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Abstract: This work addresses an important issue regarding the performance of
simultaneous test procedures: the construction of multiple tests that at the same time
are optimal from a statistical perspective and that also yield logically-consistent results
that are easy to communicate to practitioners of statistical methods. For instance,
if hypothesis A implies hypothesis B, is it possible to create optimal testing procedures
that reject A whenever they reject B? Unfortunately, several standard testing procedures
fail in having such logical consistency. Although this has been deeply investigated under
a frequentist perspective, the literature lacks analyses under a Bayesian paradigm. In this
work, we contribute to the discussion by investigating three rational relationships under
a Bayesian decision-theoretic standpoint: coherence, invertibility and union consonance. We
characterize and illustrate through simple examples optimal Bayes tests that fulfill each of
these requisites separately. We also explore how far one can go by putting these requirements
together. We show that although fairly intuitive tests satisfy both coherence and invertibility,
no Bayesian testing scheme meets the desiderata as a whole, strengthening the understanding
that logical consistency cannot be combined with statistical optimality in general. Finally, we
associate Bayesian hypothesis testing with Bayes point estimation procedures. We prove the
performance of logically-consistent hypothesis testing by means of a Bayes point estimator
to be optimal only under very restrictive conditions.
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1. Introduction

One could (...) argue that ‘power is not everything’. In particular for multiple test
procedures one can formulate additional requirements, such as, for example, that the decision
patterns should be logical, conceivable to other persons, and, as far as possible, simple to
communicate to non-statisticians.

—G. Hommel and F. Bretz [1]

Multiple hypothesis testing, a formal quantitative method that consists of testing several hypotheses
simultaneously [2], has gained considerable ground in the last few decades with the aim of drawing
conclusions from data in scientific experiments regarding unknown quantities of interest. Most of the
development of multiple hypothesis testing has been focused on the construction of test procedures
satisfying statistical optimality criteria, such as the minimization of posterior expected loss functions
or the control of various error rates. These advances are detailed, for instance, in [2], [3] (p. 7), [4]
and the references therein. However, another important issue concerning multiple hypothesis testing,
namely the construction of simultaneous tests that yield coherent results easier to communicate to
practitioners of statistical methods, has not been so deeply investigated yet, especially under the Bayesian
paradigm. As a matter of fact, most traditional multiple hypothesis testing schemes do not combine
statistical optimality with logical consistency. For example, [5] (p. 250) presents a situation regarding
the parameter, θ, of a single exponential random variable, X , in which uniformly most powerful
(UMP) tests of level 0.05 for the one-sided hypothesis Hp1q

0 : θ ¤ 1 and the two-sided hypothesis
H

p2q
0 : θ ¤ 1 Y θ ¥ 2, say ϕ1 and ϕ2, respectively, lead to puzzling decisions. In fact, for the sample

outcomeX � 0.7, the testϕ2 rejectsHp2q
0 , and becauseHp1q

0 impliesHp2q
0 , one may decide to rejectHp1q

0 ,
as well. On the other hand, the test ϕ1 does not reject Hp1q

0 , a fact that makes a practitioner confused
given these conflicting results. In this example, an inconsistency related to nested hypotheses named
coherence [6] takes place. Frequently, other logical relationships one may expect from the conclusions
drawn from multiple hypothesis testing, such as consonance [6] and compatibility [7], are not met either.

Although several of these properties have been deeply investigated under a frequentist
hypothesis-testing framework, Bayesian literature lacks such analyses. In this work, we contribute
to this discussion by examining three rational requirements in simultaneous tests under a Bayesian
decision-theoretic perspective. In short, we characterize the families of loss functions that induce
multiple Bayesian tests that satisfy partially such desiderata. In Section 2, we review and illustrate
the concept of a testing scheme (TS), a mathematical object that assigns to each statistical hypothesis of
interest a test function. In Section 3, we formalize three consistency relations one may find important
to hold in simultaneous tests: coherence, union consonance and invertibility. In Section 4, we provide
necessary and sufficient conditions on loss functions to ensure Bayesian tests to meet each desideratum
separately, whatsoever the prior distribution for the relevant parameters is. In Section 5, we prove, under
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quite general conditions, the impossibility of creating multiple tests under a Bayesian decision-theoretic
framework that fulfill the triplet of requisites simultaneously with respect to all prior distributions.
We also explore the connection between logically-consistent Bayes tests and Bayes point estimation
procedures. Final remarks and suggestions for future inquiries are presented in Section 6. All theorems
are proven in the Appendix.

2. Testing Schemes

We start by formulating the mathematical setup for multiple Bayesian tests. For the remainder of
the manuscript, the parameter space is denoted by Θ and the sample space by X . Furthermore, σpΘq
and σpX q represent σ-fields of subsets of Θ and X , respectively. We consider the Bayesian statistical
model pX � Θ,σpX � Θq, IPq. The IP-marginal distribution of θ, namely the prior distribution for θ,
is denoted by π, while πxp.q represents the posterior distribution for θ given X � x, x P X . Moreover,
P p.|θq stands for the conditional distribution of the observable X given θ, and Lxpθq represents the
likelihood function at the point θ P Θ generated by the sample observation x P X . Finally, let Ψ be
the set of all test functions, that is the set of all t0, 1u-valued measurable functions defined on X . As
usual, “1” denotes the decision of rejecting the null hypothesis and “0” the decision of not rejecting or
accepting it.

Next, we review the definition of a TS, a mathematical device that formally describes the idea that to
each hypothesis of interest it is assigned a test function. Although the specification of the hypotheses of
interest most of the times depends on the scientific problem under consideration, here, we assume that
a decision-maker has to assign a test to each element of σpΘq. This assumption not only enables us to
precisely define the relevant consistency properties, but it also allows multiple Bayesian testing based
on posterior probabilities of the hypotheses (a deeper discussion on this issue may be found in [3] (p. 5)
and [8]).

Definition 1. (Testing scheme (TS)) Let the σ-field of subsets of the parameter space σpΘq be the set of
hypotheses to be tested. Moreover, let Ψ be the set of all test functions defined on X . A TS is a function
ϕ : σpΘq Ñ Ψ that assigns to each hypothesis A P σpΘq the test ϕA P Ψ for testing A.

Thus, for A P σpΘq and x P X , ϕApxq � 1 represents the decision of rejecting the hypothesis A
when the datum x is observed. Similarly, ϕApxq � 0 represents the decision of not rejecting A. We now
present examples of testing schemes.

Example 1. (Tests based on posterior probabilities) Assume Θ � Rd and σpΘq � BpRdq, the Borelians
of Rd. Let π be the prior probability distribution for θ. For each A P σpΘq, let ϕA : X Ñ t0, 1u be
defined by:

ϕApxq � I
�
πxpAq  

1

2



,

where πxp.q is the posterior distribution of θ, given x. This is the TS that assigns to each hypothesis
A P BpRdq the test that rejects it when its posterior probability is smaller than 1{2.
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Recall that, under a Bayesian decision-theoretic perspective, a hypothesis testing for the hypothesis
Θ0 � Θ [5] (p. 214) is a decision problem in which the action space is t0, 1u and the loss function
L : t0, 1u �Θ Ñ R satisfies:

Lp1, θq ¥ Lp0, θq for θ P Θ0 and Lp1, θq ¤ Lp0, θq for θ P Θc
0 , (1)

that is, L is such that the wrong decision ought to be assigned a loss at least as large as that assigned to
a correct decision (many authors consider strict inequalities in Equation (1)). We call such a loss function
a (strict) hypothesis testing loss function.

A solution of this decision problem, named a Bayes test, is a test function ϕ� P Ψ derived, for each
sample point x P X , by minimizing the expectation of the loss function L over t0, 1u with respect to the
posterior distribution. That is, for each x P X ,

ϕ�pxq � 1 ðñ ErLp1, θq|X � xs   ErLp0, θq|X � xs,

where ErLpd, θq|X � xs �
³
Θ
Lpd, θqdπxpθq, d P t0, 1u. In the case of the equality of the posterior

expectations, both zero and one are optimal decisions, and either of them can be chosen as ϕ�pxq.
When dealing with multiple tests, one can use the above procedure for each hypothesis of interest.

Hence, one can derive a Bayes test for each null hypothesis A P σpΘq considering a specified
loss function LA : t0, 1u � Θ Ñ R satisfying Equation (1). This is formally described in the
following definition.

Definition 2. (TS generated by a family of loss functions) Let pX � Θ,σpX � Θq, IPq be a Bayesian
statistical model. Let pLAqAPσpΘq be a family of hypothesis testing loss functions, where LA : t0, 1u �

Θ Ñ R is the loss function for testing A P σpΘq. A TS generated by the family of loss functions
pLAqAPσpΘq is any TS ϕ defined over σpΘq, such that, @A P σpΘq, ϕA is a Bayes test for hypothesis A
with respect to π considering the loss LA.

The following example illustrates this concept.

