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SIAM J. APPL. MATH. 
Vol. 33, No. 4, December 1977 

THE DISTRIBUTION OF PRODUCTS, 
QUOTIENTS AND POWERS OF INDEPENDENT 

H-FUNCTION VARIATES* 

BRADLEY D. CARTERt AND MELVIN D. SPRINGERt 

Abstract. This paper introduces a new probability distribution based on the H-function of Fox. 
The distribution is shown to be a generalization of most common "nonnegative" (Pr [X <0] =0) 
distributions. Furthermore, it is proved that products, quotients and powers of H-function variates are 
H-function variates. Several examples are given. 

1. Introduction. The problem of products and quotients of random variates 
has been treated for some time (Craig [3], [4] and Huntington [8]) but it was not 
until 1948 that the first systematic approach was presented by Epstein [5] when he 
demonstrated that the Mellin transform. is a natural analytic tool for analyzing 
problems of this type. Since that time, the application of the Mellin transform as a 
statistical tool has been promoted by Zolotarev [18], [19], Springer and Thomp- 
son [16], [17], Kotz and Srinivasan [9], Abraham and Prasad [1], Prasad [15] and 
others. 

It is the purpose of this paper to introduce a new probability distribution 
which is (i) the general case of many common "nonnegative" probability distribu- 
tions and (ii) easily "transformed" under the Mellin transformation. The proba- 
bility density function (p.d.f.) of the new distribution is based on the H-function, a 
transcendental function first presented by Fox [7] in 1961. 

The new distribution, called the H-function distribution, includes as special 
cases many of the more common classical distributions, e.g., the gamma, the beta, 
the Weibull, the chi-square, the exponential and the half-normal distributions as 
well as others. Hence, the H-function distribution can be considered as a 
generalization or characterization of these special cases and can serve as a basis for 
handling rational functions of "mixtures" of such variates. 

Also, various combinations of products, powers and quotients of indepen- 
dent H-function variates are examined using the above mentioned Mellin trans- 
form procedures. Theorems are presented to show that the product of indepen- 
dent H-function variates is an H-function variate, the power of an H-function 
variate is an H-function variate, and the quotient or ratio of independent 
H-function variates is an H-function variate. 

2. The H-function. The H-function was first introduced by Fox [7, p. 408] in 
1961 as a symmetric Fourier kernel to the G-function of Meijer [6,1, pp. 
206-222]. Furthermore, the H-function is recognized as a generalization of both 
the G-function and Wright's generalized hypergeometric function [6,1, p. 183]. 
More recently numerous papers related to the H-function and its properties have 
been presented and an extensive list of these is found in the bibliography of [2]. 
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INDEPENDENT H-FUNCTION VARIATES 543 

2.1. Definition of H(z). Although there are slight variations and generaliza- 
tions in the definition of the H-function in the literature, this paper will use the 
definition 

HpV qz |(bj j6) ... (bq 8q)]HZ 
(2.1) 

1 (' 17? lrF(b1-1j3s)Hj7= F(l-a1+a1s) d 
2nri Jc HI1q=m+ F (1-b1+I31s)HT=?+ 1 F (a1- a1s) 

where 

0? m 'q, 

On -?p, 

aj>O forj=1,2,< ,p, 

/3j>O for j=1,2,* ,q, 

and where a1 (j = 1, 2,.. *, p) and b1 (j = 1, 2, * * *, q) are complex numbers such 
that no pole of F(bj -,3js) for j = 1, 2, *, m coincides with any pole of r(1 - aj + 
ajs) for j = 1, 2, * * *, n. Furthermore, C is a contour in the complex s-plane 
running from w - ico to w + ixoo such that the points 

s =(b1 +k)/13j 

for j = 1, 2, ,m and k =0, 1, and the points 

s (aj - 1 - k)laj 

for j = 1, 2, n and k = 0, 1, * lie to the right and left of C, respectively. In 
other words, (2.1) is a Mellin-Barnes integral [6,1, pp. 49-50]. 

