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Abstract
Many authors have argued that, when performing simultaneous statistical test procedures, one should seek for solutions that
lead to decisions that are consistent and, consequently, easier to communicate to practitioners of statistical methods. In this
way, the set of hypotheses that are rejected and the set of hypotheses that are not rejected by a testing procedure should be
consistent from a logic standpoint. For instance, if hypothesis A implies hypothesis B, a procedure that rejects B should also
reject A, a property not always met by multiple test procedures. We contribute to this discussion by exploring how far one
can go in constructing coherent procedures while still preserving statistical optimality. This is done by studying four types of
logical consistency relations. We show that although the only procedures that satisfy more than (any) two of these properties
are simple tests based on point estimation, it is possible to construct various interesting methods that fulfil one or two of them
while preserving different statistical optimality criteria. This is illustrated with several Bayesian and frequentist examples.
We also characterize some of these properties under a decision-theoretic framework.
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1 Introduction

In many scientific problems, one is interested in testing several hypotheses simultaneously. Such
a situation is called a multiple (or simultaneous) hypotheses testing problem in statistics literature
[45]. This is typical, e.g. in clinical trials where one is interested in comparing the effectiveness of
drugs and their side effects, or in genetic experiments involving microarrays. See more examples
in [13].

Many times, decisions resulting from multiple hypotheses tests may lead to epistemic confusions
because of inconsistencies between the hypotheses that are rejected and those that are not rejected
on the basis of such tests. We refer to these shortcomings as logical inconsistencies because the
origin of the confusion is the lack of logical coherence between hypotheses rejected and hypotheses
not rejected: if the results of the tests are considered to be degenerate truth values (0 or 1), it may
be seen as a logical issue. For instance, this is shown by [15] in a regression setting. Considering
the linear model E[Y |x]=β0 +β1x+β2x2, they show that the Bonferroni–Holm testing procedure
can reject β2 =0, but not reject β1 =β2 =0. As β1 =β2 =0 implies β2 =0 from a logic standpoint,
these conclusions may be confusing for a practitioner. Indeed, on the grounds that the test for β2 =0
rejects it and that β1 =β2 =0 implies β2 =0, a decision-maker can decide to reject β1 =β2 =0. On the
other hand, he can analogously decide not to reject β2 =0 from the fact that the test for β1 =β2 =0
does not reject it! The fact that while β2 =0 is rejected by Bonferroni–Holm testing procedure
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β1 =β2 =0 is not—even though from a logic perspective β1 =β2 =0 implies β2 =0—leads to an
epistemic confusion that makes it hard to report the results obtained by the testing procedure, and
which is also many times embarrassing [38, 52, 54]. As another example, [42] describes the same
incoherence in the case E.E.O.C. Federal Reserve Bank of Richmond [40] ‘In this lively exchange
the plaintiff’s statistical experts tries to explain to a judge why one should use a one-sided test (with
P value 0.037 in this example) rather than a two-sided test (with P value 0.074). The significance
of the choice of the hypothesis was quite apparent to the judge.’ The problem in this example is
that while the two-sided hypothesis (μ=0) is not rejected at the 5% level, the one-sided (μ≤0)
is. However, μ=0 implies μ≤0. See also [35] for an interesting example where, in an Analysis
of variance (ANOVA) setting, likelihood ratio tests for hypotheses μ1 =μ2 and μ1 =μ2 =0 lead to
rejection of the former, but not rejection of the latter.

Some authors therefore argue that some times one should waive on maximizing standard efficiency
criteria (such as power of the tests) to produce coherent results that are easier to communicate to
non-statisticians: ‘One could ... argue that ‘power is not everything.’ In particular for multiple test
procedures one can formulate additional requirements, such as, for example, that the decision pat-
terns should be logical, conceivable to other persons, and, as far as possible, simple to communicate
to non-statisticians.’ [15].

How far can one go in constructing coherent procedures while still preserving statistical optimal-
ity? In this work, we try to answer this question by providing a framework for evaluating logical
coherence in simultaneous test procedures.

1.1 Background

Several methods aim at creating optimal statistical tests for simultaneous procedures. From a
Bayesian point of view, most approaches consist in minimizing (posterior) expected loss func-
tions for the hypotheses of interest (e.g. [7, 13, 53]). From a frequentist perspective, various criteria
have been introduced. Among them, popular approaches are controlling the error rate per family
(PFE), the family wise error rate (FWER) and the false discovery rate (FDR) [2, 10, 45]. The reader
is referred to [13], [45] and [9] for a review on simultaneous tests procedures.

Of particular interest are the so-called closure methods [31, 47, 48]. Assume one is interested
in testing a given set of hypotheses A. For each hypothesis, assign an α-level test, α∈ (0,1). The
closure method for testing each of these hypotheses consists in rejecting hypothesis H ∈A if, and
only if,

1. H is rejected according to the α-level test.
2. All hypotheses in A that imply it (i.e. all H ′ ⊆H , where H ′ ∈A) are rejected according to their

respective α-level tests.

Besides controlling the FWER when A is closed under intersection [47], this method has the
advantage of satisfying what is called the coherence property: if hypothesis H 1

0 implies hypothesis
H 2

0 (i.e. H 1
0 ⊆H 2

0 ) and the procedure rejects H 2
0 , the closure method also rejects H 1

0 [12]. Although
coherence is desirable, the examples we provided show that not all simultaneous procedures satisfy it.

Coherence is not the only relationship one might expect from conclusions of simultaneous
hypotheses tests (to avoid confusions, from here on we call this property monotonicity instead,
and reserve the use of the term ‘coherent’ for its meaning in Standard Logic, i.e. the overall logical
consistency among the truth values of hypotheses that are rejected and those that are not rejected).
Recently, much emphasis has been given to a different property named consonance, also introduced
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by [12]. Informally, such a property states that when a testing procedure rejects the intersection of
several hypotheses, is should also reject at least one of them marginally [39, 47, 48]. Many closure
methods that respect this property have been developed [38, 54]. Finally, [25] defined a different
logical property which he named compatibility and will be revisited later in the article. Several other
consistency relationships can also be defined.

1.2 Contribution

The main goals of this work are:

1. to formalize and characterize four consistency properties for multiple test procedures;
2. to provide several procedures that satisfy them; and
3. to examine how restrictive these properties are when put together.

In Section 2, we introduce the concept of a testing scheme, which from now on we abbreviate to
TS, a mathematical device that associates one test function to each hypothesis of interest. In Section
3, we formalize four consistency relations one could desire from TSs. They are monotonicity, union
consonance, intersection consonance and invertibility. Next, we study some of their properties and
consequences, and whether some common statistical procedures satisfy them. Finally, in Section 4,
we study how restrictive these four requirements are when put together. In particular, we compare
them with Lehmann’s compatible schemes. Conclusions are presented in Section 5. We omit trivial
demonstrations in the article.

2 Testing schemes

We start by defining a testing scheme (TS), a mathematical object that formalizes the notion that to
each hypothesis of interest one assigns a hypothesis test (a test function). This raises the question of
which are the hypotheses of interest for a given problem. This is problem dependent. However, as
stated by [13], ‘In some types of exploratory research it may be impossible to specify in advance the
family of all potential inferences that may be of interest.’ Hence, in this work, we assume one has to
assign a hypothesis test to each element of a given σ -field of the parameter space. This allows one
to assign a test to each of the possible hypotheses that exist (by taking the σ -field to be the power
set of the parameter space �), and also accommodates Bayesian procedures based on posterior
probabilities, in which it is only possible to assign probabilities to some σ -fields of �. Also, in the
case where θ = (θ0,θ1), θ0 ∈�0 and θ1 ∈�1, where θ1 are nuisance parameters [5], one can consider
a σ -field of the form σ (�)=σ (�0)×�1 ={A×�1 :A∈σ (�0)}. Hence, one can assign tests only to
parameters of interest. This requirement is important for most results derived here. Recall that a test
function is a function from the sample space X to {0,1}, where 1 represents the decision of rejecting
the null hypothesis and 0 represents the decision of not rejecting it. We warn the reader that this
notation is standard in statistics (the most celebrated textbooks in mathematical statistics such as [6]
and [43] adopt it), although it is opposite to the usual notation of the truth value of a sentence used
by the logic community.

Remark While some argue the decision 0 should be interpreted as the definitive action ‘accept
the hypothesis’, others believe it is more appropriate to understand it as ‘not reject the hypothesis’,
suggesting a more cautious posture over decision-making (see e.g. discussions in [20, 22, 32]). Thus,
the coherence properties we define can be more or less appealing depending on which of the above
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positions is adopted by a practitioner. The reader should keep these interpretations in mind when
judging how reasonable each of these properties is. We return to this point later in the article.

DEFINITION 2.1 (Testing scheme; TS)
Let σ (�), the set of hypotheses to be tested, be a σ -field of the parameter space �. Moreover,
let � ={φ :X →{0,1} : φ is σ (X )-measurable} be the set of all test functions. A TS is a function
L :σ (�)→� that, for each hypothesis A∈σ (�), associates the test L(A)∈� for testing A.

