## Logical Hexagons of Statistical Modalities: The Problem of Induction - Solved! +Evolution of Science and its Logic

Luís Gustavo Esteves*, Julio Michael Stern*,<br>* University of São Paulo,

Rafael Izbicki\#, Rafael Bassi Stern\#; \# Fed. Univ. of São Carlos.


http://www.ime.usp.br/~jstern/miscellanea/jmsslide/hexa18.pdf Square of Oppositon: Rapa Nui, 11-15/11/2016; Crete, 1-5/11/2018;

EBL, Pirenópolis, 8-12/05/2017; UniLog, Vichy, 16-26/06/2018;

## This Presentation

I- Introduction;
II- Logical Hexagons of Opposing Modalities;
III- Testing (Accepting / Rejecting) Statistical Hypotheses,
> Desirable Logical Properties of Agnostic Tests,
> Failure of Probabilistic Statistical Tests;
IV- Full Coherence $\Rightarrow$ Alethic/Possib. Calculus \& Region Tests
$\Rightarrow$ GFBST - Generalized Full Bayesian Significance Test,
> GFBST's continuous mathematics under the hood;
V- Hybrid (Alethic / Probabilistic) Relations,
> Sharp Hypotheses: Importance and Paradoxes;
$>$ The Problem of Induction: $\boxplus H$ or $\diamond H \wedge \neg \uplus H$ ?
VI- Pierre Gallais' Hexagonal Spirals and Science Evolution;
VII- How to model Pragmatic Acceptance of sharp H ?
VIII, XI- Bibliography \& Goodbye.

## Hybrid Hexagons of Opposing Modalities



Modal Operators:
$\square$ - Necessity,
$\diamond$ - Possibility,
$\Delta$ - Contingency,
$\nabla$ - Non-Contingency;
Types:
$\nabla \Delta \diamond \square$ - Alethic by Possibilistic measure, $\nabla \otimes \mapsto \boxplus$-Probabilistic,
$\nabla \Delta$ - Hybrid;
Logical Operators:
$\neg$ - Nega., $\rightarrow$ - Implic.,
$\wedge-$ Conjunction (and),
$\vee$ - Disjunction (or);
Opposition relations:
= Contradiction,
--- Contrariety,
...... Sub-Contrariety.

## A：Accept or Reject

$\boxplus$ ：Accept $H \Leftrightarrow \operatorname{Pr}(? H) \geq 1-\alpha \quad \neg \ominus$ ：Reject $H \Leftrightarrow \operatorname{Pr}(? H)<\beta$ $\star$ ：Do not Reject
$\nabla:$ Agnostic $\Leftrightarrow$ Neither Accept nor Reject
Ideal world（wishful thinking），not how it really works：
Parameter space $\Theta$ ，Posterior Probability $p_{n}(\theta) \propto p_{0}(\theta) p(X, \theta)$ ； Hypotheses $H: \theta \in \Theta_{H}$（relaxed notation：$H$ for $\Theta_{H}$ ）； Hypothesis $H \subset \Theta$ has known $\operatorname{Pr}(H)=\int_{H} p(\theta) d \theta$ ；
$\beta=\operatorname{Pr}($ type II error＝false negative ）；
$1-\beta=\operatorname{Power}=\operatorname{Pr}($ reject $H$ if $\theta \notin H)$ ；
$\alpha=$ Significance level $=\operatorname{Pr}($ type I error $=$ reject $H$ if $\theta \in H)$ ；
Choices for $\alpha$ or $\beta$ ：
Ronald Fisher：$\alpha=0.05\left(^{*}\right)$ ， $0.02\left(^{(* *)} 0.01\right.$（＊＊＊）；
Equal weight：$\underset{\sim}{\mathcal{H}}$ Calibrate the test to minimize $\alpha+\beta$ ．
$\widetilde{H}=\Theta-H, \operatorname{Pr}(\widetilde{H})=1-\operatorname{Pr}(H)$ ；