2.2. Simple identities and special cases of H(z). Variable substitution into 
(2.1) yields the following three identities which are very useful in manipulating 
H-function: 

22 mn r1 (a, a c 1j,,***, (ap, atp) l n, m z (1 - b l,8/1), *** (1 -bq 13q ) (2.2) HmHl 
* PLz (b 1, 18 1) ** (bq, (3q) J ' (1 - a,, aj),, (1 -ap,a(p)J 

(2.3) Hpmnn[zc (ab, a,) , (ap, ap) 

c !H,[* (ai, a1/c), (bq, /q/cC) c >0, 

and 

(2.4)~~~~~( , [6 I( /1), ,(bq, /3q)] 

_Hpm n Z (a1 +a1c, a1,)* (ap +apc, ap)1 
(b 1 + 18 1 c, , 1 ) ***(bq, 83qC f3qC ) Jq 
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544 BRADLEY D. CARTER AND MELVIN D. SPRINGER 

Many of the so-called "special functions" are found to be special cases of the 
H-function, including Gauss' hypergeometric function, the confluent 
hypergeometric function, Wright's generalized hypergeometric function, Mac- 
Robert's E-function, Meijer's G-function and Bessel functions. An excellent 
discussion of many of these and others related functions is given by Erdelyi [6,I] 
and Luke [1 1, I]. More important among these are: 

(i) the exponential function, 

(2.5) exp (x) = HO ?[-x I(O, 1)]; 

(ii) the generalized, hypergeometric function, 

(2.6) bi, bq 

- H= 1F(bj)H1,p [-X( (-a1,1),, '',(1-ap,1) ] 
f[= AF(aj) p,q+1 0, 1), (1 -b1, 1), ... (1 - bq, 1) 

(iii) Wright's generalized hypergeometric function, 

p q[(a1, aj),... , (bq, apj )] 
(2.7) L(bi, 6i), .. * * (bq, iq)IJ 

-H1p r X| (- al a (-ap,ap) 
(2.7) _ (0, 1), (1 -b1,f3 1), *,(1bq, 13q)' 

(iv) Meijer's G-function, 

,[x , , ap= mn |(a, 1), (ap, 1) 
(2)xb L * bq pq Ll (b1, 1), * * ,(bq, 1)A 

It should be noted that Luke also gives an extensive list of special cases and 
identities for the generalized hypergeometric function and for Meijer's G- 
function and, with the use of (2.6) and (2.8), these results can be extended to the 
H-function. 

2.3. The Mellin and Laplace transforms of H(cz). Under the previous 
definition of the H-function and assuming convergence of the integral in the 
definition, the Mellin transform1 can be found by interpreting the H-function of 
the coefficient on x-s where (2.1) is written as 

H(cz) ~~ f fJ7m I'F(bj +f3js) Hl7=i F(l -aj - a s) 
()2i lc fV=m+l F(1 -b1- 1s) fl=1n+l r(a1 +ajs)(C) 

Using the definition of the Mellin transform, one can express H(cz) in the form 

H(1See?4.1.-1 p n.- r(bj +8S) flr(l_aj ajS) 
H7iq-m + r(l - bi -,jS) fll=n + r(a; + ajS) 

1See ?4.1. 

This content downloaded from 188.72.126.198 on Sat, 14 Jun 2014 07:30:25 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INDEPENDENT H-FUNCTION VARIATES 545 

from which it follows that 

X, H p' ~ ~ ~ (a, p 

(2.9) (f5[H(cz) IH F(b 1+1S) fln1 F(l_aj-a,s) 

HjUH_m+i r(1 -bi -f3js) flV?nl r (a1 +ajs) 
is the Mellin transform of the H function with argument cz. 