Hence, for hypothesis A∈σ (�) and data x∈X , L(A)(x)=0 represents the decision of not rejecting
A, and L(A)(x)=1 of rejecting it. Examples 2.2 and 2.3 illustrate this concept by introducing testing
schemes induced by two traditional statistical tests. We denote the likelihood function at θ ∈�

generated by the sample point x∈X by Lx(θ ), which we assume to be always defined.

EXAMPLE 2.2 (Likelihood ratio tests of size α)
Let �=Rd and σ (�)=P(�) be the power set of �. For each hypothesis A∈σ (�), let L(A) :X →
{0,1} be defined by

L(A)(x)=I
(

supθ∈ALx(θ )

supθ∈�Lx(θ )
≤cA

)
,

where I(B) is the indicator function that B holds and cA ∈[0,1] is chosen so that each test has size at
most α∈ (0,1) previously fixed. This is the TS that associates a likelihood ratio test of size at most
α to each hypothesis A∈P(�).

EXAMPLE 2.3 (Tests based on posterior probabilities)
Assume the same set-up as Example 2.2, but now with σ (�) being the Borelians of Rd . Assume
that a prior probability P in σ (�) is fixed. For each A∈σ (�), let L(A) :X →{0,1} be defined by

L(A)(x)=I
(
P(A|x)<

1

2

)
,

where P(.|x) is the posterior distribution of θ , given x. This is the TS that associates with each
hypothesis A, the test that rejects it when its posterior probability is smaller than 1/2.

From a Bayesian decision-theoretic perspective, a hypothesis test is derived, for each sample point,
by minimizing the posterior expectation of a loss function with respect to the posterior distribution of
the parameters after observing the data [6]. Recall that a loss function for a test is a function L : {0,1}×
�→R that assigns to each θ ∈� the loss L(d,θ ) for making the decision d ∈{0,1} of rejecting or not
the null hypothesis. Moreover, the Bayes test is given, for each x∈X , by argmind∈{0,1}E[L(d,θ )|X =
x]. Hence, in the situation of multiple tests and for a fixed probability distribution for θ , one can
derive for each A∈σ (�) a Bayes test for the null hypotheses A considering a specified loss function
LA : {0,1}×�→R. This procedure is formalized by the following definition:

DEFINITION 2.4 (TS generated by a family of loss functions)
Let (X ×�,σ (X ×�),P) be a Bayesian statistical model. Let (LA)A∈σ (�) be a family of loss functions,
where LA : {0,1}×�→R is the loss function to be used to test A∈σ (�). A TS generated by the family
of loss functions (LA)A∈σ (�) is any TS L defined over the elements of σ (�) such that, ∀A∈σ (�),
L(A) is a Bayes test for hypothesis A against P.

Example 2.5 illustrates this concept.
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EXAMPLE 2.5 (Tests based on posterior probabilities)
Assume the same scenario as Example 2.3 and that (LA)A∈σ (�) is a family of loss functions such that
∀A∈σ (�) and ∀θ ∈�,

LA(0,θ )=I(θ /∈A) and LA(1,θ )=I(θ ∈A),

that is, LA is the 0-1 loss for A [42]. The testing scheme L defined in Example 2.3 is a TS generated
by this family of loss functions.

Example 2.6 shows a TS of Bayesian tests motivated by different epistemological considerations
(see [51], but also [30], for a decision-theoretic motivation), the Full Bayesian Significance Tests,
FBST [34].

EXAMPLE 2.6 (FBST testing scheme)
Let �=Rd, σ (�) be the Borelians of Rd , and f (θ ) be the prior probability density function (p.d.f.)
for θ . Suppose that, for each x∈X , there exists f (θ |x), the p.d.f. of the posterior distribution of θ ,
given x. For each hypothesis A∈σ (�), let

T A
x =

{
θ∈� : f (θ|x)>sup

θ∈A
f (θ|x)

}

be the set tangent to the null hypothesis and let evx(A)=1−P(θ ∈T A
x |x) be the Pereira–Stern evidence

value for A (see [34] for a geometric motivation). One can define a TS L by

L(A)(x)=I(evx(A)≤c), ∀A∈σ (�) and ∀x∈X ,

in which c∈[0,1] is fixed. In words, one does not reject the null hypothesis when its evidence is
larger than c.

We end this section by defining a TS generated by a point estimation procedure, an intuitive
concept that plays an important role when characterizing logically coherent procedures in Section 4.

DEFINITION 2.7 (TS generated by a point estimation procedure)
Let θ̂ :X −→� be a point estimator. The TS generated by θ̂ is defined by L(A)(x)=I(θ̂ (x) /∈A).

Hence, we reject hypothesis A after observing x if, and only if, the point estimate for θ, θ̂ (x), is
not in A.

EXAMPLE 2.8 (TS generated by a point estimation procedure)
Let �=R, σ (�)=P(�), and assume X1 ...,Xn|θ c.i.i.d. N (θ,1). The TS generated by	x, the sample
mean, rejects A∈σ (�) when	x /∈A.

3 Consistency properties

In this section, we study four properties that one might expect from TSs to induce logically consistent
tests (see Figure 1 for an illustration). Each formal definition in the sequence is preceded by an
example for motivation.
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(a) (b)

(c) (d)

FIG. 1. Logical properties one might expect from hypotheses tests.

TABLE 1. Genotypic sample frequencies

AA AB BB Total

Case 55 83 50 188
Control 24 42 39 105

3.1 Monotonicity

The first property is related to nested hypotheses. It states that if hypothesis A implies hypothesis B
(i.e. A⊆B), a testing scheme that rejects B should also reject A (equivalently, if it does not reject A
it should not reject B either).

EXAMPLE 3.1
Suppose that in a case–control study one measures the genotype in a certain locus for each individual
of a sample. Results are shown in Table 1. These numbers were taken from a study presented by [28]
that had the aim of verifying the hypothesis that subunits of the gene GABAA contribute to a condition
known as methamphetamine use disorder. Here, the set of all possible genotypes is {AA,AB,BB}. Let
γ = (γAA,γAB,γBB), where γi is the probability that an individual from the case group has genotype
i. Similarly, let π= (πAA,πAB,πBB), where πi is the probability that an individual of control group
has genotype i.

In this context, two hypotheses are of interest: the hypothesis that the genotypic proportions are
the same in both groups, HG

0 :γ =π, and the hypothesis that the allelic proportions are the same
in both groups HA

0 :γAA + 1
2γAB =πAA + 1

2πAB. The p-values obtained using chi-square tests for these
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hypotheses are, respectively, 0.152 and 0.069. Hence, at the level of significance α=10%, the TS
given by chi-square tests rejects HA

0 , but does not reject HG
0 . That is, the TS leads a practitioner to

believe that the allelic proportions are different in both groups, but it does not suggest any difference
between the genotypic proportions. This is absurd! If the allelic proportions are not the same in both
groups, the genotypic proportions cannot be the same either. Indeed, if the latter were the same,
then γi =πi, ∀i∈G, and hence θ ∈HA

0 . This example is further discussed in [18].

This example motivates the following definition, first introduced by [12] in a different setting
(filter of hypotheses):

DEFINITION 3.2 (Monotonicity)
A testing scheme L is monotonic if

∀A,B∈σ (�), A⊆B⇒L(A)≥L(B), i.e., ∀x∈X , L(A)(x)≥L(B)(x).

In words, if after observing x, a hypothesis is rejected by a testing scheme, any hypothesis that
implies it also has to be rejected by the same scheme.

Monotonicity has received a lot of attention in the literature. It has been considered a very appealing
property, whether the decision L(A)(x)=0 is interpreted as ‘not reject the hypothesis A’ or ‘accept
the hypothesis A’.

Theorem 3.3 shows that monotonic TSs control the FWER. Its proof is omitted as different
versions were already provided in several works (e.g. [13] and [47, 48]).

THEOREM 3.3
Let L be a monotonic TS and assume that {θ}∈σ (�), ∀θ ∈�, i.e. the simple hypotheses are in σ (�).
Then,

FWER :=sup
θ∈�

P(Reject at least one correct A∈σ (�)|θ )

=sup
θ∈�

P(L({θ})(X )=1|θ ).

Hence, if each of the tests for the simple hypotheses is of size α, FWER≤α, and, consequently,
each hypothesis test (for a simple or composite one) will also have size α.

As discussed in the introduction, closure procedures are monotonic. Moreover, [47, 48] shows
that any monotonic procedure can be constructed using the closure method. [49] showed that any
non-monotonic procedure can be replaced by a monotonic one which is better in the sense that it
has the same FWER as the original procedure, and rejects not only the hypotheses rejected by the
first, but also potentially more of them.

Example 3.1 showed that p-values can yield non-monotonic testing schemes. The use of Bayes
Factors can also result in inconsistent conclusions [24]. In fact, in Example 3.1, the Bayes Factor in
favour of HA

0 is 0.28, while the Bayes Factor in favour of HG
0 is 6.63 (using independent uniform

priors over the simplexes). Hence, inconsistency remains. Likelihood ratio tests with a fixed level α

(Example 2.2) are also not monotonic [18]. However, the likelihood ratio statistic is. This motivates
the tests proposed by [12], which we recall in the next example.

