 dis¬ 

tribution is a generalization of the Student t distribution to the multivariate 

domain. Likewise, the multiple correlation coefficient is a multivariate 

counterpart of the simple correlation coefficient, the distributions of both 

having been derived by Fisher [104,105,108], using the geometric method. 

Again, Mahalanabois’s D2 statistic is used for measuring the generalized 

distance in multivariate analysis [33,34]. Similarly, the variance as a 

measure of dispersion for a univariate distribution extends to the determi¬ 

nant of the covariance in a multivariate statistical population. It is not 

surprising, therefore, that integral transforms have considerable potential 

in multivariate statistical analysis, even as they do in the statistical analysis 

of univariate problems. 

In recent years, integral transforms have been used to a considerable 

extent in solving multivariate distribution problems. One of the earlier 

applications of integral transforms to multivariate statistical analysis was 

the derivation of the exact distribution of Votaw’s criteria [389] for testing 

compound symmetry of a covariance matrix [61]. More recently, in 1971, 

Pillai and Young [289] determined the exact null density and distribution 

of U(p\ a constant times Hotelling’s generalized T2 statistic, for integral 

values of m = (n] — p — l)/2 by employing Laplace transforms. They gave 
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explicit results for p = 3 and 4, and small values of m. Also in 1971 Mathai 

and Rathai [245] utilized the Mellin transform, the calculus of residues, 

and the properties of the ^-function (digamma function) to obtain the 

exact distribution, in a computable form, of Wilks’s generalized variance 

[405] in the noncentral linear case for a general Wishart matrix of order p. 

Shortly thereafter, Pillai and Nagarsenker [290] derived the noncentral 

distributions of 

r- n #,“(1-9,)*, 
1-1 

where a and b are known real numbers and the 0's stand for the latent 

roots of a matrix arising in each of three situations in multivariate normal 

theory—specifically, the test of equality of two covariance matrices, 

MANOVA, and canonical correlation. The study is also extended to the 

complex case. The distributions are derived in terms of 77-functions by 

means of inverse Mellin transforms. 
Krishnaiah and Schuurmann [192] point out that there are several 

situations in which an experimenter is interested in testing for the equality 

of the latent roots of the matrices of real and complex multivariate normal 

populations. They have investigated the evaluation of the probability 

integrals of the following distribution functions: 

1. The distribution functions of the ratios of the intermediate roots to the 

trace of the real Wishart matrix. 
2. The distribution functions of the ratios of the individual roots to the 

trace of the complex Wishart matrix. 

3. The distribution functions of the ratios of the extreme roots of the 

Wishart matrix in the real and complex cases. 

In the field of multivariate analysis, the multivariate characteristic function 

plays a dominant role. In this connection, Lukacs [223] has made an 

important contribution (among many others) by giving a description of the 

elementary properties of multivariate characteristic functions. More re¬ 

cently, Wolfe [413] has investigated the finite series expansion of multi¬ 

variate characteristic functions. In particular, he has established three 

theorems that relate the asymptotic behavior of a distribution function to 

the behavior of its characteristic function at the origin. 

It is not the purpose of this section to provide a complete coverage of 

the use of integral transforms in multivariate statistical analysis. However 

the foregoing examples and the related bibliography should suffice to 
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impress the reader with the utility of integral transforms in the multivariate 

domain. Section 9.15.1 illustrates somewhat the power and utility of the 

integral transform method, as well as its actual implementation, in the area 

of multivariate analysis. For further details concerning the application of 

the transform method to multivariate problems, the reader is referred to 
the relevant references cited in this section. 

9.15.1 The Exact Distribution of Votaw’s 
Criteria for Testing Compound 
Symmetry of a Covariance Matrix 

One of the important problems arising in multivariate analysis is that of 

testing the hypothesis H that the covariance matrix is of the bipolar form 

2i S2 

S2 S3 
(9.15.1) 

where Sj is apXp matrix with diagonal elements equal to oaa and other 

elements to oaa,, S2 is apXq matrix with all elements equal to oab, and 23 

is a qXq matrix with diagonal elements abb and other elements abb, [61]. 

More specifically, let xijy i=\,2,...,n be n independent observations on 

p + q stochastic variables Xj, j= 1,2,3,+ q), which are distributed 
normally. Also, let 

*j = n~X 2 xiJt sM = n~1 2 (x,j-xj)(xif -xf) (9.15.2) 
/=! i=j 

and let S = ((sjJ-)) be the sum of products (SP) matrix for X’s and 

Sm=p~' 2 Sj,, Sm, = 2(p2-p)-' 2 Sr 
y=l j>/=1 

s" Sj, Sbb. = 2(q1-qY' 2* Sjp, 
j=p + l j>j'=p +1 

p p + q 

s„b={pqY' 2 2 V 
j- 1 f=P+ 1 

(9.15.3) 

Then the likelihood ratio statistic for testing the aforementioned hypothesis 
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H can be defined by 

_!£]_ 

[5„+(/’->)S-'][s»+(«- !)«»•] -p^i 

_1_ 

X (saa-saay-\sbb-sbby-' 
(9.15.4) 

Votaw [389] used Wilks’s [407] moment-generating operator and derived 

the expected value E[L'\H] of the tth moment of the p.d.f. of L when the 

hypothesis H was true. By orthogonal transformation and by integrating 

over the range of different variates, Roy [314] proved that the expected 

value E[L‘\H] can be expressed in the form 

E[L'\H] = [(p-\Y-\q-\y-'}' 

r{i(g-i)(«-i)}r(K/>-i)('»-!)} 
' r{(/>-i)(/+i("-i))}r{(?-i)(<+i(n-i))} 

•P'ft 3r{( + i(«-3)-ir}[r{i(»-3)-ir}]-'(9.15.5) 
r = 0 

and obtained the distribution of L in the form of an infinite series. Roy 

[314] further modified his series to get a better approximation of the 

distribution by taking a few terms. However it was Consul [59-62] who 

first pointed out that the Mellin inversion integral could be used to 

determine the exact distribution of L. He noted that since the moments 

determine a distribution uniquely for likelihood criteria, and since the tth 

moment is precisely the Mellin transform Mt+l(f(L)), one can apply 

Mellin’s inversion theorem to obtain the exact p.d.f. of L, namely, 

■'n r[r + i(n-3)-±r] 
r = 0 

•{r[(p-l)(t + i(/i-l))]r[(^-l)(t + ^(n-l))]} Xdt, (9.15.6) 
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where 

7'(") = r[i(/>-l)(n-l)]r[i(9-l)(n-l)] 

■ p + q-3 -j-1 

• n r{i(n-3)-ir} . (9.15.7) 
r = 0 

By setting the transformation t + \(n— l) = s and on further simplification, 
he obtained the exact density function 

f(.L) = f*'™ L-[(p-\)p-'(q-\)‘‘-']’ 

p + q-3 

• n r(5-i-i/-){r[(^-i)5]r[(^-i)5])_1^, (9.15.8) 
r = 0 

where 

K(n) 
_T(n)_ 

[(P-\y-\q-iy-'Y/2Xn~l)' 
(9.15.9) 

Consul observed that the expression for the distribution /(L) splits up 

into a factor K(n), depending upon n, and an integral, which is inde¬ 

pendent of n, and used this fact to obtain the exact p.d.f.’s f(L) and 

distribution functions (d.f.) for some specific values of p and q, namely, 

p = q = 2. Consul [61] also gives the exact p.d.f.’s and d.f.’s for p = q = 3, 

p = 3, q = 2, p = 5, <7 = 2, and p = 5, q = 3. In particular, for p — q — 2, if one 

puts these values of p and q in (9.15.8) and (9.15.9), one obtains, on 

simplification, 

§)[!-(*)]-2*, 

where 
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Using a result derived by Consul [59, pp. 553-558], namely, 

x T(ps + a)r(#y + 6) 

[T(ps + a + m)T(qs + b + n)) 

= xa//p( \ — xx/p)m+n~x\2T(m + «)] l2F,(n,a-b + m;m + n;\-xl/p) 

for p = q. 

the expression above for f(L) reduces to 

(1 - L)3/2F( 1,1; f; 1 -L), 0<L < 1. (9.15.10) 

To obtain the cumulative distribution Pr(L <x) for different values of n, 

one can integrate/(L) with respect to L between the limits 0 to a < 1. Since 

the integral is not directly available, it is convenient to change F(l, 1; §; 1 

- L) in (9.15.10) to L1/2jF(|, §; §; 1 — L) and then to integrate /(L) by 

parts, treating L(n-5)/2 as a second function and the rest of the expression 

as a first function, using the formula [95,(22), p. 102] 

where (c - n)n = (c - n)(c — n +1) • • • (c — 2)(c - 1). The result is the cumula¬ 

tive distribution 

Pr[L<x] = FW = 4(in-2,|) + 2^,(«)[(n-3)r(|)]"' 

.x(l/2)(„-3)(1_;c)3/2F(3,3 . j_x), (9.15.11) 3 3.5. 
2 ’ 2 ’ 2 > 

where F(a,b,c,z) is Gauss hypergeometric function defined in Appendix 

D.l and Ix(a,b) is the incomplete beta function defined by (9.2.20) and 

tabulated by Pearson [282], 

By using a number of relations between the hypergeometric functions, 

Consul [60] has, by a complicated process, transformed the exact p.d.f.’s 
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and d.f.’s into elementary functions. For p = q = 2, the results are 

f(L) = 4AT, (/*)w— 1/2£^(i/2)("—3) 

x[{\-Ly/2-Ll/2sin-\\-Ly/2}, 0< L < 1 (9.15.12) 

and 

FC*) = 4 - 2, §) + 877- '/2(n - 3) - 'A', (n) 

•x(l/2)(n-2)[(\-xy/2-xl/2sm-\\-xy/2] 

= Pr(L<x). (9.15.13) 

The interested reader is referred to Consul’s paper [60] for the relevant 

elementary functions involved in/(L) and F(x) = Pr(L<x) for the other 
pairs of values p,q listed above. 

EXERCISES 

9.1 Derive the p.d.f. g(x) of the mean X= \/nLnj=xXj of n identically 
distributed exponential i.r.v.’s each having p.d.f. 

0<*,<OO, I =1,2,...,71. 

