
Bayesian Epistemic Values: Focus
on Surprise, Measure Probability

Probability-Possibility Transformations in Statistics

Julio Michael Stern∗, Carlos A.B. Pereira∗
∗ Institute of Mathematics and Statistics

of the University of Sao Paulo
jstern@ime.usp.br

EBL-2011 COBAL-2011
MBR-2012 CBSF-2012

UniLog-2013

Julio Michael Stern, Carlos A.B. Pereira ev(H): Focus on Surprise, Measure Probability



1- Previous Work of IME-USP Bayesian Group

Statistical significance, in empirical science, is the measure
of belief or credibility or the truth value of an hypothesis.

1 Pereira and Stern (1999), Pereira et al. (2008):
Statistical Theory of e-values - ev(H) or ev(H |X )
epistemic value of hypothesis H given de data X
or evidence given by X in support of H.

2 Stern (2003, 2004), Borges and Stern (2007):
“Logical” theory for composite e-valyes
Compound Statistical Hypotheses in HDNF -
Homogeneous Disjunctive Normal Form.
(no such thing for p-values or Bayes factors)

3 Stern (2007a,b, 2008a,b, 2011a,b):
Epistemological Framework given by
Cognitive Constructivism.
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Statistical Significance of Sharp Hypothesis H

States that the true value of the parameter, θ, of the
sampling distribution, p(x | θ), lies in a low dimension set:
The Hypothesis set, ΘH = {θ ∈ Θ |g(θ) ≤ 0 ∧ h(θ) = 0},
has Zero volume (Lebesgue measure) in the parameter space.

θ

Hardy-Weinberg Hypothesis
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Bayesian setup

p(x | θ): Sampling distribution of an observed (vector)
random variable, x ∈ X , indexed by the (vector) parameter
θ ∈ Θ, regarded as a latent (unobserved) random variable.
The model’s joint distribution can be factorized either as the
likelihood function of the parameter given the observation
times the prior distribution on θ, or as the posterior density
of the parameter times the observation’s marginal density,

p(x , θ) = p(x | θ)p(θ) = p(θ | x)p(x) .

p0(θ): The prior represents our initial information.
The posterior represents the available information about
the parameter after 1 observation (unormalized potential),

p1(θ) ∝ p(x | θ)p0(θ) .

Normalization constant c1 =
∫
θ p(x | θ)p0(θ)dθ

Bayesian learning is a recursive and comutative process.
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Hardy-Weinberg genetic equilibrium,
see Pereira and Stern (1999).
- n , sample size, x1, x3 , homozygote,
- x2 = n − x1 − x3 , heterozygote count.
- Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1} ,
- H = {θ ∈ Θ | θ3 = (1−

√
θ1 )2} .

y = [0,0,0], Flat or uniform prior,
y = [−1/2,−1/2,−1/2], Invariant Jeffreys’ prior,
y = [−1,−1,−1], Maximum Entropy prior.

p0(θ) ∝ θy1
1 θ

y2
2 θ

y3
3 ;

Posterior density after observations x = [x1, x2, x3]:

pn(θ | x) ∝ θx1+y1
1 θx2+y2

2 θx3+y3
3 .
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2- Full Bayesian Significance Test

r(θ), the reference density, is a representation of
no, minimal or vague information about the parameter θ.
If r ∝ 1 then s(θ) = pn(θ) and T is a HPDS.
r(θ) defines the reference metric in Θ, dl2 = dθ′J(θ)dθ,
directly from the Fisher Information Matrix,

J(θ) ≡ −EX
∂ 2 log p(x | θ)

∂ θ2 = EX
(
∂ log p(x | θ)

∂ θ
∂ log p(x | θ)

∂ θ

)
.