Example 2. (Tests based on posterior probabilities) Assume the same scenario as Example 1 and that
pLAqAPσpΘq is a family of loss functions, such that @A P σpΘq and @θ P Θ,

LAp0, θq � Ipθ R Aq and LAp1, θq � Ipθ P Aq,

that is, LA is the 0–1 loss for A ([5] (p. 215)). The testing scheme introduced in Example 1 is a TS
generated by the family of 0–1 loss functions.

The next example shows a TS of Bayesian tests motivated by different epistemological considerations
(see [9,10] for details), the full Bayesian significance tests (FBST).

Example 3. (FBST testing scheme) Let Θ � Rd, σpΘq � BpRdq and fp.q be the prior probability
density function (pdf) for θ. Suppose that, for each x P X , there exists fp.|xq, the pdf of the posterior
distribution of θ, given x. For each hypothesis A P σpΘq, let:

TAx �

"
θ P Θ : fpθ|xq ¡ sup

θPA
fpθ|xq

*
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be the set tangent to the null hypothesis, and let evxpAq � 1 � πxpT
A
x q be the Pereira–Stern evidence

value for A (see [11] for a geometric motivation). One can define a TS ϕ by:

ϕApxq � I pevxpAq ¤ cq , @A P σpΘq and @x P X ,

in which c P r0, 1s is fixed. In other words, one does not reject the null hypothesis when its evidence is
larger than c.

We end this section by defining a TS generated by a point estimation procedure, an intuitive concept
that plays an important role in characterizing logically-consistent simultaneous tests.

Definition 3. (TS generated by a point estimation procedure) Let δ : X ÝÑ Θ be a point estimator for
θ ([5] (p. 296)). The TS generated by δ is defined by:

ϕApxq � Ipδpxq R Aq.

Hence, the TS generated by the point estimator δ rejects hypothesis A after observing x if, and only
if, the point estimate for θ, δpxq, is not in A.

Example 4. (TS generated by a point estimation procedure) Let Θ � R, σpΘq � PpΘq and
X1 . . . , Xn|θ i.i.d. Npθ, 1q. The TS generated by the sample mean, sX , rejects A P σpΘq when x is
observed if sx R A.

3. The Desiderata

In this section, we review three properties one may expect from simultaneous test procedures:
coherence, invertibility and union consonance.

3.1. Coherence

When a hypothesis is tested by a significance test and is not rejected, it is generally agreed
that all hypotheses implied by that hypothesis (its “components”) must also be considered as
non-rejected.

—K. R. Gabriel [6]

The first property concerns nested hypotheses and was originally defined by [6]. It states that if
hypothesis Hp1q

0 implies hypothesis Hp2q
0 , that is Hp1q

0 � H
p2q
0 , then the rejection of Hp2q

0 implies the
rejection of Hp1q

0 . In the context of TSs, we have the following definition.

Definition 4. (Coherence) A testing scheme ϕ is coherent if:

@A,B P σpΘq, A � B ñ ϕA ¥ ϕB, i.e., @x P X , ϕApxq ¥ ϕBpxq.

In other words, if after observing x, a hypothesis is rejected, any hypothesis that implies it has to be
rejected, as well.
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The testing schemes introduced in Examples 1, 3 and 4 are coherent. Indeed, in Example 1, coherence
is a consequence of the monotonicity of probability measures, while in Example 3, it follows from the
fact that if A � B, then TBx � TAx and, therefore, evxpAq ¤ evxpBq. In Example 4, coherence is
immediate. On the other hand, testing schemes based on UMP tests or generalized likelihood ratio tests
with a common fixed level of significance are not coherent in general. Neither are TSs generated by
some families of loss functions (see Section 4). Next, we illustrate that even test procedures based on
p-values or Bayes factors may be incoherent.

Example 5. Suppose that in a case-control study, one measures the genotype in a certain locus for each
individual of a sample. Results are shown in Table 1. These numbers were taken from a study presented
by [12] that had the aim of verifying the hypothesis that subunits of the gene GABAA contribute to
a condition known as methamphetamine use disorder. Here, the set of all possible genotypes is G �

tAA,AB,BBu. Let γ � pγAA,γAB,γBBq, where γi is the probability that an individual from the case
group has genotype i. Similarly, let π � pπAA,πAB,πBBq, where πi is the probability that an individual
of control group has genotype i.

In this context, two hypotheses are of interest: the hypothesis that the genotypic proportions are the
same in both groups, HG

0 : γ � π, and the hypothesis that the allelic proportions are the same in both
groups HA

0 : γAA �
1
2
γAB � πAA �

1
2
πAB. The p-values obtained using chi-square tests for these

hypotheses are, respectively, 0.152 and 0.069. Hence, at the level of significance α � 10%, the TS given
by chi-square tests rejects HA

0 , but does not reject HG
0 . That is, the TS leads a practitioner to believe

that the allelic proportions are different in both groups, but it does not suggest any difference between
the genotypic proportions. This is absurd!If the allelic proportions are not the same in both groups,
the genotypic proportions cannot be the same either. Indeed, if the latter were the same, then γi � πi,
@i P G, and hence, θ P HA

0 . This example is further discussed in [8,13].

Table 1. Genotypic sample frequencies.

AA AB BB Total

Case 55 83 50 188

Control 24 42 39 105

Several other (in)coherent testing schemes are explored by [8,14].
Coherence is by far the most emphasized logical requisite for simultaneous test procedures in the

literature. It is often regarded as a sensible property by both theorists and practitioners of statistical
methods who perceive a hypothesis test as a two-fold (accept/reject) decision problem. On the other hand,
adherents to evidence-based approaches to hypothesis testing [15] do not see the need for coherence.
Under the frequentist approach to hypothesis testing, the construction of coherent procedures is closely
associated with the so-called closure methods [16,17]. Many results on coherent classical tests are shown
in [6,17], among others. On the other hand, coherence has not been deeply investigated from a Bayesian
standpoint yet, except for [18], who relate coherence with admissibility and Bayesian optimality in
certain situations of finitely many hypotheses of interest. In Section 4, we provide a characterization of
coherent testing schemes under a decision-theoretic framework.
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3.2. Invertibility

There is a duality between hypotheses and alternatives which is not respected in most of the
classical hypothesis-testing literature. (...) suppose that we decide to switch the names of
alternative and hypothesis, so that ΩH becomes ΩA, and vice versa. Then we can switch tests
from φ to ψ � 1� φ and the “actions” accept and reject become switched.

—M. J. Schervish [5] (p. 216)

The duality mentioned in the quotation above is formally described in the next definition.

Definition 5. (Invertibility) A testing scheme ϕ satisfies invertibility if:

@A P σpΘq, ϕAc � 1�ϕA.

In other words, it is irrelevant to decision-making which hypothesis is labeled as null and which is
labeled as alternative.

Unlike coherence, there is no consensus among statisticians on how reasonable invertibility is.
While it is supported by many decision-theorists, invertibility is usually discredited by advocates of
the frequentist theory owing to the difference between the interpretations of “not reject a hypothesis”
and “accept a hypothesis” under various epistemological viewpoints (the reader is referred to [7] for
a discussion on this distinction). As a matter of fact, invertibility can also be seen, from a logic
perspective, as a version of the law of the excluded middle, which itself represents a gap between
schools of logic ([19] (p. 32)). In spite of the controversies on invertibility, it seems to be beyond
any argument the fact that the absence of invertibility in multiple tests may lead a decision-maker to
be puzzled by senseless conclusions, such as the simultaneous rejections of both a hypothesis and its
alternative. The following example illustrates this point.

Example 6. Suppose that X|θ�Normalpθ, 1q, and consider that the parameter space is Θ�t�3, 3u.
Assume one wants to test the following null hypotheses:

HA
0 : θ � 3 and HB

0 : θ � �3

The Neyman–Pearson tests for these hypotheses have the following critical regions, at the level
5%, respectively:

tx P R : x   1.35u and tx P R : x ¡ �1.35u.

Hence, if we observe x � �0.5, we reject both HA
0 and HB

0 , even though HA
0 YHB

0 � Θ!

The testing schemes of Examples 2 and 4 satisfy invertibility. In Example 4, it is straightforward to
verify this. In Example 2, it follows essentially from the equivalence πxpAq   1{2 ô πxpA

cq ¡ 1{2.
If πxpAq � 1{2 for each sample x and for all A P σpΘq, the unique TS generated by the 0–1 loss
functions satisfies invertibility. Otherwise, there is a testing scheme generated by such losses that is still
in line with this property. Indeed, for any A P σpΘq and x0 P X , such that πx0pAq � 1{2, the decision
of rejecting A (not rejecting Ac) after observing x0 has the same expected loss as the decision of not



Entropy 2015, 17 6541

rejecting (rejecting) it. Thus, among all testing schemes generated by the 0–1 loss functions, which
are all equivalent from a decision-theoretic point of view ([20] (p. 123)), a decision-maker can always
choose a TSϕ1, such thatϕ1

Acpx0q � 1�ϕ1
Apx0q for all A P σpΘq, and x0 P X , such that πx0pAq � 1{2.