9.2 Derive the p.d.f. g(x) of the mean X = (Xl + X2)/2 of two i.r.v.’s X, 
and X2, each having p.d.f. 

/(*,) = ~ 1 < x, < 1 

= 0, otherwise. 

9.3 Derive the p.d.f. /i(T) of the mean X = (Xx+X2)/l, where J, and 
X2 are the sample means in Exercise 9.2. 

9.4 Prove that the mean X=l/n2^lXi of n Pearson type III i.r.v.’s 
each having p.d.f. 

/(•*) 

has p.d.f. 

1 

aT(b) 
x/a 

y a> 0, 

g(x) = 
n 

aT(bn) (?p — nx/a 

0 < x < oo 

0 < X < 00. 
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9.5 Use the method of integral transforms to prove that the mean of n 

identically distributed Cauchy i.r.v.’s has a Cauchy distribution. 

9.6 Use the method of integral transforms to derive the distribution of 

the mean of n identically distributed Maxwell i.r.v.’s each having 

the p.d.f. 

9.7 

/(*/): 
W a3 

■x2e-x‘/a\ x, >0, i=\,2,...,n 

= 0, otherwise. 

Use the method of integral transforms to derive the distribution of 

the mean of n identically distributed Rayleigh i.r.v.’s each having 

p.d.f. 

f(xi)~ ~T*/exP 
a 

xt>0, i=\,2,...,n. 

9.8 Show that the mean of a sample XvX2,.--,Xn of n i.r.v.’s drawn 

from a gamma population 

is 

f(x) = apxp-le~ax, 0< x< oo 

g(*) 
(™y 
T(np) 

xnp~xe~nax, 0 < x < oo. 

(Irwin, 1927) 

9.9* Consider the order statistics X{r),X{s) (r<s) based on a random 

sample of size n from a negative exponential distribution. 

(a) Prove that the p.d.f. h(y) of the product Y=X^r)X^s) is 

(r—1)1(5 —r—l)!(n —5)! 

f\ 1 / 1/2 yl/2(n-s+1) \ 

x{-u™ i~y/u—u—) 

• [ 1-exp(-y1/2M)]r_1 exp (~yl/2u) 

-exp(_2Tr) 
s — r— 1 

du, 0<y<co. 
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9.10* 

(b) Prove that the p.d.f. h(y) of the product Y of the extreme 
order statistics is 

h(y) = n(n-l) f -expl -y1/2u~ ——) 
Jo u \ u ) 

exp(-71/2«)-exp( 
-yV 2 

u 

n — 2 

du, 0<_y<oo. 

(Subrahmanian, 1970) 

Let Y-X(r)/X(s) where X(r),X(s) are the order statistics defined in 
Exercise 9.9. 

(a) Prove that Y has the p.d.f. 

',W=(r-l)!(J-r-l)!(n-J)! J0 (_1)"+'! 

0<-v<1 

= 0, otherwise, 

where 

Ti = U\ -Ji) + s-r, 

r2 = n-s + \+j2. 

(b) Prove that the p.d.f. g(y) of the ratio Y of extreme order 
statistics is 

h(y) = n(n-l) 2 (-iy('IT2)[(y+1) 

-{n~(j+ 0}/] 2> 0<y<l 

= 0, elsewhere. 

(Subrahmanian, 1970) 
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9.11 

9.12 

9.13* 

DISTRIBUTION PROBLEMS IN STATISTICS 

Show that the geometric mean Y=[Xx-X2---X„]l^n of n Pearson 

type III i.r.v.’s with p.d.f.’s 

xpx~xe~x' 

r(/>) ’ r(P+iJn) 

xP + (n-\)/(n)-\e-x„ 

T[p + (n-\)/n] 
0 < Xj < 00 

is the same as the distribution of the arithmetic mean of n i.r.v.’s 

each distributed as x,. 

(Kullback, 1934) 

Use the Mellin transform to find the p.d.f. h(y) of the geometric 

mean 

Y= 
r 3 n 
j=i 

1/3 

of the three beta i.r.v.’s in Exercise 4.11. 

Prove. If Xx and X2 are two normal i.r.v.’s with p.d.f.’s 

1 
/i(*i) = 

oV2tt 

1 

e x\/2o\, — 00<X,<00, 

/2(a2)=—--exp 
oV2tt 

— 00 <X2<00, 

then the p.d.f. h(y) of the product Y = XxX2 is given by 

h(y) = 
-A/2o\ ^ I H 

°2 k=0 \ ° 

M 
2k , 

/ (2k)! 

- oo <y < oo, 

where Kk/f2 is Bessel’s function of the second kind with purely 

imaginary argument. 

Hint, (a) Invert = Ms(fx(xx))Ms(f2(x2)), using 
Ms(ff(±xx)) and Ms(/2±(±x2)) as given, respectively, by (4.5.25) 
and (4.6.39), (4.6.42). 
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(b) Or use Laha’s method [195, p. 66] based on the fact that the 

product XxX2 is expressible as the difference of two Bessel i.r.v.’s 

i.e., XxX2 = C(v2 — w2), where v2 and w2 are type I Bessel i.r.v.’s 
and C is a constant). 

9.14 Let Xx and X2 be two uniform i.r.v.’s with arbitrary means m„ 
/ = 1,2 and p.d.f.’s 

■*i — Mil < 2 /i(*i)=l> 

= 0, otherwise, 

/2(x2)=l, \x2-U2\<J 

= 0, otherwise. 
0 

Prove that the p.d.f. h(y) of the product Y=XxX2 is 

h(y) = 0, >'>(wi + ^)(m2+!) 

= -In 
[(« 

y 

l "b i/^)(u2 + 1/2)] 
y 

(u'-i)(“2+ )<y 

1 \ ( 1 \ 

(“2+2 ■) 

= —In 
[ u\ -1/2] / 1 \ / 1 \ ( 1 \/ 1 \ 

“i + 1/2 
y („,+ 

2) 
~ 2)h+2) 

= -In [(« i 1/2)(m2 -1/2)1 { 1 w 1 
)<+ 

y 
y \ 1_ 2 2~ 2 

=o, 

and sketch the density function for: (1) w, = — l,w2= 1 (2) ux =4.5, 

u2 = 0.5 (3) «,=0.5, u2 = 0.5 (4) arbitrary values of ux and u2. 

9.15 Prove. If Xx and X2 are two independent beta r.v.’s of the first 

kind with parameters (a,b) and (a + b,c), the product Y=XxX2 is a 
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beta r.v. of the first kind with parameters (a,b + c) (see (4.4.11) for 

the definition of a beta r.v. of the first kind). 
(Jambunathan, 1954) 

9.16 Prove. If XvX2,...,Xp are p independent beta r.v.’s of the first 

kind with parameters (aif bt) for i = 1,2,... ,p, and if ai+, = a, 4- bt for 

i=\,2,...,p-\, the product Y = XxX2• • *Xp is a beta r.v. of the 

first kind with parameters a, and b = 'Zf’=lbj. 

9.17 Prove. If Xi and Y, for i = \,2,...,p are independent gamma r.v.’s 

with parameters al,bl that are connected by the relation ai+l = ai + 

bi for / = 1,2,... ,p — 1, then the quotient 

p Xi 

v= n —— 
i = \Xl+Yi 

is a beta variate of the first kind with parameters (ax,b) where 

(Jambunathan, 1954) 

9.18* If n = (l +y)/(\ + x), and if jc is a beta r.v. of the first kind with 

parameters (b — d,d) while y is a beta r.v. of the second kind 

(Exercise 4.25) with parameters (a, b), then u is a beta r.v. of the 

second kind with parameters B2(a+d,b-d), provided u andy are 

independent. 

(Jambunathan, 1954) 

9.19 Let Xy,X2 be a sample of two drawn at random from the exponen¬ 

tial population f(x) = e~x, 0< oo. 

(a) Show that the joint p.d.f. of the sample mean X = (Xx + X2)/2 

and standard deviation 

is 

5 = 

n i = I 

1/2 
Xl-*2 

f(x,s) = 4e 2x, s<x< oo, 0<5'<x. 

(b) Derive the p.d.f. h{y) of the product Y = XS. Note that the X 
and S are not independent. 
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9.20* Derive the p.d.f.’s of the quotients W=X/S and Y=S/X for the 

sample mean and standard deviation in Exercise 9.19. Again, note 
that X and S are not independent. 

9.21 Let Xx and X2 be triangular i.r.v.’s with p.d.f.’s 

fl(xl) = alxl-a2, bl<x1<b2 

= u3 ci\X j, b2 ^ Xj ^ b2 

= 0, otherwise, 

= cj.x2 c2, d| ^ x2 ^ d2 

c3 CjX2, d2 ^ x2 ^ d2 

= 0, elsewhere. 

Prove that the p.d.f. h(y) of the product Y= XlX2 is 

h(yH^+^)y~(a'c‘y+a2cM~bk) 

~(alc2bl + a2cldl), y<bxdx 

= {2axcxy + a2{c2 + c2)}\n{^^ 

dl(c2 + c3) 2a2c | 

d2 bx y 

+ a,(c2 + c3)bl +2a2cxd2, y <bxd2 

={^+^\-(a'c'y+a^Aj&) 

= {2alCl^ + c2(a2 + a3)}ln^-^-j-| 
2 a\C2 C,(fl2+Q3)] 

^ ' u i y 

+ {2axc2b2+cxdx{a2 + a2)}, y <b2dx 
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_ f 2a,(c2 + c3) 2c1(a2 + a3) ) 

[ d2 + b2 )y 

— {4 a,c,y + (a2 + a,)(c2 + c3) }ln| -g-j J 

— [2axb2{c2 + c^) + lcxd2{a2 + a^)}, y <b2d2 

= {laxcxy + c3{a2 + a3)}ln[^^^ 

f 2a,c3 c,(a2+a3) 1 

( ^3 b2 )y 

+ 2 fl(62c3 + C] J3(a2 +a3), y ^ b2d3 

=(^+TV~(w+a3C2M^k) 
— (Cl°3^1 + alC2^3>’ L < Ml 

= {2a,c1^ + a3(c2 + c3)}/«^^J 

f 2c,a3 a,(c2+c3) 1 

r 

+ 2c,a3J2+a,(c2 +c3)Z>3, y<b3d2 

~[^-+^r)y-^c'y+a^'"{yi,) 
(^3^1 d/3 “I- UjC3Z)3), ^ b3d3. 

