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THE DISTRIBUTION OF PRODUCTS OF INDEPENDENT 
RANDOM VARIABLES* 

M. D. SPRINGER AND W. E. THOMPSONt 

1. Summary. Fundamental methods are developed for the derivation of 
probability density functions (p.d.f.'s) of products of n independent 
random variables (i.r.v.'s), and are used to obtain particular results which, 
aside from the case n = 2, are believed to be new. The methods use the 
Mellin integral transform, and are a generalization to n variables of a 
method presented by Epstein [1]. P.d.f.'s are obtained in explicit form for 
products of n monomial1, n < 10 Cauchy, and n < 7 Gaussian variables. 
Tables for products of n = 2, 3, 6 Gaussian2 i.r.v.'s N(0, 1) have been 
calculated using this method [12], abridged versions of which are included 
in this paper. Entries in the unabridged tables were obtained with accuracy 
to six decimal places and permit linear interpolation with four-digit accuracy 
in the area column. These tables offer a heretofore unavailable tool to the 
engineer and research scientist concerned with reliability analysis, con- 
munications theory, and other applications requiring consideration of 
products of i.r.v.'s. 

2. Introduction. Unlike the distribution of sums of i.r.v.'s, the distributioni 
of products of more than two has received relatively little attention, and 
results which are available supply little useful information to the applied 
scientist. Epstein [1] has suggested a systematic approach to the study of 
products of i.r.v.'s using the Mellin integral transform, but did not carry 
out the application for products of more thail two. Levy [2] posed the 
question of a general theory of multiplication of i.r.v.'s and derived some 
results for products of two variables. In 1962, Zolotarev [3] began the con- 
struction of a general theory of multiplication of i.r.v.'s analogous to the 
theory of addition based on infinitely divisible distributions. His progranm 
was carried out in a sequence of theorems, stated without proof, which show 
both the similarity to, and difference from, the results for addition. Jami- 
bunathan [4] and Sakamoto [5], respectively, have derived the distribution 
of products of beta and rectangular i.r.v.'s. Other established results deal 

* Received by the editors March 19, 1965. 
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If(x) = (a + 1)xa, 0 < x < 1. The rectangular random variable is the special 

case for which a = 0. 
2 The notation N(m, a) denotes the Gaussian p.d.f. with mean m and standard 

deviation Y. 
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with isolated phases of the subject. (For a detailed bibliography, see [12].) 
It is the purpose of this paper to develop fundamental methods for the 
derivation of p.d.f.'s of products of i.r.v.'s, and to utilize these methods to 
determine explicit results for various important products heretofore not 
considered for n > 2, specifically for products of monomial, Cauchy, and 
Gaussian i.r.v.'s. 

3. The role of the Mellin transform and convolution in the derivation of 
product distributions. The M-Wellin transform of f(x), defined only for 
x > 0) is 

(1) ]1'i(f(x) I s) = E[rs-1 =f VSf () (Ix. 

Under suitable restrictions [6] on MlI(f(x) I s), considered as a function of 
the complex variable s, there is an inversion integral 