## Slack and Sharp versions of Non-Cont.

$\Delta$ : Ordained
$\square$ : Mandatory
$\neg \diamond$ : Forbiden
$\diamond$ : Permitted

## $\nabla$ : Indifferent

$\Delta$ : Inclu.or Exclu.
$\square$ : Inclusion
$\diamond$ : Inclu. or Intersct.
$\neg \diamond$ : Exclusion
$\neg \square$ : Exclu.or Intersct.
$\nabla$ : Intersection
$\neg \square$ : Optional

## Slack and Sharp versions of Non-Cont. Slack and Sharp Statistical Hypotheses



Simplex S1: $\left[\theta_{A}, \theta_{a}\right] \geq 0 \mid \theta_{A}+\theta_{a}=1$
Simplex S2: $\left[\theta_{A A}, \theta_{A a}, \theta_{a a}\right] \geq 0 \mid \theta_{A A}+\theta_{A a}+\theta_{a a}=1$
Hardy-Weinberg equilibrium law: Probababilities of genotypes are determined by independent probab. of alleles ( $A$ and $a$ ),
$\theta_{A A}=\theta_{A}^{2}, \theta_{A a}=\theta_{A} \theta_{a}, \theta_{a a}=\theta_{a}^{2} . \quad(1 d \mathrm{in} \mathrm{S} 2)$

## Coherence: Logical Desiderata for Statistical Tests




Invertibility (for $H$ complement):
$\square H \Longleftrightarrow \neg \diamond \widetilde{H}$ and
$\nabla H \Longleftrightarrow \nabla \widetilde{H}$
$\mathrm{A} \leftrightarrow \widetilde{\mathrm{E}}, \quad \mathrm{E} \leftrightarrow \widetilde{\mathrm{A}}$,
$\mathrm{I} \leftrightarrow \widetilde{\mathrm{O}}, \quad \mathrm{O} \leftrightarrow \widetilde{\mathrm{I}}$,
$\mathrm{U} \leftrightarrow \widetilde{\mathrm{U}}, \quad \mathrm{Y} \leftrightarrow \widetilde{\mathrm{Y}} ;$
Monotonicity (for nested $H \subset \breve{H}$ ):
$H \subseteq \breve{H} \Rightarrow\left\{\begin{array}{l}\square H \Rightarrow \square \breve{H} \\ \diamond H \Rightarrow \diamond \widetilde{H}\end{array}\right.$
$\mathrm{A} \rightarrow \breve{\mathrm{A}}, \quad \mathrm{I} \rightarrow \check{\mathrm{I}}$,
$\breve{\mathrm{O}} \rightarrow \mathrm{O}, \quad \breve{\mathrm{E}} \rightarrow \mathrm{E} ;$
See Esteves et al. (2016), (agnostic in statistics $=\nabla H$ )

## Coherence: Logical Desiderata for Statistical Tests



Strong union consonance: For every index set $I$,
$\diamond\left(\cup_{i \in I} H_{i}\right) \Rightarrow \exists i \in I \mid \diamond H_{i} ;$

Strong intersection consonance: For every index set I
$\neg \square\left(\cap_{i \in I} H_{i}\right) \Rightarrow \exists i \in I \mid \neg \square H_{i} ;$
Figures: Under strong consonance, there is at least one path from the center to a vertex of the polygon representing the indexed set of sub-hypotheses.

## Failure of Decision Th. Posterior Probability Tests




Optim. Decis: $\min _{D} E_{\theta} \operatorname{Loss}(\theta, D, H)$
$\Rightarrow$ Decide (choose) Prob. modality:
$\begin{cases}\boxplus H & , \text { if } p_{n}(H \mid x)>c_{1}, \\ \neg \oplus H & , \text { if } p_{n}(H \mid x)<c_{2}, \\ \nabla H & \text {, otherwise; where }\end{cases}$
$c_{1}=\max \left((1+a)^{-1}, b\right)$, and
$c_{2}=\min \left((1+a)^{-1}, b / a\right)$.
These tests are logically incoherent: Can calibrate constants $a$ and $b$ s.t. tests are invertible \& monotonic, but these tests are not consonant!

