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THE DISTRIBUTION OF PRODUCTS OF INDEPENDENT
RANDOM VARIABLES*

M. D. SPRINGER axp W. E. THOMPSONt

1. Summary. Fundamental methods are developed for the derivation of
probability density functions (p.d.f.’s) of products of n independent
random variables (i.r.v.’s), and are used to obtain particular results which,
aside from the case n = 2, are believed to be new. The methods use the
Mellin integral transform, and are a generalization to n variables of a
method presented by Epstein [1]. P.d.f.’s are obtained in explicit form for
products of 7 monomial', n < 10 Cauchy, and n < 7 Gaussian variables.
Tables for products of n = 2, 3, 6 Gaussian® i.r.v.’s N(0,1) have been
calculated using this method [12], abridged versions of which are included
in this paper. Entries in the unabridged tables were obtained with accuracy
to six decimal places and permit linear interpolation with four-digit accuracy
in the area column. These tables offer a heretofore unavailable tool to the
engineer and research scientist concerned with reliability analysis, com-
munications theory, and other applications requiring consideration of
products of i.r.v.’s.

2. Introduction. Unlike the distribution of sums of i.r.v.’s, the distribution
of products of more than two has received relatively little attention, and
results which are available supply little useful information to the applied
scientist. Epstein [1] has suggested a systematic approach to the study of
products of i.r.v.’s using the Mellin integral transform, but did not carry
out the application for products of more than two. Levy [2] posed the
question of a general theory of multiplication of i.r.v.’s and derived some
results for products of two variables. In 1962, Zolotarev [3] began the con-
struction of a general theory of multiplication of i.r.v.’s analogous to the
theory of addition based on infinitely divisible distributions. His program
was carried out in a sequence of theorems, stated without proof, which show
both the similarity to, and difference from, the results for addition. Jam-
bunathan [4] and Sakamoto [5], respectively, have derived the distribution
of products of beta and rectangular i.r.v.’s. Other established results deal

* Received by the editors March 19, 1965.
t Defense Research Laboratories, General Motors Corporation, Santa Barbara,
California.
Lf(x) = (@ + 1)x%, 0 < z =< 1. The rectangular random variable is the special
case for whicha = 0.
"2 The notation N (m, o) denotes the Gaussian p.d.f. with mean m and standard
deviation o.
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512 M. D. SPRINGER AND W. E. THOMPSON

with isolated phases of the subject. (For a detailed bibliography, see [12].)
It is the purpose of this paper to develop fundamental methods for the
derivation of p.d.f.’s of products of i.r.v.’s, and to utilize these methods to
determine explicit results for various important products heretofore not
considered for n > 2, specifically for products of monomial, Cauchy, and
Gaussian 1.r.v.’s.

3. The role of the Mellin transform and convolution in the derivation of
product distributions. The Mellin transform of f(z), defined only for
x = 0 is

@

(D) M(f(z)|s) = E*"] = [ 27 () d.

Under suitable restrictions [6] on A (f(z) | s), considered as a function of
the complex variable s, there is an inversion integral
1 ctio

(2) flx) = 5. e M(f(x)]|s) ds,

c—1%

for which the identity relation
ctio @
) — 8 s—1
(3) s = [T e g as

is valid almost everywhere. The Mellin convolution of two functions
fi(z), fo(2),0 £ &z < o, is defined as

(4) o(z) = fo %ﬁ (§>f1<y>dy,

which is also the p.d.f. he(z) of the product £ = zx; of two independent,
positive, random variables with p.d.f.’s fi(z1) and f:(x:) [7]. Since
g(z) = hs(z) and the Mellin transform of he(z) is [1]

(5) M (ho(x) | s) = M(fi(21) | s)-M(fo(2) | 5),

it follows that the p.d.f. of a product of two independent random variables
with p.d.f.’s fi(x1) and fo(x2) is the Mellin convolution whose transform is
the product of the Mellin transforms of f;(z1) and fo(z2).