1 fC+iOO 
(2) f (X) ri s_J8M(f(x) I s) ds, (2) f(x) 

~~~~-72ri J-oo 

for which the identity relation 

(3) f(x) = f x-s {f 8 
Slf(8) dS} (IS 

is valid almost everywhere. The MViellin convolution of two functions 
fi(x), f2(x), 0 ? x < oo, is defined as 

(4) g(x) = f-f2 Q )fi(y) dy, 

which is also the p.d.f. h2(x) of the product x = XiX2 of two independent, 
positive, random variables with p.d.f.'s fi(xi) and f2(X2) [7]. Since 
q(x) = h2(x) and the Mellin transform of h2(x) is [1] 

(5) MA(h2(x) Is) = MZ(fi(x1) I s) *MA(f2(x2) I s), 

it follows that the p.d.f. of a product of two independent random variables 
with p.d.f.'s fi(xi) and f2(X2) is the Mellin convolution whose transform is 
the product of the Mellin transforms of fi(xi) and f2(X2) - 

Again, by (4), the p.d.f. h3(II) of the product v = x1x2x3 is 

(6) h3(77) = f f3 Rj) h2(x) dx, 

which in combination with (5) yields 
3 

(7) M(h3( ) s) = fJM(fi(xi) I s) 
i=1 
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Then, n - 1 successive applications of (4) and (5) for nonnegative random 
variables lead to the general results 

(8) hn(7) = fitfn (1) h.-I(x) dx 

and 
n 

(9) M(hn(-I) I 8) = 17 M(fi(xi) I s). i=l 
Thus, hn(rl) can be obtained directly from the M(fi(xi) I s) using 

I rC+i0 n 
(10) hn (n) = I x- T M(fi(xi) I s) ds. 

2 e7ri c-io 

Therein lies the utility of the Mellin transform in the derivation of product 
distributions for nonnegative random variables. 

To treat the more general problem of products of independent random 
variables which may assume both positive and negative values, a procedure 
developed by Epstein [1] for the case of two variables will now be extended 
to n variables. This extension is accomplished by decomposing a function 
fi(xi)-c- < xi < o, i = 1, 2, * , n, into two components, namely, 

fi(xi) = fi (Xi) + fi+(Xi) l 
in which fi7(xi) vanishes identically except on the interval - C < xi ? 0, 
where fi-(xi) = fi(xi). Similarly, fi+(xi) is defined to be identically zero 
except over the interval 0 < xi < oo, where fi+(xi) = fi(xi). Since [8] 

= X1X2 has the p.d.f. 

(1l) 
~~~h2(77) 

= 
XF f,lf (xi)lZ) 

SX 

it follows by direct substitution that 

(12) h2 (') f X1{f2 (X)+f2 (xl)} {fl (xl) +fV (xi)} dxl, 

or 

h2(1) fI-f2+ ( fl)f+(xi) dxl + fxf2+ (fl)fg(xl) dx1 

+ f2- ( f)fi+(xi) dxi + f2 ($)fi(-xi) dx1. 

If one now defines 

h2(1)= h2-(t7) + h2+(77), 
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where 

h2(0 h2 (1) if -oo< 0O, 
2o elsewhere, 

and 

{+=0 elsewhere, 

then for O ? n < oo, 

h2-(-71) = f2+Q )fi(-xi) dxi 

(13) h2Z(~) = ~-f~ (~)~ ~ + J f2- (x)fl+(xi) dxl, 
h2+ (71) =Jo f2+ 7 

(xfi (x+) dxl 

+;x f( fl -xi dxl 

Thus, h2+( q) and h2-(- q) have been expressed in terms of convolutions of 
pairs of functions defined over the interval (0, oo ) whose Mellin transforms 
are well-defined by (1) and 

M(h2-(-7I) s) = M(f2+(x) I s) M(fi-(-x) I s) 
+ M(f-(-x) I s) M(fi+(x) I s), 

(14) M(h2+(77) I s) = M(f2+(x) I s) M(fi+(x) I s) 
+ M(f2-(-x) I s) M(f1-(-x) I s). 

The inversion integral (2) then yields h2+( q) and h2-( - ). In turn, 
h2-(-rq) defines h2 ( 7). 

Then n - 1 successive applications of this procedure lead to the p.d.f. 
of 7 = ill xi, namely, 

hn(l) = hnj(n) + hn+(r1) 

whose components are defined by inverting the Mellin transforms 

M(hn-(-r1) I8) = M(fn+(x) I s) M(hn-, (-x) I s) 
(15) + MM(fn-( x) I ss)-M((h+_ (x) I s) 

M(hn+(rl) 8 ) = M(fn+(X) I 8) -M(h+n-1 (X) I 8) 
I 

M(fn -X I s) - M_\ n-1f (_X I ) 
_\ 
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The two products on the right in (15), when expanded into terms involving 
fi+(xi) and fJ-(-xi), result in 2n-1 products of the form appearing on the 
right in (14). 