The surprise function, s(θ) = pn(θ)/r(θ), measures
changes in the posterior relative to the reference density.
The ‘hat’ and ‘star’ superscripts indicate unconstrained and
constrained (to the hypothesis H) maximal arguments and
supremal surprise values, as follows:

ŝ = supθ∈Θ s(θ) , θ̂ = arg maxθ∈Θ s(θ) ,
s∗ = supθ∈H s(θ) , θ∗ = arg maxθ∈H s(θ) .
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The surprise function’s (closed, upper-bound) v-cut, T (v),
its complement, the highest surprise function set (HSFS)
above level v , T (v), and its rim (aka level-v set), M(v), are

T (v) = {θ ∈ Θ | s(θ) ≤ v} , T (v) = Θ− T (v) ,

M(v) = {θ ∈ Θ | s(θ) = v} .

If the reference density the uniform (possibly improper)
density, r(θ) ∝ 1, then s(θ) ∝ pn(θ) and the HSFS are
standard highest probability density sets (HPDS)
The statistical model’s truth function, W (v), is the
cumulative probability function up to surprise level v ,
0 ≤ v ≤ ŝ. W (v) is its complement, W (v) = 1−W (v),
and m(v) is its (generalized Schwartz) derivative,

W (v) =

∫
T (v)

pn (θ) dθ , m(v) =
d
dv

W (v) .
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Finally, the e-value for an hypothesis H ⊆ Θ, ev(H), aka
the epistemic value of hypothesis H or the statistical
evidence supporting H, and its complement, ev(H), are

ev(H) = W (v∗) , ev(H) = 1− ev(H) .

For the sake of simplicity, we use a relaxed notation for
singleton arguments, that is, in the case of a point
hypothesis H = {θ0}, writing ev({θ0}) = ev(θ0).
The e-value of an hypothesis H is based on the most
favorable case, ev(H) = ev(θ∗), a property that
characterizes ev(H) as a possibilistic ABC,
(Abstract Belief Calculus).
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3- Abstract Belief Calculus - ABC

Darwiche, Ginsberg (1992).
〈Φ,⊕,�〉 , Support Structure;
Φ , Support Function, for statements on U ;
U , Universe of valid statements;
0 and 1, Null and Full support values;
⊕ , Support Summation operator;
� , Support Scaling or Conditionalization.

⊗, Support Unscaling, inverse of �.
〈Φ,⊕〉 , Partial Support Structure.
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⊕, gives the support value of the disjunction of any two
logically disjoint statements from their individual support
values,

¬(A ∧ B)⇒ Φ(A ∨ B) = Φ(A)⊕ Φ(B) .

�, gives the conditional support value of B given A from
the unconditional support values of A and the conjunction
C = A ∧ B,

ΦA(B) = Φ(A ∧ B)� Φ(A) .

⊗, unscaling: If Φ does not reject A,

Φ(A ∧ B) = ΦA(B)⊗ Φ(A) .
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Support structures for some belief calculi,
Probability, Possibility, Classical Logic, Disbelief.
a = Φ(A), b = Φ(B), c = Φ(C = A ∧ B).

ABC Φ(U) a⊕ b 0 1 a � b c � a a⊗ b
Pr [0,1] a + b 0 1 a ≤ b c/a a× b
Ps [0,1] max(a,b) 0 1 a ≤ b c/a a× b
CL {0,1} max(a,b) 0 1 a ≤ b min(c,a) min(a,b)
DB {0..∞} min(a,b) ∞ 0 b ≤ a c − a a + b

FBST setup: two belief calculi are in simultaneous use:
ev constitutes a possibilistic (partial) support structure
in the hypothesis space coexisting in harmony with the
probabilistic support struct. given by the posterior
probability measure in the parameter space.
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4- Logic = Truth value of Composite Statements

H in Homogeneous Disjunctive Normal Form;
Independent statistical Models j = 1,2, . . .
with stated Hypotheses H(i,j), i = 1,2 . . .
Structures: M(i,j) = {Θj ,H(i,j),pj

0,p
j
n, r j} .

ev(H) = ev
(∨q

i=1

∧k

j=1
H(i,j)

)
=

maxq
i=1 ev

(∧k

j=1
H(i,j)

)
=

W
(

maxq
i=1

∏k

j=1
s∗(i,j)

)
,

W =
⊗

1≤j≤k

W j .