EXAMPLE 3.4 (Likelihood ratio tests with fixed threshold)
Let c∈[0,1] and define L by

L(A)(x)=I
(

supθ∈ALx(θ )

supθ∈�Lx(θ )
≤c

)
, ∀A∈σ (�) and ∀x∈X .
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TABLE 2. Loss functions for tests of Example 3.6

State of Nature

Decision θ ∈HA
0 θ /∈HA

0

0 0 1
1 2 0

State of Nature

Decision θ ∈HB
0 θ /∈HB

0

0 0 1
1 1 0

This TS is monotonic. This follows from the fact that if A,B∈σ (�) are such that A⊆B and x∈X ,

then supθ∈ALx(θ )≤supθ∈BLx(θ ).

In this example, to attain monotonic testing schemes with likelihood ratio tests, one gives up
on having common size α for each test. Some authors defend the use of the likelihood itself as a
measure of evidence [3], in which cases the TS defined in Example 3.4 is appropriate.

The FBST TS defined in Example 2.6 is in some sense the Bayesian counterpart of Example 3.4
and is also monotonic.

EXAMPLE 3.5 (FBST testing scheme)
L defined in Example 2.6 is monotonic. In fact, let A,B∈σ (�) be such that A⊆B and let x∈X be such
that L(A)(x)=0. We have supB f (θ |x)≥supA f (θ |x). Hence, T B

x ⊆T A
x , and, therefore, evx(A)≤evx(B),

from which monotonicity holds.

For a similar reason, the test developed by [33] is also monotonic.
Bayesian tests based on posterior probabilities with a fixed common cut-off (as in Example 2.3,

with cut-off 1/2), generated by a family of 0−1−c loss functions [43], are monotonic. This follows
from monotonicity of probabilities. However, other families of loss functions may induce non-
monotonic TSs of Bayesian tests: such loss functions lead to a different cut-off for each hypothesis
test to be conducted. This is illustrated in Example 3.6.

EXAMPLE 3.6
Assume X ∼Bernoulli(θ ), θ ∈[0,1], and that we are interested in testing the following hypotheses:

HA
0 :θ ≤0.6, and HB

0 :θ ≤0.7.

Notice that HA
0 ⊂HB

0 . Assume we use the loss functions from Table 2.
The Bayes tests for testing HA

0 and HB
0 are, respectively,

L(HA
0 )(x)=I(P(θ ∈HA

0 |x)≤1/3
)

and L(HB
0 )(x)=I(P(θ ∈HB

0 |x)≤1/2
)
.

If the prior for θ is uniform and we observe x=1, we have P(θ ∈HA
0 |x)=0.36 and P(θ ∈HB

0 |x)=
0.49, so we do not reject HA

0 , but reject HB
0 . As HA

0 ⊆HB
0 , we conclude monotonicity does not hold.

Intuitively, this happens because the loss of rejecting HA
0 when θ ∈HA

0 is twice as large as the loss
of rejecting HB

0 when θ ∈HB
0 . Hence, we only reject HA

0 when there is very little evidence it holds
(when compared to the evidence needed to reject HB

0 ).

A question then arises. What conditions must be imposed on the loss functions so that the resultant
Bayesian TSs are monotonic? Next, we study monotonicity under a Bayesian Decision-Theoretic
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FIG. 2. Interpretation of monotonic relative losses: rougher errors of decisions should be assigned
larger relative losses.

perspective by considering two properties for a family of loss functions (LA)A∈σ (�). We start with
the following definitions:

DEFINITION 3.7 (Relative Loss)
Let LA be a loss function for testing hypothesis A. The function rA :�→R defined by rA(θ )=
LA(1,θ )−LA(0,θ ) is named the relative loss of LA for testing A.

The relative loss thus measures the difference between the losses of rejecting and not rejecting a
given hypothesis.

DEFINITION 3.8
The family (LA)A∈σ (�) has proper relative losses if, for all A∈σ (�), rA(θ )≥0, ∀θ ∈A and rA(θ )≤0,
∀θ ∈Ac.

Definition 3.8 generalizes the early definition of loss functions for hypothesis testing [43], and it
states that by taking a correct decision we lose less than or the same by taking a wrong decision.

DEFINITION 3.9
The family (LA)A∈σ (�) has monotonic relative losses if, for all A,B∈σ (�) such that A⊆B, rB(θ )≥
rA(θ ), ∀θ ∈�.

Definition 3.9 can be easily interpreted in three cases (see Figure 2). For A,B∈σ (�) with A⊆B,

• If θ ∈A, both A and B are true, so (LA)A∈σ (�) having monotonic relative losses reflects the
situation in which the rougher error of rejecting B compared to rejecting A should be assigned
a larger relative loss.

• If θ ∈B\A, A is false and B is true. Thus, (LA)A∈σ (�) having monotonic relative losses is a natural
consequence of satisfying proper relative losses.

• If θ ∈Bc, it can be interpreted in a similar way as the first case.

EXAMPLE 3.10
The following families of loss functions have proper and monotonic relative losses:

• Losses of the form of Table 3, with the restrictions that ∀A∈σ (�), aA =bAc , and that ∀A,B∈
σ (�) such that A⊆B, aA ≥aB ≥0. Notice that, with these restrictions, it holds that 0≤bA ≤bB

if A⊆B.
• When � is equipped with a distance, say d, losses of the form LA(0,θ )= f (d(θ,A)) and LA(1,θ )=

f (d(θ,Ac)), in which d(θ,A) := inf a∈Ad(θ,a) and f is a non-decreasing function in R+.
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TABLE 3. Example of loss function

State of Nature

Decision θ ∈A θ ∈Ac

0 0 aA

1 bA 0

Theorem 3.11 establishes that monotonic relative losses yield monotonic Bayesian TSs. Moreover,
it shows that if all relative loss functions are proper, monotonicity of the relative losses is, in some
sense, necessary for monotonicity of the resulting Bayesian TS.

THEOREM 3.11
Let (X ×�,σ (X ×�),P) be a Bayesian statistical model, let (LA)A∈σ (�) be a family of loss func-
tions, and L a TS generated by this family. If ∀A∈σ (�) and ∀x∈X , |E[LA(0,θ )|x]|<∞ and
|E[LA(1,θ )|x]|<∞, then:

1. If (LA)A∈σ (�) has monotonic relative losses, L is monotonic, whatever the prior distribution for
θ is.

2. If (LA)A∈σ (�) has proper relative losses, but there exist A,B∈σ (�), with A⊂B, and θ1 ∈A and
θ2 ∈Bc such that rB(θi)<rA(θi), i=1,2, and Lθ1 (x),Lθ2 (x)>0 ∀x∈X , then there exists a prior
distribution for which L is not monotonic.

See the Appendix for a proof of part 2. Monotonic relative losses are not reasonable when one
prefers ‘smaller’ hypotheses, i.e. when the cost (relative loss) of rejecting a ‘small’ hypothesis is
greater than that of rejecting a ‘large’ one, even when both are correct (as is Example 3.6). Theorem
3.11 says that this is exactly when monotonicity may not hold; otherwise monotonicity always holds.
Hence, any TS derived from the loss functions of Example 3.10 is monotonic.

3.2 Intersection consonance

The second property involves testing two hypotheses A and B separately, and testing their intersection
A∩B. It states that if a testing scheme leads to the rejection of the intersection of these hypotheses,
A∩B, it should also reject at least one of them, A or B. The following example shows this is not
always the case.

EXAMPLE 3.12 (ANOVA)
Suppose that X1,...,X20 are i.i.d. N (μ1,σ

2); X21, ..., X40 are i.i.d. N (μ2,σ
2) and X41,...,X60 are

i.i.d. N (μ3,σ
2). Consider the following hypotheses:

H (1,2,3)
0 :μ1 =μ2 =μ3 H (1,2)

0 :μ1 =μ2 H (1,3)
0 :μ1 =μ3

and suppose that we observe the following means and standard deviations on the data: X 1 =
0.15; S1 =1.09; X 2 =−0.13; S2 =0.5 X 3 =−0.38; S3 =0.79. Using the likelihood ratio statistics,
we have the following p-values for these hypotheses:

pH (1,2,3)
0

=0.0498 pH (1,2)
0

=0.2564 pH (1,3)
0

=0.0920.
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Therefore, the testing scheme given by the likelihood ratio tests with common level of significance
α=5% rejects H (1,2,3)

0 but does not reject either H (1,2)
0 or H (1,3)

0 . Hence, we conclude that the three
groups do not have the same mean. However, when comparing the first with the second, the TS
does not reject that they have the same mean, as well as when it compares the first with the third.
It seems puzzling that the testing scheme cannot detect where the differences between the groups
are. Notice that such contradiction can happen even if one makes Bonferroni corrections: The same
example illustrates this if the global significance level is taken to be α=15%.