In the special case where the fi(xi) are identical even functions of x, i.e., 

(16) jfi(-xi) - fi+(xi), i = 1, 2, * , n 

the p.d.f. of the product tv = x1x2 .. x. is even, so that 

(17) hn'(n) = hnj(-71) 

and 

(18) M(ht(fl) I s) = M(hn-(-r1) 2) =-2.'{Ai(f'(x) I 
Equation (18) supplies a direct relation between the p.d.f. h(r7) of the 
product 77 = x1x2 x.n and the common p.d.f. f(x) of the i.r.v.'s xi, 
- oo < xi <oo, i 1, 2,*- n. 

The quotient v = x1/x2 of two i.r.v.'s xi and x2 may be considered as the 
product of xi and 1/X2 . As Epstein has pointed out [1], if x is a noinegative 
i.r.v. and y = 1/x has the p.d.f. g(y), then 

M (gq(y) I s) = M(f(x) |-s + 2). 

Applying this fact to the case of i.r.v.'s xi with p.d.f.'s fi(xi), 
-?? < xi < Cc, i = 1, 2, one obtains 

q(W) = qW) + q2(v), 

in which q-( ) and qt( ) denote the components of q( ) which obtaini over 
the negative and positive ranges of ?, respectively, aind where 

I(q-() i s) = Ml (f2+(x) 1 2 - s)M(fi (-x) I s) 

+ M(f2-(-x) 12 - s)AM(fi+(x) I s), 
M(q+(P) I s) = MI(f2'(x) 1 2 - s)lJ1(fi+(x) i s) 

+ M(f2-(-x) 1 2 - s)M(fi-(-x) I s). 
In particular, if the xi are identical even i.r.v.'s with p.d.f. f(x), then q(?) 
is even, and 

(20) q(2) = 2[ .f(~-i {M(f+(x) Is)M(f+(x) 1 2- s)} ds] > 0, 

which was obtained by Epstein in [1]. 

4. The distribution of monomial products and quotients. Conisider the 
random variable with a monomial p.d.f. of the form 
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(21) {~~~~(a + I)Xa if O x < 1 (21) f (x) = ka1 )fO<< 
19otherwise, 

which for cx = 0 becomes the standardized rectangular p.d.f. The Mellin 
transform of the p.d.f. of the product j = =1 xi is 

MSI(hQ1)|s 
) E(a + 1)]n 

s +aj 
which upon intversion yields the p.d.f. of monomial products, i.e., 

h( ') 
(a + IJ / F8 (s + a, ds 

(22) = (a + I)( a - if O 
(n -1)K' 7lo if O?<lqf 

h (') = 0 otherwise. 

The quotient v = x1lx2 has the Mellin transform 

M(qW Is) = (a -F 1 )2 
M(q(v) |s) = (s + a)(-s + a + 2)' 

whose inversion yields the p.d.f. 

(23) 
_ 1 fC+i00 (a -F 

(Is - <c <a 2 
(23) q(?) --2ri c (s+ )(-s + a ?2 s, -2a<c<aF2. 
To obtain q(v) for v ? 1 one may evaluate integral (23) using a closed 
contour of the form CLa (Fig. 1). By the theorem of residues [10, p. 112] 
the integral is equal to 21ri times the sum of the residues at the poles enclosed 
by the contour. Since the conditions of Jordan's lemma are satisfied [10, p. 
115] [12] and the residue at the pole s = -a is { (a- + 1)/2}1a, it follows 
that 

a (+ 1)a 0 < <?1. 