From the definition of the Laplace transform, one has 

4t{H(cz)}= J e-'zH(cz) dz 
0 I f HJL1 r(b1 - pis) fl- ( a1 + a1s) e _z1[ r,l(jlj)= (-]+j)(cz)s ds dz. J0 2Ti Jf H7 m+i ( r(- -b +i3js) Hy=-n+1 r(aj- ajs) 

The contour integral in the s-plane converges absolutely under the conditions 
given by Erdelyi [6,1, pp. 49-50] so that when these conditions are satisfied (as 
they usually are), the Laplace integral will converge absolutely. Hence, the order 
of integration in the above equation can be changed giving 

1r J H7Jtn L1(b -1s) nH7 r(F -aj +ajs) 0 -rSdz)d 

27{i f) J =m+ r( -b+/3 s)H= -1(ab-a1S) pJo 

1 f ryn= 1 r (bj -8js Nj= 1 r(i-a + ) Cs1 r(s + 1) d 
2TiJc flq=m+M r(1-b1 +31js) ip- n+1 r(ai -a1s) a rs )rds 

1 n+[c (0, 1), (a 1,a a *D (ap, ap) 
r p+l Lrl (b 1, 8 1), ,(bq, /3q) 

and, from (2.1), it follows that 
Y'r{H(CZ)} C HpAinV (1 1), (a,+ a,, a,) (ap + ap, ap)] 
YrfH(z)j =c ,q+ r (b,+ j6j j6j, (bq + 3q, 3q) 

Then, from (2.2), the Laplace transform is expressible as 

r [ pm (a,, a,), ,(ap,, ap)1 
Y'r1H(~ L cX (bi /31) (bq iq)JJ 

(2.10) 
1 ri1' 1 1-l,6,jj) b P~iq =Z{fH(cz)} = Hqp+ (1i3,1ir(bqq1 = qp [c (0, 1), (1-al-al, aD), ,(1-ap-ap, ap) 

3. The H-function distribution. 
3.1. Definition. Consider a random variable X which follows a probability 

law such that its probability density function is given by 

(3.1) f(xn[ I (ba1, aD,), (ba, aq) 1 

0 otherwise, 
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546 BRADLEY D. CARTER AND MELVIN D. SPRINGER 

where the symbol H represents the H-function as defined in (2.1) and where k, c, 
aj (j = 1, * * *,~ p), atj (j = 1~, * * *, p), bj (j = 1, * * * , q), and ,lj (j = 1, * ,q) are the 
parameters of the distribution with values such that 

.00 00 

f(x)dx= f(x) dx = 1 

with f(x) ?0 for Ox <oo. Furthermore, the values of aj (j = 1, p), aj 
(j = 1, * * *, p), bj (j = 1, * * *, q), and fj (j = 1, * * *, q) must conform to those 
restrictions in the definition of the H-function (equation (2.1)). The random 
variable X will then be called an H-function variate which follows an H-function 
probability law or H-function distribution.2 

3.2. The characteristic function. The characteristic function (or Fourier 
transform) of f(x) is given as 

e "f (x) dx = eitxk . (Hp,1)S > ,(a ) I dx 
=-it{ k (b1, X1 ), ,(bq, 13q)J 

From (2.1 0), assuming absolute convergence of the integral in the definition of the 
H-function, the characteristic function distribution can be given as 

(3.2) +(t)=-~Hqp n+lF (m (1-b3-01, 31) , (1 -bq -q, q) 1 
c c (0, 1),(1l- al-ale,ale), -,(1l- ap -ap, ap 

3.3. Moments. Since the derivatives of the H-function exist, the moments of 
the H-distribution can be found by taking the derivatives of (3.2). However, there 
is a simpler method of finding the general expression for the rth moment about the 
origin which capitalizes on the ease with which the Mellin transform of the 
probability density function may be obtained. In this connection, note that the rth 
moment about the origin is defined as 

=E{x'} = x rf(x) dx 
-co 

where E is the expected value operator. From the definition of the Mellin 
transform, it is clear that Jbtt{f(x)} = E{xs-1} for distributions where Pr [x < 0] = 0 
so that the rth moment may be obtained from the Mellin transform of the relevant 
probability density function. Specifically, 