Again, by (4), the p.d.f. hs(n) of the product n = zxsxs is

(6) hs(n) = /: %fs <%) ho(z) da,

which in combination with (5) yields

(7) M(hs(n) | s) = gM(fi(xi) |'s).
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Then, n — 1 successive applications of (4) and (5) for nonnegative random
variables lead to the general results

(®) n) = [ 252 (2) horsto) o
and
(©) M) [5) = TT MGtz [5).

Thus, h,(n) can be obtained directly from the M (f;(x;) | 8) using
1 ctio . n

(10) han) = o= [ o T MGita) | ) ds.
ML Je—iw =1

Therein lies the utility of the Mellin transform in the derivation of product
distributions for nonnegative random variables.

To treat the more general problem of products of independent random
variables which may assume both positive and negative values, a procedure
developed by Epstein [1] for the case of two variables will now be extended
to n variables. This extension is accomplished by decomposing a function
fi(zy), —o <z < o,7=1,2, -+ n,into two components, namely,

filws) = £ () + £ (),
in which f; (2;) vanishes identically except on the interval —« < z; £ 0,
where i (2:) = fi(x;). Similarly, f;*(z;) is defined to be identically zero
except over the interval 0 < z; < «, where f;*(2;) = fi(x;). Since [8]
7 = z1%2 has the p.d.f.

(11) he(n) = [ lx Ifz( )fl(xl) day ,

it follows by direct substitution that

(12)  ho(n) = f:l ll{z < >+fz (—)} (i (@) + A (@)} day,

or
hz('fl) = _{m‘%f;( >f1+(x1) dxy +f —fz (-;—ln)fl_( -'1171) dxy

+ /om;lzf; <a%) (@) dny +£ vx‘lf2_ (—;—ln) fir(—x) day.

If one now defines
ha(n) = hs (1) + ha*(n),
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where

—y _ () if —w <20,
ha"(n) = {O elsewhere,

and

oy _ Jhe(n) i 0=9< o,
ha™(n) = {0 elsewhere,

then for 0 = 9 < =,
by (—n) = /0“” %fi(—%) fl_( —1) day
©1 _[—n
+ /0 Elfz <-;1->f1+($1) dxy,
h2+(77) = /0“’ ;‘:—lf2+ (%) f1+($1) dxy

1 =9\ ,-
+£ —x—lfz (—x—l—>f1 (=) day.

Thus, ho*(n) and ks~ (—7n) have been expressed in terms of convolutions of
pairs of functions defined over the interval (0, « ) whose Mellin transforms
are well-defined by (1) and

M(hs (—n) |s) = M(f:"(z) | 8)-M(fi (—=z) | 5)
+ M (=) | 8)-M(fi*(2) | 5),
(14)  M(h*(n) |s) = M(£" () | 8)-M (" (2) | 5)
+ M(fa (=) |8)-M(fi (=) |s).

The inversion integral (2) then yields hs*(n) and ks (—n). In turn,
he (—1n) defines hy (7).

Then n — 1 successive applications of this procedure lead to the p.d.f.
of = J]{ z:, namely,

ha(n) = ha” () + ha™ (),
whose components are defined by inverting the Mellin transforms
M (b, (=n) | s) = M(fa™(2) | 8)-M(hnea (—2) | 5)
(15) + MU (=2) | )M (2) | 5),
M(ha*(n) | 8) = M(fa"(2) | 8)-M (ks (2) | 8)
+ M(fi (=) |8) - M(hna (—2z)|s).

(13)
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The two products on the right in (15), when expanded into terms involving
fit(x;) and fi (—), result in 2"7" products of the form appearing on the
right in (14).

In the special case where the f;(x;) are identical even functions of z, i.e.,

(16) I (=) = 7t (@), i=1,2-,n
the p.d.f. of the product n = s - - - x, is even, so that

(17) ha*(n) = B (=)

and

(18)  M(h"(n)|8) = M(ha (=n) |s) = 2" (M () | )}

Equation (18) supplies a direct relation between the p.d.f. h(n) of the
product = 2y - - - 2, and the common p.d.f. f(z) of the ir.v.s 2,
—o <3 < oo,i= 1,2’ cee M.