For v > 1 one evaluates integral (23) using the closed contour CRa of Fig. 
1. The same reasoning shows that 

a( +1) ?-a-2 1 < 

since the conditions of Jordan's lemma are satisfied with regard to the 
contour CRa when v > 1. Thus, the p.d.f. of the quotient of two monomial 
variables, each having the p.d.f. (21), is 

(-F+ 1>a if 0 v < 1 
(24) q = (a-F118-- 2 ; 1=< . 
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c + ia c + ia 

CLa CRa 

c-ia c - ia 

FIG. 1. Contours utilized in evaluating integrals of the Bromwich type 

5. The distribution of Cauchy products and quotients. Coiisider the 
product of n Cauchy i.r.v.'s each having the p.d.f. 

f(x) = -1 
I 

2' -o <Ax < x 

Since f(x) is an even function, f'(x) = f-(-x), whose M\Jellin transform 
[9, p. 309, formula (11)] is 

M(f+(x) I s) = se (7r2) o < Re (s) < 2. 

Thus, the p.d.f. h('q) of the product q = Hi2=1 xi has the Mellin transform 

M(h+(n) I s) = 2n 1 [csc (2-) 0 < Re (s) < 2, 

anid the associated inversion integral is 

(25) h('q) = 1 f (?rs2)8 Cs ds, 0 < c < 1. 

To evaluate this integral, let z = q-2 and note that 

(26) f zS CSCn s ds = 27ri Z Rj, 

where C is taken to be CLa for z > 1 and CR, for z < 1, as a - oo, and 
where Z3 R3 denotes the sum of the residues at the poles enclosed by the 
contour C. From Jordan's lemma [10, p. 115], it follows [12] that integrals 
(25) anid (26) are equivalent, so that the problem reduces to evaluation of 
the sum of these residues. It turns out that the funietional form of h( q) is 
the same for q ? 1 as for q < 1 which results from analytic continuatioin 
of the sum of the residues from either conitour. 

Applying Leibnitz's rule for the differentiation of products, one has 
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n-1i 

R(z,,n) = z8 Z __ kI _(log z)nlk dk [(S j) eSe k=~O (n k- k d Sk 

- r k=O (n - 1 - k)! k! ldsc 8)0 

j = O,1,2, 1 

so that summing the residues gives 
1 n-1 k 

(27) 7r[1 - (-1)>z-Z] k=O (n - 1 -k)! dk 

* (log z) dSk 'S csc s] 

It can be shown [11, p. 144, formula (761)] that in terms of Bernoulli 
numbers 

(28) ~~~~~~~~2(2 22m+1 - 1) Bm 
,+i2rn2 2 2 

(28) +Osescsl1 (2m + 2)! B+, s s < 7r 

which when substituted in (27) gives the p.d.f. of q, namely, 

_ 1 ~~~~-1 k [lo 1n1lk 
29(1-(k1)no2) k!(n - 1 - k)! _2j 

(29) * dk [ + 2((2m1 1) 2m+2n 

SkI ?2jE B,.+, S ds L m=0 (2m ? 2)! J s0 

Since [9, p. 307, formula (2)] M(fi(aisi) I s) = a7sM(fi(x) I s), the 
p.d.f. of the product H = HP xi, where xi has the nonstandard p.d.f. 
f(xi) = ai/r(ai2 + xi2), i = 1, 2, ... , n, is obtained from (29) by re- 
placing q by / a . 

The various derivatives in (29) when evaluated give the followinlg 
closed form expressions for the p.d.f.'s of products of n standard Cauchy 
variables, n = 1, 2, ,10. Aside from the case n = 2, these results are 
believed to be new. 

n =1:h(q) = w( > +?1)' 

n = 2: h%() = 1 log (2) 
I 

- 1) _ ) 

n = 3: h(7r) = 2! {[log 2]2 + 

it = 4: h1(n) = __ _1 1) {[log 2]3 + 4w2 [log 2]}, 
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n=5:h(r)- =- 
+1){[log 