= rItr+i{f(X)} 

=>bl+lt k Hpnn[cx(a,, a1)j ,(apS,ap)] 

2 Distributions and distributional structures based on the H-function have recently been intro- 
duced by Mathai and Saxena [12], [13]. 
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INDEPENDENT H-FUNCTION VARIATES 547 

Then, from (2.9), 

=-k H7-=1 F(bj +f3js) Hl?- rF( -aj -ajs) - 
k=L_n+1 R(1 -b -1jS) lp=n+1 r(a1 + as) s=r+l 

(3.3) 
~~k frIim 1 IF(bj +/3j + /3jr) f j= r(1 - ai - ai - ajr) 
c r(1+fa+ - F)l - bj - 83 -,8jr) fljp_n+l F(ai +aj +ar) 

3.4. Special cases of the H-function distribution. As indicated at the 
beginning of this paper, one of the most important assets of the H-function 
distribution is that many of the classical nonnegative distributions are special cases 
and can be expressed in the form of (3.1). In this section, some of the more 
common of these special cases are given and their respective probability density 
functions are shown in the form of (3.1). Although the mathematical development 
from the "common" form of the probability density function to the "H-function" 
form is given without explanation, the reader should easily follow the develop- 
ment with the use of (2.3), (2.4) and (2.9). 

(i) The gamma distribution. 

f(x x exp (-x/+) x >0; 0, 4 >0 

340F(O)X 10:[ (0, 1) (3.4) ~~~~ ~~- 1 11 [1 0,1 

-'0F(O)H' 1'( - 1, 1) 

(ii) The Weibull distribution. 

f(x) = 06x -1 exp (-Ox+) x > 0 

= xO-H 1)] 
(3.5) - 

0[xllo 
1/)] * ~~~~~= OxO-1 Hl0 10[0 /l+x1(? 1/0)] 

=01/'O Ho ?[O1/+x1X(1 - 1/0, 1/0)]. 
(iii) The Maxwell distribution. 

f(x) 4x2 exp (-X2/02) x > 0 

= 2x2Ho ?[-x (0, 1/2)] 

2H1x 0H[l (1, 1/2)]. 
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548 BRADLEY D. CARTER AND MELVIN D. SPRINGER 

(iv) The beta distribution. 

f x(x) (1- B ) O<x?O;0,?>O 

tO, x>1 

= 2iri f 4t{f(x)}x s ds 

1 r r 1 
(37). 27iC [ B(0, ,) x 1(l-x)'-1xs-1dx] x-sds 

F (O)r(O - 1 + S) X-S ds 
2ri Jc B((0, )F(0 -l+s) 

F(0+4) 1 r F(O-1-s) s 
F(O) 27ri Jc F(+0- __s)ds 

F(0 + )H1,oF I (0+-1, 1 
F(0) 0O1 Xj (0-1,1) J 

(v) The half-normal distribution. 

2 exp (_X2/(202)) f(x) x>0; 0>0 

(3.8) = 0;H'? 2x2j(O 1)] 

=0+I1;H40ii/iX (0, 1/2)]. 

(vi) The exponential distribution. Let 0 = 1 in (3.4). 

f(x) exp(-x/4) x>0; 4>0 

(3.9) 
= ?Hlo: -0x (0 , 1)] 

(vii) The chi-square distribution. Let 0 = v/2 and k =2 in (3.4). 

f(x) v/2 exp(-x/2) x>0; v>0 
(3.0)2v/2 F(v/2) 
(3.10)~ ~ ~ ~ ~ ~~~~~1,i] 
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INDEPENDENT H-FUNCTION VARIATES 549 

(viii) The Rayleigh distribution. Let 0 = 1/(2a2) and 4 =2 in (3.5). 

f(x) x exp (-x2/(2a2)) 2>0 

f (x) 2a 2 > (3.11) 
= H 1 [dx |(1/2, 1/2)] 

(ix) The general hypergeometric distribution [14]. 