Such a TS ϕ1 meets invertibility.

3.3. Consonance

... a test for pYiPIHiq
c versus pYiPIHiq may result in rejection which then indicates that at

least one of the hypotheses Hi, i P I , may be true.

—H. Finner and K. Strassburger [21]

The third property concerns two hypotheses, say A and B, and their union, A Y B. It is motivated
by the fact that in many cases, it seems reasonable that a testing scheme that retains the union of these
hypotheses should also retain at least one of them. This idea is generalized in Definition 6.

Definition 6. (Union Consonance) A TS ϕ satisfies the finite (countable) union consonance if for all
finite (countable) set of indices I ,

@tAiuiPI � σpΘq , ϕYiPIAi
¥ mintϕAi

uiPI .

In other words, if we retain the union of the hypotheses YiPIAi, we should not reject at least one of
the Ai’s.

There are several testing schemes that meet union consonance. For instance, TSs generated by point
estimation procedures, TSs of Aitchison’s confidence-region tests [22] and FBST TSs (under quite
general conditions; see [8]) satisfy both finite and countable union consonance.

Although union consonance may not be considered as appealing as coherence for simultaneous test
procedures, it was hinted at in a few relevant works. For instance, the interpretation given by [21]
on the final joint decisions derived from partial decisions implicitly suggests that union consonance is
reasonable: they suggest one should consider B :� YA:ϕApxq�1A to be the set of all parameter values
rejected by the simultaneous procedure at hand when x is observed. Under this reading, it seems natural
to expect that ϕBpxq � 1, which is exactly what the union consonance principle states. As a matter of
fact, the general partitioning principle proposed by these authors satisfies union consonance. It should
also be mentioned that union consonance, together with coherence, plays a key role in the possibilistic
abstract belief calculus [23]. In addition, an evidence-based approach detailed in [24] satisfies both
consonance and invertibility.

We end this section by stating a result derived from putting these logical requirements together.

Theorem 1. Let Θ be a countable parameter space and σpΘq � PpΘq. Let ϕ be a testing scheme
defined on σpΘq. The TS ϕ satisfies coherence, invertibility and countable union consonance if, and
only if, there is a point estimator δ : X Ñ Θ, such that ϕ is generated by δ.

Theorem 1 is also valid for finite union consonance with the obvious adaptation.
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4. A Bayesian Look at Each Desideratum

In the previous section, we provided several examples of testing schemes satisfying some of the
logical properties reviewed therein. In particular, a testing scheme generated by the family of 0–1 loss
functions (Example 2) was shown to fulfill both coherence and invertibility. However, not all families of
loss functions generate a TS meeting any of these requisites, as is shown in the examples below.

Example 7. Suppose that X|θ � Bernoullipθq and that one is interested in testing the null hypotheses:

HA
0 : θ ¤ 0.4 and HB

0 : θ ¤ 0.5.

Furthermore, assume θ � Uniformp0, 1q a priori and that he uses the loss functions from Table 2 to
perform the tests.

Thus, Bayes tests for testing HA
0 and HB

0 are, respectively,

ϕApxq � I pIPpθ ¤ 0.4|xq ¤ 1{7q and ϕBpxq � I pIPpθ ¤ 0.5|xq ¤ 1{3q .

As θ|x � Betap2, 1q if x � 1 is observed, then IPpθ ¤ 0.4|xq � 0.16 and IPpθ ¤ 0.5|xq � 0.25,
so that one does not reject HA

0 , but rejects HB
0 . Since HA

0 � HB
0 , we conclude that coherence does

not hold.

Table 2. Loss functions for tests of Example 7.

State of Nature
Decision θ P HA

0 θ R HA
0

0 0 1

1 6 0

State of Nature
Decision θ P HB

0 θ R HB
0

0 0 1

1 2 0

Intuitively, incoherence takes place because the loss of falsely rejecting HA
0 is three-times as large as

the loss of falsely rejecting HB
0 , while the corresponding errors of Type II are of the same magnitude.

Hence, these loss functions reveal that the decision-maker is more reluctant to reject HA
0 than to reject

HB
0 in such a way that he only needs little evidence to accept HA

0 (posterior probability greater than 1/7)
when compared to the amount of evidence needed to accept HB

0 (posterior probability greater than 1/3).
Thus, it is not surprising at all that in this case, the tests do not cohere for some priors.

Example 8. In the setup of Example 7, suppose one also needs to test the null hypothesis HBc

0 : θ ¡ 0.5

by taking into account the loss function in Table 3.
The Bayes test for HBc

0 is then to reject it if IPpθ ¡ 0.5|xq   4{5. For x � 1, IPpθ ¡ 0.5|xq � 0.75,
and consequently, HBc

0 is rejected. As both HB
0 and HBc

0 are rejected when x � 1 is observed, these
tests do not satisfy invertibility.

Table 3. Loss function for Example 8.

State of Nature
Decision θ P HBc

0 θ R HBc

0

0 0 4

1 1 0
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The absence of invertibility is somewhat expected here, because the degree to which the
decision-maker believes an incorrect decision of choosing HB

0 to be more serious than an incorrect
decision of choosing HBc

0 is not the same whether HB
0 is regarded as the “null” or the “alternative”

hypothesis. More precisely, while the decision-maker assigns a loss to the error of Type I that is the
double of the one assigned to the error of Type II when testing the null hypothesis HB

0 , he evaluates the
loss of falsely accepting HBc

0 to be four-times (not twice!) as large as that of falsely rejecting it when
HBc

0 is the null hypothesis.
The examples we have examined so far give rise to the question: from a decision-theoretic perspective,

what conditions must be imposed on a family of loss functions so that the resultant Bayesian testing
scheme meets coherence (invertibility)? Next, we offer a solution to this question. We first give
a definition in order to simplify the statement of the main results of this section.

Definition 7. (Relative loss) Let LA be a loss function for testing the hypothesis A P σpΘq. The function
∆A : Θ Ñ R defined by:

∆Apθq �

#
LAp1, θq � LAp0, θq, if θ P A
LAp0, θq � LAp1, θq, if θ R A

is named the relative loss of LA for testing A.

In short, the relative loss measures the difference between losses of taking the wrong and the correct
decisions. Thus, the relative loss of any hypothesis testing loss function is always non-negative.

A careful examination of Example 7 hints that in order to obtain coherent tests, the “larger” (the
“smaller”) the null hypothesis of interest is, the more cautious about falsely rejecting (accepting) it the
decision-maker ought to be. This can be quantified as follows: for hypothesesA andB, such thatA � B

and with corresponding hypothesis testing loss functions LA and LB, if θ1 P A, then ∆Bpθ1q should be at
least as large as ∆Apθ1q. Similarly, if θ2 P B

c, then ∆Bpθ2q should be at most ∆Apθ2q. Such conditions
are also appealing, since it seems reasonable that greater relative losses should be assigned to greater
“distances” between the parameter and the wrong decision. For instance, if θ P A (and consequently,
θ P B), the rougher error of rejecting B should be penalized more heavily than the error of rejecting A;
Figure 1 enlightens this idea.

Figure 1. Interpretation of sensible relative losses: rougher errors of decisions should be
assigned larger relative losses.

These conditions, namely:

∆Apθ1q ¤ ∆Bpθ1q, @θ1PA and ∆Apθ2q ¥ ∆Bpθ2q, @θ2PB
c,
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are sufficient for coherence. As a matter of fact, Theorem 2 states that the weaker condition:

∆Apθ1q∆Bpθ2q ¤ ∆Apθ2q∆Bpθ1q , @θ1PA, @θ2PB
c,

is necessary and sufficient for a family of hypothesis testing loss functions to induce a coherent testing
scheme with respect to each prior distribution for θ. Henceforward, we assume that EpLApd, θq|xq   8,
for all A P σpΘq, d P t0, 1u and x P X .

Theorem 2. Let pLAqAPσpΘq be a family of hypothesis testing loss functions. Suppose that for all
θ1, θ2 P Θ, there is x P X , such that Lxpθ1q, Lxpθ2q ¡ 0. Then, for all prior distributions π for
θ, there exists a testing scheme generated by pLAqAPσpΘq with respect to π that is coherent if, and only if,
pLAqAPσpΘq is such that for all A,B P σpΘq with A � B:

∆Apθ1q∆Bpθ2q ¤ ∆Apθ2q∆Bpθ1q , @θ1PA , @θ2PB
c. (2)

Notice that the “if” part of Theorem 2 still holds for families of hypothesis testing loss functions
that depend also on the sample. Theorem 2 characterizes, under certain conditions, all families of loss
functions that induce coherent tests, no matter what the decision-maker’s opinion (prior) on the unknown
parameter is. Although the result of Theorem 2 is not properly normative, any Bayesian decision-maker
can make use of it to prevent himself from drawing incoherent conclusions from multiple hypothesis
testing by checking whether his personal losses satisfy the condition in Equation (2).