9.22 Verify that Jbbf/h(y)dy= 1 in Exercise 9.21, assuming that min(6,^) 

= bldl, ma.x(bidj) = b3dy 

9.23 Verify that £[>>] = £'[x1].E,[;c2] in Exercise 9.21. 

9.24 Let V, and X2 be triangular i.r.v.’s with p.d.f.’s 

/i(*i) = *i> 0< x, < 1 

= 2 —x,, l<x,<2 

= 0, elsewhere, 
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Si (x2) = x2-l, \<x2<2 

= 3 - x2, 2<x2<3 

= 0, elsewhere. 

Prove that the p.d.f. h(y) of Y = XxX2 is 

h(y)~4 — 4y + (2 + 2y)lny, 0<y<l 

= 10>-20-(5>>+10)ln(|t 0<y<2 

= 12-4y + (2y + 6)ln(^). 0<y<3 

= l6-4y+(2y + 8)ln(^), 0<y <4 

= 2y-12-(y + 6)ln(|), 0 <y < 6. 

Show that h(y) is expressible in the equivalent form 

h (y) = (2 + 2y) \ny-(52 4-10) ln( |) + (2y + 6) ln( |) 

+ (27+8)ln(^)-(j + 6)ln(|), 0<^<1 

= 4^-4-(5y+10)ln(|) + (27 + 6)ln(|) 

+ (2y + 8) ln| ^ j — (.y + 6) ln| ^ 1<>^<2 

= 16-6y + (2.y + 6)ln^ j ) + (2y + 8)ln|^ j 

-(^+6)ln(|), 2 < 7 <3 

= 4-2^ + (2^ + 8)ln( j)-(^ + 6)ln(-^), 3 <>-<4 

= 2_y-12-(.y + 6)ln(|-), 4<>><6. 

9.25 Show that /$ h{y)dy = 1 and E[ Y] = E[Xx]E[X2] for both forms of 
/z(.y) in Exercise 9.24. 
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9.26 Let Xx and X2 be identically distributed triangular i.r.v.’s with p.d.f. 

f(xi) = 4xi, 0 < x, < }, 1 — 1,2 

= 4(1 — x,), ^ < x, < 1, i = l,2 

= 0, elsewhere, / = 1,2. 

Show that the Y= XxX2 has the p.d.f. 

h(y)= 16(2y — y\ny + 4yln2y — 4yln4y}, 0< y 

= \6{2-6y-y\ny + 4y\n2y + \n4y}, \ < y < j 

= \6{—2 + 2y—y\ny — 2\n2y + \n4y), \ < y < 1 

= 0, elsewhere. 

9.27 Verify that jxQh{y)dy = 1 and E[Y]= E[Xx]E[X2] in Exercise 9.26. 

9.28 Show that the quotient Y=Xx/X2 of two i.r.v.’s each having the 

p.d.f. 

/(*> 
V2 

7T 

_1_ 

1+V4’ 
— oo < X < oo 

has a Cauchy distribution (Laha [196], 1958). This proves that if £2 
denotes the set of r.v.’s for which the quotient of two such identi¬ 
cally distributed r.v.’s has a Cauchy distribution, the normal r.v. 
77(0,1) is not the only r.v. belonging to £2, as had previously been 
conjectured. 

9.29 Show that the inversion of the Laplace transform 

Lr(g(w))=-(\+2ry^ 2 

yields the chi-square distribution 

g(w) = 
2n'2T(N/2) 

w(N/2)~ le- w 0< w<oo 

with N = '2j=xnJ degrees of freedom. Note the presence of a branch 
point at the origin when N/2 is not an integer. Follow the general 
approach used in Section 9.2.7 for dealing with a branch point 
when deriving the noncentral chi-square distribution. 
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Verify that the distribution of the r.v. 

vl/N 

C=V 

is an //-function r.v. with p.d.f. (9.1.13), where 

n%xnjsf 

.2 
°j 

v= 
N‘ 

rijSj 

°J 

Show that the distribution JF=.Sj/S2, where S', and S2 are the 

standard deviations of two samples of size n from a bivariate 

normal population (see (3.4.12)) with correlation coefficient p and 

standard deviation a for both variates, is 

fM = — 1}, (i - p2)<” "2)72 
[r(«-i)] 

x wn~2 _ 4p2w2 

(l + w2)”-1 (1 + w2)2 

0 < W < 00. 

(Bose, 1935 and Finney, 1938). 

Hint. Bose’s method consisted of using the joint distribution of 

Sj, S2 and the correlation coefficient r, which was found by Fisher 
[104] to be 

/(,,.,2,r)=C0exp(^)exp(^) 

where 

s2= 
o\{\~P2) , a2(l-p2) 

n 

2 -z\- r / P*1J2 
,gi=---,h = 

n 8182 

and p, a,, a2 are the population values of the coefficient of correla¬ 

tion and standard deviations, n is the size of sample, and C0 is a 
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constant. Integrate f(sx,s2,r) with respect to r to obtain f(sx,s2). 

Then apply the transformation sx = ws2, s2, s2 = s2 to obtain the joint 

distribution f(w,s2), which when integrated with respect to s2 gives 

the p.d.f. f(w) of the quotient w = sx/s2. 
The distribution f(w) can also be obtained using Mellin trans¬ 

forms. When the joint distribution f(sxs2) has been determined, 

apply the transformation u=\/s2, $, = 5,, to obtain the joint dis¬ 

tribution f(u,sx). Determine the Mellin transform of the joint 

distribution f(u,sx) and invert via (4.8.14) to obtain /(w), where 

w = usx~ sx/s2. 

9.32* Show that the distribution of Fisher’s z variate 

where Sf and S2 are the variances of samples drawn from the 

correlated bivariate normal population (see (3.4.12)) with correla¬ 

tion coefficient p and nx = n2 = n, ax = a2 = a, is 

f(z) = 
2(1 -P2) 

2\("-l)/2 
,(n-l)z 

B 
In — 1 n-1 \ 

V 2 ’ 2 j 
(l + e2*) 

2z\n-\ 
1- 

4 p e z 

2z (1 + e2z) 
z > 0. 

(Bose, 1935) 

9.33* Let 

nxSx + n2S2 

for samples of size nx = n2=n drawn at random from the bivariate 

normal population (see (3.4.12)) with correlation coefficient p,nx = 

n2 — n, ax = a2 = a. Show that the p.d.f. of Y is 

(i~p2YH~iy/2 

f(y) = —-——-(1— y 2)(”- 3>/2 y ("_ 3)/2 

5 
(n- 1 yi-1 \ 

V 2 ’ 2 / 

x[l-4p2p(l-7)]-'l/2 0 < y < oo. 

(Bose, 1935). 
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Bose points out that if o,^o2 in Exercises 9.31, 9.32, and 9.33, the 

distributions of W, Z, and Y remain unchanged except for a slight 
modification, due to constant terms. 

9.34 Find the p.d.f. of the difference of two Student t i.r.v.’s with 5 
degrees of freedom.[120] 

9.35 Use the characteristic function to find the p.d.f. h(v) of the classifi¬ 
cation statistic 

Z ’ 

where X and Y each have the standardized normal distribution 

2V (0,1) and Z is distributed as x2/n with n degrees of freedom. 

(Harter, 1951) 

9.36 Find the p.d.f. h(v) in Exercise 9.35 by using Mellin transforms. 

9.37 Show that if X and Y are i.r.v.’s having chi-square distributions 

with m and n degrees of freedom, respectively, then the r.v. V 
defined by 

V= 
X 

X+ Y 

has the beta p.d.f. 

/(») 
1 

B (m,n) 
v m- 1 o-»y\ 0 < v < 1. 

9.38* Show that the difference W=Xl-X2 of two Pearson type III 
i.r.v.’s with p.d.f.’s 

e ~ xj'x? ~ * 

/(■*.-)= Y(p) » /7>0’ 0<oo, j= 

has the p.d.f. 

«(»’)= 
2'-T(p)r(i) 

where Kr(x) is the Bessel function of second kind of order r and 
imaginary argument, defined in Appendix D.l. 
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Jordan’s Lemma 

As Section 2.9 pointed out, it is particularly convenient to use the residue 

theorem, when applicable, to evaluate the integral along the Bromwich 

path. In particular, if the integral along the Bromwich path is equal to the 

integral along the Bromwich contour (closed circular arc whose diameter 

or chord is the Bromwich path), then the residue theorem may be used. 

The integral along the Bromwich contour will be equal to the integral 

along the Bromwich path if and only if the integral evaluated over the 

circular arc of the Bromwich contour approaches zero as the length of the 

radius approaches infinity. The conditions under which this occurs are 

given by Jordan’s lemma, which, because of its importance, will now be 

proved. 
Before proceeding with the proof of this lemma, it is important to point 

out that in using the residue theorem to evaluate the inversion integral over 

the Bromwich path, it is sometimes necessary to use the left Bromwich 

contour CL= QKLMPQ (Fig. 2.9.1a) and sometimes the right contour 

Cr = QPTQ (Fig. 2.9.1 b), depending on whether the poles are located to 

the left or to the right, respectively, of the Bromwich path. In either case, 

Jordan’s lemma finds useful application. 

A.l JORDAN S LEMMA AND ITS PROOF 

Jordan’s Lemma 

If /(51)—>0 uniformly with regard to args as |s|—>oo when 7r/2<args<§ 

and if f(s) is analytic when both |^|—and w/2 < args < 3tt/2 then 

lim f emsf(s)ds = 0, 
Cl—>oo JC' 

V-L 

where k and m are positive real constants. 

47I acknowledge Dr. W. E. Thompson’s contributions to the proofs and derivations in 

Appendix A, which are essentially equivalent to those appearing in an earlier document by 

Springer and Thompson [353]. 