f(x) = da/dF(1)F(r 
- cld) x 1FF[j 3_ax d] x> 0 

1F(c/d)F(r)F(13 - cld) r 

dacld F(,8)F(r- cld) c-1 
F(c/d)F(r)F(,8 - cld) 

ac/F(r) c/d) cli a1-1" 1-l ld F(/dF (F) H1[ax| (0 ,/)ar 1), (1 - r, 1)] 

aC/dr(r-c/ ) c-1H1 1 Fa lldX ( 3 
F(cld )F(,8 - cld ) 1 2 L (0, l Id ), (l - r, l Id)J 

a l/dF(r -c/d) H11a l/d (1 -,8 + (c - 1)/d, lId) 1 
F(cl/d)F(8 - c/d) 1,2 [ ((c - 1)/d, 1/d), (1 - r + (c - 1)/d, lId)] 

(x) The half-Cauchy distribution. 

200 2xs 

f()=(o2 +X2) X> 0; t7> o 

(3.13) 2ri iJc I-Jo ir(02+x2) dxjx-sds 

(3.13)~~~ 

the p.d.f. is given by x-s ds 

(4.13) 2ripr t f f tform2 dfx) 

the p.d.f. ~ 2 is sie dy 
2,7ri c 7~~~~0 

(4.1)~~~~~~ 1sfx} f()- dx 
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550 BRADLEY D. CARTER AND MELVIN D. SPRINGER 

Furthermore, if Rff{f(x)} is an analytic function of the complex variable s for 
c 1 Re (s) -c2 where c1 and c2 are real, then the integral 

1 r +i1s 
(4.2) F1[i1{fs (x)}] -=2 lim x sWsA{f(x)} ds 

2iroo -i 

along any line c] I Re (s) = wcl) c2 converges to the function f(x) which is inde- 
pendent of to and whose Mellin transform is As {f(x)}, c1 < Re (s) <c2. 

If X1, X2, * * *, X. are continuous independent random variables with proba- 
bility density function f1(x1), f2(x2), f * * , fn (x,n), respectively, where 

Pr[Xj'O]=O, j=1,2,* n, 
then Epstein and others have proved the following properties: 

(i) the probability density function of the random variable 
n 

Y= HX1j 
j=1 

is given by 

(4.3) h(y) j=O 
0O otherwise; 

(ii) the probability density function of the random variable 

is given by 

(4.4) h(y) = {/ l[as-a+1{fi(XI)}] o<y<rw, 
O othlerwise; 

(iii) the probability density function of the random variable 

Y= Xj/Xk, j ? k, 

is given by 

(4.5) h(y)= {/A[S{fi(Xj)}a2-s{fk(xk)}] O<ytei, 
O otherwise. 

4.2. The distribution of products of H-function variates. As is stated in the 
following theorem one of the most significant properties of the H-function 
distribution is that the probabiltiy distribution of products of independent 
H-function variates is also an H-function distribution. It is well known that such a 
property is not common among the "named" probability distributions. Further- 
more, since the beta, the gamma, the Weibull, the Maxwell, etc. are special cases 
of the H-function distribution, then mixed products of variates from these 
distributions will also follow the H-function probability law. 
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INDEPENDENT H-FUNCTION VARIATES 551 

THEOREM 4.1. If X1, X2, * * *, XN are independent H-function variates with 
probability density functions fi(xD), f2(x2), * *fN(xN), respectively, where 

kmj,n, C (aj 1, a j 1), * *,(ajp,, axjp, ),x O 
f (xi) = 

H p' , j jXj (bj1, fjl), 
, - -(bjqj, f3jqj) )J X1> 0, 

0 O otherwise 
for j = 1, 2, * * *, N, then the probability density function of the variate 

N 
Y= n Xi 

j=1 

is given by 

h (y) 

(4.6) ;v=nkH i,=1qj [N cjj (all ll), .*. (aNpN, aNPN)] 

= 1jl1 pj,Nli= qj j= (b 1 1 8 9 . (bNqlv 1NqN) 

0 ? otherwise 

where the sequence of the parameters (av , ajv) is 

v = 1,2, * *, nj forj= 1, 29,***,N 
followed by 

v=nj+1, nj+2,***,pj forj=1,2,***,N 

and the sequence of the parameters (bjv, I3jv) is 

V = 1 2, ... mi forj=1,2,--,N 
followed by 

v =mj+l1, mj +2, * ** ,qj forj=1, 2, * *, N. 