This contradiction is named a consonance contradiction by [12]. Here, we call the consistency
property intersection consonance, as later we will introduce the union consonance. Several varia-
tions were defined in the literature [3, 16, 39]. Here, we present the definition of |S|-intersection
consonance, where we use |S| to denote the cardinality of set S.

DEFINITION 3.13 (|S|-intersection consonance)
A testing scheme L satisfies the |S|-intersection consonance if for all sets of indices I with cardinality
|I |≤|S|,

∀{Ai}i∈I ⊆σ (�) such that ∩i∈I Ai ∈σ (�), we have

L(∩i∈I Ai)≤max{L(Ai)}i∈I .

In words, if the testing scheme does not reject any of the hypotheses {Ai}i∈I , it should also not reject
their intersection.

In Section 4, we will specially be interested in three cases of intersection consonance, namely:

• finite intersection consonance. In this case, S ={0,1}, and we only require such property to
hold for a finite number of hypotheses. This is because taking S ={0,1} yields the same testing
schemes as taking S ={0,...,n} for any finite natural n.

• countable intersection consonance. In this case, S =N, and we only require such property to
hold for a countable number of hypotheses.

• complete intersection consonance. In this case, S =�, and we require such property to hold
for any set of hypotheses with cardinality |�|.

Although it is usually considered that consonance is not as a strong requirement as monotonicity,
many consider it to be a desirable property (e.g. [4, 13, 14, 39]). As [54] points out, ‘... ensuring a
Multiple Test Procedure to be consonant is also important from both interpretive and mathematical
statistics viewpoint’. This is because ‘the investigator is not satisfied with an overall statement, such
as that there are differences “anywhere”, but he wishes to determine more exactly where these
differences are located’ [14].

Next, we illustrate a testing scheme that satisfies intersect consonance.

EXAMPLE 3.14
Suppose that {θ}∈σ (�), ∀θ ∈�. For each A∈σ (�), let

L(A)(x)=I(R(x)�A
)
, ∀x∈X ,

in which R :X −→P(�) is a region estimator of θ . In words, the TS rejects a hypothesis if, and only
if, the estimated region is not fully contained in (i.e. is not a subset of) the hypothesis of interest. L
satisfies both the |�|-intersection consonance and monotonicity.
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Many simultaneous hypotheses procedures developed satisfy intersection consonance (see e.g.
[48, 49], and [38], who also discuss optimal power properties of such procedures). As noted by [12],
tests that satisfy monotonicity and intersection consonance are related to union–intersection tests.
More specifically, in the context of TSs, for such procedures we have that L(∩i∈I Ai)=maxi∈I L(Ai)
for all I with cardinality |I |≤|S|. That is, the test for ∩i∈I Ai is the union–intersection test based on
tests for the hypotheses Ai [5], a fact that motivates several consonant schemes (e.g. [16]).

The following example shows a simple way to create TSs with intersection consonance based on
tests for simple hypothesis.

EXAMPLE 3.15
For each θ ∈�, let L({θ}) be a hypotheses test for the simple hypothesis {θ}. Consider the testing
scheme L′ defined by

L′(A)(x)=1−min
θ∈Ac

L({θ})(x).

L′ satisfies both the |�|-intersection consonance and monotonicity. Indeed, let A,B∈σ (�), with
A⊆B. As Bc ⊆Ac, we have that, for every x∈X ,

L′(A)(x) :=1−min
θ∈Ac

L({θ})(x)≥1−min
θ∈Bc

L({θ})(x) :=L′(B)(x),

and thus monotonicity holds. Now, let {Ai}i∈I , with Ai ∈σ (�) be an arbitrary set of hypotheses. We
have that, for every x∈X and for every k ∈ I

L′(∩iAi)(x) :=1− min
θ∈(∩iAi)c

L({θ})(x)=1− min
θ∈(∪iAc

i )
L({θ})(x)≤1−min

θ∈Ac
k

L({θ})(x)

:=L′(Ak )(x).

Thus, L′(∩iAi)(x)≤maxi∈I L′(Ai)(x), from which |�|-intersection consonance follows. Because of
monotonicity, L′ also controls the FWER [48].

Finally, if a TS satisfies both finite intersection consonance and monotonicity, it also respects the
following the logical property explored by [44]: suppose in Example 3.12 we test μ1 =μ2, μ1 =μ3

and μ2 =μ3. Then if a TS rejects any one of these hypotheses it also rejects at least another of them:
without loss of generality, assume it rejects μ1 =μ2. Then, by monotonicity,

1=L({μ1 =μ2 =μ3})(x)=L({μ1 =μ3}∩{μ2 =μ3})(x).

By intersection consonance we thus have that

1=L({μ1 =μ3}∩{μ2 =μ3})(x)=max{L({μ1 =μ3})(x),L({μ2 =μ3})(x)},
which implies that the TS rejects either μ1 =μ3 or μ2 =μ3.

3.3 Union consonance

The third property is similar to intersection consonance; however it involves testing the union of
two hypotheses. To prevent practitioners from being puzzled with results of tests, it seems advisable
that if a testing scheme rejects each of the hypotheses A and B, it should also reject their union A∪B.
This is equivalent to stating that if it does not reject the union of the hypotheses, it should also retain
at least one of them. The following example shows this is not always the case.
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EXAMPLE 3.16
Suppose three candidates are running for a majority election. The proportions of electors voting for

each candidate are θ1,θ2 and θ3, with
∑3

i=1θi =1. We are interested in testing the following four
hypotheses:

H 0
0 :

3⋃
i=1

{
θi >

1

2

}
,

H 1
0 :
{
θ1 >

1

2

}
, H 2

0 :
{
θ2 >

1

2

}
, H 3

0 :
{
θ3 >

1

2

}
.

Hence, the null hypothesis H 0
0 is the hypothesis that one of the candidates has more than 50% of

the votes, while the null hypothesis Hi
0, for i=1,2,3, is the hypothesis that the i-th candidate has

more than 50% of the votes. Assume we observe a sample of 410 electors. Let X = (X1,X2,X3), in
which Xi is the number of electors in the sample that vote for candidate i, i=1,2,3. Using a uniform
prior for θ = (θ1,θ2,θ3) and assuming a multinomial distribution for X |θ , if the observed sample is
x= (200,200,10), we have that θ |x is Dirichlet with parameters (201,201,11), and therefore

P

(
3⋃

i=1

{
θi >

1

2

}∣∣∣∣x
)

=0.588;

P

({
θ1 >

1

2

}∣∣∣∣x)=0.294; P
({

θ2 >
1

2

}∣∣∣∣x)=0.294; P
({

θ3 >
1

2

}∣∣∣∣x)=0.000.

The TS described in Example 2.3 does not reject H 0
0 but rejects Hi

0, i=1,2,3. We thus have
conflicting conclusions: the testing scheme leads one to conclude that one of the candidates has at
least 50% of the votes (i.e., θi >1/2 for some i). However, separately, one concludes that each of
the candidates has at most 50% of the votes (i.e., θi ≤1/2 for all i).

We call this inconsistency lack of union consonance, which we formally define in what follows.
To the best of the authors’ knowledge, union consonance has not been formally defined in the
statistics literature.

DEFINITION 3.17 (|S|-union consonance)
A testing scheme L satisfies the |S|-union consonance if for all sets of indices I with cardinality
|I |≤|S|,

∀{Ai}i∈I ⊆σ (�) such that ∪i∈I Ai ∈σ (�), we have L(∪i∈I Ai)≥min{L(Ai)}i∈I .

In words, if a testing scheme does not reject the union of the hypotheses {Ai}i∈I , it should retain
at least one of them.

Union consonance is related to the lottery paradox [23], the results of which are considered to
be paradoxical by some authors, while are regarded as not contradictory by others. Thus, union
consonance may not be as appealing as monotonicity at a first glance, although it has been hinted in
various works. For example, the interpretation given by [11](page 1199) on the final joint decisions
derived from all partial decisions implicitly suggests that union consonance is reasonable: these
authors indicate one should consider

⋃
A:L(A)(x)=1A to be the set of all parameter values rejected by

the multiple procedure at hand when x is observed. Under this interpretation, it seems natural to
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expect that L(
⋃

A:L(A)(x)=1A)(x)=1, which is exactly what union consonance imposes. As a matter
of fact, the general partitioning principle proposed by these authors satisfies union consonance.
This is shown in the context of TSs in the first part of Theorem 3.18:

THEOREM 3.18
Assume that {θ}∈σ (�), ∀θ ∈�. Let L be a TS constructed as follows: for each θ ∈�, fix a test
L({θ}). For each A∈σ (�), define

L(A)=min
θ∈A

L({θ}),

the intersection–union test for A based on the tests for the hypotheses {θ}⊆A—this is also the TS
given by the general partitioning principle in [11] when the partition is the singletons of �, which
is based on ideas by [50]. Then,

1. L satisfies the |�|-union consonance as well as monotonicity.
2. Let L′ be a TS that satisfies monotonicity, with L′({θ})=L({θ}), ∀θ ∈�. If L′ also satisfies

|�|-union consonance, we must have L′ =L.

