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Abstract: Although hypothesis tests play a prominent role in Science, their in-

terpretation can be challenging. Three issues are (i) the difficulty in making an

assertive decision based on the output of an hypothesis test, (ii) the logical con-

tradictions that occur in multiple hypothesis testing, and (iii) the possible lack of

practical importance when rejecting a precise hypothesis. These issues can be

addressed through the use of agnostic tests and pragmatic hypotheses.
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1. The elements of interpretable hypothesis tests

Although hypothesis tests play a prominent role in Science, its importance has been down-

played recently [Diggle and Chetwynd, 2011, Wasserman, 2013, Trafimow et al., 2018, Pike,

2019]. A major reason why hypothesis tests have been criticized is that they can be difficult to
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interpret and can even lead to misleading conclusions [Greenland et al., 2016, Kadane, 2016,

Wasserstein et al., 2019]. At least three issues contribute to these challenges:

• Issue (i): At least one of the outcomes of a standard hypothesis test is hard to interpret.

While a standard hypothesis test can either reject or not reject the null hypothesis, the data

can lead to at least three types of credal state: favor the null hypothesis, favor the alternate

hypothesis, or remain undecided. Therefore, the test will assign to the same output at least

two different credal states. For example, standard frequentist hypothesis tests usually do not

control type II error probabilities. As a result, the non-rejection of the null hypothesis, H0,

can either be due to lack of evidence to reject H0 or due to evidence in favor of H0 [Fisher,

1959]. For instance, consider that X ∼ N (θ,1) and H0 : θ ≥ 0. In a z-test, H0 is not rejected no

matter whether X is close to 0 or X is very large. However, while in the former case there is

little evidence in favor or against H0, in the latter there is evidence in favor of H0. Edwards

et al. [1963] approaches this junction by stating that “if the null hypothesis is not rejected, it

remains in a kind of limbo of suspended disbelief”. As a result, although in practice the non-

rejection of H0 is often taken as evidence in favor of H0, this conclusion is not warranted by

the test.

• Issue (ii): For standard Bayesian and classical tests, multiple hypothesis testing can lead

to logically incoherent conclusions [Izbicki and Esteves, 2015, Fossaluza et al., 2017]. For

example, for a given dataset, a test might reject H0 : θ ≤ 0 and not reject H0 : θ = 0, although

the latter implies the former. Similarly, a test might reject both H0 and H∗
0 but not reject

H0 ∪H∗
0 . These logical contradictions are hard to interpret and explain.

• Issue (iii): When a precise hypothesis is rejected, this outcome does not mean that the

rejection is relevant from a practical perspective. For instance, consider that populations

1 and 2 are composed of, respectively, healthy and sick persons. Furthermore, for each per-

son, one can observe a clinical variable, X , such as the patient’s average blood glucose level.

Assume that, if Xi is a person from population i , then Xi ∼ N (θi ,1). Rejecting that the pop-
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ulations are the same, H0 : θ1 = θ2, does not imply that X can be used to determine whether

a person is healthy or sick. For instance, when the sample size is large, one might reject H0

although |θ1 −θ2| is not equal but close to 0. In this case X cannot effectively be used to de-

termine whether a person is healthy or sick. This result can lead to counter-intuitive policies,

such as considering an experiment to be inadequate from a statistical perspective because

its sample size is too large [Faber and Fonseca, 2014]. Although solutions to this problem

have been proposed, such as considering effect sizes [Cohen, 1992], they also increase the

difficulty in interpreting hypothesis tests.

This paper shows that the above challenges in interpretation are avoided by making simple

changes to the practice of hypothesis tests. These changes have two key components:

(a) Agnostic hypothesis tests [Neyman, 1976, Berg, 2004], which parallel agnostic classifiers

[Lei, 2014, Jeske and Smith, 2017, Jeske et al., 2017, Sadinle et al., 2017] and allow three possi-

ble results: reject H0, accept H0, or remain agnostic. The last option permits a test to control

both the type I and type II errors [Coscrato et al., 2019], avoiding the “limbo of suspended

disbelief” described in issue (i) that follows from the non-rejection of H0 in standard tests.