Proof of Theorem 4.1. From (2.9), the Mellin transform of fj(xj) is 

k. f v H r(biv + H3mvs) fj- 1 r ajv-aj s) **, vV> }1 ] JCj vq]m+ F(l - bjv - pjUs) fjPvJ=n, +I F(ajv + ajvs) 

and, using (4.3), it follows that 

h?(y)=4-l4 f[ t{Af(x1)}] 

_-1[ kf V= kj H F(bjv+,8jvs) llvi= F1-ajv---ajvS 
j= 1c Hm+ F(1 -bjv -f3jvs) v nj+(a1v + a1s)aJJ 

Hence, due to the definition of the inverse Mellin transform (equation (4.2)), the 
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552 BRADLEY D. CARTER AND MELVIN D. SPRINGER 

above equation can be written as 

h?(y) Hi,1= k 
2,7ri 

f H TLT H=l1 F(b1v +pjvs) H V=1 FV(1 F(1-a1v -ajvS) 
([Ij=l 1-'Y=M+l - I IV = Jn 

(f[ cj y) ds 

i 

n k_)H 
ji ni[ 

C(all, 
a), ... 

, (aNp., 
aNPN)] 

j=l 

pj,__ 

j=l 

__ 
(bll, 1109 * * (bNqN9 

NqN) 

which completes the proof of Theorem 4.1. 
Example 1. The product of N beta variables. Suppose that, in Theorem 4.1, 

X1, X2, * * *, XN are all beta variables having the probability density function 
shown in (3.7), where, when written in terms of (4.6), 

k F(0 +1i) 
F(0j) 9 

aj1 = Oj +4j -1, 

= - 1, bj 1 j-l 

aj1 =18j, = 1, 

cj-1 

and 

mj =1, nj=0, pj =1, qj=l1 

for j = 1, 2, , N. Then, substituting into (4.6) of Theorem 4.1, one has 

F( j N r(Pj++ rNOr l(01+01 1, 1), * * (ON +ON -1, 1) >0 

h(y) 
f 

Vlj=l 1F(Oj) 
-AN 

:NY (O 1 -1 1), * * (ON 1, 1) J 
0 ? otherwise. 

Application of the identity (2.8) now gives 

N F(Oj + o) GNO 0 |1 + 01 1S , ON+ ON - , >0, 
(4.8) h(y)-={ 1j=1 F(Oj) NN[Y 01-1, * *ON-1 ] Y 

l ? otherwise. 

That is, the probability density function of the product of N independent beta 
variates is given by (4.8). This result agrees with that of Lomnicki [10] and that of 
Springer and Thompson [17, p. 731]. 

Example 2. The product of N gamma variables. Now suppose that, in 
Theorem 4.1, X1, X2,... , XN are all gamma variates having the probability 
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density function given in (3.4) where, when written in terms of (4.6), 

kj ,g 
r(0j)' 

aj, j1 1, aj,=Xl 

= 4)71, 

and 

m1= 1, nj 0, pj=0, qj 1 
for j = 1, 2, , N. Then from (4.6), 

&(~~~ ~ -z 4 ( )?[jrl?])|0 1, 1), .. , ON-Ll)] 9 Y>'0 

0O otherwise. 

which, upon application of (2.8), becomes 

)~~ ~f h(y 4(-l1(o) ,N(l 

Oi 
)Y01-1, * , 0N-1] Y >0 

0O otherwise. 

