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We describe a possible allocation that the experimenter judges to be free of covariate interference as
haphazard. Randomization may be a convenient way of producing a haphazard design. We argue

that it is the haphazard nature, and not the randomization, that is important. It seems therefore
that a reasonable approximation to an optimal design would be to select a haphazard design.

...a detailed Bayesian consideration of possible covariates would almost certainly not be robust
in that the analysis might be sensitive to small changes in judgments about covariates.

Lindley (1982, p.438-439) - The Role of Randomization in Inference.



Introduction

I Intentional sampling methods are non-randomized procedures that
select or allocate groups of individuals with the purpose of meeting
specific prescribed criteria.

I Such methods can overcome some of limitations of standard
randomized designs for statistical experiments, when cost, ethical or
inherent rarity constraints only admit the use of very small samples.

I However, intentional or purposive sampling methods pose several
interesting questions concerning statistical inference, as extensively
discussed in Basu and Ghosh (1988), see also Schreuder et al. (1993,
Sec.6.2), Brewer and Särndal (1983) and following discussions in
Madow et al. (1983).

I This paper focus on sequential allocation methods, and follows
previous research in the field of intentional sampling presented in
Fossaluza et al. (2009) and Lauretto et al. (2012).



Compositional Models and Simplex Geometry

I The open (m-1)-Simplex is the set
Sm−1 =

{
x ∈ Rm | x > 0 ∧ 1′x = 1

}
, where 1 is the vector of ones of

appropriate dimension.

I The closure-to-unity transformation, clu : Rm
+ → Sm−1:

clu(x) = (1/1′x)x ,

I The additive logratio transformation, alr : Sm−1 → Rm−1:

alr(x) = log ((1/xm)[x1, . . . xm−1]) , alr−1(z) = clu (exp([z1, . . . zm−1,0])) .

I We introduce the operators:

I Power (scalar multiplication): α ? x = clu([xα1 , . . . x
α
m])

Interpreted as the α-times repeated effect of proportional decay
rates.

I Perturbation (vector summation): x ⊕ y = clu([x1y1, . . . xmym])
Interpreted as the effect of proportional decay rates in y over the
fractional composition in x .

I Difference: x 	 y = clu([x1/y1, . . . xm/ym])



I We want a distance function on the Simplex, DS(x , y), that exhibits the
invariance properties that are most adequate for the purpose of
compositional analysis, namely:

I Perturbation invariance: For any perturbation, z,
DS(x ⊕ z, y ⊕ z) = DS(x , y).

I Permutation invariance: For any permutation matrix, P,
DS(Px ,Py) = DS(x , y).

I Power scaling: For any α > 0, (1/α)DS(α ? x , α ? y) = DS(x , y).

I The following distance function exhibits all these desirable invariance
properties, besides the standard properties for distance functions –
positivity, symmetry and triangular inequality:

D2
S(x , y) = [alr(x)− alr(y)]′ H−1 [alr(x)− alr(y)] ,

Hi,j = 2δi,j + 1(1− δi,j ) .



Haphazard Intentional Allocation for Clinical Trials

I Case study: allocation of patients with Obsessive-compulsive disorder
(OCD) between two treatment arms, see Fossaluza et al. (2009).
Dataset: T = 277 patients

I Patients are enrolled sequentially, according to the order in which they
start the treatment at the clinic or hospital.

I The allocation problem consists in assigning each new patient to one,
and only one, of two alternative treatments (arms).

I Requisite: profiles in the alternative arms remain similar with respect to
some relevant patients’ factors:

a) Current patient’s age (a): under 30 years; between 30 and 45
years; over 45 years.

b) Treatment history (h): T0 = no previous appropriate treatment;
T 1 = one previous appropriate treatment without response; T 2 =
two or more appropriate treatments without response.

c) OCD symptom severity (v): nine classes based on scores for each
of the two symptom types (obsession and compulsion).

d) Gender (g).



I We denote by na
i , nh

i , nv
i and ng

i the quantities of patients already
allocated to arm i belonging to each category of factors age, history,
severity and gender.

I For example, na
1 = [na

1,1,n
a
1,2,n

a
1,3] denotes the quantity vector of

patients in arm 1 belonging to the three age classes.

I Besides the previous factors, we also consider the sample size (z) in
each arm.
Purpose: to yield allocations with approximately the same number of
patients in each arm.
We denote by qi as the total number of patients allocated to arm i , and
by nz

i = [qi , (q1 + q2 − qi )] the vector of total allocation to arm i and its
complement.