72] + 1072 [log 772]2 + 9X} 

(X7)h 5! %6(f2 - 1) {[log -l*J + 20r2 [log i]3 + 64 4 [l 2 

n =7: h (7) = 1 { [log fl] + 35ir2 [log 72]4 
6!wr7(fl2 + 1) 

+ 259ir4 [log 72]2 + 225r6l 

n =8: h(f) -=!8(l [log -q2j7 + 561r2 [log 2125 
7! 7r' (-2_ 1)- 

+ 7847r [log X ] + 23047r6 [log X] }, 

= 9: h(f) - 1 j t[log l]7 + 847r [log v ] + 1974r [log X ] 

+ 129 167r [log ] + 10257r}, 

10: h(f7) = [loo7f] +120r2 [log 2] + 43687r[log flj 9 rl q2- 1) 1i 

+ 524807r [log q] + 147456X8 [log 72] }. 
The p.d.f. of the quotient of two independent random Cauchy variables 

as obtained [9, p. 346, formula (20)] from (20) is 

and is identical to the p.d.f. of the product of two Cauchy variables. 

6. The distribution of Gaussian products. In view of the fact that more 
statistical theory is focused upon the Gaussian distribution than any other, 
it seems rather surprising that the distribution of products of more than 
two independent random Gaussian variables has never been derived. For 
while the inversion of the Mlellin transform of the p.d.f. of Gaussian 
products cannot be accomplished in closed form, it is quite amenable to 
evaluation by electronic computers, as will presentlv be showil. 

Consider now the product of n Gaussiani i.r.v.'s -i Hi xi, where each 
xi,i= 1,2,** n, hasthep.d.f. 

f(x) - exp (-p), 

whose Mellin transform [1] is 

M(fj(x)IS) s)= r 
2 

The Mellin transform of the p.d.f. of -, hQq), is therefore, 2'n-{M(f+(X) s)} n, 
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and the associated inversion integral is 
1 c+ZoO (2 (-1) /2 /S)n 

h (77) -2Ji]o X {2 r (2)} ds, c > 0. 

This is equivalent to 
1 1 r~~c+ioo 

(30) h() = 
(21)nl2 21ri Jioo zr(s) ds, c > 0, 

where z = 722n and the path of integration is a line parallel to the imagi- 
nary axis and to the right of the origin. The integral may be evaluated by 
contour integration to give 

hq) = 1 R(z,n,0j), z>0, 
1=0 (27) n12 

where R(z, n, j) denotes the residue of zsrn(s) at the nth order pole 
S = -j, viz., 

R(z, n, j) = n1 d {s + zj)f-lrS(8)} , j = 0, 1 2, 3, 
(n- 1)! ds S'- 

The problem, then, is to evaluate Zj R(z, n, j). To accomplish this, it is 
convenient to apply Leibnitz's rule for the differentiation of products, 
which enables one to write 

n-1 

R (z, n, j) = z1 ! (-log z )n-l-k 
k=0 (n - 1 - ! 

(31) dk S~~~~~~ r(s + j+ l) }nE 

(31) {s(s +1) *.*(s + - 1)} s=- 

The problem is thus reduced to the evaluation of the n - 1 derivatives 

dkf r(s+j+ 1) 
dSk j(s( + 1) ... (s + j1)J ' k 01 n 

While a closed form expression has not been found for the kth derivative, 
each derivative when evaluated at s = -j reduces to a closed form ex- 
pression involving the Euler psi function and the Riemann zeta function, 
as will now be shown. 