## Failures of other Standard Statistical Tests

| Property $\backslash$ Test | ALRT | Post.Pr. | GFBST |
| :--- | :---: | :---: | :---: |
| 1- Invertibility (Logical) | X | $\checkmark$ | $\checkmark$ |
| 2- Monotonicity (Logical) | X | $\checkmark$ | $\checkmark$ |
| 3- Consonance (Logical) | X | X | $\checkmark$ |
| 4- Consistency (Asympt.) | $\checkmark$ | $?$ | $\checkmark$ |
| 5- Invariance (Geometric) | $\checkmark$ | $?$ | $\checkmark$ |

> ALRT - Agnostic Likelihood Ratio Test: Slack or Sharp H;
> Posterior Probability: ?= $\downarrow$ for Slack $H, \quad$ ?=X for Sharp* $H$;
$>$ Generalized Full Bayesian Significance Test $\checkmark$, Sharp $\checkmark$;
$>$ Logical properties $1+2+3 \Rightarrow$ Test's topological properties:
*Sharp H: Posterior Probability/ Bayes Factor tests based on ad hoc atomic prior/posterior measures defined on $H$ - Bad idea, leading to well known paradoxes. Situation fully acknowledged by orthodox (decision theoretic) Bayesian statistics, that regards sharp hypotheses as ill formulated! See Izbicki \& Esteves (2015); Esteves et al. (2016).

## Fully Coherent (Alethic) Region Tests



Choose Alethic modality $\begin{cases}\square H & \text { if } S \subseteq H \\ \neg \diamond H & \text { if } S \subseteq \widetilde{H} \\ \nabla H & \text { if } S \cap H \neq \varnothing \& S \cap \widetilde{H} \neq \varnothing\end{cases}$ where $S$ is a region estimator of the parameter $\theta$, i.e., $S \subseteq \Theta$.

- Esteves (2016): Fully coherent tests must be region tests.
- ex: $S=\left\{\theta \in \Theta \mid p_{n}(\theta)>v\right\}$, Highest Probability Density Set.
$>S$ may not be path- or simply-connected.


## The Miracle of Induction, Solved!





Dirichlet( $1,1,1$ )


Dirichlet $(2,2,10$ )


Dirichlet(2,2,2)


Dirichlet(2,10,2)


## Generalized Full Bayesian Significance Test

- Surprise function $s(\theta)=p_{n}(\theta) / r(\theta)$;
- Reference density $r(\theta) \neq p_{0}(\theta)$, ex: Jeffreys invariant prior, or representation of Fisher Information Metric, $d l^{2}=d \theta^{\prime} J(\theta) d \theta$;
$>J(\theta)=\mathbf{E}_{\mathcal{X}} \frac{\partial \log r(x \mid \theta)}{\partial \theta} \otimes \frac{\partial \log r(x \mid \theta)}{\partial \theta}=\mathbf{E}_{\mathcal{X}} \frac{\partial^{2} \log r(x \mid \theta)}{\partial \theta^{2}} ;$
- $T(v)=\{\theta \in \Theta \mid s(\theta) \geq v\}$, HSFS at level $v$.
$>$ Highest Surprise Function Set, defining the region test.
Significance measure for hypothesis $H$ :
- Wahrheit or truth function $W(v)=1-\int_{T(v)} p_{n}(\theta \mid x) d \theta$;
- $e$-value or Epistemic Value of $H$ given observations $X$ is $\mathrm{ev}(H \mid X)=W\left(s^{*}\right)$, where $s^{*}=\sup _{\theta \in H} s(\theta)$.
$>T\left(s^{*}\right)=$ Tangential Set $=$ smallest HSFS $\mid \diamond H$.
- GFBST: Alethic modality $\begin{cases}\square H & \text { if ev }(\widetilde{H})<c \\ \neg \diamond H & \text { if ev }(H)<c \\ \nabla H & \text { otherwise. }\end{cases}$


## GFBST Continuous Mathematics under the hood

- ev $(H \mid X)$ has good asymptotic properties;
> Sharp or precise hypotheses pose no special difficulties;
- ev $(H \mid X)$ is fully invariant by model reparameterization;
- ev $(H \mid X)$ can be logically computed for Coherent Structures, that is, for the series / parallel composition of statistical models and hypotheses, see Borges and Stern (2007).

