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Introduction I

• In randomized experiments, a simple random allocation can
yield groups that differ meaningfully with respect to a given
covariate. Furthermore, it is unfeasible to control the allocation
with respect to more than a moderate number of covariates.

• Morgan and Rubin (2012, 2015) propose an approach based on
Rerandomization (repeated randomization) to ensure that the
final allocation obtained is well balanced.

• Levels of the Rerandomization method:

1 Lower level: Random samplings for obtaining proposed alloca-
tions (Guarantees stochastic behavior of proposed allocations)

2 Upper level: Rejection of proposals that do not satisfy balance
criteria (“Optimizes” balance of final allocation)

• However, despite the benefits of the Rerandomization method,
it has an exponential computational cost in the number of co-
variates (for fixed balance constraints).



Introduction II

• We propose the use of Haphazard Intentional Allocation, an al-
ternative allocation method based on optimal balance of the co-
variates extended by random noise, see Lauretto et al. (2012).

• Similarly to the allocation process in Morgan and Rubin (2012),
our method can be divided into a randomization and an opti-
mization step.

1 Randomization step: consists of creating new (artificial) covari-
ates according to a specified distribution.

2 Optimization step: consists of finding the allocation that (ap-
proximately) minimizes a linear combination of:
– the imbalance in the original covariates; and
– the imbalance in the artificial covariates.



Haphazard intentional allocation I

• Let X denote the covariates of interest.

• X: matrix in Rn×d, where n is the number of individuals to be
allocated and d is the number of covariates of interest.

• An allocation consists of assigning to each individual a group,
treatment or arm index, g ∈ G = {0, 1, 2, . . .}.

• We represent an allocation by w, a 1× n vector in Gn.

• Our goal is to generate an allocation with a low value for a
specified inbalance loss function, L(w,X).

• The Haphazard Intentional Allocation consists of finding the
approximate minimum of L(w, [X,Z]), where Z is a matrix
containing random noise.



Haphazard intentional allocation II
• Let Z be an artificially generated matrix in Rn×k, with elements

that are independent and identically distributed according to
the standard normal distribution.

• For a given tuning parameter, λ ∈ [0, 1], the Haphazard Inten-
tional Allocation finds a feasible allocation, w∗ minimizing

w∗ = arg min
w∈Gn

L(λ,w,X,Z)

= arg min
w∈Gn

(1− λ)L(w,X) + λL(w,Z).

• λ: controls the amount of perturbation that is added to the
original loss function, L(w,X).

• λ = 0⇒ w∗ = deterministic minimizer of L(w,X);
• λ = 1⇒ w∗ = minimizer of the unrelated random loss, L(w,Z).
• Intermediate values of λ render intermediary characteristics.

• From now on, we consider the case of two groups, G = {0, 1},
and Normal distributed random variables.



Haphazard intentional allocation III
• Morgan and Rubin (2012) discusses the case in which the loss

function is based on the Mahalanobis distance between the co-
variates of interest in each group.

• In order to define this loss function, let A be an arbitrary matrix
in Rn×d. Furthermore, define Ã := AL, where L is the lower
triangular Cholesky factor: Cov(A)−1 = LLt, see [1].

• For an allocation w, let a1 and a0 denote the averages of each
column of Ã over individuals allocated to, respectively, groups
1 and 0. That is,

a1 :=
w

n1
Ã and a0 :=

(1− w)
n0

Ã, where

{
n1 = wt

1

n0 = (1− w)t 1

• The Mahalanobis loss between the groups is computed as:

M(w,A) =
√
n1 n0/n ‖a1 − a0‖2 (1)



Haphazard intentional allocation IV

• We want to allocate a fixed number of individuals to each group,
that is, wt

1 = n1 and (1− w)t 1 = n0 = n− n1.