The quotient { = z;/x2 of two i.r.v.’s z: and 2, may be considered as the
product of z; and 1/z. . As Epstein has pointed out [1], if # is a nonnegative
ir.v. and y = 1/x has the p.d.f. g(y), then

M(g(y) |s) = M(f(x) | —s + 2).

Applying this fact to the case of irwv.’s z; with p.d.f’s fi(z.),
—ow < x; < »,1= 1,2 one obtains

q(§) = ¢ (&) + %),

in which ¢~ (¢) and ¢"(¢) denote the components of ¢(¢) which obtain over
the negative and positive ranges of ¢, respectively, and where

Mg (=¢) |8) = M(L"(2) |2 = )M (—2) | 5)
+ M(fs (=) |2 = )M (2) |9),
M(g™(£) |8) = M(f"(2) |2 — )M (" (z) | s)
+ M(f (=) [2 = )M (=) | ).

In particular, if the z; are identical even i.r.v.’s with p.d.f. f(x), then ¢(¢)
is even, and

(19)

¢+t
0 a6 = 2ok [ e [om(@ 12 - ) s, e>o

2w
which was obtained by Epstein in [1].

4. The distribution of monomial products and quotients. Consider the
random variable with a monomial p.d.f. of the form
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(21) f(z) = {<a +1)2 if 021,

0 otherwise,

which for a = 0 becomes the standardized rectangular p.d.f. The Mellin
transform of the p.d.f. of the product 5 = [[i= ; is

Mh(n) |5) = [“s"j:i)]",

which upon inversion yields the p.d.f. of monomial products, i.e.,

(a1 [
hin) = 2w /

(22) (a+ 1" of I\
= - o> — < <
(n—l)!" (log, 77) if 0=9=1,

h(n) = 0 otherwise.

The quotient { = x;/x, has the Mellin transform

_ (e +1)°
M(q(¢) |s) T a(—stat

7 (s + a) " ds

c—i%

whose inversion yields the p.d.f.

1T (a4 D)
(23)  qlt) =5 | s+ a)(—s +a+2)

To obtain ¢(¢) for ¢ =1 one may evaluate integral (23) using a closed
contour of the form Cy, (Fig. 1). By the theorem of residues [10, p. 112]
the integral is equal to 27¢ times the sum of the residues at the poles enclosed
by the contour. Since the conditions of Jordan’s lemma are satisfied [10, p.
115], [12] and the residue at the pole s = —a is {(a 4 1)/2}¢*, it follows
that

ds, —a<c<a-+ 2

q(¢) = (5—;“—1> e 0<¢=1

For ¢ > 1 one evaluates integral (23) using the closed contour Cp, of Fig.
1. The same reasoning shows that

o0 = (e 1s¢<

since the conditions of Jordan’s lemma are satisfied with regard to the
contour Cg, when { > 1. Thus, the p.d.f. of the quotient of two monomial
variables, each having the p.d.f. (21), is

(<"‘+1>g-“ i 0=<¢ <1,

2
<a + 1) g_——a-“z i[- 1< g_ < .

(24) q(§) =

2
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c+ia c+ia

CLa K CRa

c -ia c -ia

Fia. 1. Contours utilized in evaluating integrals of the Bromwich type

6. The distribution of Cauchy products and quotients. Consider the
product of n Cauchy i.r.v.’s each having the p.d.f.

_1 1
w1+

flx) —0 <z < ®.

Since f(x) is an even function, f"(z) = f (—=x), whose Mellin transform
[9, p. 309, formula (11)] is

M (x)]s) = %csc (%S>, 0 < Re(s) <2
Thus, the p.d.f. () of the product n = []i-: x, has the Mellin transform
M (q)|s) = 27" [% cese (%‘E)} , 0 <Rel(s) <2

and the associated inversion integral is
1 c+100 ’
(25) h(n) = —f (1) ese” s ds, 0<ec<l.
271 c—i%
To evaluate this integral, let z = 5 * and note that
(26) f 2 ese” wsds = 2mi ) Ry,
c j