Consistency and asymptotics:
Assume a "true" (vector) parameter $\theta^{0}$ for the regular (ex. $H$ is a differentiable algebraic sub-manifold of $\Theta$ ) statistical model, $>\operatorname{sev}(H \mid X)=\operatorname{Chi} 2\left(t, \operatorname{Chi}^{-1}(t-h, \operatorname{ev}(H \mid X))\right.$,
$>\operatorname{Chi2}(k, x)=\gamma\left(\frac{k}{2}, \frac{x}{2}\right) / \gamma\left(\frac{k}{2}, \infty\right), \quad \gamma(c, x)=\int_{0}^{x} t^{c-1} e^{-t} d t$;

- If $\theta^{0} \in H$, where $H$ is sharp, $t=\operatorname{dim}(\Theta) \& h=\operatorname{dim}(H)$, then as $n \rightarrow \infty$ (increasing sample size) the Standarized $e$-value, $\operatorname{sev}(H \mid X)$, converges in distribution to the Uniform in $[0,1]$ :
- If $\theta^{0}$ is in the interior of $H, \operatorname{ev}(H \mid X) \rightarrow 1$.


## GFBST Invariance by Reparameterization of $\Theta$

Consider a regular (bijective, integrable, a.s.cont. differentiable) reparameterization of the statistical model's parameter space, $\omega=\phi(\theta), \Omega_{H}=\phi\left(\Theta_{H}\right)$, with Jacobian matrix

$$
\begin{aligned}
& J(\omega)=\left[\frac{\partial \theta}{\partial \omega}\right]=\left[\frac{\partial \phi^{-1}(\omega)}{\partial \omega}\right]=\left[\begin{array}{ccc}
\frac{\partial \theta_{1}}{\partial \omega_{1}} & \cdots & \frac{\partial \theta_{1}}{\partial \omega_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \theta_{n}}{\partial \omega_{1}} & \cdots & \frac{\partial \theta_{n}}{\partial \omega_{n}}
\end{array}\right] . \\
& \qquad \breve{s}(\omega)=\frac{\breve{p}_{n}(\omega)}{\breve{r}(\omega)}=\frac{p_{n}\left(\phi^{-1}(\omega)\right)|J(\omega)|}{r\left(\phi^{-1}(\omega)\right)|J(\omega)|}=s\left(\phi^{-1}(\omega)\right) \\
& \text { and } \breve{s}^{*}=\sup _{\omega \in \Omega_{H}} \breve{s}(\omega)=\sup _{\theta \in \Theta_{H}} s(\theta)=s^{*} . \text { Hence, }
\end{aligned}
$$

$T\left(s^{*}\right) \mapsto \phi\left(T\left(s^{*}\right)\right)=\breve{T}\left(\breve{s}^{*}\right)$, making the significance measure

$$
\breve{\operatorname{ev}}(H)=1-\int_{\check{T}\left(s^{*}\right)} \breve{p}_{n}(\omega) d \omega=1-\int_{T\left(s^{*}\right)} p_{n}(\theta) d \theta=\operatorname{ev}(H)
$$

invariant by the reparameterization.

