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Introduction |

In randomized experiments, a simple random allocation can
yield groups that differ meaningfully with respect to a given
covariate. Furthermore, it is unfeasible to control the allocation
with respect to more than a moderate number of covariates.

Morgan and Rubin (2012, 2015) propose an approach based on
Rerandomization (repeated randomization) to ensure that the
final allocation obtained is well balanced.
Levels of the Rerandomization method:
@ Lower level: Random samplings for obtaining proposed alloca-
tions (Guarantees stochastic behavior of proposed allocations)
@® Upper level: Rejection of proposals that do not satisfy balance
criteria (“Optimizes” balance of final allocation)
However, despite the benefits of the Rerandomization method,
it has an exponential computational cost in the number of co-
variates (for fixed balance constraints).
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e We propose the use of Haphazard Intentional Allocation, an al-
ternative allocation method based on optimal balance of the co-
variates extended by random noise, see Lauretto et al. (2012).

e Similarly to the allocation process in Morgan and Rubin (2012),
our method can be divided into a randomization and an opti-
mization step.

@ Randomization step: consists of creating new (artificial) covari-
ates according to a specified distribution.

@® Optimization step: consists of finding the allocation that (ap-
proximately) minimizes a linear combination of:
— the imbalance in the original covariates; and
— the imbalance in the artificial covariates.
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Let X denote the covariates of interest.
e X: matrix in R"*4 where n is the number of individuals to be
allocated and d is the number of covariates of interest.
An allocation consists of assigning to each individual a group,
treatment or arm index, g € G = {0,1,2,...}.

We represent an allocation by w, a 1 x n vector in G".

Our goal is to generate an allocation with a low value for a
specified inbalance loss function, L(w, X).

The Haphazard Intentional Allocation consists of finding the
approximate minimum of L(w, [X, Z]), where Z is a matrix
containing random noise.
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Let Z be an artificially generated matrix in R™**, with elements
that are independent and identically distributed according to
the standard normal distribution.

For a given tuning parameter, A € [0, 1], the Haphazard Inten-
tional Allocation finds a feasible allocation, w* minimizing

w* = arg mign LA\ w, X, Z)
E n

= arg mln 1 (1= A)L(w, X) + AL(w, Z).
weg

A: controls the amount of perturbation that is added to the
original loss function, L(w, X).

e A =0 = w* = deterministic minimizer of L(w, X);

e A = 1= w* = minimizer of the unrelated random loss, L(w, Z).

e Intermediate values of A render intermediary characteristics.
From now on, we consider the case of two groups, G = {0, 1},
and Normal distributed random variables.
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Morgan and Rubin (2012) discusses the case in which the loss
function is based on the Mahalanobis distance between the co-
variates of interest in each group.

In order to define this loss function, let A be an arbitrary matrix
in R"%4_ Furthermore, define A := A L, where L is the lower
triangular Cholesky factor: Cov(A)~! = L L, see [1].

For an allocation w, let a' and a” denote the averages of each
column of A over individuals allocated to, respectively, groups
1 and 0. That is,

| o, L-w 7 n =w'l
a = nlA and a’ = o A, where { no = (1 —w)' 1

The Mahalanobis loss between the groups is computed as:

M(w, A) = v/nino/n la* —a’|l2 (1)
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e We want to allocate a fixed number of individuals to each group,
that is, w1 =ny and (I —w)' 1 =mng =n —ny.

e We can take all these restrictions into consideration by choosing
a haphazard intentional allocation with minimal Mahalanobis
loss function according to the following optimization problem:

minimize(w) M\ w, X, Z)
=AM (w,Z)+ (1 = \)M(w, X) 2)
such that wtl =mn

e This is a mixed-integer Quadratic Programming problem, that
is difficult to solve relative to the mixed-integer Linear Pro-
gramming.
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e Hence, we use the following Linear Programming approxima-
tion, based on the hybrid norm:

H(w,A) = |la' —ad°||; + Vd|a' — a°|so.

The hybrid norm is a surrogate loss function for the quadratic
norm, based on the extreme cases of the L, norms for p = 1
and p = oo, see [12].

e Furthermore, the resulting optimization problem has the form
of Linear Programming:

minimize(w) H(\ w,X,Z)

= H(w,Z)+ (1 - NH(w, X)
such that w'l=mn

w e {0,1}"

(3)
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e In order to perform a haphazard intentional allocation, it is
necessary to choose a tuning parameter, \. We explore the
trade-off between randomization and optimization into a grid
chosen for callibration convenience:

- r=01/0.9; Xr =24/ [1+27%], i=1...7
= A=A /N = k/d) + k/d] .

e This case study is based on the dataset of Shadish et al. (2008),
the same dataset used in Morgan and Rubin (2012, 2015),
consisting of 24 random covariates.

e The new Haphazard Intentional Allocation method and the
Rerandomization method of Morgan and Rubin (2012) were
implemented using the R programming language and Gurobi
optimization solver [3]. These routines ran on a 12-core Intel
i7-4930K 3.4GHz machine.
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e Each method (Haphazard and Rerandomization) ran under a
budget of 5, 10, 20, 60, 300 and 900 seconds per allocation,
running alone on a single core.

e For each point of the exploration grid, A\; and time budget, 500
allocations were generated, using different noise inputs, in order
to obtain consistent performance measures.

e Table 1 presents the median of the Mahalanobis loss function
(on the original data, that is, M (w, X)) for the resulting allo-
cations yielded by:

e The Haphazard Intentional Allocation method optimizing the
hybrid norm on the extended data, H(\, w, X, Z);

e The fixed-time Rerandomization method; and

e Pure randomization.
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Table 1: Median Mahalanobis loss function for each A; (Hap-
hazard) and time budget for each method.