PROOF. Part 1. Let {Ai}i∈I ⊆σ (�) be such that ∪i∈I Ai ∈σ (�). We have that

L(∪i∈I Ai)
def= min

θ∈∪i∈I Ai

L({θ})=min
i∈I

min
θ∈Ai

L({θ}) def=min
i∈I

L(Ai).

Therefore, L(∪i∈I Ai)≤mini∈I L(Ai) and monotonicity holds. We also have that L(∪i∈I Ai)≥mini∈I L(Ai)
and therefore, by definition, |�|-union consonance holds.

Part 2. Let A∈σ (�). As, by hypothesis, monotonicity holds in L′, then L′(A)≤minθ∈AL′({θ}).
Analogously, by |�|-union consonance, L′(A)≥minθ∈AL′({θ}). Therefore, L′(A)=minθ∈AL′({θ})=
minθ∈AL({θ})=L(A), ∀A∈σ (�).

Theorem 3.18 shows that to create a TS that satisfies monotonicity and union consonance simulta-
neously, it is only necessary to define the tests for the simple hypotheses and consider intersection–
union tests derived from them. The second part of Theorem 3.18 asserts that such testing scheme
is the unique extension of the above-mentioned tests assigned to simple hypotheses to a TS that
is monotonic and satisfies union consonance. In other words, when a TS satisfies arbitrary union
consonance and monotonicity, its behaviour is completely determined by its behaviour on the sin-
gletons. Moreover, testing schemes created according to Theorem 3.18 control the FWER. This
follows from Theorem 3.3.

EXAMPLE 3.19
For each A∈σ (�), let

L(A)(x)=I
(
R(x)

⋂
A=∅

)
, ∀x∈X ,

in which R :X −→P(�) is a region estimator of θ . In words, the TS L rejects a hypothesis if, and only
if, the estimated region does not intersect the hypothesis of interest. This very intuitive procedure was
proposed by [1] focusing on classical confidence regions. It is straightforward to show L satisfies |�|-
union consonance. Also, [13] noticed it is monotonic and hence controls FWER (Theorem 3.18). In
particular, if {θ}∈σ (�), ∀θ ∈�, and R(X ) has confidence 1−α (i.e., P(θ ∈R(X )|θ )≥1−α, ∀θ ∈�),
the tests for each of the simple hypotheses {θ} have level α.

 at M
ain L

ibrary of G
azi U

niversity on M
arch 10, 2016

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:02 9/9/2015 jzv027.tex] Paper Size: a4 paper Job: JIGPAL Page: 746 732–758

746 Logical consistency in simultaneous statistical test procedures

Notice that the TS in Example 3.19 is composed of intersection–union tests based on tests of
the form L({θ})(x)=I(θ �∈R(x)), θ ∈�, as in Theorem 3.18. The next theorem shows that all TSs
that satisfy both monotonicity and complete intersection consonance must be of the form defined in
Example 3.19.

THEOREM 3.20
Assume that {θ}∈σ (�), ∀θ ∈�. Then any TS defined on σ (�) satisfies both monotonicity and
complete intersection consonance if, and only if, there exists a region estimator R :X −→P(�) such
that

L(A)(x)=I
(
R(x)

⋂
A=∅

)
, ∀x∈X .

PROOF. Because the ‘if’ direction is trivial, we only prove the ‘only if’ direction.
Let L be a TS and for x∈X let R(x)={θ ∈� :L{θ}(x)=0}. We have to show that, for each A∈

σ (�),L(A)(x)=I(R(x)
⋂

A=∅). It is trivial to show this is true for hypotheses A that are singletons.
Using this fact and that, because L satisfies union consonance and monotonicity, L(∪θ∈A{θ})(x)=
minθ∈AL({θ})(x), we have that

L(A)(x)=L(∪θ∈A{θ})(x)=min
θ∈A

L({θ})(x)=min
θ∈A
I
(
R(x)

⋂
{θ}=∅

)
=I
(
R(x)

⋂
A=∅

)
.

In practice, procedures that satisfy both union consonance and monotonicity are usually easier to
implement than the traditional closure method described in the introduction. This is because only
tests for the simple hypotheses have to be constructed. If � is finite, it requires only |�| operations
(instead of 2|�|, as in the case of the closure method when all tests result in rejections). Such
procedures are also easy to implement when � is continuous if confidence regions can be easily
built, as in the following example:

EXAMPLE 3.21 (ANOVA)
Suppose that Xk,1,...,Xk,nk are i.i.d. N (μk ,σ

2), k =1,...,g, conditionally on μ1,...,μg,σ
2, and that

Xi,j is independent of Xk,l ∀i �=k and ∀j,l. Here Xi,j represents the measurement made on the j-th
sample unit of the i−th group. A confidence region for (μ1,...,μg) of confidence at least 1−α

presented by [21] associates to the sample point x the region R(x) given by{
(μ1,...,μg)∈Rg :∀k �= l

μk −μl ∈
[

xk −xl ±tn−g

(
α

g(g−1)

)√
s2

n−g

(
1

nk
+ 1

nl

)]
,1≤k,l ≤g

}
,

where n=n1 + ...+ng , xk is the sample average of the k-th group, s2 = (n1 −1)s2
1 + ...+(ng −1)s2

g ,
where s2

k is the sample variance of k-th group, and td(α) denotes the α percentile of a t distribution
with d degrees of freedom. Plugging the region estimator R above in the TS defined in Example
3.19 yields a TS that is monotonic, satisfies |�|-union consonance, and controls the FWER. In this
way, it is possible to test all hypotheses of interest in an ANVA problem while preserving these
properties. Notice that we are treating σ 2 as a nuisance parameter (see Section 2).
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If one is not interested in controlling the size of the tests, other procedures can be built. Two
examples are shown below.

EXAMPLE 3.22 (Likelihood ratio tests with fixed threshold)
The TS of Example 3.4 was already shown to satisfy monotonicity. If {θ}∈σ (�), ∀θ ∈�, it also
satisfies |�|-union consonance. In fact, let A∈σ (�). We have

L(A)(x)=I
(

supθ∈ALx(θ )

supθ∈�Lx(θ )
≤c

)
=min

θ0∈A
I

(
Lx(θ0)

supθ∈�Lx(θ )
≤c

)
def=min

θ0∈A
L({θ0})(x).

The result follows from the first part of Theorem 3.18.

There are also Bayesian tests that are in accordance with union consonance. Although testing
schemes based on posterior probabilities with a fixed threshold (Example 3.16) do not respect union
consonance, in general FBST testing schemes do satisfy it:

EXAMPLE 3.23 (FBST testing schemes)
Example 2.6 shows that a FBST TS satisfies monotonicity. It can also be shown that it satisfies
|�|-union consonance, provided that ∀x∈χ and ∀a∈R+, P({θ : f (θ |x)=a}|x)=0 [17]. This TS is a
particular case of the TSs described in Example 3.19: it can be shown that this TS is equivalent to

L(A)(x)=I
(
A
⋂

HPDx
c =∅

)
,

where HPDx
c is the Highest Posterior Probability Density region [19] with probability 1−c, based

on observation x. Hence, the FBST procedure can be efficiently implemented by constructing the
posterior (1−c)−HPD for θ and not rejecting all hypotheses that intersect it. In a sense, an FBST
TS extends Lindley’s tests for simple hypotheses [29], according to intersection–union procedures
in Theorem 3.18.

3.4 Invertibility

The following example is traditional in introductory statistics courses and illustrates the difference
that exists between choosing the labels ‘null hypothesis’ and ‘alternative hypothesis’ under the
classical approach to inference.

EXAMPLE 3.24
Suppose that X |θ ∼Normal(θ,1) and that one wants to test the following null hypotheses:

H≤
0 : θ ≤0

H>
0 : θ >0

The Uniformly Most Powerful (UMP) Tests for these hypotheses have the following critical regions,
at the level 5%, respectively:

{x∈R :x>1.64} and {x∈R :x<−1.64}.
Hence, if we observe x=1.0, a TS that comprises these UMP tests does not reject either that the
mean is less than or equal to 0 (H≤

0 ) or that it is greater than 0 (H>
0 ). That is, on one hand, x=1.0 does

not bring enough evidence in favour of R∗
+; on the other hand, it suggests R∗

+ cannot be rejected.
Therefore, the conclusion drawn from the sample observation about a hypothesis of interest strongly
depends on whether it is considered as the null or the alternative hypothesis.
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The next definition formalizes the notion of simultaneous tests independent of the labels ‘null’
and ‘alternative’ for the hypotheses of interest.

DEFINITION 3.25 (Invertibility)
A testing scheme L satisfies invertibility if

∀A∈σ (�), L(A)=1−L(Ac).

In words, it is irrelevant which hypothesis is labelled as null and which is labelled as alternative.