Thus, (4.9) expresses the probability density function of the product of N 
independent gamma variables in terms of Meijer G-functions. Equation (4.9) 
agrees with the result obtained by Springer and Thompson [17, p. 722]. 

4.3. The distribution of rational powers of H-function variates. Another 
important property of the H-function distribution is the fact that a rational power 
of an H-function variate also follows an H-function distribution, as the following 
theorem shows. 

THEOREM 4.2. If Xis an H-function variate with probability density function 

k LH I (ba,,a,), ...,p p 
f(x) =kH 4n cx (bag1) ,i (bpq)]i x>O, 

? otherwise, 

then the probability density function of the variate 

Y=XP 
is given by 

h(y) 

(4.1 0) |kcp- lHpmq[ P (a l 0a,P +a:l,Sa, P),* > (ap-ap +aop,a P)] 
?dHm' Lb1-131P+3l,131P), (bqj3qP+f3q,f3qP) yo 0, 

10 ~~~~~~~~~~~~~~~otherwise 
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when P > 0, and 

(4.11) h(y) 

(kcp-'Hqm [py(1 - b 1 + j6P - 61, -8 IP), ,(i - bp +BppP -,BP, - Opp) 
{kCPH1n[c 

P 
(1-a1+ajP-aj, -a1P),.* , (1-ap+apP-ap, -apP)J 

y>0, 
0 

otherwise 
when P<0. 

Proof of Theorem 4.2. Equation (4.4) shows that the positive part, h+(y), of 
the probability density function of Y is given by 

h+( )s-p[l/k [Hp m (a,t, a,, (ap, -ap)\ h +(y) =-A ~ ~ 
n 
cL (bi, 013), ,(bq, 13q)i' 

whilst from (2.9) and (4.7), 

h+(y) =,-1[ k H 1 F(bv +13vt)f1=1 F(1-a1 -avt) 1 L Ct=Hm+1F(1l-bv,-p,8t)Hy>=n1lF(av,+av,t) t=ps-p?+l 

=X-1 f k F(bv +1,vpP+pv +flvPs) 
[CPS-P?l J F=M?l F(1-bv +f3vP-f, -1 1PS) 

n1= F( a,+1P-av, -a1,s f.+v=i F(l -av P+a1, -+avPs) 
H P=+ R(av - avP + av - av S) 

Application of (4.2) then yields 

h +(y) = f 1v2 1 F(bv - fvP + 1v + 31vPs) 
2iTi Jc rL,-M? F(i - bv + fP - 3v - Ps) 

= 1 F -a1 +r avP--,v - avPs) 
vp =n+ F (av - avP + av + avPs) Y s 

and from the definition of the H-function, it follows that 

h +(= )kc P- 1Hpmnc (at-t a,P+al, a ,P), * * * , (ap - aP+a.p, apP) h+(y)=kc- H4 c Py (b1, f1P+f31P+31, 13 P), * (bq -3qP+f3q, 3qP)J 

when P > O, and 
h+(y) 

= c- n,m Fc (1 - b 1 + 13 P - 131 -3 lP) (1 - bq + 3qP - 3q, - 3qP) =kcp 1 
Hq:4CPy qPL ~ ~ l1 a+ a 1P - a1,-a P), , (1 -ap +apP -ap, -apP 

when P<O. 
Example 3. The square of a standard half-normal variable. Suppose that, in 

Theorem 4.2, the variate X has a standard half-normal distribution with the 
probability density function given in (3.8) with 0 = 1 where, when written in the 
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form of (4.10), 

k = 

=611/2, 

c= 

and 

m=1, n=0, p=O, q=1. 
Then, from Theorem 4.2, the probability density function of 

y=X2 

is given by 

(4.12) h(y) 'Tr 2 2 
0 otherwise. 

or, with the use of (2.8), 

h(y)- S2/;;G? 1[Y y- 2] Y >? h (y)= 2->0'T 2 
t 0 otherwise. 

By examining (3.10), one can readily see that (4.12) is the probability density 
function for the chi-square distribution with the parameter v set to 1. This result 
agrees with the well-known fact that the square of either a standard normal variate 
or a standard half-normal variate follows a chi-square distribution. 