This occurs because the option of remaining agnostic allows the test to explicitly indicate

when data does not provide substantial evidence either in favor or against H0. Although ag-

nostic tests introduce a type III error, which occurs whenever the test remains agnostic, this

error is qualitatively different from the errors of type I and II. While it is unknown when the

latter errors occur, the error of type III is known. Hence, the user of an agnostic test can con-

trol unknown errors and either acknowledge errors of type III or correct them by, for example,

collecting more data. Besides these benefits, Esteves et al. [2016], Stern et al. [2017] show that,

as opposed to standard tests, agnostic tests can guarantee logically coherent conclusions in

multiple hypothesis testing, solving issue (ii).

(b) Pragmatic hypothesis, which substitute precise hypotheses whenever the goal of the test

is to determine variables with good predictive capabilities. For instance, let X1 and X2 be
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average blood glucose levels of healthy and sick persons and Xi ∼ N (θi ,σ2). If one wishes

to discover whether the blood glucose level is useful in determining whether an individual

is healthy or sick, then the rejection of an hypothesis such as P g (H0) : |θ1 −θ2| > kσ [Chow

et al., 2016] is more informative than the rejection of H0 : θ1 6= θ2, which solves issue (iii).

Similar ideas for augmenting the null hypothesis have previously been proposed in [Berger,

2013, DeGroot and Schervish, 2012].

The following sections define, illustrate and describe how to build agnostic tests and prag-

matic hypotheses. This task requires additional notation. Specifically, the hypotheses that

are considered are propositions about a parameter, θ ∈Θ⊆Rd . A null hypothesis is a propo-

sition of the form H0 : θ ∈Θ0, where Θ0 ⊆Θ and the alternative hypothesis, H1, is H1 : θ ∈Θc
0.

Whenever there is no ambiguity, Θ0 is used instead of H0. In order to test H0, data, X ∈X , is

used. Finally, the data follows a distribution given by Pθ0 when θ = θ0 ∈Θ.

2. Agnostic hypothesis tests

“The phrase ‘do not reject H’ is longish and cumbersome . . . (This action)

should be distinguished from (the ones in) a ‘three-decision problem’ (in

which the) actions are: (a) accept H, (b) reject H, and (c) remain in doubt.”

Neyman [1976]

A challenge in the interpretation of standard hypothesis tests is that they must always con-

clude one out of two possibilities. Although only two conclusions are available, data lead to

at least three credal states: strongly disfavor H0, strongly favor H0 or not strongly favor or dis-

favor H0. Standard tests usually assign the latter two states to the "non-rejection" of H0. As a

result, standard tests assign datasets which are qualitatively different to the same conclusion.

This challenge is addressed by agnostic tests, which can accept H0 (0), reject H0 (1) or re-

main undecided
(1

2

)
. The set of possible outcomes of such a test is denoted by D = {

0, 1
2 ,1

}
.

Definition 2.1. An agnostic test is a function, φ : X →D.
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Definition 2.2. An agnostic test, φ, is a standard test if Im[φ] = {0,1}.

An agnostic z-test is presented in Example 2.3.

Example 2.3. Let X ∼ N (θ,1). The usual α-level z-test for H0 : θ0 ≥ 0 determines:


reject H0 , if X ≤Φ−1(α)

don’t reject H0 , if X >Φ−1(α)

For α = 0.05, Φ−1(α) is approximately −1.64. Therefore, no matter whether x = −0.5 or x =
10100, H0 is not rejected. That is, no assertive decision about H0 is obtained in either case

although x = 10100 favors H0 and x =−0.5 does not.

Alternatively, one can test H0 with an agnostic test as follows:



reject H0 , if X <−Φ−1(0.5α)

accept H0 , if X >Φ−1(1−0.5α)

remain agnostic , otherwise

(1)

For α = 0.05, Φ−1(1−0.5α) is approximately 1.96. Therefore, while x = −0.5 leads to an ag-

nostic decision, x = 10100 leads to the assertive decision of accepting H0. Contrary to the

standard z-test, the agnostic test distinguishes these qualitatively different types of data.