In evaluating the required derivatives, it will be convenient to utilize the 
following notation: 

F( jn)=0 r(s +j + 1) 
n 

LS(S + 1) ... (s + -j)1 
u(k)(s, n) d _ (s, j, n); 

v(s, j) = 4(s + i + 1)- 1 where v(-j, j) = V/ (j + 1); 
i=0 + 1 1 
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it'(s + j + 1 ) = d log r (s + j + 1 )/ds is the Euler psi function which for 
s an integer [11, pp. 206-208] becomes 

si-i1 1 
ios +j-l 41(s + j+ 1) -C + E + - 

= -C-La s +j + + a a + ) 

where C is Euler's constant; 

(k) d~~k v(k)(s, n) = d kv(s, j), with 

k jn (_)k+k!(k + 1, j + 1) if k > 0, k even, 
(k! l (k + 1,j + 1) if k > 0, k odd, 

where 
00 

(#,a) = E ( 
a=0 (a + a)' 

is the Riemann zeta function [11, p. 212, formula (1103)], and for con- 
venience 

a-I 

?1l,a) =(l,a) + 2 E d 

Finally, 
(k) dlk 
I*k S+ j+ - ) (S + j+ ) 

((-_)k+k!j(k+)1s+j++ 1)) >O 

The derivatives u(k) (s, n), k = 1, 2, * **, are expressible in terms of 
u(s, j, n), powers of v(s, j), and derivatives of v(s, j), which upon evalua- 
tion at s = -j give u (k) (-j, n) in terms of the Euler psi function and the 
Riemann zeta function. To indicate how these results develop, note that 

= n{(n d ( r(s +j +1) u1t (s, n) = n{f(s + j)r (S)} I log ((+ls+j +j ) u(1)(s,n) ~ ~~~~~~ 
( + 1) ... (s + j -1)) 

= nu(s, j, n) {4t(s + + 1 ) - Z } 
k=O S+ 

= nuv, 

which when evaluated at s =-j gives 

u1 (-j, n) = n {-/n(j + 1) }. 
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Similarly, 

u (2) =j {n) nuv} 

- (-1) {n2/2(j + 1) + nvj (2, j + 1) }. 

Continuing this procedure, one obtains, after some algebraic simplification 
[12], ulk)(-j, n), k = 1, 2, . .., in terms of the Euler psi function and the 
Riemann zeta function. Specifically, 

zz(3(-j n) = (-1nI {n3+(j + 1) + 3n2/(j + 1)41(2, j + 1) 
(jAn 

-2nD(3, j + 1) }, 

u 4~(-j, n) In 1Y {n4vI4(j + 1) + 6n312(j + 1) 1(2, j + 1) 

- 8n2 2(j + 1)-(3,j + 1) + 3n2P12(2 j + 1) 

+ 6nD1(4,j + 1)}, 

u(S)(-j, n) - (-1Y) {n54/5(j + 1) + lOn4tf(j + 141(2,j + 1) 
(jon 

- 20n3132(j + 1)r(3, j + 1) 

+ 15n3q/(j + 1)v12(2, j+ 1) 
+ 3n2q/(j + 1)r1(4, j + 1) 

-20n2P1(2, j + 1)r(3, j + 1) - 24nD(5, j + 1)}, 

u(6)( -j, n) -( l)In {n64/'6(j + 1) + 15n5 t4(j + 1)-1(2, j + 1) 

-40n4/3(j + 1)v(3, j + 1) 

+ 45n4i2(j + 1/ ) 12(2, j + 1) 

- 120n341(j + 1)v1(2,j + 1)r(3,j + 1) 
+ 90n3f2(.j + 1)v1(4, j + 1) + 15n 31 (2, j + 1) 
- 144n\2(j + 1)-(5, j + 1) 

+ 90n2P1(2, j + 1)r1(4,j + 1) + 40n2e2(3, j + 1) 

+ 120nD1(6,j + 1)}. 

It has now been shown that the derivatives u(k) ( -j, n) required to 
evaluate the residues R(z, n, j) can be expressed in terms of the Euler psi 
function and the Riemann zeta function. Explicit expressions have been 
given above for k < 6, which when substituted in (31) enable one to 
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TABLE 1. 