404 
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The lemma as stated applies to the left-hand Bromwich contour in Fig. 
2.9.1a. If in the statement of the lemma, the inequality 7t/2 < args < 37r/2 

is replaced by the inequality — 7t/2 < args <7t/2, the limits of integration 

changed accordingly from (77/2, 37t/2) to (— 7t/2, tt/2), and the negative 

number - m replaces m in the kernel the lemma remains valid and the 

proof remains unchanged for the right-hand Bromwich contour CR. 

proof. In establishing the proof of this lemma for the left-hand Brom¬ 
wich contour, note that since /($)-»0 uniformly as |a|—>oo and 7r/2 < args 
<3t7/2, one can, given e, choose a p0 such that |/(^)|<e/7r when |j|>p0 
and 7r/2<arg5<37r/2. Then if p>p0 

and since 

= |cos(mpsin0) + i sin(mpsin0)| 

= cos2( mp sin 9) + sin2(mp sin 9) 

= 1, 

it follows that 

f e”J(s)ds < f3”/2\empcosffl\f(pli0)\\p\ciO 
Jr. Jm/y CL Jit/2 

< — [m/2 e~mpcose dQ. 
m J o 

Furthermore, since 
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it follows that when p>p0, 

Jordan’s lemma 

< 1 fn/22 pe-npV-MMde 
7T Jo 

— mp(l —(29)/it) 
v / 2 

0 

<—(l-e-mp) 
m 

hence 

as Pq—>oo. 
As previously stated, the condition that/(s)-*0 uniformly with respect to 

args will be satisfied if one can find constants M>0,^K>0 such that on 

the relevant semicircular arc (CL or CR, where s= Re ) 

i/wi<-^- (AU> 
K 

For if two constants M >0, K >0 can be found such that inequality (A. 1.1) 

is satisfied, then for any e>0 one can find a value R0>® depending on e 

but independent of args such that if R > R0, then M/RK<e, so that \f(s)\ 

_^0 independently of args; hence f(s) is uniformly convergent with respect 

to args. It is also shown in textbooks on advanced calculus that the 

condition (A. 1.1) holds if 

/(*) ew* 
(A. 1.2) 

where /*(s) and 0(s) ^re polynomials and the degree of F(s) is less than the 

degree of Q(s). 

Jordan’s lemma implies, but does not specifically state, that the value of 

the integral over each of the arcs QK and MP (Fig. 2.9.1a) approaches 

zero as R goes to infinity. This can be shown in the following way. Along 
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the ?lvcYx = QK, one has, since s = Re , 90<9 <tt/2, 90=QK/R, 

I\= f emsf(s)ds= f exp(Re'em)f(Re'9)-iRe,0d9. (A.1.3) 
*'r, Je0 

Since f (s)—>0 uniformly on T, as |.s|—»oo when 90< arg s < 7t/2, one 

can, given e>0 choose an R' such that for ^—; so 
~ cm i e <f>0 

M < [ \e(Rcosd)m\\ei(Rsin9)m\\f(Rei0)\\iRei9\d9 
Jo0 

< r/2e(Rcosd)m\f(Rei9)\Rd9 
J90 

(A. 1.4) 

< 
e rtt/2 

ecm0 
[* e(Rcos0)md9,R >R' 

J 0 J90 

.cmj e <j>0 
f\(Rs^d(t>,R>R\ 

Jo 
(A. 1.4a) 

having utilized the transformation 9 = tt/2 — (j). Moreover, since sin <j> = 

c/R it follows that 

[*0e(Rsin<t>)md(p= f+°ecmd<f> 
Jo Jo 

= e""<p0 (A. 1.4b) 

Thus, from (A. 1.4a), one has 

|/,l< r Jo 

- f^^Rsin&m d<t>, 
ecm<t> o 

Which in conjunction with (A. 1.4b) yields the result 

\Ix\<e,R>R\ 

Hence, 

lim emsf(s)ds=0. 
R—»oo 

(A. 1.4c) 
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In a similar manner, one can establish that 

lim f emsf{s)ds = 0, 
oo J r2 

where T2 denotes the arc MP (Fig. 2.9.1a). 
It follows, therefore, that if the conditions of Jordan s lemma are 

satisfied, the value of the integral over the Bromwich path is equal to its 

value over the Bromwich contour, since the value of the integral over the 

circular arc approaches zero as R goes to infinity. 

It should also be pointed out that the condition that f(s) be analytic 
when both and tt/2 < args < 3tt/2 where A is a positive constant 

must be satisfied. This condition requires all poles of f(s) to be a finite 

distance from the origin. This condition may be removed if, for example, 

the poles of f(s) are countable and are spaced at intervals along the real 

axis. For then one can, given e, choose p = p(> 0 such that arcs of radius a, 

lie between the poles of f(s), i—1,2,...,oo, and the proof is carried out as 

before. Appendix F gives a procedure for selecting the sequence of radii a„ 

/= 1,2,3,..., such that the arcs do not pass through any poles, for the case 

of an //-function inversion integral whose integrand contains an infinite 

number of poles. 



APPENDIX B 

The Verification of the 
Conditions of Jordan’s Lemma 
for Certain Specified Integrals 

In the derivation of several product distributions in Chapter 4, it was 

necessary to invoke Jordan’s lemma, which required that/(y) in (2.9.5) and 

(2.9.6) be uniformly convergent. The proof of this uniform convergence 

was deferred to this appendix, which covers the case of products and 

quotients of uniform i.r.v.’s, and to Appendix F, which covers the other 

cases, since they involve products and quotients of independent //-func¬ 

tion r.v.’s (namely, beta and gamma r.v.’s). 

B.l THE PRODUCT AND QUOTIENT OF 
UNIFORM INDEPENDENT RANDOM VARIABLES 

In the derivation of the product of n uniform i.r.v.’s in Section 4.4.1, it was 

necessary to evaluate the inversion integral 

1 rc + ioo v s 

h(y)=2ViLlx —dr, c>0 

1y-‘ 

ds, 

_ j_ r+ 

2 m Jc-i 

1 rc+ 
2m Jc-i 

c + iao glny 

c + ioo e~slny 

(4.4.4) 

(B. 1.1) 

the latter forms of the integral resulting because any real variable (say, w) 

is expressible in the form w = elnw. Clearly, 

,(-lny)j rc + i oo ey r c + ioo . 
/ —~n— ds = f emsf(s)ds, 
Jc—ioo ** JC—i OO 

m — — lny > 0, (B.1.2) 
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where f(s) = s~n and where the poles are to the left of the vertical line 

(c-ioo,c + icc). If f(s) = s~n is uniformly convergent with respect to args, 

the conditions of Jordan’s lemma are satisfied and the integral (4.4.4) will 

be equal to the integral over the (closed) Bromwich contour CL (Fig. 

2.9.1a). The integral can therefore be evaluated by the residue theorem in 

the manner indicated in Section 4.4.1. 
Section 2.9 demonstrated that f(s) is uniformly convergent if 

where M >0,K>0. In the present problem, 

(B14) 

where M = 1 and K—n— \,n >2; hence the uniform convergence of f(s) = 

s-" with respect to args has been established. 

Similarly, the components of the p.d.f. of the quotient Y=Xx/X2 of two 

uniform i.r.v.’s stemming from integration over the arcs QKLMP and 

PTQ, respectively, are given (Fig. 2.9.1) by 

hM=iirihirrfi}*’ 

0< y < 1, 

1 <y < oo, 

0<c<2 (4.4.7') 

0<c<2. (4.4.8') 

Rewriting (4.4.7') and (4.4.8'), respectively, in the forms 

and 

■■w-2hi 
,(- lnyji 

QKLMP S ( — S + 2) 
ds, 0<y < 1 

= —f emsf{s)ds, m — — lny > 0 
2 7Tl J QKLMP 

y 
PTQ s(~ J + 2) 

-2 

ds 

m = lny > 0, — ms 
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one notes that 

l/MI 
1 

s(~ 5 + 2) 

1 

— s + 2| 

1 1 

< R' R — 2 

R>4' 

Consequently, 

lim 1/(j)|=0 
I ^ | —> 00 

independently of args. Thus /(s)—>0 uniformly with respect to args, so that 

the integrals (4.4.7') and (4.4.8') approach zero in the limit as |s| ap¬ 

proaches infinity. 



APPENDIX C* 

Proofs of Theorems 5.1.1 and 5.1.2. 

Theorem 5.1.1. Let be the Laplace transform of f(t), t > 0, such 

that Lr(f(t)) is analytic and of order 0(r~k) where K > 1 for all r in 

Re(r)>e<0. Then the Mellin transform of /(/) is given by 

, T(ct) rc + i oo 

K(/«)Lr(f(tj)(-r) °dr, 

Re(a)>0, e<c<0. (C.l) 

In the special case, when the singularities of Lr(f(t)) are poles in 

Re(r) < e and \Lr(f(t))\ is bounded in Re(r) < e then 

M.(J(0)-r(«)[ 2 ResLr(/(0)( 

at poles of Lr(f(t)) 1 (C.2) 

(where Res stands for “residue of”). Also, when Lr(f(t)) is an entire 
function, 

r(l-a) 

and Ma(f(t)) is analytic in Re(a)>0. 

(C.3) 

proof. Under the stated conditions on Lr(f(t)), the inversion integral of 

Lr(f(t)) along any line Re(r) = c converges to a real-valued function/(r), 

independent of c; that is, 

1 rc + ioo 

fohLjr%m)dr- (C.4) 

48I am indebted to Dr. Ram Prasad [295] for providing the proofs of these theorems. 
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The Mellin transform of f(t), t > 0 is defined by 

K(f( 0)- fxf{t)ta-'dt. 
Jo 

Substituting for f(t) in (C.5), one has 

K(S(')) = 4 (C + ‘“LXf(t))e"dr 
j0 Jc-i00 

Consider the existence of the following integral: 

(C.5) 

(C.6) 

r°o , rc + ioo, , . , 

I=f | r~'\dl[ \L,{f(t))e"\dr 
J0 Jc — i oo 

/• oo r oo 

= f t^dtf \Lc+iu(f(t))\ecldu, f = Re(a). (C.7) 

From the order condition on Lr(f(t)), it follows that there exists a 

positive number k such that 

|4+/co(/(0)|<k(c2+w2)_k/2. 

Hence 

/< f t^~xec,dt f 2k(c2 + u2)~K/2du>. (C.8) 
Jo Jq 

r 00 

Now / 2k(c2 + co2)~*/2 converges (since x> 1) and is equal to R(c), say, 
Jo 

and therefore 

I<R(c) rt!-'ec‘dt = 
Jo 

*(<Qr«) 

(-c)f 

Thus / exists for f >0 and c<0; therefore the order of integration can be 

interchanged in (C.6); that is. 