4.4. The distribution of quotients of H-function variates. From (4.5) and 
Theorems 4.1 and 4.2, one obtains yet another important property of the 
H-function distribution, namely, that quotients of independent H-function 
variates also follow an H-function distribution. This result is stated formally in the 
following theorem. 

THEOREM 4.3. If X1 and X2 are independent H-function variates with 
probability density functions f1(x1) and f2(x2), respectively, where 

4 jpi,qj (ajx 1, ail), (aip,, ai) X > f1(x1) =[dxl , f3i,), ,(bjqj, f q1 )J 0 
0 otherwise 

for j = 1, 2, then the probability density function of the variate 

y=Xl/X2 
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is given by 

klk2Hpml+n2,nl+M2 cl |(all, all), >O, 
(4.13) h(y) = 3 C2 pl+q2,ql+P2 LC2 Yl (bll, 1311) 

0 O otherwise, 

where the sequence of the H-function parameters is 

(a11, all), * , (a ln, ailn1), (1 - b2l- 21321, 132 

(1 - b2m2 -232m2V 132m2) (al,n1+l a 1,n +a i * , , (alp,, a1lp1), 

(1 - b2,m2+1 -2132,m2+1, 132,m2+1) * (1-b2q2 - 2132q2l 132q2), 

and 

(bll1, 11), , * (bim1, 3imi) (1 - a2l- 2a21, a21), 

(1 -a2n2 -2a2nV1 a2n2) (blml+,s 81,l+1)~ 
.. 

* (blqjs OBlqj)S 

(1 -a2,n2+1 2a 2,n2+1 s C2,n2+ 1) S.. (1 -a2P2 2aE2P2, at2P2). 

Proof of Theorem 4.3. From (4.5), the component of the probability density 
function of Y, which is obtained for nonnegative values of Y is given by 

h +(y = f -[A {fl (X 1)}st2-s {f2(X2)}] 

or, from (4.7), 

h~~~~ 
+()= 

= 
[ 

l+ lvl 
r -b 

-81315S) fFv 
l 
n1l+l F(a lv +atlvs) 

k2 fHVm= F(b2V + 232V -F32(l) FIn= 1 -a2v -2a2v + a2vS) 

c-S H2f=m2+1 F(l -b2v -2132v +132vS) HV=n2+1 F(a2v +2a2v -a2vS), 

Rearranging and writing in terms of the Mellin inversion integral (equation (4.2)) 
yields 

h+(y)= 

klk2 1 V=l1F(1-alv-als) H=l F(b2v+2132v-132vS) 

C 22P2 FP F(alv +a ivs) vqm2+ (l - b2v - 232v +132v5) 

Hlv2l F(blv + Vs) F:(1 -a2v -2a2v - a2vs) (C>S ds 
Hr=mi+l F(1-b1(-l31vs) -bvV=n2+1 F(a2v + 2a2V -2vS) C2 

klk2 Hml+n2,nl+M2 C2| (a11, a11) , * * 
C2 pl+q2,ql+P2 .c . . bl 1,*** 

- 2 Vl ]b i 11 

where the sequence of the parameters of the H-function is that given in Theorem 
4.3. 

Example 4. The quotient of two half-normal variables. Suppose that, in 
Theorem 4.3, X1 and X2 are half-normal variates having the probability density 
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function given in (3.8) where, when written in the form of (4.13), 

k 1 

aj =0, 

a= 1/2, 

CiOj/ 
Oj -/2 

and 

mj = 1, nj =0, pj =0, qj = 1, 

for] = 1, 2. Then substituting into (4.13) of Theorem 4.3, we get 

I02 * Hl'[" 02y(,12 y >0, 
(4.14) h(y)= 0lrr 0Y (0 1/2) , 

0 otherwise 

which, when compared to (3.12), is recognized to be the probability density 
function of the half-Cauchy distribution. 
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