## Disjunctive Normal Form for Coherent Structures

A Coherent Structure is a family, $M^{(i, j)}=\left\{\Theta^{j}, H^{(i, j)}, p_{0}^{j}, p_{n}^{j}, r^{j}\right\}$, of Independent Models, $M^{j}, j=1 \ldots k$, including, for each model $M^{j}$, a set of alternative hypotheses, $H^{(i, j)}, i=1 \ldots q$ (serial composition of models with parallel hypotheses).

$$
\begin{aligned}
\operatorname{ev}(H) & =\operatorname{ev}\left(\bigvee_{i=1}^{q} \bigwedge_{j=1}^{k} H^{(i, j)}\right)=\max _{i=1}^{q} \operatorname{ev}\left(\bigwedge_{j=1}^{k} H^{(i, j)}\right) \\
& =W\left(\max _{i=1}^{q} \prod_{j=1}^{k} s^{*(i, j)}\right) ; \quad W=\bigotimes_{1 \leq j \leq k} w^{j}
\end{aligned}
$$

- $W$ is the Mellin Convolution of the models' truth functions, where $[f \otimes g](y)=\int_{0}^{\infty}(1 / x) f(x) g(y / x) d x$;
- If all $s^{*}=0 \vee \widehat{s}$, ev $=0 \vee 1$, we get classical logic.




Setting constants $c_{1}=1-c \& c_{2}=c$, the modal operators defined by the GFBST and the agnostic probabilistic test obey:

- $\square H \Rightarrow \operatorname{Pr}(H \mid X) \geq 1-c \Rightarrow \boxplus H$;
- $\neg \diamond H \Rightarrow \operatorname{Pr}(H \mid X) \leq c \Rightarrow \neg \oplus H$;


## Nested (Alethic / Probabilistic) Hexagons



- Hence, setting consts.
$c_{1}=1-c$ and $c_{2}=c$, $\neg \diamond H \Rightarrow \neg \uplus H \Rightarrow \neg \boxplus H$, $\boxplus H \Rightarrow \ominus H \Rightarrow \diamond H$; Nested implictns. hold!
- However, if $H$ is sharp, $\operatorname{Pr}(H \mid X)=0 \Rightarrow \neg \oplus H$ (trivial hybrid relations)
- Nevertheless, $\diamond H$ is a consistent (s.14) outcome of the GFBST (FBST main motivation)
- Theoretical importance of sharp $H$; + Need for a meaningful Pragmatic (Acceptable) version of $H$ !


## Physical Laws \& Inferencial Miracles

- Most important scientific hypotheses or Laws are Equations, naturally expressed as Sharp Hypotheses, see Stern (2011a);
- Sharp $H \Rightarrow \neg \otimes H$. However, if $\theta^{0} \in H$ we will obtain $\diamond H$ with a given asymptotic frequency (sl.12); An inferential wonder! $>$ Indeed, corroborating an $H$ that is almost surely false is a Miracle!!! (Infidels required to take Physics101-104+Lab.)
- As theories become the standard paradigm, ontologies get reified, and we would like to have a form of...
- Pragmatic acceptance of $H$, namely, $\square \breve{H}$, where the Pragmatic hypotheses $\breve{H}$ is a non-sharp version of the sharp hypothesis $H$.
- Methods of Construction of Pragmatic hypotheses are presented in section VII.


The Problem of Induction:
$\boxplus H$ or $\diamond H \wedge \neg \ominus H$ ?

- He who wishes to solve the problem of induction must beware of trying to prove too much.
Karl Popper, Replies to my Critics; in Schilpp (1974, Ch.32, p.1110), also quoted in Stern (2011b).

This work was supported by IME-USP the Institute of Mathematics and Statistics of the University of São Paulo; UFSCar the Federal University of São Carlos; FAPESP - State of São Paulo Research Foundation (grants CEPID 2013/07375-0, CEPID 2014/50279-4 \& 2014/25302-2); and CNPq - Brazilian National Counsel of Technological and Scientific Development (PQ 301206/2011-2, PQ 301892/2015-6).

## Gallais' Hexagonal Spirals \& Science Evolution


$\mathrm{U}: \Delta H=\square \breve{H} \vee \neg \diamond H$

$A_{1}$ - Thesis: Current paradigm, well established concepts \& theory;
$U_{1}$ - Analysis: Is questioned vis-à-vis an alternative (maybe still vague or imprecise) class of models ;
$E_{1}$ - Antithesis: Old laws rejected;
$\mathrm{O}_{2}$ - Apothesis / Prosthesis: Alternative models considered ( $H^{\prime}$ ); Specific (precise) forms selected;
$Y_{2}$ - Synthesis: New laws formulated!
$I_{2}$ - Enthesis: Theory integration; Systematic empirical corroboration; Fundamental constants calibrated;
$A_{2}-$ New standard paradigm: New laws accepted (well quantified imprecisions), reified ontology (correspond. principle).