An agnostic test can have 3 types of errors. The type I and type II errors of agnostic tests are

defined in the same way as those of standard tests. That is, a type I error occurs when the test

rejects H0 and H0 is true. Similarly, a type II error occurs when the test accepts H0 and H0

is false. A type III error occurs whenever the test remains agnostic. That is, contrary to type

I and type II errors, one knows when type III errors occur. Given this asymmetry, one might

design either frequentist or Bayesian tests that control the errors of type I and II, as presented

in Definition 2.4 and Definition 2.5.
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Definition 2.4. An agnostic test, φ, has (α,β)-level if the test’s probabilities of committing

errors of type I and II are controlled by, respectively, α and β. That is,

αφ := sup
θ0∈H0

Pθ0 (φ= 1) ≤α

βφ := sup
θ1∈H1

Pθ1 (φ= 0) ≤β

Similarly, φ, has size (α,β) if αφ =α and βφ =β.

Definition 2.5. An agnostic test, φ, has false conclusion probability of γ according to a prior

distribution over θ, fθ :Θ→R+, if

γφ :=
∫
θ0∈H0

Pθ0 (φ= 1) fθ(θ0)dθ0 +
∫
θ1∈H1

Pθ1 (φ= 0) fθ(θ1)dθ1 = γ

There are several ways of controlling the errors above. For instance, [Esteves et al., 2016,

Coscrato et al., 2019] discuss approaches based on statistical decision theory. The following

subsection presents an agnostic test that controls the errors above while preserving other

properties, such as logical consistency.

2.1. Region-based agnostic tests

Agnostic tests can be constructed through region estimators. A region estimator is a function

that assigns a subset of the parameter space to each possible dataset. Generally, a region

estimator can be interpreted as a set of plausible values for θ. For instance, when Θ = R,

confidence and credible intervals are region estimators.

Definition 2.6. A region estimator, R, is a function from X such that R(x) ⊆Θ.

It is possible to completely specify an agnostic test by means of a region estimator. Based

on the idea that the region estimator indicates the plausible values for θ, there are three cases

to consider. If all plausible values lie in H0, then there is strong evidence in favor of H0 and H0

is accepted. Also, if all plausible values lie outside of H0, then there is strong evidence against
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R(x)
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φ(x) = 0

R(x)

H0
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0

φ(x) = 1

R(x)
H0

H c
0

φ(x) = 1/2

Figure 1: φ(x) is an agnostic test based on the region estimator, R(x), for testing H0.

H0 and H0 is rejected. Finally, if there are plausible values both in and outside of H0, then H0

remains undecided. Definition 2.7 formalizes this description.

Definition 2.7. The agnostic test based on R for testing H0, φ, illustrated in Figure 1, is

φ(x) =



0 , if R(x) ⊆ H0

1 , if R(x) ⊆ H c
0

1
2 , otherwise.

If an agnostic tests is based on a region estimator that is a (frequentist) confidence set, then

the size of the test is controlled, as described in Theorem 2.8.

Theorem 2.8 (Coscrato et al. [2019]). If R(x) is a region estimator for θ with confidence 1−α

and φ is an agnostic test for H0 based on R (Definition 2.7), then φ is a (α,α)-level test. Also,

for every prior distribution over θ, fθ, γφ ≤α according to fθ.

Similarly, if an agnostic test is based on a (Bayesian) credible set instead of a confidence

set, then it controls the false conclusion probability, as described in Theorem 2.9.

Theorem 2.9. If R(x) is a region estimator for θ with credibility 1−γ according to fθ and φ is

an agnostic test for H0 based on R (Definition 2.7), then γφ ≤ γ according to fθ.