While invertibility is typically considered to be reasonable from a Bayesian decision-theoretic
standpoint (e.g. [37], Section 5.3; [43], Section 4.1.1.), it is usually not attractive for most advocates
of the frequentist theory due to the interpretation of the decision L(A)(x)=0 as a ‘not reject’ rather
than an ‘accept’. We note, however, that there exist examples where a TS rejects both the null and
the alternative hypotheses:

EXAMPLE 3.26
Suppose that X |θ∼Normal(θ,1), and consider the parameter space �={−3,3}. Assume one wants
to test the following null hypotheses:

HA
0 : θ =3 and HB

0 : θ =−3

The Neyman–Pearson most powerful tests for these hypotheses have the following critical regions,
at the level 5%, respectively:

{x∈R :x<1.35} and {x∈R :x>−1.35}.

Hence, if we observe x=−0.5, the testing scheme rejects both H A
0 and HB

0 , even though HA
0 ∪HB

0 =�.
Considering the interpretation of results of simultaneous test procedures from [11], this would lead
one to decide that

θ ∈(�\HA
0

)⋂(
�\HB

0

)=∅.

The last example illustrates tests that are against Lehmann’s principle of compatibility of the first
kind [26, 48], which states that, for every x, the intersection of the complements of the rejected
hypotheses should not be empty, i.e. ⋂

A∈σ (�):L(A)(x)=1

Ac �=∅.

Not surprisingly, we will also see in the next section that in the TS framework, invertibility is implied
by intersection and union consonances.

The next example illustrates a TS that respects invertibility.

EXAMPLE 3.27
Suppose that (LA)A∈σ (�) is a family of loss functions with

LA(0,θ )=aAI(θ /∈A) and LA(1,θ )=bAI(θ ∈A), ∀θ ∈�,

 at M
ain L

ibrary of G
azi U

niversity on M
arch 10, 2016

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:02 9/9/2015 jzv027.tex] Paper Size: a4 paper Job: JIGPAL Page: 749 732–758

Logical consistency in simultaneous statistical test procedures 749

with aA =bAc >0, ∀A∈σ (�). Let θ0 =θ0(x)∈� and L be defined as

L(A)(x)=I
(
P(A|x)<

aA

aA +bA

)
+I
(
P(A|x)= aA

aA +bA
and θ0 /∈A

)
,

∀A∈σ (�) and ∀x∈X . In words, we reject A whenever its posterior probability is smaller than
aA/(aA +bA), or its posterior probability is aA/(aA +bA) and θ0 (which may depend on x) is not in
A. L is a Bayesian TS generated by the family (LA)A∈σ (�). This TS satisfies both invertibility and
monotonicity. Notice that when P(A|x)=aA/(aA +bA), the decision to not reject A has the same
expected loss as the decision of rejecting A. This TS was chosen because among all testing schemes
generated by (LA)A∈σ (�), which are equivalent from a decision-theoretic point of view, it satisfies
invertibility. Of course, other TSs derived from (LA)A∈σ (�) do as well.

Example 3.27 can be generalized. In fact, one can verify that any family of loss functions (LA)A∈σ (�)

that satisfies LA(0,θ )=LAc (1,θ ), ∀A∈σ (�) and ∀θ ∈�, generates TSs that respect invertibility [46].
This restriction on the loss functions implies that a type I error for testing A has to be penalized in
the same way as a type II error for testing Ac.

EXAMPLE 3.28
Any TS generated by a point estimation procedure (recall Definition 2.7 and Example 2.8) is invert-
ible. Moreover, such TSs also satisfy monotonicity, |�|-intersection and |�|-union consonances.

4 How restrictive are the consistency properties?

In Section 3, we studied four logical properties one may expect for testing schemes. We also provided
results and examples with useful schemes that respect two of these conditions simultaneously (e.g
Theorem 3.18, Examples 3.15, 3.19, 3.22, 3.23 and 3.27). Here, we show that requiring more than
two of such properties to hold simultaneously is very restrictive: under quite general conditions, TSs
that satisfy them are always generated by point estimation procedures.

We start by recalling the concept of compatibility of a multiple test procedure, introduced by [25]
and here adapted to TSs.

DEFINITION 4.1 (Compatible TS)
A TS L is compatible if ∀x∈X ⋂

A∈σ (�)

AL(A)(x) �=∅,

where A0 def=A and A1 def=Ac, for A∈σ (�).

In words, a testing scheme is compatible when no incoherences are allowed: the intersection
of the accepted sets (hypotheses such that L(A)(x)=0) with the complements of the rejected ones
(hypotheses such that L(A)(x)=1) cannot be empty. Compatibility has been considered too strong
by many authors [48], including Lehmann himself [26], who provides the less stringent definition of
compatibility of the first kind (recall Section 3.4) motivated by the fact that one might interpret the
result of a test L(A)(x)=0 as ‘not reject’ rather than ‘accept’. In fact, when {θ}∈σ (�), ∀θ ∈�, it
is straightforward to show that L is compatible if, and only if, L is generated by a point estimation
procedure (recall Definition 2.7).
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We will now put together the properties presented in Section 3 with the goal of understanding
how restrictive such requirements are when compared to those of a compatible TS. We begin with
the following definition:

DEFINITION 4.2 (TS of type |S|)
We say a TS is of type |S| if it satisfies the four properties from Section 3: monotonicity, |S|-
intersection consonance, |S|-union consonance and invertibility.

The following theorem shows alternative characterizations of such testing schemes.

THEOREM 4.3
Let S be {0,1},N, or �. The following are equivalent:

1. L is of type |S|;
2. L satisfies monotonicity, |S|-intersection consonance and invertibility;
3. L satisfies monotonicity, |S|-union consonance and invertibility; and
4. L(∅)=1, L(�)=0, and L satisfies |S|-intersection and |S|-union consonance;

For the case S ={0,1}, we also have the additional equivalence:

5. ∀{A1,...,An} finite measurable partition of �,

n∑
i=1

(1−L(Ai))=1.

That is, one, and only one, Ai is not rejected by the TS. A similar equivalence holds when S =N
and � is partitioned into a countable number of sets.

PROOF. The implications ‘1⇒2’, ‘1⇒3’ and ‘1⇒4’ are trivial to show. We thus start by proving
that ‘2⇒1’. We just have to show that 2⇒ |S|-union consonance. Let I be a set of indices such that
|I |≤|S|. Let {Ai}i∈I ⊆σ (�) be such that ∪iAi ∈σ (�). By |S|-intersection consonance, monotonicity
and invertibility, we have that

L(∪iAi)=1−L(∩Ac
i )=1−max

i
L(Ac

i )=1−max
i

(1−L(Ai))=min
i

L(Ai),

which implies |S|-union consonance holds. A similar proof shows that ‘3⇒1’.
We now show that ‘4⇒1.’ To verify that invertibility holds, let A∈σ (�). We have, by inter-

section consonance and by L(∅)=1, that 1−(1−L(A))(1−L(Ac))=L(A∩Ac)=L(∅)=1. Hence,
(1−L(A))(1−L(Ac))=0, so that L(A)L(Ac)=L(A)+L(Ac)−1. But, by union consonance and
by L(�)=0, L(A)L(Ac)=L(A∪Ac)=L(�)=0. Therefore, L(A)+L(Ac)−1=0 and invertibility
holds.

To verify monotonicity, let A,B∈σ (�), with A⊆B, and x∈χ . If L(A)(x)=0, by invertibil-
ity, L(Ac)(x)=1−L(A)(x)=1. As L(A∩Bc)(x)=L(∅)(x)=1 and because intersection consonance
holds, 1=L(A∩Bc)(x)≤1−(1−L(A)(x))(1−L(Bc)(x))=1−1(1−L(Bc)(x)), so that L(Bc)(x)=1.
Using invertibility again, L(B)(x)=0, and hence monotonicity holds.

We now show ‘5⇒3’ for the |{0,1}|−union consonance case. A similar proof works for the
|N|−union consonance case. Let A∈σ (�). Consider the partition A1 =A e A2 =Ac. We have (1−
L(A))+(1−L(Ac))=1, so that L(A)=1−L(Ac) and, therefore, invertibility holds.

Now, let A,B∈σ (�), with A⊆B, and x∈χ. Without loss of generality, consider L(A)(x)=0.
Let us consider the partition A′

1 =A, A′
2 =B\A and A′

3 = (A∪B)c. By hypothesis, we have
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(1−L(A)(x))+(1−L(B\A))(x)+(1−L((A∪B)c)(x))=1. Since L(A)(x)=0, it follows that L((A∪
B)c)(x)=1, and, by invertibility, L(A∪B)(x)=L(B)(x)=0. Therefore, monotonicity holds.

Considering again the partition A′
1,A

′
2,A

′
3, but assuming that L(A∪B)(x)=0, by invertibility we

have that L((A∪B)c)(x)=1. Hence, by hypothesis, or L(A)(x)=0 or L(B\A)(x)=0. In the sec-
ond case, by monotonicity, L(B)(x)=0. Therefore, L(A∪B)(x)=0⇒L(A)(x)L(B)(x)=0, and finite
union consonance holds.