where C is taken to be Cp, for z > 1 and Cg, for z < 1, as a — », and
where ), R; denotes the sum of the residues at the poles enclosed by the
contour C. From Jordan’s lemma [10, p. 115], it follows [12] that integrals
(25) and (26) are equivalent, so that the problem reduces to evaluation of
the sum of these residues. It turns out that the functional form of h(n) is
the same for n = 1 as for » < 1 which results from analytic continuation
of the sum of the residues from either contour.
Applying Leibnitz’s rule for the differentiation of products, one has
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n—1
1 n—1—k d
R(z,j,n) =2° fd; ————— S YA (log 2) P [(s —7) esc ws]” .
(=)™ 5 " ——
- ;;(n—l—k)!k!aogz) W[SCS”] 0’
j= 07172; Ty
so that summing the residues gives
1 f ™
h =
(27) (2) 1 — (=12 (n — 1 — k)1k! )
n—1—k d
(log 2) I [s ese s]” »

It can be shown [11, p. 144, formula (761)] that in terms of Bernoulli
numbers

2m+2

L 2m~+1
(28) seses =1 + 22(2 1) Bo1s™, s <

m=0 (2m + 2)!
which when substituted in (27) gives the p.d.f. of #, namely,

1 n—1 1rk 1 n—1—k
on) = = (—1>"n2)kz=% Kin — 1 — k)l [l"g n—]

d* S 2(27 — 1) zm+2:|"
Ez?[l +m;o @m ¥ 31 DS

Since [9, p. 307, formula (2)] M(fi(as:) |s) = ai "M (fi(x;) |s), the
p.d.f. of the product 5 = []1 «;, where x; has the nonstandard p.d.f.
fz:) = ai/m(ai +2), i=1,2, -+ ,n, is obtained from (29) by re-
placing 4 by 7/ [ a: .

The various derivatives in (29) when evaluated give the following
closed form expressions for the p.d.f.’s of products of n standard Cauchy
variables, n = 1, 2, - - - , 10. Aside from the case n = 2, these results are
believed to be new.

(29)

§=0

n = 1:h(y) = m,

n o= 2:h(n) = s log (1),

n o= 3ihn) = gy Wog T + 7,

no= dihn) = gy (log T+ 4a' log 41,
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n = 5:h(n) = m {[log 71 + 104° [log 71* + 9%},
n = 6:h(n) = 5—,76—(1;——_—13 {llog "]’ + 20x” [log 7"}’ + 64" [log 7]},
m o= Tihn) = s (log o' + 85w log )

+ 2597* [log 7']F + 2257°},
1

n = 8: h(ﬂ) = m {[log 112]7 + 567|'2 [lOg 7]2]5

+ 784" [log #'F° + 2304x° [log 771},

n =9:h(ng) = -__—L# {[log 7° 4+ 84=” [log n°]° + 1974x" [log n**
8la(n* + 1)
+ 129167° [log #')° + 110257°},
1 .
n = 10: h(n) = ST =T {[log 7"’ + 1207 [log 7*]" + 4368x* [log 7°]’

+ 524807° [log 7"° + 1474567° [log 1°}.

The p.d.f. of the quotient of two independent random Cauchy variables
as obtained [9, p. 346, formula (20)] from (20) is

1 log§‘2>
o) = 5 (285

and is identical to the p.d.f. of the product of two Cauchy variables.

6. The distribution of Gaussian products. In view of the fact that more
statistical theory is focused upon the Gaussian distribution than any other,
it seems rather surprising that the distribution of products of more than
two independent random Gaussian variables has never been derived. For
while the inversion of the Mellin transform of the p.d.f. of Gaussian
products cannot be accomplished in closed form, it is quite amenable to
evaluation by electronic computers, as will presently be shown.

Consider now the product of n Gaussian i.r.v.’s 3 = []1 2;, where each
x;,t=1,2, -+, n, has the p.d.f.

flx) = \/127 exp (—%j),

whose Mellin transform [1] is

(s—3)/2
M) |s) = -2-\7;— r (-2'?)