Example 2.3 below shows how Theorems 2.8 and 2.9 can construct agnostic z-tests.
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Example 2.10 (Continuation of Example 2.3). The agnostic test in Example 2.3 can be ob-

tained from Theorem 2.8 by using the usual (1−α)-level confidence interval given by C I =
[X −Φ−1(0.5α), X −Φ−1(1−0.5α)]. The obtained test has (α,α)-level.

One can also test H0 by applying Theorem 2.9. If θ ∼ N (0,1), then a typical 1−γ credi-

ble interval for θ is C I =
[

0.5X − Φ−1(0.5γ)p
2

,0.5X − Φ−1(1−0.5γ)p
2

]
. The test based on this interval

controls the false conclusion probability by γ and behaves similarly to the test in eq. (1).

An example of a test based on a credible sets is the Generalized Full Bayesian Significance

Test (GFBST) [Stern et al., 2017], which is obtained when the credibility set is a highest poste-

rior density set. Theorem 2.9 shows that the GFBST controls the false conclusion probability.

Another useful property of tests based on region estimators, such as the ones obtained from

Theorems 2.8 and 2.9, is that they are the only logically coherent tests [Esteves et al., 2016].

That is, if the same region estimator is used for simultaneously testing several hypothesis,

then there will be no logical contradiction between the conclusions of the tests. For instance,

a standard t-test can reject θ ≤ 0 and not reject θ = 0. Since θ ≤ 0 is implied by θ = 0, such a

result is a logical contradiction. If an agnostic test based on a region estimator rejects θ ≤ 0,

then it also rejects θ = 0.

It follows from the logical coherence of agnostic tests based on region estimators that they

are consistent with propositional logic [Stern et al., 2017][Lemma 6.1]. For example, consider

a class of agnostic tests, φ, based on the same region estimator, two hypotheses, H1 and H2,

and the logical proposition H∗ = P (H1, H2) = (H1 ∩H2)c . Since φ is consistent with proposi-

tional logic, the outcome of testing H∗ with φ can be determined by the outcome of testing

H1 and H2 withφ. For example, ifφ rejects either H1 or H2, then it accepts H∗, ifφ accepts H1

and H2, then it rejects H∗, and otherwise it remains agnostic about H∗. The consistency with

propositional logic not only makes the test easier to interpret but also makes simultaneous

hypothesis testing easier to implement. The latter occurs since calculating the truth-value of

a proposition is generally less expensive computationally than a direct calculation of the test.

Despite the advantages of region-based agnostic tests over standard test, the former usu-
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ally do not accept precise hypotheses. For instance, if H0 : θ = 0, then whenever a confidence

interval contains more than a single point, it follows from Definition 2.7 that H0 is not ac-

cepted. The following section argues that this result is justifiable. From a practical perspec-

tive, whenever one wishes to be able to accept the null hypothesis, this hypothesis can be

well represented by a pragmatic hypothesis.

3. Pragmatic hypotheses

“The null hypothesis is really a hazily defined small region rather than a point.”

Edwards et al. [1963]

When the null hypothesis is stated as an equality, it is often reasonable to enlarge it to a

set of values which are close to satisfying the equality from a practical perspective. Such an

enlarged hypothesis is called a pragmatic hypothesis. Although in some situations the prag-

matic hypothesis might be derived from expert knowledge, this solution might not always be

available. This section presents a method for deriving pragmatic hypotheses which closely

resembles the ones in Esteves et al. [2018].

We assume that the researcher is interested in predicting a future experiment, Z ∈Z , which

is distributed according to a density, fZ(z|θ). This future experiment can be different from X,

which is used to test the hypothesis. Specifically, the hypothesis is tested in the present using

X so that accurate predictions about Z can be made in the future.

For a given future experiment Z, one can determine which values of θ make Z behave sim-

ilarly. A predictive dissimilarity function, dZ :Θ2 → R+ is a function dZ(θ0,θ∗) that measures

how much Z behaves differently under θ0 and under θ∗. We focus on the classification dis-

similarity:

dZ(θ0,θ∗) = 0.5

(
Pθ0

(
f (Z|θ0)

f (Z|θ∗)
> 1

)
+Pθ∗

(
f (Z|θ∗)

f (Z|θ0)
> 1

))
(2)

The classification dissimilarity can be interpreted using the Neyman-Pearson lemma [Ney-
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man and Pearson, 1933] as follows. Consider that Z was generated with equal probability

either from θ0 or from θ∗. After observing Z in such a situation, the classification dissimilar-

ity is the highest achievable probability of correctly identifying which θ generated Z.