Many simple families of loss functions generate coherent tests, as we illustrate in Examples 9 and 10.

Example 9. Consider, for each A P σpΘq, the loss function LA in Table 4 to test the null hypothesis A,
in which λ : σpΘq Ñ R� is any finite measure, such that λpΘq ¡ 0. This family of loss functions satisfies
the condition in Equation (2) for coherence as for all A,B P σpΘq, such that A � B, and for all θ1 P A

and θ2 P B
c, ∆Apθ1q � λpAq, ∆Bpθ2q � λpB

cq, ∆Apθ2q � λpA
cq and ∆Bpθ1q � λpBq.

Table 4. Loss function LA for testing A.

State of Nature
Decision θ P A θ R A

0 0 λpAcq

1 λpAq 0

As a matter of fact, if for each A P σpΘq, LA is a 0 � 1 � cA loss function ([5] (p. 215)), with
0   cA ¤ cB if A � B, then the family pLAqAPσpΘq will induce a coherent TS for each prior for θ.

Example 10. Assume Θ is equipped with a distance, say d. Define, for each A P σpΘq the loss function
LA for testing A by:

LAp0, θq � d�pθ, Aq and LAp1, θq � d�pθ, Acq ,

where d�pθ, Aq � infaPA dpθ, aq is the distance between θ P Θ and A. For A,B P σpΘq, such that
A � B, and for θ1 P A and θ2 P B

c, ∆Apθ1q � d�pθ1, A
cq, ∆Bpθ2q � d�pθ2, Bq, ∆Apθ2q � d�pθ2, Aq

and ∆Bpθ1q � d�pθ1, B
cq. These values satisfy Equation (2) from Theorem 2. Hence, families of loss

functions based on distances as the above generate Bayesian coherent tests.
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Next, we characterize Bayesian tests with respect to invertibility. In order to obtain TSs that meet
invertibility, it seems reasonable that when the null and alternative hypotheses are switched, the relative
losses ought to remain the same. That is to say, when testing the null hypothesis A, the relative loss at
each point θ P Θ, ∆Apθq, should be equal to the relative loss ∆Acpθq when Ac is the null hypothesis
instead. This condition is sufficient, but not necessary for a family of loss functions to induce tests
fulfilling this logical requisite with respect to all prior distributions. In Theorem 3, however, we provide
necessary and sufficient conditions for invertibility.

Theorem 3. Let pLAqAPσpΘq be a family of hypothesis testing loss functions. Suppose that for all θ1, θ2 P

Θ, there is x P X , such that Lxpθ1q, Lxpθ2q ¡ 0. Then, for all prior distributions π for θ, there exists
a testing scheme generated by pLAqAPσpΘq with respect to π that satisfies invertibility if, and only if,
pLAqAPσpΘq is such that for all A P σpΘq:

∆Apθ1q∆Acpθ2q � ∆Acpθ1q∆Apθ2q , @ θ1 P A θ2 P A
c. (3)

Condition Equation (3) is equivalent (for strict hypothesis testing loss functions) to impose, for each
A P σpΘq, that the function ∆Ap.q

∆Ac p.q
to be constant over Θ. We should mention that the “if” part of

Theorem 3 still holds for hypothesis testing loss functions satisfying (Equation (3)) that also depend on
the sample x.

The families of loss functions introduced in Examples 9 and 10 satisfy (Equation (3)). Thus, such
families of losses ensure the construction of simultaneous Bayes tests that are in conformity with both
coherence and invertibility for all prior distributions on σpΘq. Thus, if one believes these (two) logical
requirements to be of primary importance in multiple hypothesis testing, he can make use of any of these
families of loss functions to perform tests satisfactorily. Other simple loss functions also lead to TSs
that meet invertibility: for instance, any family of 0–1–c loss functions for which cAc � 1{cA for all
A P σpΘq leads to invertible TSs.

We end this section by examining union consonance under a decision-theoretic point of view.
From Definition 6, it appears that a necessary condition for the derivation of consonant tests is that
“smaller” (“larger”) null hypotheses ought to be assigned greater losses for false rejection (acceptance).
More precisely, for A,B P σpΘq, if θ1 P A Y B, then it seems that either ∆AYBpθ1q ¤ ∆Apθ1q

or ∆AYB pθ1q ¤ ∆B pθ1q should hold. If θ2 P pA Y Bqc, then it is reasonable that either
∆AYBpθ2q ¥ ∆Apθ2q or ∆AYBpθ2q ¥ ∆Bpθ2q. The next theorem shows that this is nearly the case.
However, it is still unknown whether sufficient conditions for union consonance are determinable.

Theorem 4. Let pLAqAPσpΘq be a family of hypothesis testing loss functions. Suppose that for all θ1, θ2 P

Θ, there is x P X , such that Lxpθ1q, Lxpθ2q ¡ 0. If for all prior distribution π for θ, there exists a testing
scheme generated by pLAqAPσpΘq with respect to π that satisfies finite union consonance, then pLAqAPσpΘq
is such that for all A,B P σpΘq and for all θ1 P AYB, θ2 P pAYBqc,

either ∆AYBpθ1q∆Apθ2q ¤ ∆AYBpθ2q∆Apθ1q or ∆AYBpθ1q∆Bpθ2q ¤ ∆AYBpθ2q∆Bpθ1q.



Entropy 2015, 17 6546

5. Putting the Desiderata Together

In Section 4, we showed that there are infinitely many families of loss functions that induce, for each
prior distribution for θ, a TS that satisfies both coherence and invertibility (Examples 9 and 10). However,
requiring the three logical consistency properties we presented to hold simultaneously with respect to all
priors is too restrictive: under mild conditions, no TS constructed under a Bayesian decision-theoretic
approach to hypothesis testing fulfills this, as stated in the next theorem.

Theorem 5. Assume that Θ and σpΘq are such that |Θ| ¥ 3 and that there is a partition of Θ composed
of three nonempty measurable sets. Assume also that for all triplet θ1, θ2, θ3 P Θ, there is x P X , such
that Lxpθiq ¡ 0 for i � 1, 2, 3. Then, there is no family of strict hypothesis testing loss functions that
induces, for each prior distribution for θ, a testing scheme satisfying coherence, invertibility and finite
union consonance.

Theorem 5 states that Bayesian optimality (based on standard loss functions that do not depend on the
sample) cannot be combined with complete logical consistency. This fact can lead one to wonder whether
such properties are indeed sensible in multiple hypothesis testing. The following result shows us that the
desiderata are in fact reasonable in the sense that a TS meeting these requirements does correspond to
the optimal tests of some Bayesian decision-makers. We return to this point in the concluding remarks.

Theorem 6. Let Θ be a countable (finite) parameter space, σpΘq � PpΘq, and X be a countable
sample space. Let ϕ be a testing scheme that satisfies coherence, invertibility and countable (finite)
union consonance. Then, there exist a probability measure µ over PpΘ � X q and a family of strict
hypothesis testing loss functions pLAqAPσpΘq, such that ϕ is generated by pLAqAPσpΘq with respect to the
µ-marginal distribution of θ.

We end this section by associating logically-consistent Bayesian hypothesis testing with Bayes point
estimation procedures in case both Θ and X are finite. This relationship is characterized in Theorem 7.

Theorem 7. Let Θ and X be finite sets and σpΘq � PpΘq. Let ϕ be the testing scheme generated by
the point estimator δ : X Ñ Θ. Suppose that for all x P X , Lxpδpxqq ¡ 0.

(a) If there exist a probability measure π : σpΘq Ñ r0, 1s for θ, with πpδpxqq ¡ 0 for all x P X , and
a loss function L : Θ � Θ Ñ R�, satisfying Lpθ, θq � 0 and Lpd, θq ¡ 0 for d � θ, such that
δ is a Bayes estimator for θ generated by L with respect to π, then there is a family of hypothesis
testing loss functions pLAqAPσpΘq, LA : t0, 1u � pΘ � X q Ñ R� for each A P σpΘq, such that ϕ
is generated by pLAqAPσpΘq with respect to π.

(b) If there exist a probability measure π : σpΘq Ñ r0, 1s for θ, with πpδpxqq ¡ 0 for all x P X , and
a family of strict hypothesis testing loss functions pLAqAPσpΘq, LA : t0, 1u � Θ Ñ R� for each
A P σpΘq, such that ϕ is generated by pLAqAPσpΘq with respect to π, then there is a loss function
L : Θ � Θ Ñ R�, with Lpθ, θq � 0 and Lpd, θq ¡ 0 for d � θ, such that δ is a Bayes estimator
for θ generated by L with respect to π.