Distribution of Gaussian products, n 2 

77 f1v lh(j) d77 7 h(n) |h(,?) d,7 

10-20 14.695614 .000000 .3600 .384370 .248024 
.0001 2.968644 .000329 .3800 .369105 .255557 
.0010 2.235710 .002554 .4000 .354766 .262794 
.0050 1.723422 .010209 .4200 .341265 .269753 
.0100 1.502819 .018211 .4400 .328526 .276450 

.0150 1.373805 .025381 .4600 .316482 .282899 

.0200 1.282298 .032010 .4800 .305074 .289114 

.0250 1.211348 .038238 .5000 .294252 .295106 

.0300 1.153406 .044145 .5200 .283969 .300887 

.0350 1.104442 .049786 .5400 .274187 .306468 

.0400 1.062054 .055201 .5600 .264867 .311858 

.0500 .991292 .065454 .6000 .247493 .322100 

.0600 .933565 .075069 .6400 .231624 .331677 

.0700 .884844 .084155 .6800 .217077 .340647 

.0800 .842722 .092788 .7200 .203699 .349059 

.0900 .805648 .101026 .7600 .191361 .356957 

.1000 .772560 .108914 .8000 .179956 .364380 

.1100 .742702 .116488 .8400 .169387 .371364 

.1200 .715515 .123777 .8800 .159576 .377941 

.1300 .690574 .130806 .9200 .150450 .384140 

.1400 .667549 .137595 .9600 .141948 .389986 

.1500 .646178 .144163 1.0000 .134016 .395503 

.1600 .626251 .150524 1.1000 .116375 .407998 

.1700 .607589 .156692 1.2000 .101384 .418866 

.1800 .590055 .162679 1.3000 .088569 .428347 

.1900 .573527 .168496 1.4000 .077558 .436640 

.2000 .557903 .174153 1.5000 .068057 .443909 

.2100 .543096 .179657 1.6000 .059828 .450293 

.2200 .529030 .185017 1.7500 .049459 .458463 

.2300 .515642 .190240 2.0000 .036254 .469085 

.2600 .479006 .205147 2.5000 .019846 .482676 

.2800 .457092 .214505 3.0000 .011058 .490180 

.3000 .436868 .223442 4.0000 .003552 .496770 

.3200 .418118 .231990 6.0000 .000396 .499630 

.3400 .400667 .240176 8.0000 .000044 .499954 
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TABLE 2. 
Distribution of Gaussian products, n = 3 

7v h(77) fr7 h (7) d7 7v NOv f 7 h (7) d77 

10-20 271.50380 .000000 .30 .383119 .298732 
10-10 68.504805 .000000 .32 .359647 .306155 