Composition operators: max and
⊗

(Mellin convolution).
Classical logic limit: If all s∗ = 0 ∨ ŝ, ev = 0 ∨ 1.
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Wittgenstein’s concept of Logic

We analyze the relationship between the credibility, or truth
value, of a complex hypothesis, H, and those of its
elementary constituents, H j , j = 1 . . . k . This is the
Compositionality question (ex. in analytical philosophy).
According to Wittgenstein, (Tractatus, 2.0201, 5.0, 5.32):

Every complex statement can be analyzed from its
elementary constituents.
Truth values of elementary statements are the results of
those statements’ truth-functions.
All truth-function are results of successive applications to
elementary constituents of a finite number of
truth-operations.

Wahrheitsfunktionen, W j(s);
Wahrheitsoperationen,

⊗
, max.
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Birnbaum’s Logic for Reliability Eng.

In reliability engineering, (Birnbaum, 1.4):
“One of the main purposes of a mathematical theory of
reliability is to develop means by which one can evaluate
the reliability of a structure when the reliability of its
components are known.”
Composition operations:

Series and parallel connections;
Belief values and functions:

Survival probabilities and functions.

There are no logical rules (composition operators) for
the true values or functions used in classical statistics,
p-values, or decision theoretic Bayesian statistics,
Bayes factors.
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5- Probability-Possibility Transformations

Several important properties of W (v) follow directly from
the nesting property exhibited by the v -cuts that, in turn,
give the integration range defining the truth function, see
Dubois and Prade (1982),

u ≤ v ⇒ T (u) ⊆ T (v)⇒W (u) ≤W (v) .

Using this nesting property, it is easy to establish that
ev(H) has the desired properties of consistency with its
underlying probability measure and conformity (to be
similarly shaped) with its underlying surprise function, i.e.,

Consistency: ev(H) ≥ pn(H) , ∀ H ⊆ Θ ;

Conformity: ev(θ) ≥ ev(τ) ⇔ s(θ) ≥ s(τ) , ∀ θ, τ ∈ Θ .

Julio Michael Stern, Carlos A.B. Pereira ev(H): Focus on Surprise, Measure Probability



A plausibility measure, Pl(H), is defined by its basic probability
assignment, m : 2Θ 7→ [0,1], such that

∫
S⊆Θ m(S) = 1.

The focal elements of m are the subsets of the universe with
non-zero basic pr.assignment, F = {E ⊆ Θ |m(E) > 0}.
Finally, the plausibility of H ⊆ Θ, Pl(H), is defined as

Pl(H) =

∫
E∈F |E∩H 6=∅

m(E) .

Hence, ev(H) can be characterized as a plausibility function
having v -cuts of the surprise function as focal elements,
F = {T (v),0 ≤ v ≤ ŝ}, while the basic probability density
assigned to T (v) is obtained integrating the posterior
probability density over its rim, m(v) =

∫
M(v) pn(θ)dθ.

A plausibility function defines its dual belief function as

Bel(H) =

∫
E∈F |E⊆H

m(E) = 1− Pl(H) .
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The standard possibility measure, π(H), introduced by Dubois
and Prade (1982, p.178), coincides (for the discrete case) with
ev(H) if r(θ) ∝ 1, the (trivial) uniform reference density.
- Distinct transformations were defined for the continuous case
(should not have been an obstacle, but was a distraction).
- There are some traditional objections raised in decision
theoretic Bayesian statistics against measures of statistical
significance engendered by this transformation, namely,

(a) Lack of invariance.
(b) Not an ortodox decision theoretic procedure(?)

-An optimal point “represents” a composite hypothesis.
(c) No need for nuisance parameter elimination procedures.
(d) Epistemological interpretation of sharp hypotheses.
(e) Traditional understandings of significance tests as coverage

(or not) of a point hypothesis, H ′, by a credibility interval of
prescribed size. H ′ may be obtained by “pre-processing”
(under permissible rules) the original statistical model.
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(a) Invariance

ev(H) should not depend on the coordinate systems used to
parameterize the statistical model.

