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Introduction I

• In randomized experiments, a simple random allocation can
yield groups that differ meaningfully with respect to a given
covariate. Furthermore, it is unfeasible to control the allocation
with respect to more than a moderate number of covariates.

• Morgan and Rubin (2012, 2015) propose an approach based on
Rerandomization (repeated randomization) to ensure that the
final allocation obtained is well balanced.

• Levels of the Rerandomization method:

1 Lower level: Random samplings for obtaining proposed alloca-
tions (Guarantees stochastic behavior of proposed allocations)

2 Upper level: Rejection of proposals that do not satisfy balance
criteria (“Optimizes” balance of final allocation)

• However, despite the benefits of the Rerandomization method,
it has an exponential computational cost in the number of co-
variates (for fixed balance constraints).



Introduction II

• We propose the use of Haphazard Intentional Allocation, an al-
ternative allocation method based on optimal balance of the co-
variates extended by random noise, see Lauretto et al. (2012).

• Similarly to the allocation process in Morgan and Rubin (2012),
our method can be divided into a randomization and an opti-
mization step.

1 Randomization step: consists of creating new (artificial) covari-
ates according to a specified distribution.

2 Optimization step: consists of finding the allocation that (ap-
proximately) minimizes a linear combination of:
– the imbalance in the original covariates; and
– the imbalance in the artificial covariates.



Haphazard intentional allocation I

• Let X denote the covariates of interest.
• X: matrix in Rn×d, where n is the number of individuals to be

allocated and d is the number of covariates of interest.

• An allocation consists of assigning to each individual a group,
treatment or arm index, g ∈ G = {0, 1, 2, . . .}.
• We represent an allocation by w, a 1× n vector in Gn.

• Our goal is to generate an allocation with a low value for a
specified inbalance loss function, L(w,X).

• The Haphazard Intentional Allocation consists of finding the
approximate minimum of L(w, [X,Z]), where Z is a matrix
containing random noise.



Haphazard intentional allocation II
• Let Z be an artificially generated matrix in Rn×k, with elements

that are independent and identically distributed according to
the standard normal distribution.

• For a given tuning parameter, λ ∈ [0, 1], the Haphazard Inten-
tional Allocation finds a feasible allocation, w∗ minimizing

w∗ = arg min
w∈Gn

L(λ,w,X,Z)

= arg min
w∈Gn

(1− λ)L(w,X) + λL(w,Z).

• λ: controls the amount of perturbation that is added to the
original loss function, L(w,X).
• λ = 0⇒ w∗ = deterministic minimizer of L(w,X);
• λ = 1⇒ w∗ = minimizer of the unrelated random loss, L(w,Z).
• Intermediate values of λ render intermediary characteristics.

• From now on, we consider the case of two groups, G = {0, 1},
and Normal distributed random variables.



Haphazard intentional allocation III
• Morgan and Rubin (2012) discusses the case in which the loss

function is based on the Mahalanobis distance between the co-
variates of interest in each group.

• In order to define this loss function, let A be an arbitrary matrix
in Rn×d. Furthermore, define Ã := AL, where L is the lower
triangular Cholesky factor: Cov(A)−1 = LLt, see [1].

• For an allocation w, let a1 and a0 denote the averages of each
column of Ã over individuals allocated to, respectively, groups
1 and 0. That is,

a1 :=
w

n1
Ã and a0 :=

(1− w)
n0

Ã, where

{
n1 = wt

1

n0 = (1− w)t 1

• The Mahalanobis loss between the groups is computed as:

M(w,A) =
√
n1 n0/n ‖a1 − a0‖2 (1)



Haphazard intentional allocation IV

• We want to allocate a fixed number of individuals to each group,
that is, wt

1 = n1 and (1− w)t 1 = n0 = n− n1.

• We can take all these restrictions into consideration by choosing
a haphazard intentional allocation with minimal Mahalanobis
loss function according to the following optimization problem:

minimize(w) M(λ,w,X,Z)
= λM(w,Z) + (1− λ)M(w,X)

such that wt
1 = n1

w ∈ {0, 1}n
(2)

• This is a mixed-integer Quadratic Programming problem, that
is difficult to solve relative to the mixed-integer Linear Pro-
gramming.



Haphazard intentional allocation V

• Hence, we use the following Linear Programming approxima-
tion, based on the hybrid norm:

H(w,A) = ‖a1 − a0‖1 +
√
d‖a1 − a0‖∞.

The hybrid norm is a surrogate loss function for the quadratic
norm, based on the extreme cases of the Lp norms for p = 1
and p =∞, see [12].