• We can take all these restrictions into consideration by choosing
a haphazard intentional allocation with minimal Mahalanobis
loss function according to the following optimization problem:

minimize(w) M(λ,w,X,Z)
= λM(w,Z) + (1− λ)M(w,X)

such that wt
1 = n1

w ∈ {0, 1}n
(2)

• This is a mixed-integer Quadratic Programming problem, that
is difficult to solve relative to the mixed-integer Linear Pro-
gramming.



Haphazard intentional allocation V

• Hence, we use the following Linear Programming approxima-
tion, based on the hybrid norm:

H(w,A) = ‖a1 − a0‖1 +
√
d‖a1 − a0‖∞.

The hybrid norm is a surrogate loss function for the quadratic
norm, based on the extreme cases of the Lp norms for p = 1
and p =∞, see [12].

• Furthermore, the resulting optimization problem has the form
of Linear Programming:

minimize(w) H(λ,w,X,Z)
= λH(w,Z) + (1− λ)H(w,X)

such that wt
1 = n1

w ∈ {0, 1}n
(3)



Numerical Experiments I

• In order to perform a haphazard intentional allocation, it is
necessary to choose a tuning parameter, λ. We explore the
trade-off between randomization and optimization into a grid
chosen for callibration convenience:
– r = 0.1/0.9; λ∗i = 2i−4r/

[
1 + 2i−4r

]
, i = 1 . . . 7;

– λi = λ∗i / [λ
∗
i (1− k/d) + k/d] .

• This case study is based on the dataset of Shadish et al. (2008),
the same dataset used in Morgan and Rubin (2012, 2015),
consisting of 24 random covariates.

• The new Haphazard Intentional Allocation method and the
Rerandomization method of Morgan and Rubin (2012) were
implemented using the R programming language and Gurobi
optimization solver [3]. These routines ran on a 12-core Intel
i7-4930K 3.4GHz machine.



Numerical Experiments II

• Each method (Haphazard and Rerandomization) ran under a
budget of 5, 10, 20, 60, 300 and 900 seconds per allocation,
running alone on a single core.

• For each point of the exploration grid, λi and time budget, 500
allocations were generated, using different noise inputs, in order
to obtain consistent performance measures.

• Table 1 presents the median of the Mahalanobis loss function
(on the original data, that is, M(w,X) ) for the resulting allo-
cations yielded by:

• The Haphazard Intentional Allocation method optimizing the
hybrid norm on the extended data, H(λ,w,X,Z);

• The fixed-time Rerandomization method; and
• Pure randomization.



Numerical Experiments III

Table 1: Median Mahalanobis loss function for each λi (Hap-
hazard) and time budget for each method.

5s 10s 20s 60s 300s 900s

Hap. λ∗ = 0.014 0.036 0.034 0.033 0.030 0.026 0.024
Hap. λ∗ = 0.027 0.037 0.034 0.033 0.031 0.027 0.024
Hap. λ∗ = 0.053 0.038 0.035 0.034 0.032 0.027 0.025
Hap. λ∗ = 0.100 0.039 0.036 0.035 0.033 0.028 0.026
Hap. λ∗ = 0.182 0.041 0.038 0.037 0.035 0.030 0.028
Hap. λ∗ = 0.308 0.044 0.042 0.040 0.038 0.033 0.030
Hap. λ∗ = 0.471 0.048 0.045 0.044 0.041 0.035 0.032
Rerandomization 0.226 0.217 0.210 0.198 0.184 0.174

Pure randomization 0.458



Numerical Experiments IV

• Table 1 suggests the following conclusions:

• The larger the time budget, the smaller the median value of the
loss function M(w,X).

• The smaller the value of λ, less noise is added to the optimiza-
tion problem and, therefore, the smaller the median value of the
loss function M(w,X).

• Choosing λ∗ = 0.1, Haphazard Intentional Allocation obtains a
median Mahalanobis loss that is at least 6 times smaller than
when using the fixed-time Rerandomization method.

• Figures 1a, 1b illustrate the difference in covariate balance be-
tween Haphazard (λ∗ = 0.1), Rerandomization and pure ran-
dom allocations.