## Gallais' Hexagonal Spirals \& Science Evolution


$\mathrm{U}: \Delta H=\square \breve{H} \vee \neg \diamond H$

$A_{1}$ - Ptolemaic astronomy \& system of circular cycles and epicycles;
$U_{1}$ - Is put in question:
Circular or Oval orbits?
$E_{1}$ - Orbits are Not circular;
$\mathrm{O}_{2}$ - Elliptical orbits (eureka);
$Y_{2}$-Kepler laws!
$A_{2}$ - Vortex theories;
$U_{2}$ - Tangential or Radial forces?
$E_{2}$ - Forces are Not tangential;
$\mathrm{O}_{3}$ - Radial \& inverse square!
$Y_{3}$ - Newton laws!
$A_{3}$ - Newtonian mechanics.

## Gallais' Hexagonal Spirals \& Science Evolution


$A_{1}$ - Geoffroy rules and tables as axioms of chemical affinity;
$U_{1}$ - Ordinal or Numerical?
$E_{1}$ - Not ordinal;
$\mathrm{O}_{2}$ - Integer affinity numbers;
$Y_{2}$ - Morveau rules and tables!
$A_{2}$ - Modern (1800) chemistry, Stoichiometry + Affinity rules \& Substitution reactions;
$U_{2}$ - Total or Parcial?
$E_{2}$ - Not total substitution;
$\mathrm{O}_{3}$ - Reversible equilibria;
$Y_{3}$ - Mass-Action kinetics!
$A_{3}$ - Thermodynamic networks.

## Pragmatic Hypotheses



Construction of Pragmatic Hypotheses based on Predictive dissimilarities concerning $\mathcal{Z}$, the possible outcomes of an idealized future experiment, $\mathbf{Z}$.

Cross-Entropy Divergence:

$$
\begin{aligned}
\mathrm{KLz}\left(\theta_{0}, \theta^{*}\right) & =\mathrm{KL}\left(\mathbb{P}_{\theta^{*}}, \mathbb{P}_{\theta_{0}}\right) \\
& =\int_{\mathcal{Z}} \log \left(\frac{d \mathbb{P}_{\theta^{*}}}{d \mathbb{P}_{\theta_{0}}}\right) d \mathbb{P}_{\theta^{*}},
\end{aligned}
$$

Classification Distance, Total Variation or $L_{1}$ norm: :

$$
\begin{aligned}
\operatorname{CD}\left(\theta_{0}, \theta^{*}\right) & =0.5 \mathrm{TV}\left(\mathbb{P}_{\theta_{0}}, \mathbb{P}_{\theta^{*}}\right) \\
& =0.25\left\|\mathbb{P}_{\theta_{0}}-\mathbb{P}_{\theta^{*}}\right\|_{1}
\end{aligned}
$$

## Future Research: Metrology/ Fundamental Constants

- How to better calibrate the fundamental and empirical constants of a set of experiments testing hypotheses in a complex theory, and Accept, Reject or remain agnostic?
- ...
- ...
- Universal or case specific solutions?


## Semi-Parametric Statistical Models

- How to decide cut-off point?
-..
-...
- Well adapted basis?