M. (At)) = ± f[+^L,(A‘))dr fo°°t°-'*"dt 

(C.9) 
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In the special case when the singularities of Lrare poles in 

Re(/-)<e and \Lr(f(t))\ is bounded for all r in Re(r)<e, the contour 

c±ioo can be replaced by a finite circle y enclosing the singularities of 

4(/(0)- Thus 

MaU(t)) = jya-xdt- (C1°) 

Now (fir Lr(f(t))erldr converges uniformly in every closed interval 0 </ < 

h; therefore the order of integration can be interchanged in (C.10), that is, 

K(AO)- 2^ jsW(‘))drfJ’r-Vdt 

= J^-^Lr(MX-'-r'dr 

or 

K(/(0)-n«)2 R»4(A0) 

at poles of Lr(f(l))- (C.U) 

When Lr(/(0) is entire, the only singularity of the integrand of (C.9) is a 
branch point in Re(r)>0; therefore the contour of integration c±ioo can 

be replaced by the one in Fig. C.l. On the contour ab, arg(— r) = tr, so that 

(— r)= exp( — lira);c ““. On the contour cd, arg( — r) = — 7r; so that 

( — /•)““ = exp(/7ra)a_a. On the circle be, —r — te,B. Thus, 

«„(/('))= Jim f\Wt))c-*°x--dx 

+ C Lmm(f(t))e-ae-k*iee*d9 
J - rjj 

+ fRL„( f(t)y*°x-°dx 

Let Re(a) < 1; then 

lim 
e—>0 

C Lee4f(t))iex-aei(l~a)ed9 
J — TT 

< 

(C.12) 
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-> 

*e 

d 

Re (r) 

a 

Fig. c.i Contour of integration used in the proof of Theorem 5.1.1. 

where 

|Lo(/(f))|<M>0. 

Now let R go to infinity; then (C.12) reduces to 

or 

*.(/«)= ^2rilCL*(f(‘))e"°X-°dX 

+ f° Lx(f(t))e-'nax~adx 
~ 00 

K (/(')) = 
W|-«(4(/(<))) 

r(l-a) 
(C.I3) 

Since the contour abed does not pass through the point r = 0, there is no 

need to stipulate that Re(a)< 1. Therefore Ma(f(t)) is analytic in Re(a)> 

0. 

Theorem 5.1.2. Let Lr(f(t)) and )) be the Laplace and Mellin 

transforms of /(/), t> 0, respectively. If /(/) is of bounded variation and 

tKf(t) £ L2 on (0,1) and t'f(t)£L2 on (l,oo) with k </, then 

4(/(0) = 2^7 °°M«(/(0)r(i - a)'-0-1 

k + | <c<min(l,/ + ^). (C.14) 
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proof. Under the stated conditions of f(t), 

Ma(/(/))= fXta~xf{t)dt, k + \<R e(a)</+i 
Jo 

is analytic, and by the inversion formula it follows that 

/(<)= 2(C15) 

The Laplace transform of f(t) is given by 

4(/«)= 

= [°°e-r,dtj- [C + ,C°Ma(f{t))rada. (C.16) 
J0 Jc-ioo 

Now e~rt is of bounded variation in every finite interval of t and Ma(f(t)) 

is analytic in every interval (c— iR,c+ iR), R>0. Therefore, to prove the 

interchange of repeated integrals in (C.16), it is sufficient to show that 

there exists the integral 

Also, 

/oo 7 

\K+,■„(/(/))! du 
- CD 

1/2 

= t~c 
Jo 

1/2 

. (C.18) 

The integral in (C.18) converges by assumption on f(t) and is equal to 
Q(c), say. Hence 

I<^QXc) re-»t’'dt; ? = Re(r) 
•'o 

=Vew‘r(i-c)r-1; £ >0,c<l. 



PROOFS OF THEOREMS 5.1.1 AND 5.1.2 417 

That is, I < oo, and (C.16) can be written as 

4(/M) = C,IM“ 
= Ma(J(t))T(\-a)r°-'da, 

(/c + ^)<c<min(l,/+ (C.19) 

which proves the theorem. 



APPENDIX D 

Special Functions and Transforms 
of Basic Probability 
Density Functions49 

D.l SPECIAL FUNCTIONS 

There are certain special functions with which readers may at times be 

confronted. For their convenience, the more important of these special 

functions are defined here 

1. Gauss’ hyper geometric function or series [97, p. 56] 

F(a,b; c,z) 
S”.o («).(A).Z- 

[(«).«!] 

where (a)n = a(a + 1)- • • (a + n — 1). When expressed in terms of the gener¬ 

alized hypergeometric function or series defined below, it has the form 

2F{(a,b;c,z) = F a,b;z 
c 

2. Generalized hypergeometric function or series [97, p. 182] 

p 
ava2,...,ap\z 

Pl’P2’---’Pq 
=pFq{ar\pt\z) 

„=0 (P\)n' ■ -{Pq)nn' ' 

49Since these special functions are valid for both real and complex variables, the notation is 

that of a complex variable z. 

418 



SPECIAL FUNCTIONS 419 

3. Rummer’s confluent hypergeometric function [97, p. 248] 

,F,(a;c;z) = l + 7_ + -^_Ty- + ... 

(sometimes denoted by <£ (a,c;z), see, e.g., ref. 97, Chapter 6). 

4. Bessel function of the first kind of order v [98, (2), p. 4] 

s (~ir(z/2)2-+- 

"0[m!r(m + F + l)] 

= ^;2p+ l;2iz)/r(p+ 1). 

5. Modified Bessel function of the first kind of order v [98 (12), p. 5] 

\2 k + r 
(z/2) 

*-o [fc!(/r+p)!] 

6. Bessel function of the second kind of order v [98, (4), p. 4], where v 

is neither zero nor a positive integer 

Yv(z) = (sin [JXZ) cos(ptt) - 7_,(z) ]. 

7. Modified Bessel function of the second kind of order rt, where n is 

zero or a positive integer [98, p. 9] 

Kn(Z)=-^in+l[Jn(iz)+iYn(iz)]- 

= lim 
77 

»'-»« 2sin(j'7r) 
[/_,(*)-/„(z)] 

8. Bessel function of the third kind of order v, where v is neither zero 

nor a positive integer [98, (5), (6), p. 4] 

Hm(z) = JXz)+iYXA=[iM^)TV-M-JXz)e-"’] 

9. Modified Bessel function of the third kind of order r, where v is 

neither zero nor a positive integer [98, (13), p. 5[ 

K'(Z)=2^T)V-’(Z)-,XZ)^ 
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10. Whittaker’s function [95, p. 386] 

r(—2, r(2(.)A4_,(z) 

‘•'(z) r(ir(i+m-0 
where 

^>) = ^(1/2)+^"z/2iFi(i + /a-A:’2/a+1;z)- 

11. Parabolic cylinder function [98, p. 117, formula (3)] 

Z>,(z) = 2'/2<'+ ,/2)Z ' ,/2^(.+ I), i( y ) 

12. Dirac delta function (general a) [200, p. 21] 

8(z — a) = 0, z^=a /OO 

8(z — a)dz = \, z = a. 
- OO 

If the Dirac delta function is multiplied by any function /(z), the product 

is zero everywhere except at z = a, so that /OO 

(x-a)f(x)dx=f(a). 
- 

13. Error function [2, p. 297] 

2 
erf(z)=- f e uldu, 

v7T J0 

0 <z < oo. 

14. Sine integral [97, p. 267, formula (27)] 

•'0 w 

15. Cosine integral [97, p. 267, formula (28)] 

16. Exponential integral [2, p. 228] 

/CO £ — “ 

—— du (x real and positive) 

Ex 
OO 

dt. z complex, |argz| <tt. 

Some basic p.d.f.’s are useful in both theoretical and applied areas of 

statistics and probability. These density functions and their integral trans¬ 

forms are given in Table D.2. 
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A P P E N D I X E50 

The Complex Fourier or 
Bilateral Laplace Transform 

Chapter 2 indicated that under certain conditions the Fourier transform 

could be replaced with the complex Fourier or the bilateral Laplace 

transform. The validity of this assertion is now established. 

Consider first the question of the existence of the bilateral Laplace 

transform. From (2.8.7b) it is apparent that the bilateral Laplace transform 
exists if /OO 

erxf(x)dx (E.l) 
- OO 

is finite. That is, since 

\f(x)erx\ = \f(x)\ecx, c = Re(r), (E.2) 

the existence of §r(f(x)) is ensured if 

/OO 

\f(x)\ecxdx (E.3) 
- OO 

is finite. Now, if there exist real finite numbers M, a, and [i such that 

/(*)< 
A/e**, 

Me~px, 

x <0 

x>0, 
(E.4) 

then the integral (E.3) is finite for any value c greater than a but less than 

/?; that is, the integral jf(x)trxdx is absolutely convergent for values of 

50The approach used to establish the results in Appendix E, including Figs. E.l and E.2, is 

essentially that of B. P. Lathi (An Introduction to Random Signals and Communications Theory, 

Dun-Donnelley Publishing Company, New York, 1968), and is used with the permission of 
the publisher. 
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r = c + ix that satisfy the condition 

a<c</3. (E.5) 

This is readily apparent if one partitions the integral into two components: 

. _ r0 r oo I erxf{x)dx+ f erxf(x)dx. (E.6) 
J-ao J0 

Use of the inequality (E.4) in conjunction with (E.6) yields 

/O r oo 

Me(r~a)xdx+ I Me{r~P)x dx (E.7) 
-oo 

^— e(r~a)x °\ +—^c(r-^)xTV (E.8) 
\r-a -'oo r-p o/ 

It is clear that the first integral of the inequality (E.8) converges for 

Re(r)>a and the second integral converges when Re(/•)</?. The two 

regions are depicted in Fig. E.l. Both integrals converge in the common 

region determined by a <c <(3. 

Region of convergence of Syf/ (*» = /% f (x)dx, where/ (x) denotes the 

part of f(x) corresponding to —00 < X < 0. 

Region of convergence of %(f*(x)) =/0°°erxf*(x) dx, where/(x) denotes the 

part of f(x) corresponding to 0 < x < <*>. 

Region of convergence of %(f(x)) corresponding to the entire function f(x) for 

—= < x < °°. 