Reparameterization of H, i.e. of h(θ): Trivial.
Consider a regular (bijective, integrable,
a.s.cont.differentiable) reparameterization of Θ,

ω = φ(θ) , ΩH = φ(ΘH) .

The Jacobian of this coordinate transformation is

J(ω) =

[
∂ θ

∂ ω

]
=

[
∂ φ−1(ω)

∂ ω

]
=


∂ θ1
∂ ω1

. . . ∂ θ1
∂ ωn

...
. . .

...
∂ θn
∂ ω1

. . . ∂ θn
∂ ωn

 ,

and the surprise funcion in the new coordinates is

s̃(ω) =
p̃n(ω)

r̃(ω)
=

pn(φ−1(ω)) |J(ω)|
r(φ−1(ω)) |J(ω)|

.
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Hence, s̃∗ = sup
ω∈ΩH

s̃(ω) = sup
θ∈ΘH

s(θ) = s∗ ,

T (s∗) 7→ φ(T (s∗)) = T̃ (s̃∗) , and

Ẽv(H) =

∫
T̃ (s̃∗)

p̃n(ω)dω =

∫
T (s∗)

pn(θ)dθ = ev(H) , Q.E.D.

Box and Tiao (1965, p.1470): “It seems that we cannot hope for
invariance for a genuine measure of credibility. It needs to be
remembered that invariance under transformations and virtues
are not synonymous. For problems which should not be
invariant under transformation, a search for invariance serves
only to guarantee inappropriate solutions.”

- This claim went undisputed in the statistical literature!!
- Possibilistic mesures “must be thought of as a very informal
way of testing.” Harrison (1997, Sec.8.6.7, p.256,257).
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(b) Decision Theoretic Analysis

M.R.Madruga, L.G.Esteves, S.Wechsler (2001):

Loss function, Λ : {Accept ,Reject} ×Θ 7→ R,

Λ(R, θ) = a 1(θ ∈ T ) , Λ(A, θ) = b + c 1(θ ∈ T ).

Minimum loss: Accept H iff ev(H) > ϕ = b+c
a+c .

ev(H) leads to an ortodox decision theoretic procedure,
even if a single point, the constrained optimal estimator
θ∗ = arg maxH s(θ) , “represents” the entire hypothesis set!!

Traditionally, Bayesian procedures use only integral operators,
never a maximization operator. Notice that a classical p-value,
as the e-value, is defined using both operations.
- p-values have pseudo-possibilitic characteristics.
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(c) No need for Nuisance Parameter Elimination

Dimensionality reduction technique.
- Allows the “reduction” of H to dimension zero (e).
- Difficult problems can be solved with simple devices,
like the Pickett N-525-T Statistics Slide Rule.
The FBST does not follow the nuisance parameters
elimination paradigm, working in the original parameter
space, in its full dimension, breaking away from both the
frequentist and the decision theoretic Bayesian tradition.
NPE? - That’s not a bug, that’s a feature!
How does a (theoretical) bug become a feature?
Raymond Chen (Microsoft): “One thing you quickly learn in
application compatibility is that a bug once shipped gains
the status of a feature, because you can be pretty sure that
some program somewhere relies on it.”
The FBST allways requires the use of numerical
optimization and integration methods (MC, MCMC, etc.)
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Epistemological interpretation of sharp hypotheses

In decision theoretic Bayesian statistics,
Bayes Factors are related to “betting odds” for H.
However, a sharp hypothesis has zero probability!
That is the ZPP - The Zero Probability Paradox.
The ZPP creates several technical dificulties, like Lindley’s
paradox, and motivates many ad-hoc fixes, like artficial or
special purpose priors (caveat emptor).
Sharp hypotheses make no sense in the decision theoretic
epistemological (de Finettian) framework.
Sharp hipotheses are fully supported in the Cognitive
Constructivism + FBST epistemological framework.
Deeply entangled with question (e).
Interesting back-propagation to Possibility th. literature!
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