The Mellin transform of the p.d.f. of 4, h(n), is therefore, 2" { M (f*(z) | )} ",
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and the associated inversion integral is

1 c+io 2(3 1)/2 n
h(ﬂ) = ﬂ . { ,\/ §> ds, C > O.
c—1% T

This is equivalent to

(30) W) = L L[

o) 21 i
where z = 9°27" and the path of integration is a line parallel to the imagi-

nary axis and to the right of the origin. The integral may be evaluated by
contour integration to give

2 °T"(s) ds, c>0,

0

h(n) = 2 o=

1
=0 (2 )nIZ
where R(z,n,j) denotes the residue of 2 'T'"(s) at the mnth order pole
s = —j, viz.,

R(z,m,j), z> 0,

1 a n s :
T g G FETE L 7 =01,2,3
The problem, then, is to evaluate > ;iR(z,m,j). To accomplish this, it is
convenient to apply Leibnitz’s rule for the differentiation of products,
which enables one to write

n—1
. ; 1
-
Bemni) =2 Lm =T —mm

& r@+j+1) "
ds" \s(s+1) --- (s+Jj— 1)
The problem is thus reduced to the evaluation of the n — 1 derivatives

f{ I'(s+j+ 1) y "
)

R(Z, n;]) =

( —IOg z)n—l—k
(31)

=i

ds* \s(s +1) --- (s+7—1 =0L-n -1
While a closed form expression has not been found for the kth derivative,
each derivative when evaluated at s = —j reduces to a closed form ex-
pression involving the Euler psi function and the Riemann zeta function,
as will now be shown.

In evaluating the required derivatives, it will be convenient to utilize the
following notation:

o T(s+j+1) "
M“m)‘L@+n @+J—D]

k

d .
u®(s,n) = T u(s,d,m);

=1

v(s,7) =y(s+j+1) — g where v(—j,7) = ¢(j + 1);

s+ 1’
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Y(s+j+1) =dlogT(s+j+ 1)/dsis the Euler psi function which for
s an integer [11, pp. 206-208] becomes

. s+i—1 1
‘/’(S+J+1) = —C+ ;} m—_—l

= 1 1
- _C_a;o<s+j+l+a_a+1>’
where C is Euler’s constant;
®) d* . .
v (s,n) = wv(s,y), with

' (=) kle(k + 1,5 + 1) if k> 0,k even,
v®(=j,n) =

Ela(k+ 1,5 + 1) if k> 0,kodd,
where
- 1
f‘(ﬁ, a) _gm

is the Riemann zeta function [11, p. 212, formula (1103)], and for con-
venience

a—1
G(,0) = £8,0) + 23 .
a=1 &
Finally,

k
PO+ = G i+ )

= (=D"Kle(k+ 1,8 +7 + 1), k>0

The derivatives w*®(s,n),k = 1,2, ---, are expressible in terms of
u(s, j, n), powers of v(s, j), and derivatives of v(s, j), which upon evalua-
tion at s = —j give u*’(—7, n) in terms of the Euler psi function and the
Riemann zeta function. To indicate how these results develop, note that

u(s,m) = n{(s + NI} L log <s(s +1;§8,m8++1} - 1))
= nu(S,j,n){ll/(S +i+1) — gs _‘1_ k}
= nun,
which when evaluated at s = —j gives
W (—j,n) = S0 G4 1),

@G
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Similarly,

. d
um(—],n) = {nuv} s

_ ( —1 )in
Dk
Continuing this procedure, one obtains, after some algebraic simplification
12, w®(—j,n), k = 1,2, ---, in terms of the Euler psi function and the
Riemann zeta function. Specifically,
(=™
Gy

WG+ 1) + (2,5 + D).

MG+ 1) + 3+ Da(2,5 + 1)

- 2"/;'(3“7' + 1)}’

u?(—j,n) = % (' + 1) + 60 (G + Dia(2,5 + 1)
— 8n’y(j + 1)i(3,7 + 1) + 3n°6%(2,5 + 1)
+ 6n¢i(4,§ + 1)},

u®(—j,n) = (—(7],1)—) (G + 1) + 10n%' (G + Di(2, 5 + 1)
— 200%°(5 + 1)¢(3,5 + 1)

+ 150y + )52, + 1)

+ 30n%(j + 1)a(4,7 + 1)

— 200°51(2,7 + 1)¢@, 5 + 1) — 24n¢(5,5 + D}

(G + 1) + 1509 + 1in(2,5 + 1)

— 40 (G + 1)5(3,5 + 1)

+ 450" (j + 1’25 + 1)

— 1200y (5 + 1)6a(2,5 + 13,5 + 1)

+ 900’ (7 + (4,5 + 1) + 150°:%(2,5 + 1)
— 144n™(j + 1)¢(5,5 + 1)

+90n°01(2, 7 + Dia(4,5 + 1) + 400°(3,5 + 1)
+ 120n41(6, 7 + 1)}.