Theorem 7 ensures that multiple Bayesian tests that fulfill the desiderata cannot be separated from
Bayes point estimation procedures. One may find in Theorem 7, Part (a), a decision-theoretic justification
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for performing simultaneous tests by means of a Bayes point estimator. However, the optimality of such
tests is derived under very restrictive conditions, as the underlying loss functions depend both on the
sample and on a point estimator. This fact reinforces that one can reconcile statistical optimality and
logical consistency in multiple tests only in very particular cases. We should also emphasize that, under
the conditions of Part (a), if, in addition, πpθq ¡ 0 for all θ P Θ, then, for all A P σpΘq, ϕA is an
admissible test for A with regard to LA (the standard proof of this result developed for losses that do
not depend on the sample also works here). The second part of Theorem 7 states that if a Bayesian
testing scheme meets coherence, invertibility and finite union consonance, then the point estimator that
generates it cannot be devoid of optimality: it must be a Bayes estimator for specific loss functions.
Example 11 illustrates the first part of this theorem.

Example 11. Assume that Θ � tθ1, θ2, . . . , θku and X is finite. Assume also that there is a maximum
likelihood estimator (MLE) for θ, δML : X Ñ Θ, such that LxpδMLpxqq ¡ 0, for all x P X . Then, the
testing scheme generated by δML is a TS of Bayes tests. Indeed, when Θ is finite, an MLE for θ is a
Bayes estimator generated by the loss function Lpd, θq � Ipd � θq, d, θ P Θ, with respect to the uniform
prior over Θ (that is, δMLpxq corresponds to a mode of the posterior distribution πx, for each x P X ).
Consequently (recall that |Θ| � k), πxpδMLpxqq ¥ 1{k and ErLpδMLpxq, θq|xs � 1 � πxpδMLpxqq, for
each x P X . Thus,

max
xPX

ErLpδMLpxq, θq|xs

πxpδMLpxqq
� max

xPX

1� πxpδMLpxqq

πxpδMLpxqq
¤

1� 1
k

1
k

� k � 1 ,

as g : p0, 1s Ñ R� given by gptq � p1� tq{t is strictly decreasing.
By Theorem 7, it follows that the TS generated by the MLE δML is a Bayesian TS generated by

(for instance) the family of loss functions pLAqAPσpΘq given, for each A P σpΘq, by LAp1, pθ, xqq �
0 and LAp0, pθ, xqq � 1, for θ P Ac, and LAp0, pθ, xqq � 0 and LAp1, pθ, xqq � kIApδMLpxqq �

p1{kqIAcpδMLpxqq, for θ P A.

It is worth mentioning that the development of Theorem 7(a) and Example 11 is in a sense related to
the optimality of least relative surprise estimators under prior-based loss functions [24] (Section 2).

6. Conclusions

While several studies on frequentist multiple tests deal with the question of seeking for a balance
between statistical optimality and logical consistency, this issue has not been addressed yet under
a decision-theoretic standpoint. For this reason, in this work, we examine simultaneous Bayesian
hypothesis testing with respect to three rational properties: coherence, invertibility and union
consonance. Briefly, we characterize the families of loss functions that yield Bayes tests meeting each of
these requisites separately, whatever the prior distribution for the relevant parameter is. These results not
only shed some light on when each of these relationships may be considered to be sensible for a given
scientific problem, but they also serve as a guide for a Bayesian decision-maker aiming at performing
tests in line with the requirement he finds more important. In particular, this can be done through the
usage of the loss functions described in the paper.
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We also explore how far one can go by putting these properties together. We provide examples of
fairly intuitive loss functions that induce testing schemes satisfying both coherence and invertibility, no
matter what one’s prior opinion on the parameter is. On the other hand, we prove that no family of
reasonable loss functions generates Bayes tests that respect the logical properties as a whole with respect
to all priors, although any testing scheme meeting the desiderata corresponds to the optimal tests of
several Bayesian decision-makers.

Finally, we discuss the relationship between logically-consistent Bayesian hypothesis testing and
Bayes point estimations procedures when both the parameter space and the sample space are finite.
We conclude that the point estimator generating a testing scheme fulfilling the rational properties is
inevitably and unavoidably a Bayes estimator for certain loss functions. Furthermore, performing
logically-consistent procedures by means of a Bayes estimator is one’s best approach towards multiple
hypothesis testing only under very restrictive conditions in which the underlying loss functions depend
not only on the decision to be made and the parameter as usual, but also on the observed sample.
See [24–26] for some examples of such loss functions. That is, a more complex framework is needed
to combine Bayesian optimality with logical consistency. This fact and the impossibility result of
Theorem 5 corroborate the thesis that full rationality and statistical optimality rarely can be combined
in simultaneous tests. In practice, this suggests that when testing hypotheses at once, a practitioner may
abandon in part the desiderata so as to preserve statistical optimality. This is further discussed in [8].

Several issues remain open, among which we mention three. First, the extent to which the results
derived in this work can be generalized to infinite (continuous) parameter spaces is an important problem
from both theoretical and practical aspects. Furthermore, the consideration of different decision-theoretic
approaches to hypothesis testing, such as the “agnostic” tests with three-fold action spaces proposed
by [27], may bring new insight into which logical properties may be expected, not only in the current,
but also in alternative frameworks. In epistemological terms, one may be concerned with the question
of whether multiple hypothesis testing is the most adequate way to draw inferences about a parameter
of interest from data given the incompatibility between full logical consistency and the achievement of
statistical optimality. As a matter of fact, many Bayesians regard the whole posterior distribution as the
most complete inference one can make about the unknown parameter. These analyses may contribute to
better decision-making.

Acknowledgments

The authors are thankful for Carlos Alberto de Bragança Pereira, José Carlos Simon de Miranda,
José Galvão Leite, Julio Michael Stern, Marcelo Esteban Coniglio, Márcio Alves Diniz and Paulo Cilas
Marques Filho for fruitful discussions and important comments and suggestions, which improved the
manuscript. We are also grateful to the referees for all of the detailed comments that helped improve
the paper. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo
(2009/03385-5,2014/25302-2) Brazil and Conselho Nacional de Pesquisa e Desenvolvimento Científico
e Tecnológico (131982/2009-5) Brazil.



Entropy 2015, 17 6549

Author Contributions

The manuscript has come to fruition by the substantial contributions of all authors from conceiving
the idea of examining Bayes tests with respect to logical consistency to obtaining the main theorems and
providing several examples. All authors have also been involved in either writing the article or carefully
revising it. All authors have read and approved the submitted version of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

A. Proof of Theorem 1

That a testing scheme generated by a point estimation procedure δ satisfies the desiderata follows
from Theorem 4.3 from [8] and the fact that for all x P X and all countable partition pAnqn¥1 of Θ,
there is a unique i� P N�, such that δpxq P Ai� and, consequently,

°8
i�1 r1� Ipδpxq R Aiqs � 1. For

the converse, Theorem 4.3 from [8] implies that @x P X , D! θ0 � θ0pxq P Θ, such that ϕtθ0upxq � 0.
Thus, for A P σpΘq, θ0 P A ñ tθ0pxqu � A and, as coherence holds, ϕApxq � 0. On the other hand,
θ0 R A ñ tθ0pxqu � Ac. Coherence and invertibility yield ϕApxq � 1. Hence, for each A P σpΘq,
ϕApxq � 1 ô θpxq R A. We conclude the proof by defining δ : X Ñ Θ by δpxq � θ0pxq.

B. Proof of Theorem 2

First, we prove the necessary condition by the contrapositive. Thus, let us suppose there are A,B P

σpΘq with A � B and θ1 P A and θ2 P B
c, such that:

∆Apθ1q∆Bpθ2q ¡ ∆Apθ2q∆Bpθ1q ,

which implies that ∆Apθ1q ¡ 0 and ∆Bpθ2q ¡ 0.
Adding ∆Apθ2q∆Bpθ2q to both sides of the inequality above, straightforward manipulations yield:

0 ¤
∆Apθ2q

∆Apθ2q �∆Apθ1q
 

∆Bpθ2q

∆Bpθ2q �∆Bpθ1q
¤ 1.

Thus, there is α0 P p0, 1q, such that:

∆Apθ2q

∆Apθ2q �∆Apθ1q
  α0  

∆Bpθ2q

∆Bpθ2q �∆Bpθ1q
. (4)

Furthermore, there is x1 P X , such that Lx1pθ1q, Lx1pθ2q ¡ 0. Considering the prior distribution π�

for θ given by:

π�pθ1q �
α0Lx1pθ2q

α0Lx1pθ2q � p1� α0qLx1pθ1q
and π�pθ2q � 1� π�pθ1q ,
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the corresponding posterior distribution given x1 is π�
x1
pθ1q � α0 and π�

x1
pθ2q � 1 � α0. Let ϕ� be any

TS generated by pLAqAPσpΘq with respect to π�. Thus,

ϕ�
Apx

1q � 0, if α0 ¡
∆Apθ2q

∆Apθ2q �∆Apθ1q
and ϕ�

Bpx
1q � 0 , if α0 ¡

∆Bpθ2q

∆Bpθ2q �∆Bpθ1q
.