Once a predictive dissimilarity function is chosen, the pragmatic hypothesis associated to

H0, P g (H0), is defined as the set of parameter values whose dissimilarity to H0 is at most 1−ε:

P g (H0) = ⋃
θ0∈H0

{
θ∗ ∈Θ : dZ(θ0,θ∗) < 1−ε} .

If θ∗ ∉ P g (H0), then Z can be used to discriminate between θ∗ and any given point in H0 with

an accuracy of at least 1−ε.

This construction can be illustrated with a test of equality between populations. In this

case, if a parameter value lies outside of the pragmatic hypothesis, then there exists a classi-

fier based on Z with accuracy of at least 1− ε for determining which population generated Z

(Theorem A.1). This procedure is applied to real data in Example 3.1.

Example 3.1. The Cambridge Cognition Examination (CAMCOG) [Roth et al., 1986] is a ques-

tionnaire that is used to measure the extent of dementia and assess the level of cognitive im-

pairment. We use the data from Cecato et al. [2016] to check whether CAMCOG is able to

distinguish three groups of patients: (i) control (CG), (ii) mild cognitive impairment (MCI),

and (iii) Alzheimer’s disease (AD). We assume that, if Yi , j is the score of the j -th patient in

group i , then Yi , j = µi +εi , j , where µi are the population averages in each group and εi , j are

independent variables such that εi , j ∼ N (0,σ2).

Figure 2 illustrates how the sample size affects region-based agnostic tests (Definition 2.7)

for testing the pragmatic hypotheses induced by H0 : µi −µ j = 0. In each of the plots, the

solid line indicates the precise hypothesis of interest, that is, the CAMCOG scores are equally

distributed among the compared groups. The values of µi −µ j between the dashed lines

compose the associated pragmatic hypothesis, P g (H0). When the pragmatic hypothesis does

not hold, there exists a classifier based on the CAMCOG score which highly discriminates the
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AD vs Control AD vs MCI Control vs MCI

25 50 75 100 25 50 75 100 25 50 75 100
−30

−20

−10

0

10

20

30

Sample size

µ i
−

µ j
Decision Accept H0 Reject H0 Remain Agnostic

Figure 2: Confidence intervals for the average difference between groups,µi−µ j as a function
of the sample size. The solid line indicates the precise hypothesis considered in
each figure, H0 : µi = µ j . The dashed horizontal lines delimit the pragmatic null
hypotheses that are induced by each precise hypothesis.

groups under comparison. For small sample sizes, the test remains agnostic about all of the

three hypotheses. As the sample size increases, the pragmatic hypothesis associated to AD

vs Control is rejected, the one for AD vs MCI is undecided and the one for Control vs MCI is

accepted. That is, although it is unclear whether a classifier based on the CAMCOG score can

highly discriminate between patients with AD and MCI, it can highly discriminate between

AD and Control and cannot highly discriminate between Control and MCI. Since AD is an

aggravation of MCI, these conclusions are compatible with qualitative knowledge.

In situations with several parameters, it can be expensive to compute P g (H0) exactly. In

these cases, it is possible to calculate an approximation of P g (H0). For example, let θ(i ) de-

note the i-th coordinate of θ and consider that H0 : θ(1) = θ0. In this case, an approximate

pragmatic hypothesis, P g∗(H0), can be obtained by considering that the remaining parame-

ter coordinates are equal to a given estimate. Specifically,

1. Estimate θ(2), . . . ,θ(d) based on X with θ̂(2), . . . , θ̂(d).

2. Define g :R→Rd such that g (t ) = (
t , θ̂(2), . . . , θ̂(d)

)
.
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3. Let P g∗(H0) = {
θ∗ ∈R : dZ(g (θ0), g (θ∗)) ≤ ε

}×Rd−1.