We now show that ‘1⇒5’ and hence finish the proof of the theorem. We only show it for
the case S ={0,1}, but the case S =N has a similar proof. Let {A1,...,An} be a finite measurable
partition of �, and x∈χ. We have, by finite union consonance and equivalence (4) from this
theorem, that miniL(Ai)≤ L(⋃n

i=1Ai

)=L(�)=0, so that ∃i0 ∈{1,...,n} such that L(Ai0 )(x)=0.
But since Aj ∩Ai0 =∅ for j �= i0, we have L(Aj)(x)=1 for all j �= i0, by finite intersection consonance
and equivalence (4). Therefore,

∑n
i=1(1−L(Ai)(x))=1, concluding the proof.

Of particular interest is characterization (4), which does not involve invertibility, controversial
among advocates of frequentist methods (as a matter of fact, invertibility is (nearly) a consequence
of union and intersection consonances due to Theorem 4.3). Moreover, characterizations (2) and (3)
show that under invertibility and monotonicity, requiring union consonance is equivalent to requiring
intersection consonance.

The following theorem shows that the concept of a TS of type |�| is as strong as that of a
compatible TS.

THEOREM 4.4
If {θ}∈σ (�), ∀θ ∈�, any TS defined over σ (�) is of type |�| if, and only if, it is compatible.

As the proof of this fact is not difficult, we omit it for the sake of brevity.
It does follows that the only examples of TSs of type |�| are those generated by point estimation

procedures:

COROLLARY 4.5
If {θ}∈σ (�), ∀θ ∈�, any TS defined over σ (�) is of type |�| if, and only if, it is generated by a
point estimation procedure.

In the remainder of the section, we investigate whether this is also true when S =N or S ={0,1}.
The following theorem shows that, under some conditions, the only TSs of type |N| are also the

ones generated by a point estimation procedure. Hence, under these conditions, TSs of type |N| are
the same as compatible TSs, which are, as we argued, the same as TSs of type |�|.
THEOREM 4.6
Assume there exists a separable topology τ ⊆σ (�) over �. Then L is of type |N| if, and only if, it
is generated by a point estimation procedure.

PROOF. We prove the necessary condition only (the reverse is immediate). Let x∈X . For each
n∈N, let An ={B(θ, 1

n ) :θ ∈�}, where B(θ, 1
n ) is a ball with radius 1

n and centre θ (and distance
induced by τ ; see Figure 3 for an illustration). As each An covers � and τ is separable, for each n
there exists a countable subset A∗

n ⊆An that covers �. Moreover, by countable union consonance,

D∈A∗

n
L(D)(x)=L(∪D∈A∗

n
D)(x)=L(�)(x)=0 (Theorem 4.3 part 4.), so that for each n there exists

a ball Dn ∈A∗
n such that L(Dn)(x)=0. By countable intersection consonance, L(

⋂
nDn)(x)=0. The-

orem 4.3 part 4. implies
⋂

nDn �=∅. The proof is concluded by noticing that as the radius goes to 0
as n−→∞,

⋂
nDn is a unitary set and that different x’s can generate different Dn’s.
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FIG. 3. Examples of sets in An from the proof of Theorem 4.6 for two different n’s.

COROLLARY 4.7
If �=Rd , a TS L defined over any sigma-field σ (�) that contains the Borel sets is of type |N| if,
and only if, it is generated by a point estimation procedure.

Hence, under some conditions on � and σ (�), we have that compatible TSs, TSs of type |�|,
TSs of type |N| and TSs generated by a point estimation procedure are equivalent. Theorem 4.6
and Corollary 4.7 also formally link, in a sense, point estimation and hypothesis testing. In the vast
statistical literature, these two celebrated problems are most of the times treated separately (this is
not the case of region estimation and hypothesis testing, as discussed in Section 3; see also [50]).
Theorem 4.6 asserts that a practitioner that desires to use testing schemes of type |N| cannot decide,
e.g. that an unknown proportion of interest is at most 50% and estimate it as 52% on the basis of
the same sample information.

Are TSs of type |N| in fact more restrictive than TSs of type |{0,1}|? The following theorem
shows that the answer is yes.

THEOREM 4.8
Assume that �=Rd and that σ (�) contains the Borelians of �. There exists a TS of type |{0,1}|
which is not of type |N|. In particular, if σ (�)=P(�), this existence is equivalent to the existence
of a non-trivial ultrafilter over �.

The proof of Theorem 4.8 relies on the fact that, for a fixed x∈X , the setFx ={A∈σ (�) :L(A)(x)=
0} is an ultrafilter over � if, and only if, it is of type |{0,1}|. Moreover, it is a trivial ultrafilter if, and
only if, it is generated by a point estimation procedure. The theorem follows from the existence of
non-trivial ultrafilters [8]. It is not possible, however, to prove the existence of a non-trivial ultrafilter
using only the Zermelo–Fraenkel axioms. One needs more axioms such as e.g. the Axiom of Choice
[8]. Hence, it is not possible to construct ‘explicit examples’ of such testing schemes (see e.g. [41]).
Therefore, when σ (�)=P(�), essentially all TSs of type |{0,1}| that can be built are TSs generated
by point estimation procedures. It is still an open question whether this is true when σ (�)�P(�).

In summary, under the conditions of the theorems stated, compatible TSs are equivalent to TSs
of type |�|, TSs of type |N| and point estimation procedures. Moreover, although they are not
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equivalent to TSs of type |{0,1}|, constructing explicit examples of TSs of type |{0,1}| that are not
compatible is not possible and, therefore, in practice they are also equivalent.

5 Discussion and conclusions

We introduced the concept of a testing scheme. Such a concept allows one to define several coher-
ence properties that might be expected from simultaneous hypotheses tests. In particular, we studied
four properties: monotonicity (also known as coherence, [12]), intersection consonance, union con-
sonance and invertibility. Among these, monotonicity is the one that has been most emphasized in
the literature (in particular, due to closure procedures), followed by intersection consonance. Union
consonance has already been suggested, although not adequately formalized. We showed necessary
and sufficient conditions for a testing scheme to be monotonic from a Bayesian decision-theoretic
perspective. We also gave examples of testing schemes that satisfy each of the properties that were
defined. Moreover, we gave general procedures that allow one to build schemes that satisfy mono-
tonicity and consonance (both for union and intersection) simultaneously. Finally, we showed that
when put together, these properties are very restrictive: testing schemes that satisfy (any) three of
these properties are essentially equivalent to schemes generated by point estimation procedures. This
is also essentially the same when both consonances are required.

The fact that the consistency properties are too restrictive when put together suggests that a
practitioner may abandon two or more of these properties when performing simultaneous tests
procedures, and then choose a testing scheme that combines attainment of some optimality criteria
(e.g. controlling the FWER or requiring the TS to be a Bayesian TS derived from an adequate family
of loss functions) with agreement to the logical consistency properties he finds more important.
We provided several examples that illustrate how this can be done. In particular, the necessary and
sufficient conditions for monotonicity under a decision-theoretic perspective we provided shed some
light on when such property may be considered to be reasonable for a given problem. Alternatively,
a practitioner might want to use a testing scheme based on a sensible point estimation procedure if
monotonicity, invertibility and consonance are all of primary importance.

From another angle, the incompatibility between full logical consistency and the achievement
of statistical optimality may lead one to question whether the performance of simultaneous test
procedures is the most adequate way to report conclusions about a parameter from data. For instance,
under the Bayesian viewpoint, many believe the most complete inference one can make about a
parameter is its full posterior distribution, considered to be more informative than the list of all
hypotheses that should be rejected according to decision-theoretic criteria.

Several problems are open. From a Bayesian decision-theoretic perspective, an alternative way
to proceed when dealing with several hypotheses tests is to consider a single decision problem with
decision space {0,1}σ (�) taking into account joint loss functions rather than TSs. This is done by
e.g. [24] and [7] for a finite number of hypotheses. Which constraints are necessary on such loss
functions so that logical properties of interest are preserved?

A different approach that can be taken is that instead of considering decisions in the space {0,1},
one can create rules taking values on a decision space with three elements: accept a hypothesis of
interest, reject it or do not accept or reject it, the so-called ‘agnostic’ tests. See e.g. [36]. One can
then ask which coherence properties are expected in this framework, which is similar to the one
presented by [27]. This approach also seems to be interesting as it naturally deals with the question
of how (and to what extent) ‘not rejecting H ’ is different from ‘accepting H ’, maybe allowing a
broader consensus on properties expected for simultaneous test procedures by different practitioners.
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[17] R. Izbicki. Classes de testes de hipóteses (in Portuguese). Master’s Thesis, University of São
Paulo, 2010.

[18] R. Izbicki, V. Fossaluza, A. G. Hounie, E. Y. Nakano and C. A. de B. Pereira. Testing allele
homogeneity: the problem of nested hypotheses. BMC Genetics, 13, 1–11, 2012.