5s 10s 20s 60s 300s 900s

Hap. A\* =0.014 0.036 | 0.034 | 0.033 | 0.030 | 0.026 | 0.024
Hap. A" =0.027 0.037 | 0.034 | 0.033 | 0.031 | 0.027 | 0.024
Hap. A* = 0.053 0.038 | 0.035 | 0.034 | 0.032 | 0.027 | 0.025
Hap. A* = 0.100 0.039 | 0.036 | 0.035 | 0.033 | 0.028 | 0.026
Hap. A" =0.182 0.041 | 0.038 | 0.037 | 0.035 | 0.030 | 0.028
Hap. \* = 0.308 0.044 | 0.042 | 0.040 | 0.038 | 0.033 | 0.030
Hap. \* =0.471 0.048 | 0.045 | 0.044 | 0.041 | 0.035 | 0.032
Rerandomization 0.226 | 0.217 | 0.210 | 0.198 | 0.184 | 0.174

Pure randomization 0.458
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e Table 1 suggests the following conclusions:

e The larger the time budget, the smaller the median value of the
loss function M (w, X).

e The smaller the value of )\, less noise is added to the optimiza-
tion problem and, therefore, the smaller the median value of the
loss function M (w, X).

e Choosing A* = 0.1, Haphazard Intentional Allocation obtains a
median Mahalanobis loss that is at least 6 times smaller than
when using the fixed-time Rerandomization method.

e Figures 1a, 1b illustrate the difference in covariate balance be-
tween Haphazard (A* = 0.1), Rerandomization and pure ran-
dom allocations.
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Figure la. Difference between covariate averages, 900 secs/allocation.
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Figure 1b. Difference between covariate averages, 900 secs/allocation.
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e Table 2 presents the 95% percentile (over all n?/2 — n pairs of
individuals) of the Yule coefficient (computed for each pair of
individuals over the 500 allocations).

e Yule coefficient measures how often the individuals under con-
sideration are allocated to the same group.

e Pure random allocation is the effective benchmark for lowest
Yule coefficient.
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Table 2: 95% percentile of the Yule correlation between allo-
cations for each allocation procedure and time budget.

bs 10s 20s 60s 300s 900s

Hap. \* =0.014 0.315 | 0.254 | 0.227 | 0.176 | 0.153 | 0.151
Hap. \* =0.027 0.313 | 0.258 | 0.216 | 0.172 | 0.152 | 0.151
Hap. A" = 0.053 0.350 | 0.280 | 0.224 | 0.171 | 0.151 | 0.150
Hap. A* = 0.100 0.203 | 0.192 | 0.182 | 0.161 | 0.152 | 0.150
Hap. \* =0.182 0.229 | 0.190 | 0.178 | 0.158 | 0.151 | 0.150
Hap. A" =0.308 0.230 | 0.194 | 0.176 | 0.159 | 0.150 | 0.150
Hap. \* =0.471 0.266 | 0.224 | 0.187 | 0.158 | 0.150 | 0.150
Rerandomization 0.144 | 0.145 | 0.146 | 0.146 | 0.146 | 0.146

Pure randomization .143
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e Empirically, fixed-time Rerandomization attains a Yule coeffi-
cient comparable to the benchmark of pure random allocation.

e For Haphazard Intentional allocations:

e In the scope of our experiments, the choice of \ doesn’t play a
preponderant role concerning the Yule coefficient.

e |nstead, time processing budget seems to be the preponderant
factor to achieve low Yule coefficients.

e With a time budget of 900s, the Haphazard Intentional Alloca-
tion obtains a Yule coefficient 5% higher than simple random
allocation.

e Hence, comparing the Haphazard Intentional Allocation method
and the fixed-time Rerandomization method, we see that, using
A* = 0.1, it is possible to obtain a balance on the covariates
that is 500% better (measured by the Mahalanobis loss func-
tion), at a cost of only a 5% increase in nonrandom associations
(measured by the Yule coefficient).
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e An alternatively interpretation for our experiments is to see
them as a proxy for other relevant statistical properties.
e For instance, one might be interested in testing the existence

of a causal effect of the group assignment on a given response
variable. Ex:

e For each j € {0,1}, we simulate Y/ as the response variable
when all individuals are assigned to group j.
e We follow the procedure'
OY' =¢ +2; Vari’ where € ~ N(0,I).
®Vv' =Y+
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e Figure 2 illustrates the difference of power in the allocations ob-
tained by the Haphazard and the Rerandomization procedures
for a permutation test for the hypothesis 7 = 0.

e The tests obtained using the Haphazard Intentional Allocation
method are uniformly more powerful over 7 than the ones ob-
tained using the Rerandomization method.

e Figure 3 shows that the difference in power between these al-
location procedures can be as high as 0.7 (at 7 = .4).
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Figure 2. Power curves for each allocation procedure for testing 7 = 0

using a permutation test.
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Difference in power
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Figure 3. Difference between power curves of Haphazard and Rerandom-

ization Allocations for testing 7 = 0 using a permutation test.



Future Research

e Explore the use of the Haphazard Intentional Allocation method
and the Rerandomization method in applied problems in the
field of:

e Clinical trials;
e Jurimetrics.
e Explore the use of alternative surrogate Loss functions for bal-

ance performance, such as CVaR norms, Deltoidal norms and
Block norms [10, 2, 13].
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