Fig. E.l Regions of absolute convergence for the bilateral Laplace transform. 
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Clearly, for all values of r lying in the region of convergence, %(J\(x)) is 
finite; thus any singularities (poles) of <Slr(J(x)) must lie outside the region 
of convergence. Thus if /(x) is defined on the interval (0, oo) only, the 
poles of ^ (/(*)) must lie to the right of the region of convergence. 
Consequently, when/(x) is determined from the inversion integral (2.8.7a) 
by the method of residues, the integration is performed over the right-hand 
Bromwich contour CR (Fig. 2.9.1 b), since this contour encloses the poles. 
Similarly, if f(x) is defined on the interval (— oo,0) only, the poles of 
<3r(f(x)) must lie to the left of the region of convergence. For a function 
/(x) that is defined on the interval (—00,00), ^(/(x)) may have some 
poles lying to the left and some lying to the right of the region of 
convergence. From the foregoing discussion, it is clear that the poles to the 
right of the region arise because of the part of the function /(x) corre¬ 
sponding to the positive domain of x (i.e., 0<x < 00), whereas those to the 
left of the region arise from the portion of /(x) associated with the negative 
domain of x. This is extremely important in determining the inverse 
transform. 

The regions of convergence of the complex Fourier transform are 
indicated by Fig. E.l. The ordinary Fourier transform is the special case 
for which the region of convergence that is utilized is limited to the 
imaginary axis r = it. If the region of convergence of the bilateral Laplace 
transform of a function /(x) includes the imaginary axis, the ordinary 
Fourier transform of /(x) necessarily exists and can be obtained by a 
direct substitution of it for r in %(f(x)). On the other hand, if the region 
of convergence of 5r(f(x)) does not include the imaginary axis, the 
function f(x) does not satisfy the condition of absolute integrability and 
cannot possess the ordinary Fourier transform [200, p. 310]. 

It bears stating at this point that if a function /(x) is absolutely 
integrable, its ordinary Fourier transform exists, from which it follows that 
the region of convergence of %(J(x)) must include the imaginary axis. In 
such cases, the poles of ^(/(x)) lying to the left of the region of 
convergence are necessarily located in the LHP, and all the poles lying to 
the right of the region are necessarily located in the RHP. From the 
previous discussion regarding the positive and negative domains of x, it is 
clear that if f(x) is defined over the range (—00,00) and is absolutely 
integrable—that is, if 

(E.9) 
— OO 

is finite—all the terms of <Tr(/(■*)) represented by LHP poles correspond to 
the negative domain of x, and the terms represented by the RHP poles 
correspond to the positive domain of x. On the other hand, if /(x) is 
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absolutely integrable and is defined only for values of x in the interval 

(0, oo) (i.e., if /(x) = 0 for - oo <x <0), all the poles of r(/(x)) must lie in 

the RHP. Similarly, if/(x) is absolutely integrable and is defined only for 

the values of x in the interval (- oo,0), all the poles of %(J(x)) must lie in 

the LHP. 

As has already been emphasized, the transform pair (2.8.5a, b) was 

originally selected so that the characteristic function would be identical 

with the Fourier transform. The extension of the ordinary Fourier trans¬ 

form to the complex Fourier (bilateral Laplace) transform then led one to 

the regions of convergence and relative positions of the poles as indicated 

in Fig. E.l. 

If one were only concerned with Fourier and bilateral Laplace trans¬ 

forms, it would be preferable to stop at this point and not consider the 

other transform pair (2.8.6a, b). For problems involving unilateral Laplace 

transforms, however, the definition (2.8.2a) is universally employed, in 

which case the unilateral Laplace transform pair is 

r OO 

Lr(f(x))= [ e~rxf(x)dx, 
Jo 

f(x) = J- f C^,XerxLr(f(x)) dx. 

If now one uses the unilateral and bilateral Laplace transforms in conjunc¬ 

tion with each other—as, for example in evaluating the bilateral Laplace 

transform by means of unilateral Laplace transforms—it is preferable to 

use the bilateral Laplace transform pair 

/OO 

e~rxf(x)dx, (E.lOa) 
- OO 

/(a)=^tJ erxf(x)dr. (E.lOb) 

Then the inequality (E.7) no longer obtains but is replaced by the inequal¬ 

ity 

|£(/(x))|< f° Me(a~r)xdx+ rMe«-»xdx. (E.l 1) 

Now the regions of convergence for 9). (/(■*)) and the relative locations of 

the poles appear as in Fig. E.2. It is now true that if /(x) is absolutely 

integrable, all the terms of $r(J(x)) represented by LHP poles correspond 

to the positive domain of x, and the terms represented by the RHP poles 
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A 

Region of convergence of ^r(f~ (x)) ~ f^e rx f dx, where 

f- (x) denotes that part of f(x) corresponding to - °° < x < 0. 

Region of convergence of (f+(x)) - Jo e rxf+(x) dx, where 

/+ (x) denotes that part of f(x) corresponding to 0 < x < 

Region of convergence oi^r(f(x)) corresponding to the entire 

function fix) for — < x < =». 

Fig. E.2 Regions of absolute convergence for the bilateral Laplace transform. 

correspond to the negative domain of x. Thus if /(x) is absolutely integra¬ 

te and is defined only for values of x on the nonnegative interval (0, oo), 

all the poles of ^ (/(*)) must lie in the LHP. Likewise, if/(x) is defined 

only on the negative domain ( — oo,0) of x, all the poles of ^(/(*)) must 

lie on the RHP. Finally, if f(x) is defined for both positive and negative 

values of x, all the terms of %(f(x)) represented by LHP poles correspond 

to the positive domain of x, and the terms represented by the RHP 

correspond to the negative domain of x. 
An important property of the bilateral Laplace transform is that it can 

be expressed as a sum of two unilateral Laplace transforms, as we now 

show. 
Consider, for example, the function /(x) in Fig. E.3a, partitioned into 

two components corresponding to negative and positive values of x (Fig. 

E.3 b,c): 

f(x)=fi(x), -oo<x<0 

=f2(X)’ 0<X<OO. 

(E.12a) 

(E.12b) 
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Then 

/OO 

e~rxf{x)dx 
- rr) — OO 

= f e rxf\(x)dx + f e rxf2(x)dx 
•'-oo Jo 

oo r oo 
erxfx( — x)dx + / e~rxf2(x)dx 

= L_r(fx{- x)) + Lr(f2(x)), 

where L_r(Jx( — x)) and Lr(j2(x)) are unilateral Laplace transforms. Since 

/,( —x) is a mirror image (Fig. E.3d) of the component fx(x) about the 

vertical axis x = 0, it is clear that the contribution of this component to the 

total transform may be obtained by: (a) taking the mirror image of fx(x) 

about the vertical axis and finding its Laplace transform, and (b) replacing 

r and — r in the transform so found. 

Then the region of convergence of the transform of the complete 

function f(x) is that common to both of the transforms 5r_r(/i(x)) and 

%(f2(x)). The procedure is analogous to that given in Chapter 4 for finding 

the Mellin transform Ms(J(x)) for a function/(x) defined over the doubly 

infinite range — oo <x< oo. The following example is illustrative. 

Example E.l. Find the bilateral Laplace transform of the p.d.f. 

f(x)=f\(x)> — oo <x <0 

=/2(x), 0<x<oo, 

where (Fig. E.4) 

fi(x)= Je2x> — oo < x < 0, (E.13a) 

fi(x)=je 3x> 0<x<oo. (E.l 3b) 

In view of the foregoing discussion, 
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f(x) 

Fig. E.4 Graphical representation of f(x) given in (E.13a,b). 

and 

whereas for f2(x) one has directly 

a«*))=f^). 

Therefore 

^*))-!(^2) + !(7T3) 

6 

“(-r + 2)(r + 3)’ 

where the region of convergence is — 3 < r < 2. 

The inverse problem of finding the p.d.f. f(x), — 00 <x<oo, whose 

bilateral Laplace (or complex Fourier) transform is known, is illustrated by 

Example E.2. 

Example E.2. Find the inverse transform f(x) if 

3 
(_r + 3)(r+l)’ TO" 

— 1 <r <3. 
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When expressed in terms of partial fractions, ^(/(a)) has the form 

+ 
(-r + 3) (r+1) 

— 1 <r <3. 

Since the region of convergence of Fr(f(x)) is — 1 <r<3, the pole at r = 3 

lies to the right of the region of convergence, so that the term 1 /(— r + 3) 

stems from the component fx(x), — oo <x < 0, and l/(r+1) stems from the 

component f2(x), 0<x< oo. Thus 

^r(/(*))“^(/l(*))> -0O<A<0 

= %(f2nx), 0<x<co, 

where 

^r(f\(x)) = L-r(M~x))’ 0<*<oo, 

3 1 

4 (-r + 3) 

Wii*)) = 4(/2(*)) 

Then 

0 <a < oo. 

/i(*) = 03, - oo <x < 0, 

which, when evaluated by means of the residue theorem, becomes 

/,(*)= -|e3x, - oo < x <0. 

Similarly, 

1 /*C + 

Ux)=mL, 
c + i oo 3e' 

4(r+l) 

3c' 

4 
0< a<oo. 



APPENDIX F 

Proof of the Validity 
of the Residue Theorem 
in Evaluating the 77-Function 
Inversion Integral 

Application of the residue theorem to the evaluation of the //-function 

inversion integral introduced in Section 6.2.1 is valid if Jordan’s lemma 

(Appendix A.l) applies. For if Jordan’s lemma applies, the integral 

evaluated over the Bromwich path is equal to the integral evaluated over 

the relevant (closed) Bromwich contour CL or CRk (Fig. F.I.), and this 

integral can be evaluated by the method of residues. It will be proved that 

the conditions of Jordan’s lemma hold for all //-function inversion in¬ 

tegrals. The proof is carried out in three parts, dealing with the following 

three cases, which are treated, respectively, in Sections F.l, F.2, and F.3. 

Case 1. The integrand (i.e., the Mellin transform of h(y)) of the 

inversion integral contains poles in both the LHP and the RHP, hence 

contains both the factors 

M N 

nr(7?, + y8,j) and n r(l-fl,-a,5). 
1=1 i=i 

The presence or absence of the remaining factors is immaterial, insofar as 

Jordan’s lemma is concerned, as will be shown. 

Case 2. The integrand of the inversion integral contains poles only in 

the LHP. That is, it contains the factor nfi ,r(6, +/?,$) but not the factor 

nfl ,T(1 — a, — a,j). 