[19] E. T. Jaynes. Confidence intervals vs bayesian intervals. In Foundations of Probability Theory,
Statistical Inference, and Statistical Theories of Science, W. Harper and C. Hookers, eds,
Springer Netherlands, pp. 175–257, 1976.

[20] H. Jeffreys. Theory of Probability. Cambridge University Press, 1939.
[21] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis, 6th edn. Prentice

Hall, 2007.
[22] V. E. Johnson. Uniformly most powerful bayesian tests. The Annals of Statistics, 41, 1716–

1741, 2013.
[23] H. E. Kyburg, Jr. Probability and the Logic of Rational Belief. Wesleyan University Press, 1961.
[24] M. Lavine and M. Schervish. Bayes factors: what they are and what they are not. The American

Statistician, 53, 119–122, 1999.
[25] E. L. Lehmann. A theory of some multiple decision problems, i. The Annals of Mathematical

Statistics, 28, 1–25, 1957.
[26] E. L. Lehmann. A theory of some multiple decision problems, ii. The Annals of Mathematical

Statistics, 28, 547–572, 1957.
[27] I. Levi. Gambling with Truth: An Essay on Induction and the Aims of Science. MIT Press

Classic, 1967.
[28] S. K. Lin, C. K. Chen, D. Ball, H. C. Liu and E. W. Loh. Gender-specific contribution of the

gabaa subunit genes on 5q33 in methamphetamine use disorder. Pharmacogenomics Journal,
3, 349–355, 2003.

[29] D. V. Lindley. Introduction to Probability and Statistics from Bayesian Viewpoint, Part 2.
Cambridge University Press, 1965.

[30] M. R. Madruga, L. G. Esteves and S. Wechsler. On the Bayesianity of Pereira-Stern tests. Test,
10, 291–299, 2001.

[31] R. Marcus, P. Eric and K. R. Gabriel. On closed testing procedures with special reference to
ordered analysis of variance. Biometrika, 63, 655–660, 1976.

[32] D. G. Mayo and A. Spanos. Severe testing as a basic concept in a Neyman-Pearson philosophy
of induction. British Journal for the Philosophy of Science, 57, 323–357, 2006.

[33] A. G. Patriota. A classical measure of evidence for general null hypotheses. Fuzzy Sets and
Systems, 233, 74–88, 2013.

[34] C. A. de B. Pereira and J. M. Stern. Evidence and credibility: full Bayesian significance test
for precise hypotheses. Entropy, 1, 99–110, 1999.

[35] E. Raviv. On p-value. http://eranraviv.com/blog/on-p-value/. Accessed 26 March 2015.
[36] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
[37] C. Robert. The Bayesian choice: From Decision-theoretic Foundations to Computational

Implementation. 2nd edn, Springer, 2007.
[38] J. P. Romano, A. M. Shaikh and M. Wolf. Consonance and the closure method in multiple

testing. The International Journal of Biostatistics, 7, 1–25, 2011.
[39] M. Rosenblum. Tests that reject at least one subpopulation null hypothesis after rejecting for

overall population. Johns Hopkins University, Dept. of Biostatistics Working Papers., pp.
347–88, 2012.

 at M
ain L

ibrary of G
azi U

niversity on M
arch 10, 2016

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:02 9/9/2015 jzv027.tex] Paper Size: a4 paper Job: JIGPAL Page: 756 732–758

756 Logical consistency in simultaneous statistical test procedures

[40] D. Russell. Equal employment opportunity commission v. federal reserve bank of richmond. In
698 Federal Reporter 2d Series, pp. 633–675. United States Court of Appeals, Fourth Circuit,
1983.

[41] E. Schechter. Handbook of Analysis and Its Foundations. Elsevier Science, 1996.
[42] M. J. Schervish. P values: what they are and what they are not. The American Statistician, 50,

203–206, 1996.
[43] M. J Schervish. Theory of Statistics. Springer, 1997.
[44] J. P. Shaffer. Modified sequentially rejective multiple test procedures. Journal of the American

Statistical Association, 81, 826–831, 1986.
[45] J. P. Shaffer. Multiple hypothesis testing. Annual Review of Psychology, 46, 561–584, 1995.
[46] G. M. Silva. Monotonicidade em testes de hipóteses (in Portuguese). Master’s Thesis, Univer-
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Appendix: Proof of Part 2 of Theorem 3.11

Suppose that the relative losses are proper but that ∃A,B∈σ (�), with A⊂B, and ∃θ1 ∈A e θ2 ∈Bc

with LA(0,θ )−LA(1,θ )<LB(0,θ )−LB(1,θ ), θ ∈{θ1,θ2}. As the relative losses are proper, we have

LA(0,θ1)−LA(1,θ1)<LB(0,θ1)−LB(1,θ1)≤0≤LA(0,θ2)−LA(1,θ2)<LB(0,θ2)−LB(1,θ2).

Consider that x∈X is observed and that the prior on θ is

P({θ1})= pLx(θ2)

pLx(θ2)+(1−p)Lx(θ1)
and P({θ2})=1−P({θ1}),

so that the posterior probability of θ given x, μx, is μx({θ1})=p e μx({θ2})=1−p, 0<p<1.
We divide the proof in four cases:
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• If LB(0,θ1)−LB(1,θ1)<0<LA(0,θ2)−LA(1,θ2), from the hypotheses it holds that

LA(0,θ1)−LA(1,θ1)<LB(0,θ1)−LB(1,θ1)<0<LA(0,θ2)−LA(1,θ2)<LB(0,θ2)−LB(1,θ2).

Hence,

x1
def= |LA(0,θ2)−LA(1,θ2)|

|LA(0,θ1)−LA(1,θ1)| <
|LB(0,θ2)−LB(1,θ2)|
|LB(0,θ1)−LB(1,θ1)|

def=x2.

If p∈ (0,1) is such that x1 <
p

1−p <x2,∫
�

[LA(0,θ )−LA(1,θ )]dμx(θ )=[LA(0,θ1)−LA(1,θ1)]p+[LA(0,θ2)−LA(1,θ2)](1−p)<0<

< [LB(0,θ1)−LB(1,θ1)]p+[LB(0,θ2)−LB(1,θ2)](1−p)=
∫

�

[LB(0,θ )−LB(1,θ )]dμx(θ ).

Hence, L(A)(x)=0, but L(B)(x)=1.

• If LB(0,θ1)−LB(1,θ1)=0<LA(0,θ2)−LA(1,θ2), we have

LA(0,θ1)−LA(1,θ1)<LB(0,θ1)−LB(1,θ1)=0<LA(0,θ2)−LA(1,θ2)<LB(0,θ2)−LB(1,θ2).

If p∈ (0,1) is such that

|LA(0,θ2)−LA(1,θ2)|
|LA(0,θ1)−LA(1,θ1)| <

p

1−p
,

∫
�

[LA(0,θ )−LA(1,θ )]dμx(θ )=[LA(0,θ1)−LA(1,θ1)]p+[LA(0,θ2)−LA(1,θ2)](1−p)<0<

< [LB(0,θ1)−LB(1,θ1)]p+[LB(0,θ2)−LB(1,θ2)](1−p)=
∫

�

[LB(0,θ )−LB(1,θ )]dμx(θ ).

Hence, L(A)(x)=0, but L(B)(x)=1.

• If LB(0,θ1)−LB(1,θ1)<0=LA(0,θ2)−LA(1,θ2), we have

LA(0,θ1)−LA(1,θ1)<LB(0,θ1)−LB(1,θ1)<0=LA(0,θ2)−LA(1,θ2)<LB(0,θ2)−LB(1,θ2).

If p∈ (0,1) is such that

p

1−p
<

|LB(0,θ2)−LB(1,θ2)|
|LB(0,θ1)−LB(1,θ1)| ,

we have∫
�

[LA(0,θ )−LA(1,θ )]dμx(θ )=[LA(0,θ1)−LA(1,θ1)]p+[LA(0,θ2)−LA(1,θ2)](1−p)<0<

< [LB(0,θ1)−LB(1,θ1)]p+[LB(0,θ2)−LB(1,θ2)](1−p)=
∫

�

[LB(0,θ )−LB(1,θ )]dμx(θ ).

Hence, L(A)(x)=0, but L(B)(x)=1.
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• If LB(0,θ1)−LB(1,θ1)=0=LA(0,θ2)−LA(1,θ2), we have

LA(0,θ1)−LA(1,θ1)<LB(0,θ1)−LB(1,θ1)=0=LA(0,θ2)−LA(1,θ2)<LB(0,θ2)−LB(1,θ2).

For every p∈ (0,1),∫
�

[LA(0,θ )−LA(1,θ )]dμx(θ )=[LA(0,θ1)−LA(1,θ1)]p+[LA(0,θ2)−LA(1,θ2)](1−p)<0<

< [LB(0,θ1)−LB(1,θ1)]p+[LB(0,θ2)−LB(1,θ2)](1−p)=
∫

�

[LB(0,θ )−LB(1,θ )]dμx(θ ).

Hence, L(A)(x)=0, but L(B)(x)=1.
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