Algorithm 1 in Appendix A.2 shows how such a procedure can be applied to a generic

model using Monte Carlo integration. An implementation of this procedure in R is available

at https://github.com/vcoscrato/pragmatic. Example 3.2 illustrates this procedure in

the context of linear regression.

Example 3.2. An object dropped from a vertical distance d from the ground takes T =
√

2d
g

units of time to reach the floor, where g is Earth’s gravitational acceleration. Diggle and

Chetwynd [2011, Chapter 2] describes a lab experiment for estimating g : a student drops

an object from several heights and measures how long it takes to reach the ground by using a

chronometer. Since the student has a reaction for activating and deactivating the chronome-

ter, the data may be modeled as

T =β0 +β1x +ε, where x =
p

d ,β1 =
√

2g−1 and ε∼ N (0,1)

One might be interested in testing H0 : g = 9.8. Besides g , the parameter space also includes

the average reaction time of the students, β0 and the imprecision in their measurements, σ2.

Although obtaining P g (H0) is not intractable in this case, it would involve a search in a three-

dimensional space. This procedure is simplified when calculating P g∗(H0), in which β0 and

σ2 are considered to be equal to their estimates that are obtained from the observed sample,

X. As a result, determining P g∗(H0) involves a search over a one-dimensional space only.

Figure 3 illustrates how the sample size affects region-based agnostic tests for P g∗(H0).

In the left and right plots, the precise hypotheses are that, respectively, H0 : g = 9.5 and

H0 : g = 9.8. In each plot, the values of g delimited between the horizontal dashed lines con-

stitute the pragmatic null hypotheses, P g∗(H0). These pragmatic hypotheses are composed

by values of g which would induce predictions for future experiments in a similar way as each

precise hypothesis. These pragmatic hypotheses are tested with a region-based agnostic test.

For small sample sizes, the test remains undecided about both pragmatic hypotheses. As

12
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H0

H0

g = 9.5 g = 9.8

0 1000 2000 3000 4000 0 1000 2000 3000 4000
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g
Decision Accept H0 Reject H0 Remain Agnostic

Figure 3: Confidence intervals for the gravitational constant g as a function of the sample
size. The solid line indicates the precise hypothesis considered in each figure. The
dashed horizontal lines delimit the pragmatic null hypotheses that are induced by
each precise hypothesis.

the sample size increases, the test rejects that g is close to 9.5 and accepts that g is close to

9.8. The latter conclusion might seem incorrect, since g ≈ 9.807. However, given the high

imprecision in the experiment performed by the students, future experiments would behave

similarly no matter whether g = 9.807. . . or g = 9.8.

4. Conclusions and future research

Challenges in the interpretation of standard hypothesis tests can be addressed through changes

in statistical practice. Agnostic hypothesis tests lead to test outputs that are easier to interpret

and also avoid logical contradictions in multiple hypothesis testing. Also, the use of prag-

matic hypotheses render that the rejection of the null hypothesis is of practical importance.

Examples 3.1 and 3.2 illustrate how these improvements admit a simple implementation in

standard models.

This paper also provides a general method for obtaining approximate pragmatic hypothe-

ses in parametric statistical models. Future research might involve obtaining pragmatic hy-

13



pothesis in nonparametric models and a decision-theoretic approach to agnostic tests.
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A. Appendix

A.1. Proofs

Proof of Theorem 2.9.