.000004 20.327126 .000095 .34 .338447 .313133 

.000100 11.339660 .001398 .36 .319203 .319706 

.0010 6.525049 .008578 .38 .301658 .325912 

.0050 3.959295 .028017 .40 .285598 .331782 

.0070 3.506025 .035452 .44 .257248 .342624 

.0100 3.056922 .045248 .48 .233032 .352417 

.0130 2.747179 .053930 .52 .212126 .361310 

.0160 2.514422 .061807 .56 .193918 .369423 

.0200 2.276474 .071367 .60 .177936 .376853 

.0250 2.051142 .082160 .66 .157358 .386894 

.0300 1.876390 .091962 .72 .140046 .395801 

.0340 1.761291 .099231 .80 .120899 .406213 

.0400 1.617745 .109353 .90 .101745 .417307 

.0460 1.499629 .118695 1.00 .086523 .426692 

.0520 1.400066 .127386 1.10 .074222 .434709 

.0580 1.314570 .135524 1.20 .064144 .441611 

.0640 1.240063 .143183 1.30 .055790 .447595 

.0700 1.174349 .150422 1.40 .048797 .452814 

.0800 1.080152 .161680 1.50 .042892 .457390 

.0900 1.000754 .172074 1.70 .033566 .464988 

.1000 .932649 .181733 2.00 .023855 .473499 

.1100 .873407 .190757 2.50 .014231 .482770 

.1200 .821278 .199225 3.50 .005782 .492040 

.1300 .774966 .207201 4.50 .002634 .496014 

.1400 .733484 .214740 5.00 .001831 .497116 

.1500 .696067 .221885 5.50 .001294 .4,97889 

.1600 .662111 .228673 6.00 .000927 .498438 

.1800 .602729 .241304 6.50 .000672 .498834 

.2000 .552423 .252842 7.00 .000492 .499123 

.2200 .509184 .263448 8.00 .000271 .499493 

.2400 .471572 .273247 10.00 .000090 .499819 

.2600 .438528 .282341 12.00 .000033 .499931 

.2800 .409250 .290813 14.00 .000015 .499974 
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TAB LE 3. 
Distribution of Gaussian products, n = 6 

rx ~~~h(n) f " h(n) drl h(n) f ' k(r7) dn 

10-20 233,817.16 .000000 .0200 3.627986 .221946 
.0000050 385.97978 .002941 .0250 2.977812 .238356 
.0000250 202.42522 .008202 .0300 2.521872 .252044 
.0000500 149.33515 .012496 .0350 2.183538 .263768 
.0001000 108.16438 .018771 .0400 1.922120 .274006 

.00020 76.750149 .027764 .0450 1.713906 .283078 

.00030 62.135358 .034638 .0500 1.544086 .291209 

.00040 53.214044 .040375 .0600 1.283716 .305275 

.00050 47.040591 .045371 .0700 1.093512 .317115 

.00075 37.323983 .055797 .0800 .948589 .327295 

.00100 31.481936 .064346 .0900 .834613 .336189 

.00120 28.184727 .070297 .1100 .667160 .351098 

.00140 25.623368 .075668 .1300 .550450 .363210 

.00160 23.562278 .080580 .1500 .464786 .373321 

.00180 21.859357 .085117 .1700 .399466 .381936 

.00200 20.423149 .089341 .2000 .326496 .392764 

.00250 17.636834 .098816 .2500 .245108 .406895 

.00300 15.600026 .107101 .3000 .192210 .417742 

.00350 14.033193 .114494 .3500 .155477 .426383 

.00400 12.783225 .121187 .4000 .128730 .433455 

.00500 10.900304 .132973 .5000 .092872 .444384 

.00600 9.537884 .143159 .6000 .070363 .452466 

.00700 8.499025 .152156 .7000 .055203 .458698 

.00800 7.676717 .160229 .8000 .044462 .463653 

.00900 7.007300 .167560 1.0000 .030555 .471027 

.01000 6.450306 .174281 1.5000 .014750 .481670 

.01200 5.573489 .186260 2.5000 .005352 .490638 

.01400 4.911820 .196717 5.0000 .001104 .496922 

.01600 4.392883 .206002 10.0000 .000171 .499238 

.01800 3.973934 .214355 17.0000 .000033 .499793 
20.0000 .000019 .499868 
25.0000 .000008 .499931 

evaluate the residues numerically for n < 7. This allows the tabulation of 
the p.d.f. and the distribution function for products of up to seven in- 
dependent Gaussian variables. Such tables have been constructed for 
n = 2, 3, 6 at the General Motors Defense Research Laboratories, and an 
abridged version is given in Tables 1, 2, 3. 
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In the case n = 2, the results give the modified Bessel function of order 
zero, as is known [1]. For values of n > 2 the results are believed to be new. 

For completeness and convenience of application, the first six derivatives 
u(k) (s, n) are given explicitly above, and it is seen that they become quite 
involved for large k. In practice this tedious expansion need not be carried 
out explicitly, since the iterative procedure has been programmed for a 
digital computer and will supply the expansion for arbitrary k. This pro- 
gram may be incorporated directly into an overall computer mechanization 
[13]. 
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