• Furthermore, the resulting optimization problem has the form
of Linear Programming:

minimize(w) H(λ,w,X,Z)
= λH(w,Z) + (1− λ)H(w,X)

such that wt
1 = n1

w ∈ {0, 1}n
(3)



Case Study I

• We consider the problem of selecting air quality monitoring
stations in the State of Sao Paulo

• Problem: given 54 candidate stations, select n1 = 20 stations
for installation of additional pollutant sensors

• Station variables:
• Medians of one-year atmospheric & pollutant indicators

Weight: 70%
• Rainy and dry seasons

• Geolocation (latitude / longitude)
Weight: 30%



Case Study II

Table 1a: Stations

Abbrev Name Abbrev Name

AMERIC Americana CONGON Congonhas
ARACAT Aracatuba GRU-PI Guarulhos-Pimentas
ARARAQ Araraquara GRU-PM Guarulhos-Paco Municipal
BAURU Bauru GUARAT Guaratingueta
CAPRED Capao Redondo IBIRAP Ibirapuera
CARAPI Carapicuiba INTERL Interlagos
CATAND Catanduva ITAIMP Itaim Paulista
CB-CEN Cubatao-Centro JACAR Jacarei
CB-VMO Cubatao-Vale do Mogi JAU Jau
CB-VPA Cubatao-V.Parisi JUNDIA Jundiai
CERQCE Cerqueira Cesar LIMEIR Limeira
CM-TAQ Campinas-Taquaral MARIL Marilia
CM-VUN Campinas-V.Uniao MAUA Maua



Case Study III

Table 1b: Stations

Abbrev Name Abbrev Name

MGCRUZ Mogi das Cruzes SAN-PP Santos-Ponta da Praia
MOOCA Mooca SANTOS Santos
MT-REM Marg.Tiete-Pte Remedios SB-CEN S.Bernardo-Centro
OSASCO Osasco SCAETA Sao Caetano do Sul
PARELH Parelheiros SJCAMP S.Jose Campos
PAULIN Paulinia SJC-JS S.Jose Campos-Jd.Satelite
PAUL-S Paulinia-Sul SJC-VV S.Jose Campos-Vista Verde
PINHEI Pinheiros SJRPRE Sao Jose do Rio Preto
PIRACI Piracicaba SOROC Sorocaba
PJARAG Pico do Jaragua STGERT Santa Gertrudes
PQDPED Parque D.Pedro II TABSER Taboao da Serra
PRESPR Presidente Prudente TATUI Tatui
RP-CEN Ribeirao Preto-Centro TAUBAT Taubate
SA-CAP S.Andre-Capuava USP Cid.Universitaria-USP-Ipen



Case Study IV

Table 2: Station-related variables

Code Parameter Description

MP10 Part́ıculas Inaláveis

NO Monóxido de Nitrogênio

NO2 Dióxido de Nitrogênio

NOx Óxidos de Nitrogênio

O3 Ozônio

TEMP Temperatura do Ar

UR Umidade Relativa do Ar

VV Velocidade do Vento

LAT Latitude

LON Longitude



Case Study V

Figure 1a. Selected (red) and unselected (blue) stations



Case Study VI

Figure 1b. Selected (red) and unselected (blue) stations



Case Study VII

Figure 1c. Selected (red) and unselected (blue) stations



Case Study VIII
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Figure 1a. Percentual differences between groups in each covariate (200 alloca-

tions).
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Figure 1b. Percentual differences between groups in each covariate (200 alloca-

tions).



Case Study X
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Figure 1c. Percentual differences between groups in each covariate (200 alloca-

tions).



Case Study XI
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Figure 1d. Percentual differences between groups in each covariate (200 alloca-

tions).



Case Study XII

• An alternative interpretation for our experiments is to see them
as a proxy for other relevant statistical properties.

• For instance, one might be interested in testing the existence
of a causal effect of the group assignment on a given response
variable. Ex:
• For each j ∈ {0, 1}, we simulate Y j as the response variable

when all individuals are assigned to group j.
• We follow the procedure:

1 Y 0
i = εi +

∑
j

Xi,j−X•,j
std(X•,j)

, where ε ∼ N(0, I).
2 Y 1

i = Y 0
i + τ .



Case Study XIII

• Figure 2 illustrates the difference of power in the allocations
obtained by the Haphazard, Rerandomization and Pure Ran-
domization procedures for a permutation test for the hypothesis
τ = 0.

• The tests obtained using the Haphazard Intentional Alloca-
tion method are uniformly more powerful over τ than the ones
obtained using the Rerandomization and Pure Randomization
methods.



Case Study XIV
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Figure 2. Power curves for each allocation procedure for testing τ = 0 using a

permutation test.



Future Research

• Explore the use of the Haphazard Intentional Allocation method
and the Rerandomization method in applied problems in the
field of:
• Clinical trials;
• Jurimetrics.

• Explore the use of alternative surrogate Loss functions for bal-
ance performance, such as CVaR norms, Deltoidal norms and
Block norms [10, 2, 13].
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