I The complete profile of arm i , i = 1,2 is stored in the concatenated
vector ni = [na

i ,n
h
i ,n

v
i ,n

g
i ,n

z
i ].



I In order to avoid empty categories in the allocation process, we may
add to vector n a ground-state or weak-prior, see Pereira and Stern
(2008), in the form of vector w = [wa,wh,wv ,wg ,wz ].
For any character ξ in the set {a,h, v ,g, z}, where factor wξ has κ(ξ)
categories, we take wξ = [1/κ(ξ), . . .1/κ(ξ)].

I From vectors n and w we obtain the regularized proportions vector:
pi = [pa

i ,p
h
i ,p

v
i ,p

g
i ,p

z
i ],

where pξi = clu(nξi + wξ
i ), ξ ∈ {a,h, v ,g, z}.

I We define the heterogeneity measure between arms 1 and 2 by the
function:

∆(p1,p2) = [ Ds(pa
1,p

a
2) + Ds(ph

1 ,p
h
2) + Ds(pv

1 ,p
v
2 ) +

Ds(pg
1 ,p

g
2 ) + Ds(pz

1 ,p
z
2) ]/5.

I Let us consider a new patient that enrolls the study and must be
allocated to one of arms 1 or 2.

I We denote by x = [xa, xh, xv , xg , xz ] the binary vector indicating to
which categories the new patient belongs in each factor.



Allocation Algorithm

1. For each factor ξ ∈ {a,h, v ,g, z} and arm i = 1,2, generate a random
vector r ξi , with uniform distribution in the (κ(ξ)-1)-simplex.

2. For j = 1,2 consider the allocation of the new patient x in arm j , that is,
− For i = 1,2, make mi = ni + δ(i , j)x and perform the following
steps:

a) For i = 1,2 and ξ ∈ {a,h, v ,g, z}, compute
I The regularized proportions: pξ

i = clu(mξ
i + wξ

i ) and
I The ε-perturbed proportions: bξ

i = clu(pξ
i + εrξi ).

b) For i = 1,2, set bi = [ba
i ,b

h
i ,b

v
i ,b

g
i ,b

z
i ] .

c) Compute the distance d(j) = ∆(b1,b2).

3. Choose the allocation j that minimizes d(j), assign the new patient to
the corresponding arm, and update vector n accordingly.

I Perturbation parameter ε: introduces a random component in the
allocation method.
For ε = 0: deterministic intentional allocation scheme.



Numerical Experiments

I We analyse the performance of our haphazard intentional allocation
procedure, for ε ∈ {0,0.1,0.5,1.0,2.0}.

I We generated P = 200 random permutations of the original data –
each one representing a possible sequence of patients arriving to the
hospital or clinic.
For each permutation, we ran the pure random method and the
haphazard intentional allocation method H = 200 times.

I Performance criteria:

I Optimality: based on the distance ∆; concerns the difference
among the relative frequencies of patients in the several
categories for both arms;
Benchmark: deterministic intentional allocation scheme (ε = 0).

I Decoupling: based on the Yule’s Q coefficient of association (Yule,
1912); concerns the absence of a tendency to allocate each pair
patients to the same arm.
Benchmark: pure random allocation method.



Figure 1. 5%, 25%, 50%, 75%, 95% empirical percentiles of ∆ computed from the H
haphazard allocations.

I Bar height: median over the P random permutations;
I Vertical line in each bar: corresponding (5%, 95%) percentiles.
I Continuous and dashed horizontal lines represent, respectively, the median of

distance ∆ for the deterministic intentional allocation method, ε = 0, and the
(5%, 95%) percentiles over P random permutations.



Figure 2. 5%, 25%, 75%, 95% empirical percentiles of Yule’s Q coefficient.

I Quantiles for Q span the T (T − 1)/2 pairs of patients, where the Q for each
pair is computed over the H haphazard allocations.

I Bar height: median over the P random permutations;
I Vertical line in each bar: corresponding (5%, 95%) percentiles.



Final Remark and References

I Under an appropriate calibration of the perturbation parameter ε, the
haphazard intentional allocation method proposed in this work has the
remarkable property of being able to conciliate:

I the performance on optimality achieved by the deterministic
intentional allocation; and

I the performance on decoupling achieved by the pure random
allocation method.
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