From Equation (4), we have ϕ�
Apx

1q � 0 and ϕ�
Bpx

1q � 1. Therefore, there is a prior distribution π�

for θ with respect to which any TS generated by pLAqAPσpΘq is not coherent.
We now prove the “if” part. We suppose that the family pLAqAPσpΘq satisfies the condition that for all

A,B P σpΘq with A � B, ∆Apθ1q∆Bpθ2q ¤ ∆Apθ2q∆Bpθ1q, @θ1 P A, @θ2 P B
c. Integrating (with

respect to θ1) over A with respect to any probability measure P , we obtain:

∆Bpθ2q

»
A

∆Apθ1qdP pθ1q ¤ ∆Apθ2q

»
A

∆Bpθ1qdP pθ1q, @θ2 P B
c.

Similarly, integration (with respect to θ2) over Bc with respect to the same measure P yields:»
Bc

∆Bpθ2qdP pθ2q

»
A

�∆Apθ1qdP pθ1q ¥

»
Bc

∆Apθ2qdP pθ2q

»
A

�∆Bpθ1qdP pθ1q. (5)

Now, let ϕ be a testing scheme generated by the family pLAqAPσpΘq. For A,B P σpΘq with A � B

and x P X ,

ϕApxq � 0 ñ

»
Θ

rLAp0, θq � LAp1, θqsdπxpθq ¤ 0 ,

where πxp.q denotes the posterior distribution of θ given X � x. Thus,»
A

�∆Apθqdπxpθq �

»
AcXB

∆Apθqdπxpθq �

»
Bc

∆Apθqdπxpθq ¤ 0.

Multiplying the last inequality by
³
Bc ∆Bpθqdπxpθq ¥ 0, we get:

»
Bc

∆Bpθqdπxpθq

»
A
�∆Apθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

»
AcXB

∆Apθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq ¤ 0.

From inequality Equation (5), it follows that:
»
A
�∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

»
AcXB

∆Apθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq ¤ 0.

As
³
Bc ∆Bpθqdπxpθq

³
Ac
XB

∆Apθqdπxpθq ¥ 0 and
³
Ac
XB

�∆Bpθqdπxpθq
³
Bc ∆Apθqdπxpθq ¤ 0, we have that:

»
A
�∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq �

»
AcXB

�∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

»
Bc

∆Apθqdπxpθq ¤ 0,

and, consequently,»
Bc

∆Apθqdπxpθq

"»
A

�∆Bpθqdπxpθq �

»
AcXB

�∆Bpθqdπxpθq �

»
Bc

∆Bpθqdπxpθq

*
¤ 0.

Finally, »
Θ

rLBp0, θq � LBp1, θqsdπxpθq ¤ 0.

If
³
Θ
rLBp0, θq � LBp1, θqsdπxpθq   0, then ϕBpxq � 0. If this integral is equal to zero, then both

zero and one are optimal solutions, and we can choose the decision zero as ϕBpxq in order to ensure
that ϕBpxq ¤ ϕApxq. Hence, with respect to each prior π, there is a TS generated by pLAqAPσpΘq that
is coherent.
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C. Proof of Theorem 3

The proof is analogous to that of Theorem 2. First, we prove the necessary condition by the
contrapositive. Suppose that there are A P σpΘq and θ1 P A and θ2 P A

c, such that:

∆Apθ1q∆Acpθ2q � ∆Acpθ1q∆Apθ2q .

Assume ∆Apθ1q∆Acpθ2q   ∆Acpθ1q∆Apθ2q (the other case is developed in the same way), which
implies that ∆Acpθ1q ¡ 0 and ∆Apθ2q ¡ 0. Adding ∆Acpθ2q∆Apθ2q to both sides of the inequality, we
easily obtain that:

0 ¤
∆Acpθ2q

∆Acpθ1q �∆Acpθ2q
 

∆Apθ2q

∆Apθ1q �∆Apθ2q
¤ 1.

Thus, there is α0 P p0, 1q, such that:

0 ¤
∆Acpθ2q

∆Acpθ1q �∆Acpθ2q
  α0  

∆Apθ2q

∆Apθ1q �∆Apθ2q
¤ 1. (6)

In addition, there is x1 P X , such that Lx1pθ1q, Lx1pθ2q ¡ 0. For the prior distribution π� for θ
given by:

π�pθ1q �
α0Lx1pθ2q

α0Lx1pθ2q � p1� α0qLx1pθ1q
and π�pθ2q � 1� π�pθ1q ,

the posterior distribution given x1 is π�x1pθ1q � α0 and π�x1pθ2q � 1�α0. Let ϕ� be any TS generated
by pLAqAPσpΘq with respect to π�. Thus,

ϕ�
Apx

1q � 0 , if α0 ¡
∆Apθ2q

∆Apθ1q �∆Apθ2q
and ϕ�

Acpx1q � 0 , if α0  
∆Acpθ2q

∆Acpθ1q �∆Acpθ2q
.

From Equation (6), we have ϕ�
Apx

1q � 1 and ϕ�
Acpx1q � 1. Therefore, there is a prior distribution π�

for θ with respect to which any TS generated by pLAqAPσpΘq does not meet invertibility.
Now, we prove the sufficiency. Suppose that for all A P σpΘq:

∆Apθ1q∆Acpθ2q � ∆Acpθ1q∆Apθ2q , @ θ1 P A, θ2 P A
c .

Integrating (with respect to θ2) over the set Ac with respect to any probability measure P defined on
σpΘq, we have:»

Ac

∆Apθ2q∆Acpθ1qdP pθ2q �

»
Ac

∆Apθ1q∆Acpθ2qdP pθ2q, for all θ1 P A.

Similarly, integrating (with respect to θ1) over A, we get:»
A

∆Acpθ1qdP pθ1q

»
Ac

∆Apθ2qdP pθ2q �

»
A

∆Apθ1qdP pθ1q

»
Ac

∆Acpθ2qdP pθ2q. (7)

Let ϕ be a TS generated by pLAqAPσpΘq. If ϕApxq � 0, then:»
Θ

rLAp0, θq � LAp1, θqsdπxpθq �

»
A

�∆Apθqdπxpθq �

»
Ac

∆Apθqdπxpθq ¤ 0.
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Multiplying both sides by
³
A

∆Acpθqdπxpθq ¥ 0, we get:»
A

∆Acpθqdπxpθq

»
A

�∆Apθqdπxpθq �

»
A

∆Acpθqdπxpθq

»
Ac

∆Apθqdπxpθq ¤ 0.

From Equation (7), it follows that:»
A

�∆Apθqdπxpθq

"»
A

∆Acpθqdπxpθq �

»
Ac

�∆Acpθqdπxpθq

*
¤ 0.

Thus, »
A

∆Acpθqdπxpθq �

»
Ac

�∆Acpθqdπxpθq ¥ 0,

since
³
A
�∆Apθqdπxpθq ¤ 0. In this way,»

Θ

rLAcp0, θq � LAcp1, θqsdπxpθq ¥ 0.

If
³
Θ
rLAcp0, θq � LAcp1, θqsdπxpθq ¡ 0, thenϕAcpxq � 1. If the integral is zero, then we can choose

ϕAcpxq � 1, so as to obtain ϕAcpxq � 1�ϕApxq. Similarly, we prove that if ϕApxq � 1, then there is a
Bayes test for Ac, ϕAc , generated by LAc , such that ϕAcpxq � 0. Consequently, there is a TS generated
by pLAqAPσpΘq that satisfies invertibility.

D. Proof of Theorem 4

Suppose that there are A,B P σpΘq, θ1 P AYB and θ2 P pAYBqc such that both:

∆AYBpθ1q∆Apθ2q ¡ ∆AYBpθ2q∆Apθ1q and ∆AYBpθ1q∆Bpθ2q ¡ ∆AYBpθ2q∆Bpθ1q

hold, from which it follows that ∆AYBpθ1q ¡ 0, ∆Apθ2q ¡ 0 and ∆Bpθ2q ¡ 0. Proceeding as in the
previous proofs, we obtain that:

0 ¤
∆AYBpθ2q

∆AYBpθ1q �∆AYBpθ2q
  min

"
∆Apθ2q

∆Apθ1q �∆Apθ2q
,

∆Bpθ2q

∆Bpθ1q �∆Bpθ2q

*
¤ 1.

Thus, there is α0 P p0, 1q such that:

0 ¤
∆AYBpθ2q

∆AYBpθ1q �∆AYBpθ2q
  α0   min

"
∆Apθ2q

∆Apθ1q �∆Apθ2q
,

∆Bpθ2q

∆Bpθ1q �∆Bpθ2q

*
¤ 1.