Case 3. The integrand of the inversion integral contains poles only in 

the RHP. That is, it contains the factor nfi.,T(l — a,- — ats) but not the 

factor nfi ,r(7>, + fts). 
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Qk: c + ia 

Fig. F.l Bromwich contours of integration for infinite number of poles in the LHP and the 
RHP. 

432 
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F.l APPLICATION OF JORDAN’S LEMMA 
IN THE EVALUATION OF 
THE //-FUNCTION 
INVERSION INTEGRAL WHEN POLES OCCUR 
IN BOTH THE LEFT HALF-PLANE 
AND THE RIGHT HALF-PLANE 

It is convenient, when considering the application of Jordan’s lemma, to 

express the //-function inversion integral in the form 

Ky)=[C + ,C°f(s)e (lny)sds, 
Z7TI J r — ion C— ICO 

where f(s) denotes the Mellin transform of the //-function. Recall that 

when f(s) has an infinite number of poles, the three conditions that will 

ensure that Jordan’s lemma is applicable are: 

1. The kernel must be of the form e"“, m> 0, relative to the Bromwich 

contour CL and e_"“, m>0, relative to the Bromwich contour CR. 

2. The infinite number of poles must be countable and spaced at intervals 

along the real axis. 

3. Lim/(.y)—>0 uniformly with respect to arg.s as s—>oo. 

Consider the derivation of the component hx(y), 0<y<l, utilizing the 

poles in the LHP (hx(y) is defined in Section 7.1). Arrange the distinct 

values of /?, = —//?,-, i= 1,2,in algebraically increasing order of 

magnitude as follows: 

Similarly, arrange the distinct values of /l, =(1 — a,)/a„ i= 1,2,in 

algebraically increasing order of magnitude as follows: 

The Bromwich path can now be taken as any line (c —ioo,c + icc) for 

which B„ <c<A\. (This is always possible, since from the definition of the 

//-function inversion integral, no pole of r(Z, +/?,s) for i=\,2,...,M 

coincides with any pole of T(1 — a, — ats) for i=l,2,...,N.) Suppose one 

takes the line segment PkQk (Fig. F.l) corresponding to c = A, where 
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and choose the kth closed contour CLk (Fig. F.l) whose arc QkKkLkMkPk 
is that of a circle with center at (5^,0) and radius 

|j| = Rk = \B„\ + k + e, A: —0,1,2,..., 

where e is chosen such that 0 < e < 1 and such that for any s on the arc, 

(bi + fis), i — 1,2,...,M; (1 -a,-0,5), i = 1,2,...,iV; (l-b-frs), i=M + 

\,M + 2,...,q; and (a,+ 0,5), i = N+\,N + 2,...,p are not integers. (The 

second constraint is not used at this point, but it is imposed for use in 

subsequently proving that the third condition of Jordan’s lemma is satis¬ 

fied. Note also that the gamma functions T(l — ft,— /?,5) and r(a, + o,5) in 

the denominator of the //-function inversion integral are no cause for 

concern, since they are bounded from below.) Because B'm and A\ never 

coincide, it is always possible to find such an e value, for M and N are 

finite, and the points on any line segment, however small, are everywhere 

dense. These choices of c and Rk ensure that no closed contour of the 

sequence of closed contours CLk, k = 0,1,2,..., passes through any of the 

poles, and that the poles are countable, having been placed in a one-to-one 

correspondence with the set of positive integers. 
It remains to show that lim^^00/(5) approaches zero uniformly with 

respect to arg5, where 

m nLM+Ai-b-Mnf-N+Aei+BiS)' 

Recall that for any 5 on C, , Rk was chosen such that (ft, + /?,5), / = 

1,2,..., M and (1 — a,, - ats), i — 1,2,..., N were not integers. Then, as is well 

known, [18, p. 27] 

r(4,+A»)r[i-(i,+ftj)] 
_77_ 

sin [(£, +#5)77] 

and 

r(a,- + afj)T[ 1 - (a, + a,s) ] = 
77 

sin[(u, +0,5)77] ’ 

or equivalently, 

r[ !-(*,- +«,-*)] = 
_77_ 

r(a, + a,s) sin[ (u, -I- 0,5)77] 

and since T[ - (6, + fos) + 1] = - (^ + j8fJ)r[ - (ft, + pts)]. 

m+M= 
_77_ 

[sin(ft, + fas) ] (ft, + frs)T[ - (ft,. -1- frs) ] ' 
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Recall also that none of the contours CLk passes through any of the poles. 

Hence for any s on CLk, |sin[(ftJ- + /?f.y)7r]|, i=\,2,...,M, and |sin[(a,- + 

a,^)vr]|, i= 1,2are bounded from below; that is, one can find values 

c, >0 and /, >0 such that |sin[(Z?; -F- /?,s)7r]| >c, and |sin[(tf, +a,s)7r]| >/,. 

Also, for any 5 on CLk, \bf +fys], |r[ - (6, + /?,.$)] |, i = l,2,...,Af are 

bounded from above, whereas |i\a, + a,s)|, /= N+ \,N + 2,...,p and |r(l- 
bj — fijS)], /= M+ \,M + 2,...,q are bounded from below. In other words, 

there exist positive numbers dt, 8,, A„ and y, such that 

1 bi + Pis\ = diRk, 

|r[-(4,+fl*)]|>«„ (F .1.1) 

|r(a,. + a^)|>A,., (F.1.2) 

|r [ i—(6,+/*, j) ] ] > Ti- 
Consequently, 

(F.1.3) 

!/(*)! = 
n" lr(i>,+fts)n*,r(i 

Ui=M+ ir0 - bi-pis)Ilf=N+ ^(a, + aiS) 

n"1|r(i,+Ai)|nf.,|r(i-<i,-a,j)| 
nUm+i |r(i - A - Minfin,|rfa+<v)| 

! {sin [ (6,. + pts)ir ]} (b, + ^s)T[-(£,+ fys) ] 

_1_ 

nfi ,r(a, + a,s)rif=, sin[ (a, + ais)‘n]I^=M+ir0 “ bi ~ A5) 

_1_ 

n^N+inai + aiS) 

7T 
M + N 

< 

.A,nf. 1/,.nf=M+ l7l 

B 

R, 
M ’ 

(F .1.4) 

B = 
M P N <7 1-1 

n (cM) n A,n /,. n y, 
/ = 1 z = 1 / = 1 i = M +\ 

•n m + n 

where 
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It follows that 

lim |/($)|-»0 
Rk-*<x 

uniformly with respect to args, and the third condition of Jordan’s lemma 

is satisfied. 
Finally, when y = 1 (which case is not covered by Jordan’s lemma), the 

kernel reduces to the value 1; that is, 

y-s = e-Qny)s 

= 1. 

Hence the integrand y~sf(s) = f(s), which, as shown previously, approaches 

zero uniformly with respect to args as the radius Rk approaches infinity. 

Therefore, when y = 1, the //-function inversion integral evaluated over the 

relevant circular arc approaches zero as Rk approaches infinity indepen¬ 

dently of args. Thus when the conditions of Jordan’s lemma are satisfied 

relative to either lim^^C^ or lim^^C^, the value of the //-function 

inversion integral evaluated over the Bromwich path (c —/oo,c + /oo) is 

identical to that obtained by integrating over the relevant Bromwich 

contour. The derivation of the component h2(y), 1 <y < oo, is achieved by 

a procedure analogous to that given earlier, utilizing the Bromwich contour 

CR , k = 0,1,2,... (Fig. F.l). The Bromwich path is identical to that utilized 

in the contour CLk, and is determined by c = A, where A is given by 

A = min 
\K\ \AW 

as before. One now chooses the kth closed contour CR as one whose arc 
lxk 

Pk Tk Qk is that of a circle with center at the origin and radius 

|j| = Rk = \A\\ + k + e, k = 0,1,2,..., 

where again e is chosen such that 0 < c < 1 and such that (bi + /?,s), 

/=l,2,...,m, and (1— a,-a,s), /=l,2,...,n, are not integers. Thus the 

second condition of Jordan’s lemma is satisfied. Also, as before, some 

constant d[ > 0 exists such that 

| ^ + fos\ = d'Rk, k = i= 1,2,..., m. 

Moreover, inequalities (F. 1.1) through (F.l.4) hold (with dt replaced by d') 

and it follows that the third condition of Jordan’s lemma is satisfied. 
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The use of Jordan’s lemma requires one to express the relevant p.d.f. 
h(y) as two components; that is, 

u I °<y< i 
y ( h2(y), \<y<co. 

The component hx(y) requires utilization of the closed contour C^, enclos¬ 

ing at least one pole in the LHP. Similarly, to obtain h2(y), one must utilize 

the closed contour CRk, which must enclose at least one pole in the RHP. 

Sections F.2 and F.3 provide the procedure for application of Jordan’s 

lemma when poles occur in only one of these two strips or half-planes. 

F.2 APPLICATION OF JORDAN’S LEMMA 
WHEN POLES OCCUR ONLY 
IN THE LEFT HALF-PLANE 

Suppose, as is often the case, the //-function inversion integral of interest 

is of the form 

n«,r(4,+Ai) 
- V CIS 
n Um+ iT(1 - bt - pis)Upi=N+ ,r(a,. + ats) 

^(F.2.1) 

in which the factor nfL,T(l — a, — ats) in the numerator of the general 

form is missing. Consequently, there are no poles in the RHP. (As 

mentioned previously, the presence or absence of the gamma products in 

the denominator poses no problem in the analysis.) Poles occur for 

s = 
(b,+j) 

A 
y = 0,l,.... 