## Short Bibliography

$>$ W. Borges, J. M. Stern (2007). The Rules of Logic Composition for the Bayesian Epistemic e-values. Logic Journal of the IGPL, 15, 401-420.
> L.G. Esteves, R. Izbicki, J.M. Stern, R.B. Stern (2016). The Logical Consistency of Simultaneous Agnostic Hypothesis Tests. Entropy, 18, 7, 256.1-256.32.
> R. Izbicki, L.G. Esteves (2015). Logical Consistency in Simultaneous Statistical Test Procedures. Logic Journal of the IGPL, 23, 5, 732-758.
> C.A.B. Pereira, J.M. Stern (1999). Evidence and Credibility: Full Bayesian Signicance Test for Precise Hypotheses. Entropy, 1, 69-80.
> C.A.B. Pereira, J.M. Stern, S. Wechsler (2008). Can a Signicance Test be Genuinely Bayesian? Bayesian Analysis, 3, 79-100.
> J.M. Stern, R. Izbicki, L.G. Esteves, R.B. Stern (2017). Logically-consistent hypothesis testing and the hexagon of oppositions. Logic Journal of the IGPL, 25, 5, 741-757.
> J.M. Stern (2018). Verstehen (causal/ interpretative understanding), Erklären (law-governed description /prediction), and Empirical Legal Studies. J. Institutional and Theoretical Economics (JITE), 174, 1-10. $>$ J.M. Stern (2017). Continuous versions of Haack's Puzzles: Equilibria, Eigen-States and Ontologies. Logic Journal of the IGPL, 25, 4, 604-631.
> J.M. Stern (2015). Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Muenchhausen's Trilemma. Interdisciplinary Bayesian Statistics, Ch.5, p.55-68. Heidelberg: Springer.
> J.M. Stern, C.A.B. Pereira (2014). Bayesian Epistemic Values: Focus on Surprise, Measure Probability! Logic Journal of the IGPL, 22, 236-254.
> J.M. Stern (2014). Jacob's Ladder and Scientific Ontologies. Cybernetics \& Human Knowing, 21, 3, p.9-43.
> J.M.Stern (2011a). Symmetry, Invariance and Ontology in Physics and Statistics. Symmetry, 3, 3, 611-635.
> J.M. Stern (2011b). Constructive Verification, Empirical Induction, \& Falibilist Deduction: Information, 2, 635-650.
> J.M. Stern (2004). Paraconsistent Sensitivity Analysis for Bayesian Significance Tests. LNAI, 3171, 134-143.
> J.Y. Béziau (2015). Opposition and order. In New Dimensions of the Square of Opposition. Philosophia Verlag.
> R. Blanché (1966). Structures Intellectuelles: Essai sur l'Organisation Systématique des Concepts. Paris: Vrin.
$>$ W. Carnielli, C. Pizzi (2008). Modalities and Multimodalities. Heidelberg: Springer.
> P. Gallais, V. Pollina (1974). Hegaxonal \& Spiral Structure in Medieval Narrative. Yale French Studies, 51, 115-132.
>P. Gallais (1982). Dialetique du Récit Mediéval: Chretien Troyes et l'Hexagone Logique. Amsterdam: Rodopi.
> D. Dudois, H. Prade (1982). On Several Representations of an Uncertain Body of Evidence. pp. 167-181 in M. M. Gupta, E. Sanchez (1982). Fuzzy Information and Decision Processes. North-Holland.
> D. Dudois, H. Prade (2012). From Blanché's Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory. Logica Universalis, 6, 149-169.

## Goodbye! Adieu! Ko te pava kokorua! vү $\epsilon \alpha \sigma \alpha \varsigma$ !



- The legendary Polynesian king and navigator Hotu Matu'a reached Te pito te henua (the navel of the world) some time arround 1000 CE, sailing a double hull catamaran from Mangareva, 2600 km, or the Marquesas, 3200 km away;
- Building of Ariña ora ata tepuña, face-living-image-idols or moai monoliths, lead to ecological devastation, famine, war, cultural breakdown \& civilization collapse.


## Goodbye! Adieu! Ko te pava kokorua! vү $\epsilon \alpha \sigma \alpha \varsigma$ !



## Goodbye! Adieu! Ko te pava kokorua! vү $\epsilon \alpha \alpha \alpha \varsigma$ !



## Goodbye! Adieu! Ko te pava kokorua! vर $\epsilon \alpha \alpha \alpha \varsigma$ !