In addition, there is x1 P X such that Lx1pθ1q, Lx1pθ2q ¡ 0. For the prior distribution π� for θ given by:

π�pθ1q �
α0Lx1pθ2q

α0Lx1pθ2q � p1� α0qLx1pθ1q
and π�pθ2q � 1� π�pθ1q ,

the posterior distribution is π�x1pθ1q � α0 and π�x1pθ2q � 1 � α0. Let ϕ� be any TS generated by
pLAqAPσpΘq with respect to π�. Next, we consider three cases:
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(i) if θ1 P AXB, then:

ϕ�
Cpx

1q � 0 , if α0 ¡
∆Cpθ2q

∆Cpθ1q �∆Cpθ2q
,

for any C P tA,B,AYBu. Thus, we have ϕ�
Apx

1q � 1, ϕ�
Bpx

1q � 1 and ϕ�
AYBpx

1q � 0;

(ii) if θ R A, then:

ϕ�
Bpx

1q � 0 , if α0 ¡
∆Bpθ2q

∆Bpθ1q �∆Bpθ2q
and ϕ�

AYBpx
1q � 0 , if α0 ¡

∆AYBpθ2q

∆AYBpθ1q �∆AYBpθ2q
,

and: »
Θ

rLAp0, θq � LAp1, θqsdπx1pθq � ∆Apθ1qα0 � ∆Apθ2qp1� α0q ¡ 0.

Thus, ϕ�
Apx

1q � 1, ϕ�
Bpx

1q � 1 and ϕ�
AYBpx

1q � 0;

(iii) if θ R B, a development similar to that of Case (ii) yields the same results: ϕ�
Apx

1q � 1, ϕ�
Bpx

1q �

1 and ϕ�
AYBpx

1q � 0.

Therefore, in any case, there is a prior distribution π� for θ with respect to which no TS generated by
pLAqAPσpΘq meets finite union consonance, concluding the proof.

E. Proof of Theorem 5

The proof of Theorem 5 consists of verifying the inexistence of such a family of loss functions that
generates Bayes tests satisfying the desiderata with respect to all priors concentrated on three points in Θ

(of course, there will not be such a family satisfying these requisites with respect to all priors over σpΘq).
Let tA1, A2, A3u be a measurable partition of Θ and θ1, θ2, θ3 P Θ, such that θi P Ai, i � 1, 2, 3.

First, notice that for all x P X , such that Lxpθiq ¡ 0 for i � 1, 2, 3, there is a one-to-one correspondence
between prior and posterior distributions concentrated on tθ1, θ2, θ3u. Indeed, for all pα1,α2,α3q P A �
tpa, b, cq P R3

� : a � b � c � 1u and x P X , such that Lxpθiq ¡ 0 for i � 1, 2, 3, there is a unique prior
distribution for θ, π, such that the corresponding posterior distribution given x, πx, satisfies πxpθiq � αi,
i � 1, 2, 3, namely:

πpθiq �

αi

Lxpθiq

α1

Lxpθ1q
� α2

Lxpθ2q
� α3

Lxpθ3q

, i = 1, 2, 3.

Henceforth, we will refer to the above posterior by pα1,α2,α3q for short. Let pLAqAPσpΘq be any
family of strict hypothesis testing loss functions. For each pα1,α2,α3q P A, the difference between the
posterior risk of accepting Hpiq

0 : θ P Ai and that of rejecting it is given by:»
Θ

rLAi
p0, θq � LAi

p1, θqsdπxpθq � ∆Ai
pθ1qα1 �∆Ai

pθ2qα2 �∆Ai
pθ3qα3,

where ∆Ai
pθjq � LAi

p0, θjq � LAi
p1, θjq (note that ∆Ai

pθjq ¡ 0, if i � j, while ∆Ai
pθiq   0). In order

to evaluate the tests for the hypotheses Hp1q
0 , Hp2q

0 and Hp3q
0 with respect to all posterior distributions

concentrated on tθ1, θ2, θ3u, we consider the transformation T : AÑ R3 defined by:

T pα1,α2,α3q �

�»
Θ

∆A1pθqdπxpθq,

»
Θ

∆A2pθqdπxpθq,

»
Θ

∆A3pθqdπxpθq



,
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where
³
Θ

∆Ai
pθqdπxpθq � ∆Ai

pθ1qα1 � ∆Ai
pθ2qα2 � ∆Ai

pθ3qα3. Thus, T assigns to each posterior
pα1,α2,α3q P A the differences between the risks of accepting H

piq
0 and of rejecting it, i � 1, 2, 3.

It is easy to verify that B � T pAq � tT pα1,α2,α3q : pα1,α2,α3q P Au is a convex set. Indeed,
B is a triangle (see Figure 2) with vertices P1 � T p1, 0, 0q � p∆A1pθ1q,∆A2pθ1q,∆A3pθ1qq, P2 �

T p0, 1, 0q � p∆A1pθ2q,∆A2pθ2q,∆A3pθ2qq and P3 � T p0, 0, 1q � p∆A1pθ3q,∆A2pθ3q,∆A3pθ3qq (these
points are not aligned owing to the restrictions on the quantities ∆Ai

pθjq, [14]).

Figure 2. Set B.

Now, we turn to the main argument of the proof. By Theorem 4.3 from [8], it is necessary for a
Bayesian testing scheme to satisfy the logical requirements with respect to all priors over σpΘq that
exactly one of the A1

is is accepted for each vector of probabilities pα1,α2,α3q. Geometrically, such
a necessary condition is equivalent to the triangle B to be contained in the union of the octants that
comprise the triplets with only one negative coordinate, namely R� � R� � R�, R� � R� � R� and
R� � R� � R�. However, this is impossible. To verify this fact, we consider three cases (Figure 3
illustrates the projection of B over the plane w � tpu, v, 0q : u, v P Ru in each of these cases):

(i) if ∆A1pθ1q∆A2pθ2q ¡ ∆A1pθ2q∆A2pθ1q, then the projection of the line segment joining P1 and P2

over the plane w intersects the (third) quadrant R� � R� � t0u (see the first graphic in Figure 3).
Thus, there is γ P p0, 1q, such that γ∆Ai

pθ1q�p1�γq∆Ai
pθ2q   0, i � 1, 2. As γP1�p1�γqP2 P

B, there is a posterior pα1,α2,α3q concentrated on tθ1, θ2, θ3u with respect to which any TS
generated by pLAqAPσpΘq does not reject bothA1 andA2 and, therefore, does not respect coherence,
invertibility and finite union consonance;

(ii) if ∆A1pθ1q∆A2pθ2q � ∆A1pθ2q∆A2pθ1q, then the projection of the line segment joining P1 and P2

over w intersects the origin p0, 0, 0q (see the second graphic in Figure 3). Thus, there is t0 ¡ 0,
such that the point P0 � p0, 0, t0q P B. Considering now the line segment joining P0 and P3, it is
easily seen that for any γ P p �∆A3

pθ3q

t0�∆A3
pθ3q

, 1q, γ0 � p1 � γq∆A1pθ3q ¡ 0,γ0 � p1 � γq∆A2pθ3q ¡ 0

and γt0 � p1 � γq∆A3pθ3q ¡ 0. As γP0 � p1 � γqP3 P B, there is a posterior distribution with
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respect to which any TS generated by pLAqAPσpΘq rejects A1, A2 and A3 and, therefore, does not
satisfy the logical consistency properties all together;

(iii) if ∆A1pθ1q∆A2pθ2q   ∆A1pθ2q∆A2pθ1q, then the projection of the above-mentioned segment over
w intersects the (first) quadrant R��R��t0u (third graphic in Figure 3). Thus, there is γ P p0, 1q
such that γ∆Ai

pθ1q � p1� γq∆Ai
pθ2q ¡ 0, i � 1, 2. As γP1 � p1� γqP2 P B, there is a posterior

pα1,α2,α3q concentrated on tθ1, θ2, θ3u with respect to which any TS generated by pLAqAPσpΘq
rejects A1, A2 and A3 and, consequently, does not meet the desiderata.

From (i)–(iii), the result follows.

Figure 3. Projection of B in u� v.

F. Proof of Theorem 6

Let ϕ be a TS satisfying coherence, invertibility and countable union consonance. From Theorem 1,
there is a unique point estimator δ : X Ñ Θ, such that for all A P σpΘq and x P X , ϕApxq � Ipδpxq R
Aq. For each x P X , define µx : σpΘq Ñ R� by:

µxpAq � 1�ϕApxq � Ipδpxq P Aq ,
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that is, µx is the probability measure degenerate at the point δpxq [14]. Furthermore, let µ0 be any
probability measure defined on PpX q. Defining µ : PpΘ� X q Ñ R� by:

µpBq �
¸

pθ,xqPB

µ0ptxuqµxptθuq , B P PpΘ� χq ,

it is immediate that µ is a probability measure and that µx is the conditional distribution of θ given
X � x, for each x P X . Next, let pLAqAPσpΘq be any family of strict hypothesis testing loss functions.
Letϕ� be a testing scheme generated by pLAqAPσpΘq with respect to the µ-marginal distribution of θ. Let
us verify that ϕ� coincides with ϕ. Indeed, for x P X and A P σpΘq, we have:

ϕApxq � 0 ñ µxpAq � 1 ñ

ñ
¸
θPΘ

rLAp0, θq � LAp1, θqsµxpθq �
¸
θPA

rLAp0, θq � LAp1, θqsµxpθq   0 ñ ϕ�
Apxq � 0.