These poles are located in the LHP and inside the Bromwich contour 

defined by lim^^C^. The sum of the residues evaluated at these poles 

yields the value of the inversion integral over the Bromwich contour 

lim^^C^. Since (as has been proved) the conditions of Jordan’s lemma 

are here satisfied for 0<>> < 1, it follows that the integral evaluated over 

the Bromwich contour is identical to the integral evaluated over the 

Bromwich path (c— ico,c + ioo) for 0<y < 1. That is, one obtains 

h{y) = hx(y), 0<y < 1. 
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To determine h2(y), \<y<oo, the inversion integral (F.2.1) must be 

evaluated over the same Bromwich path (c-/oo,c + /oo) as before, but by 

way of the Bromwich contour lim^^C^, in order for Jordan s lemma to 

be applicable. To simplify notation, let 

/(■*) = nu m+ A i - b, - .r(a, + «,*) * 
(F.2.2) 

Then the inversion integral (F.2.1) is expressible as 

h2(y)=Y^ [C+,C°y-sf(s)ds’ 1 <y < oo. (F.2.3) 
ZTTl ^c — / oo 

Upon making the transformation r = —s, we note that the Bromwich 

contour CLk is reflected through the origin into the image = 

P'kQ'kK'kL'kM'kP'k (Figure F.2). We also observe that the conditions of 

Jordan’s lemma are satisfied for 1<>’<oo, since lny > 0 and since it 

follows from the preceding section that f(r) approaches zero uniformly 

with respect to arg r as r approaches infinity. Hence, from the Residue 

Q'k: -c-ia 

Fig. F.2 Deflected image of Q*. 
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Theorem and Jordan’s lemma, it follows that 

— 1 C 
h2(y)= lim — I yj(-r)dr, \<y<co 

r~*°° 2m JQ'kP'k 

=1<-v<00 

which, in view of the left-hand rule, becomes 

hM=2 

= 2*; 
k 

= 2*,, 
j 

where Rj and R 'k denote, respectively, the residues at the poles in the LHP 

and in the RHP. This result is an affirmation of the well-known fact that 

one obtains the same p.d.f. h(y) by using either one of the two transform 

pairs 

Ms(h(y))= f ys Xh{y)ds, 

h(y) = 2b fc[+^y * 

M_s(h(y))= f y-(s~X)h{y)ds, 
Jo 

h(y) = 2^7 f 00ySM-s(h(y)) ti¬ 

ll! summary, when poles are present in the LHP but absent in the RHP, 

the p.d.f. h(y) consists of one component that is valid for the entire range 

0 <y < 00 and is obtained by summing the residues of the integrand of the 

relevant //-function inversion integral at the poles in the LHP. 
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F3 APPLICATION OF JORDAN’S LEMMA 
WHEN POLES OCCUR ONLY 
IN THE RIGHT HALF-PLANE 

In the event the //-function inversion integral is of the form 

h) 
in which the factor II?i ,r(/, + fys) in the numerator of the general form is 

missing, there are no poles in the LHP. Poles occur for 

and are located in the RHP inside the Bromwich contour lim^ oo CRk- 
Since the conditions of Jordan’s lemma are satisfied for l<y<oo, the 

component 

Ky) = hi(y\ \<y<oo 

is obtained by summing the residues evaluated at these poles. To de¬ 

termine the component hx(y), one applies the transformation r=—s, 
thereby shifting the poles to the LHP so that the left Bromwich contour 

lim^^C, , containing the same Bromwich path as the right Bromwich 

contour lim^^C^, can be utilized. Thus the inversion integral of interest 

becomes 

1 r c + i oo 

which can now be evaluated by the method of residues. Using the same 

approach as in the preceding section, one can readily show that hx(y), 
0<y < 1, so obtained is identical to h2(y), 1 <y < oo. 

Therefore when poles are present in the RHP but absent in the LHP, the 

p.d.f. h(y) consists of one component that is valid for the entire range 

0 <y < oo and is obtained by summing the residues of the integrand of the 

relevant //-function inversion integral at the poles in the RHP. 

Note that since (7.1.1) and (6.2.1) are equivalent, the results obtained in 

Chapter 7 and Appendix F relative to (7.1.1) are valid for (6.2.1). 
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Posten, H., 249, 279, 280 

Posten-Woods approximation, 277 

Posten-Woods theorems, 280-284 

Prasad, R., 2, 5, 173, 174 

Principal part, see Function, principal partof 

Probability generating function, see 

Generating function 

Probability mass function, 149 

Problem of moments, 252 

Product, beta, 104, 108, 210, 247 

beta-gamma, 168 (exercise 4.29) 

binomial, 172 (Exercise 4.35) 

Cauchy, 158, 159 (Exercises 4.5-4.10) 

of dependent r.v.’s, 151 

discrete, 149, 171 (Exercise 4.33) 

gamma, 109, 111, 210 

generalized F, 375 

H-function, 208 

noncentral beta, 114 

nonnegative, 97 

normal, 122, 126, 129 

of order statistics, 163 (Exercises 4.21- 

4.23) 

of power r.v.’s, 161 (Exercise 4.18) 

uniform, 101 

uniform-Cauchy, 157 (Exercise 4.3) 

uniform-Gamma, 158 (Exercise 4.4), 168 

(Exercise 4.29c) 

uniform-normal, 163 (Exercise 4.24) 

Weibull, 245 

Product of order statistics, Pareto, 349 

power, 347 

uniform, 348 

Weibull, 350 

Product sums, 182 

Properties of transforms, 34 

Psi function, see Euler psi function 

Pruett, J. M., 137, 162 (Exercise 4.20) 

Quadratic forms, 69, 183-187 

Quotient, bivariate, 380 

Cauchy, 158 (Exercise 4.6) 

of dependent r.v.’s, 151 

exponential, 188 

of exponential sums, 161 (exercise 4.17) 

gamma, 164 (Exercise 4.25) 

half-normal, 216 

H-function, 214 

of Laguerre sums, 168 (Exercise 4.30) 

normal, 139, 147, 148, 166 (Exercise 4.28) 

of order statistics, 163 (Exercises 4.21- 

4.23) 
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power r.v.’s, 161 (Exercise 4.19) 

triangular, 165 (Exercise 4.26) 

uniform, 102-104 

Quotient of order statistics, Pareto, 349 

power, 347 

uniform, 348 

Weibull, 350 

Radar signal processing, 8 

Radial distributions, 352 

Rahman, M., 345 

Ramachandran, B., 5 

Random vector products, 174, 182 

Randomized gamma, 366 

Rathai, A. M., 386 

Rathie, P. N., 374, 375 

Rayleigh distribution, 205 

Real integral, 16 

Region, multiply connected, 12 

simply connected, 12 

Regular function, 15 

Reproduction of signals, 7 

Reproductive property, addition, 63, 353, 

355 

multiplication, 192 

Residue, 20 

Residue theorem, 23 

RHP, 28 

Riemann zeta function, 112 

Rietz, H. L., 1 

Rogers, G. S., 377 

Rosenberg, L., 344 

Ruben, H., 344, 346 

Ruymgaart, R. H., 344 

R.V.’s, algebraic functions of, 4 

composite, 3 

dependent, 4 

Euler, 271 

H-function, 192 

independent, 4 

noncentral, 4 

powers of, 3 

products of, 3,4 

quotients of, 3, 4 

sums of, 3 

Saleh, A. K., 345 

Scalar moment, 182 

Scheffe, H., 346, 347 

Schatzoff, M., 312 

Schulz-Arenstorf, R., 1 

Schuurmann, F. J., 386 

Sclove, S. L., 313 

Series, Laurent, 19 

Taylor, 19 

Set of measure zero, 52 

Shah, M. C., 374, 375 

Shukla, D. K., 8, 180 

Siddiqui, M. M„ 327 

Signal amplification, 6 

Simply connected region, 12 

Sine integral, 420 

Singular point, definition, 15 

essential, 22 

isolated, 22 

Snedecor, F., 328 

Soni, S. L., 194 

Special cases of Bessel type I, x2, 364 

noncentral x2.365 

randomized gamma, 366 

Special case of Bessel type II, x, 368 

half normal, 370 

noncentral x, 369 

generalized gamma, 370 

Special function, 418-420 

Special function distributions, 187 

Srinivasan, R., 353, 359, 362, 363, 364, 368 

Srivastava, H. M., 194 

Stacy, E. W., 370 

Standard error, arithmetic mean, 307 

geometric mean, 313 

harmonic mean, 315 

Stark, R. M., 8, 180 

Statics of random beams, 8 

Steck, G. P., 380 

Stochastic geometric programming, 8 

STOFAN, 250, 259, 262, 264, 265 

Stuart, A. S., 168 (Exercise 4.29), 275 

Strip, 28, 29 

Student t, analogues of, 327 

half t, 207 

p.d.f., 315 

Subrahmanian, K., 154, 393 (Exercises 9.9, 

9.10) 

Sukhatme, P. V., 344 

Sum, Cauchy, 87 (Exercise 3.11) 

Chi-square, 63 

continuous, 53 

correlated, 72, 90 (Exercise 3.17) 

dependent, 67, 70,72 
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discrete, 75 

exponential-beta, 89 (Exercise 3.15) 

exponential-uniform, 65 

exponential-uniform-x2,89 (Exercise 

3.16) 

H-function, 219 

mixed, 64 

uniform, 60, 87 (Exercise 3.12), 88 

(Exercise 3.13) 

System analysis, availability, 7, 270 

capability, 7 

dependability, 7 

effectiveness, 7 

reliability, 7 

Table of transforms, 421 

Taneja, V. S., 156 

Tang, P. C., 355 

Taxak, R. L., 194 

Taylor series, 19 

t-distribution, see Student-t 

Thompson, W. E., 2, 165 (Exercise 4.27), 

270 

Time series, discrete, 32 

Titchmarsh, E., 28 

Tittle, R. L., 344 

Tomsky, J., 187 

Transformation, of dependent r.v.’s, 69 

inverse, 48 

logarithmic, 34 

Transforms, see Integral transforms 

Trantner, C., 28 

Trudel, R., 163 (Exercises 4.21-4.23), 347 

Type I Bessel, 353-367 

Type II Bessel, 367-373 

Uniform convergence, 41 

Uniform r.v., 49 

Unilateral Laplace transform, 29, 428, 429 

Variance-covariance matrix, 72 

Vincze, I., 327 

Von Mises step function, 269 

Votaw’s criteria, 385, 387 

Walsh, J. E., 327 

Watson, G. N., 28, 353 

Webb, E. L., 7 

Weibull distribution, 203, 350 

Whittaker, E., 28 

Whittaker’s function, 356, 420 

Wilk’s A criterion, 311 

Wilk’s m.g. operator, 388 

Wintner, A., 1 

Wishart matrix, 386 

Wolfe, S. J., 386 

Woods, J. D., 249, 279, 280 

WSEIAC, 7 

Wylie, C. R., 12, 13, 19, 22, 23 

Young, D. L., 377 

Zelen, M., 169 (Exercise 4.30) 

Zeta transform, 31, 32 

Zolotarev, V. M., 2 

Z-transform, 31, 32 
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