γφ =
∫
θ0∈H0

Pθ0 (φ(X) = 1) fθ(θ0)dθ0 +
∫
θ1∈H1

Pθ1 (φ(X) = 0) fθ(θ1)dθ1 Definition 2.4

=
∫
θ0∈H0

Pθ0 (R(X) ⊂ H c
0 ) fθ(θ0)dθ0 +

∫
θ1∈H1

Pθ1 (R(X) ⊂ H0) fθ(θ1)dθ1 Definition 2.7

≤
∫
θ0∈H0

Pθ0 (θ0 ∉ R(X)) fθ(θ0)dθ0 +
∫
θ1∈H1

Pθ1 (θ1 ∉ R(X)) fθ(θ1)dθ1

≤
∫
θ∗∈Θ

Pθ∗(θ∗ ∉ R(X)) fθ(θ∗)dθ∗ = γ R(X) has credibility (1−γ)

Theorem A.1. Let Z = (Z0, Z1) and θ = (θ0,θ1) be such that f (z0, z1|θ0,θ1) = f (z0|θ0) f (z1|θ1).

Also, H0 : θ0 = θ1, Y ∼ Bernoulli(0.5) and Z∗ = ZY . If θ∗ ∉ P g (H0) and Z ∼ fθ∗ , then it is

possible to build a classifier with accuracy of at least 1−ε for Y using Z∗.

Proof. If θ∗ ∉ P g (H0), then for every θ̄ ∈ H0, C D(θ̄,θ∗) ≥ 1− ε. In particular, by choosing

17



θ̄ = (θ∗1 ,θ∗1 ), obtain that C D((θ∗1 ,θ∗1 ),θ∗) ≥ 1−ε. Therefore,

1−ε≤C D((θ∗1 ,θ∗1 ),θ∗)

= 0.5

(
P(θ∗1 ,θ∗1 )

( f(θ∗1 ,θ∗1 )(Z)

fθ∗(Z)
> 1

)
+Pθ∗

(
fθ∗(Z)

f(θ∗1 ,θ∗1 )(Z)
> 1

))
eq. (2)

= 0.5

(
P(θ∗1 ,θ∗1 )

(
fθ∗1 (Z1) fθ∗1 (Z2)

fθ∗1 (Z1) fθ∗2 (Z2)
> 1

)
+Pθ∗

(
fθ∗1 (Z1) fθ∗2 (Z2)

fθ∗1 (Z1) fθ∗1 (Z2)
> 1

))

= 0.5

(
Pθ∗1

(
fθ∗1 (Z2)

fθ∗2 (Z2)
> 1

)
+Pθ∗2

(
fθ∗2 (Z2)

fθ∗1 (Z2)
> 1

))
(3)

The proof follows since eq. (3) is the accuracy of the Bayes classifier [Wasserman, 2013] for Y

using Z∗.

A.2. Approximate pragmatic hypotheses
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Algorithm 1 Approximate pragmatic hypothesis computation for H0 : θ(1) = θ0

Input: Null hypothesis parameter value θ0; estimates of θ(2), . . . ,θ(d) based on the observed data,

θ̂(2), . . . , θ̂(d); dissimilarity threshold 0.5 ≤ ε ≤ 1; function log_f(z;θ) that computes the log-likelihood

function of the new experiment; function generate_samples(θ) that generates new samples Z from the

distribution f (z|θ); number of Monte Carlo simulations B

Output: Approximate pragmatic hypothesis P g∗(H0)

1: Let θ̄0 ← (θ0, θ̂(2), . . . , θ̂(d))
2: for i = 1, . . . ,B do
3: z0

i = generate_samples(θ̄0)
4: end for
5: Let P g∗(H0) ←;
6: for θ∗ ∈R do
7: Let θ̄∗ ← (θ∗, θ̂(2), . . . , θ̂(d))
8: for i = 1, . . . ,B do
9: z∗i = generate_samples(θ̄∗)

10: end for
11: Let correctθ0 ← mean

(
I
(
log_f(z0

i ; θ̄0) > log_f(z0
i ; θ̄∗)

)B
i=1

)
12: Let correctθ∗ ← mean

(
I
(
log_f(z∗i ; θ̄∗) > log_f(z∗i ; θ̄0)

)B
i=1

)
13: Let dist = 2−1

(
correctθ0 +correctθ∗

)
14: if dist< ε then
15: P g∗(H0) ← P g∗(H0)∪ {θ∗}
16: end if
17: end for
18: return P g∗(H0)
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