Numerical Experiments V
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Figure 1a. Difference between covariate averages, 900 secs/allocation.



Numerical Experiments VI
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Figure 1b. Difference between covariate averages, 900 secs/allocation.



Numerical Experiments VII

• Table 2 presents the 95% percentile (over all n2/2−n pairs of
individuals) of the Yule coefficient (computed for each pair of
individuals over the 500 allocations).

• Yule coefficient measures how often the individuals under con-
sideration are allocated to the same group.

• Pure random allocation is the effective benchmark for lowest
Yule coefficient.



Numerical Experiments VIII

Table 2: 95% percentile of the Yule correlation between allo-
cations for each allocation procedure and time budget.

5s 10s 20s 60s 300s 900s

Hap. λ∗ = 0.014 0.315 0.254 0.227 0.176 0.153 0.151
Hap. λ∗ = 0.027 0.313 0.258 0.216 0.172 0.152 0.151
Hap. λ∗ = 0.053 0.350 0.280 0.224 0.171 0.151 0.150
Hap. λ∗ = 0.100 0.203 0.192 0.182 0.161 0.152 0.150
Hap. λ∗ = 0.182 0.229 0.190 0.178 0.158 0.151 0.150
Hap. λ∗ = 0.308 0.230 0.194 0.176 0.159 0.150 0.150
Hap. λ∗ = 0.471 0.266 0.224 0.187 0.158 0.150 0.150
Rerandomization 0.144 0.145 0.146 0.146 0.146 0.146

Pure randomization .143



Numerical Experiments IX
• Empirically, fixed-time Rerandomization attains a Yule coeffi-

cient comparable to the benchmark of pure random allocation.

• For Haphazard Intentional allocations:

• In the scope of our experiments, the choice of λ doesn’t play a
preponderant role concerning the Yule coefficient.

• Instead, time processing budget seems to be the preponderant
factor to achieve low Yule coefficients.

• With a time budget of 900s, the Haphazard Intentional Alloca-
tion obtains a Yule coefficient 5% higher than simple random
allocation.

• Hence, comparing the Haphazard Intentional Allocation method
and the fixed-time Rerandomization method, we see that, using
λ∗ = 0.1, it is possible to obtain a balance on the covariates
that is 500% better (measured by the Mahalanobis loss func-
tion), at a cost of only a 5% increase in nonrandom associations
(measured by the Yule coefficient).



Numerical Experiments X

• An alternatively interpretation for our experiments is to see
them as a proxy for other relevant statistical properties.

• For instance, one might be interested in testing the existence
of a causal effect of the group assignment on a given response
variable. Ex:

• For each j ∈ {0, 1}, we simulate Y j as the response variable
when all individuals are assigned to group j.

• We follow the procedure:

1 Y 0
i = εi +

∑
j

Xi,j−X•,j
Var(X•,j)

, where ε ∼ N(0, I).
2 Y 1

i = Y 0
i + τ .



Numerical Experiments XI

• Figure 2 illustrates the difference of power in the allocations ob-
tained by the Haphazard and the Rerandomization procedures
for a permutation test for the hypothesis τ = 0.

• The tests obtained using the Haphazard Intentional Allocation
method are uniformly more powerful over τ than the ones ob-
tained using the Rerandomization method.

• Figure 3 shows that the difference in power between these al-
location procedures can be as high as 0.7 (at τ = .4).



Numerical Experiments XII
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Figure 2. Power curves for each allocation procedure for testing τ = 0

using a permutation test.
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Figure 3. Difference between power curves of Haphazard and Rerandom-

ization Allocations for testing τ = 0 using a permutation test.



Future Research

• Explore the use of the Haphazard Intentional Allocation method
and the Rerandomization method in applied problems in the
field of:

• Clinical trials;
• Jurimetrics.

• Explore the use of alternative surrogate Loss functions for bal-
ance performance, such as CVaR norms, Deltoidal norms and
Block norms [10, 2, 13].
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