It has now been shown that the derivatives u®(—j, n) required to
evaluate the residues R(z, n,7) can be expressed in terms of the Euler psi
function and the Riemann zeta function. Explicit expressions have been
given above for £ < 6, which when substituted in (31) enable one to

u(3)(_j, ’ﬂ) —

( _l)jn
Dk

u(G)( ’_j7 n) =
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TaBLE 1.
Distribution of Gaussian products, n = 2
1 ) Thin) dn 7 0] J2 ) dn
1020 14.695614 .000000 .3600 .384370 .248024
.0001 2.968644 .000329 .3800 .369105 . 255557
.0010 2.235710 .002554 .4000 .354766 .262794
.0050 1.723422 .010209 .4200 .341265 .269753
.0100 1.502819 .018211 .4400 . 328526 .276450
.0150 1.373805 .025381 .4600 .316482 .282899
.0200 1.282298 .032010 .4800 .305074 .289114
.0250 1.211348 .038238 .5000 .294252 .295106
.0300 1.153406 .044145 .5200 . 283969 .300887
.0350 1.104442 .049786 .5400 274187 .306468
.0400 1.062054 .055201 .5600 .264867 .311858
.0500 .991292 .065454 .6000 .247493 .322100
.0600 .933565 .075069 .6400 231624 .331677
.0700 884844 .084155 .6800 .217077 .340647
.0800 .842722 .092788 .7200 .203699 .349059
.0900 .805648 .101026 .7600 .191361 .356957
.1000 772560 .108914 .8000 .179956 .364380
.1100 742702 .116488 .8400 .169387 .371364
.1200 715515 .123777 .8800 .159576 .377941
.1300 .690574 .130806 .9200 .150450 .384140
.1400 667549 .137595 .9600 .141948 . 389986
.1500 .646178 .144163 1.0000 .134016 . 395503
.1600 .626251 .150524 1.1000 .116375 .407998
.1700 .607589 .156692 1.2000 1101384 .418866
.1800 .590055 .162679 1.3000 .088569 428347
.1900 .573527 . 168496 1.4000 .077558 .436640
.2000 .557903 .174153 1.5000 .068057 .443909
.2100 .543096 .179657 1.6000 .059828 .450293
.2200 .529030 .185017 1.7500 .049459 .458463
.2300 .515642 .190240 2.0000 .036254 .469085
.2600 .479006 .205147 2.5000 .019846 482676
. 2800 457092 .214505 3.0000 .011058 .490180
.3000 .436868 223442 4.0000 .003552 496770
.3200 .418118 .231990 6.0000 .000396 .499630
.3400 400667 .240176 8.0000 .000044 .499954
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TaBLE 2.
Distribution of Gaussian products, n = 3