Similarly,
ϕApxq � 1 ñ µxpAq � 0 ñ

ñ
¸
θPΘ

rLAp0, θq � LAp1, θqsµxpθq �
¸
θPAc

rLAp0, θq � LAp1, θqsµxpθq ¡ 0 ñ ϕ�
Apxq � 1 ,

concluding the proof. It should be emphasized that there are many other probability measures over
PpΘ�X q and families of strict hypothesis testing loss functions that yield the result of Theorem 6. For
instance, considering for each x P X , a conditional probability measure µ1

x, such that µ1

xpδpxqq ¡ 1{2

and µ1

xpθq ¡ 0, for all θ P Θ, together with the family of 0–1 loss functions, one will obtain a Bayesian
TS that coincides with ϕ, as well (see [14] for the details).

G. Proof of Theorem 7

To prove Part (a), we define a family of loss functions that generates Bayesian testing schemes
satisfying both coherence and invertibility with respect to all prior distributions for θ, which implies,
by Theorem 3.1 from [28], that, for each sample point, at most one hypothesis of each partition of Θ is
not rejected. Next, we prove that, for each x P X , there is a singleton that is not rejected with respect to
the prior π. Combining these facts, we prove that, for each sample point, exactly one hypothesis of each
partition of Θ is accepted, which is equivalent (Theorem 4.3 from [8]) to asserting that the TS generated
by that family of losses with respect to π meets the desiderata.

Thus, for A P σpΘq, let LA : t0, 1u � pΘ � X q Ñ R� be given, for θ P Ac and x P X , by
LAp1, pθ, xqq � 0 and:

LAp0, pθ, xqq � min

"
min

!
Lpd, θq;

1

Lpd, θq

)
IApδpxqq �max

!
Lpd, θq;

1

Lpd, θq

)
IAcpδpxqq : d P A

*
,

and, for θ P A and x P X , by LAp0, pθ, xqq � 0 and:

LAp1, pθ, xqq � min

"
1

C
min

!
Lpd, θq;

1

Lpd, θq

)
IAcpδpxqq � C max

!
Lpd, θq;

1

Lpd, θq

)
IApδpxqq : d P Ac

*
,

where C ¡ 1 is any constant greater than max
!
ErLpδpxq,θq|xs
πxpδpxqq

: x P X
)

.
These hypothesis testing loss functions do not penalize correct decisions. They also reflect the

decision-maker’s tendency to not reject the hypotheses that comprise the best estimate for θ, δpxq.
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For instance, if θ P A and one decides to reject A on the basis of the sample x, the loss of falsely
rejecting A is: #

C min
 

maxtLpd, θq; 1
Lpd,θq

u : d P Ac
(
, if δpxq P A

1
C

min
 

mintLpd, θq; 1
Lpd,θq

u : d P Ac
(
, otherwise.

If C is large enough, of course the decision-maker will be more reluctant to reject A in case of
δpxq P A than to reject it if not.

This family of loss functions satisfies the condition in Equation (2) of Theorem 2. In fact, for all
A,B P σpΘq, with A � B, for all θ1 P A, θ2 P B

c and x P X , we have:
(i) if δpxq P A, then:

∆Apθ1q

∆Bpθ1q
�
C min

!
max

 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Ac

)

C min
!

max
 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Bc

) ¤ 1 ¤
min

!
min

 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P A

)

min
!

min
 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P B

) �
∆Apθ2q

∆Bpθ2q
.

(ii) if δpxq P B X Ac (recall C ¥ 1), it follows that:

∆Apθ1q

∆Bpθ1q
�

1
C

min
!

min
 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Ac

)

C min
!

max
 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Bc

) ¤ 1 ¤
min

!
max

 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P A

)

min
!

min
 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P B

) �
∆Apθ2q

∆Bpθ2q
.

(iii) if δpxq P Bc,

∆Apθ1q

∆Bpθ1q
�

1
C

min
!

min
 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Ac

)

1
C

min
!

min
 
Lpd, θ1q;

1
Lpd,θ1q

(
: d P Bc

) ¤ 1 ¤
min

!
max

 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P A

)

min
!

max
 
Lpd, θ2q;

1
Lpd,θ2q

(
: d P B

) �
∆Apθ2q

∆Bpθ2q
.

Therefore, pLAqAPσpΘq generates coherent testing schemes with respect to all prior distribution for θ,
if C ¥ 1. Furthermore, for all A P σpΘq, θ1 P A and θ2 P A

c, we have, if δpxq P A, that:

∆Apθ2q

∆Ac pθ2q
�

mintmintLpd, θ2q,
1

Lpd,θ2q
u : d P Au

1
C

mintmintLpd, θ2q,
1

Lpd,θ2q
u : d P Au

�
1
1
C

� C �
C mintmaxtLpd, θ1q,

1
Lpd,θ1q

u : d P Acu

mintmaxtLpd, θ1q,
1

Lpd,θ1q
u : d P Acu

�
∆Apθ1q

∆Ac pθ1q
.

Analogously, we prove that the condition in Equation (3) of Theorem 3 is fulfilled if δpxq R A. Thus,
there are testing schemes generated by pLAqAPσpΘq that respect invertibility with respect to all priors.
Finally, let us prove that a TS ϕ generated by pLAqAPσpΘq is such that ϕtδpxqupxq � 0, for all x P X .
Indeed, ¸

θPΘ

Ltδpxqup0, pθ, xqqπxpθq �
¸

θ�δpxq

Ltδpxqup0, pθ, xqqπxpθq

�
¸

θ�δpxq

min
!
Lpδpxq, θq;

1

Lpδpxq, θq

)
πxpθq ¤

¸
θ�δpxq

Lpδpxq, θqπxpθq (8)

and: ¸
θPΘ

Ltδpxqup1, pθ, xqqπxpθq � Ltδpxqup1, pδpxq, xqqπxpδpxqq

� C min

"
max

!
Lpd, δpxqq;

1

Lpd, δpxqq

)
: d � δpxq

*
πxpδpxqq

¡ min

"
max

!
Lpd, δpxqq;

1

Lpd, δpxqq

)
: d � δpxq

* ¸
θ�δpxq

Lpδpxq, θqπxpθq, (9)
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since C ¡ max
!
ErLpδpxq,θq|xs
πxpδpxqq

: x P X
)
¥

°
θ�δpx0q

Lpδpx0q,θqπx0 pθq

πx0 pδpx0qq
, for any x0 P X .

From Equations (8) and (9), it follows that:¸
θPΘ

Ltδpxqup1, pθ, xqqπxpθq ¡ min

"
max

!
Lpd, δpxqq;

1

Lpd, δpxqq

)
: d � δpxq

*¸
θPΘ

Ltδpxqup0, pθ, xqqπxpθq.

Therefore,
°
θPΘ Ltδpxqup1, pθ, xqqπxpθq ¡

°
θPΘ Ltδpxqup0, pθ, xqqπxpθq and, consequently,

ϕtδpxqupxq � 0, concluding the proof of Part (a).

For Part (b), suppose ϕ is generated by pLAqAPσpΘq with respect to π. From Theorem 4.3 from [8]
and Theorem 1, it follows that for all x P X , ϕtδpxqupxq � 0 and ϕtdupxq � 1, for all d � δpxq. Thus,

¸
θPΘ

rLtδpxqup0, θq � Ltδpxqup1, θqsπxpθq ¤ 0 ¤
¸
θPΘ

rLtdup0, θq � Ltdup1, θqsπxpθq ,

for d � δpxq, where πx is the posterior distribution for θ given x. Defining L : Θ�Θ Ñ R� by:

Lpd, θq � rLtdup0, θq � Ltdup1, θqs �mintLtd1up0, θq � Ltd1up1, θq : d
1

P Θu

� rLtdup0, θq � Ltdup1, θqs � rLtθup0, θq � Ltθup1, θqs ,

it follows that: ¸
θPΘ

Lpδpxq, θqπxpθq ¤
¸
θPΘ

Lpd, θqπxpθq ,

for d � δpxq, for each x P X . Therefore, δ is a Bayes estimator for θ generated by L with respect to π.
Notice that L (essentially) assigns to the estimate d for the parameter the difference between the loss of
not rejecting the hypothesis tdu and that of rejecting it when the state of nature is θ. It seems reasonable
that the greater the “distance” between d and θ, the greater this difference (and, consequently, Lpd, θq)
should be.
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