1 In) I7 ) dn 1 i) J7 ) dn
10-2 271.50380 .000000 .30 .383119 .298732
10-1° 68.504805 .000000 .32 .359647 .306155
.000004 20.327126 .000095 .34 . 338447 .313133
.000100 11.339660 .001398 .36 .319203 .319706
.0010 6.525049 .008578 .38 .301658 .325912
.0050 3.959295 .028017 .40 .285598 .331782
.0070 3.506025 .035452 .44 .257248 .342624
.0100 3.056922 .045248 .48 .233032 .352417
.0130 2.747179 .053930 .52 .212126 .361310
.0160 2.514422 .061807 .56 .193918 .369423
.0200 2.276474 .071367 .60 .177936 .376853
.0250 2.051142 .082160 .66 .157358 . 386894
.0300 1.876390 .091962 .72 .140046 .395801
.0340 1.761291 .099231 .80 .120899 .406213
.0400 1.617745 .109353 .90 .101745 417307
.0460 1.499629 .118695 1.00 .086523 . 426692
.0520 1.400066 .127386 1.10 .074222 .434709
.0580 1.314570 135524 1.20 .064144 .441611
.0640 1.240063 .143183 1.30 .055790 447595
.0700 1.174349 .150422 1.40 048797 .452814
.0800 1.080152 .161680 1.50 .042892 .457390
.0900 1.000754 172074 1.70 .033566 .464988
.1000 .932649 .181733 2.00 .023855 . 473499
.1100 . 873407 190757 2.50 .014231 .482770
.1200 .821278 199225 3.50 .005782 .492040
.1300 .774966 .207201 4.50 .002634 .496014
.1400 .733484 .214740 5.00 .001831 .497116
.1500 .696067 .221885 5.50 .001294 .497889
.1600 .662111 .228673 6.00 .000927 .498438
.1800 .602729 .241304 6.50 .000672 .498834
.2000 .552423 .252842 7.00 .000492 .499123
.2200 .509184 .263448 8.00 .000271 .499493
.2400 .471572 273247 10.00 .000090 .499819
.2600 .438528 .282341 12.00 .000033 .499931
2800 .409250 .290813 14.00 .000015 .499974
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TABLE 3.

Distribution of Gausstan products,n = 6
» h(n) [d k) dn n h(n) J3 h(n) dn
1020 233,817.16 .000000 .0200 3.627986 .221946
.0000050 385.97978 .002941 .0250 2.977812 .238356
.0000250 202.42522 .008202 .0300 2.521872 .252044
.0000500 149.33515 .012496 .0350 2.183538 .263768
.0001000 108.16438 .018771 .0400 1.922120 .274006
.00020 76.750149 027764 .0450 1.713906 .283078
.00030 62.135358 .034638 .0500 1.544086 .291209
.00040 53.214044 .040375 .0600 1.283716 .305275
.00050 47.040591 .045371 .0700 1.093512 .317115
.00075 37.323983 055797 .0800 .948589 .327295
.00100 31.481936 .064346 .0900 .834613 .336189
.00120 28.184727 .070297 .1100 .667160 .351098
.00140 25.623368 .075668 .1300 .550450 .363210
.00160 23.562278 .080580 .1500 .464786 .373321
.00180 21.859357 .085117 .1700 .399466 .381936
.00200 20.423149 .089341 .2000 .326496 .392764
.00250 17.636834 .098816 .2500 .245108 .406895
.00300 15.600026 .107101 .3000 .192210 417742
.00350 14.033193 114494 .3500 .155477 .426383
.00400 12.783225 .121187 .4000 .128730 .433455
.00500 10.900304 132973 .5000 .092872 .444384
.00600 9.537884 .143159 .6000 .070363 . 452466
.00700 8.499025 .152156 .7000 .055203 .458698
.00800 7.676717 .160229 .8000 .044462 .463653
.00900 7.007300 .167560 1.0000 .030555 471027
.01000 6.450306 174281 1.5000 .014750 .481670
.01200 5.573489 .186260 2.5000 .005352 .490638
.01400 4.911820 196717 5.0000 .001104 .496922
.01600 4.392883 .206002 10.0000 .000171 .499238
.01800 3.973934 .214355 17.0000 .000033 .499793
20.0000 .000019 .499868
25.0000 .000008 .499931

evaluate the residues numerically for n < 7. This allows the tabulation of
the p.d.f. and the distribution function for products of up to seven in-
dependent Gaussian variables. Such tables have been constructed for
n = 2, 3, 6 at the General Motors Defense Research Laboratories, and an
abridged version is given in Tables 1, 2, 3.
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In the case n = 2, the results give the modified Bessel function of order
zero, as is known [1]. For values of n > 2 the results are believed to be new.

For completeness and convenience of application, the first six derivatives
u® (s, n) are given explicitly above, and it is seen that they become quite
involved for large k. In practice this tedious expansion need not be carried
out explicitly, since the iterative procedure has been programmed for a
digital computer and will supply the expansion for arbitrary k. This pro-
gram may be incorporated directly into an overall computer mechanization
[13].
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