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Abstract

The interplay between Bayesian and frequentist inference can play a remarkable
role in order to address some theoretical and computational drawbacks, due to the
complexity or misspecification of the model, or to the presence of many nuisance
parameters. In this respect, in this paper we review the properties and applica-
tions of the so-called pseudo-posterior distributions, i.e., posterior distributions
derived from the combination of a pseudo-likelihood function with suitable prior
information. In particular, we illustrate the various notions of pseudo-likelihood
highlighting their use in the Bayesian framework. Moreover, we show the sim-
ple but effective application of pseudo-posterior distributions in three challenging
examples.

1 Introduction

In the presence of models with complicated dependence structures, of multidimen-
sional nuisance parameters, or of model misspecifications, both frequentist and
Bayesian inference may encounter some theoretical and computational difficulties.
Indeed, in these situations the original likelihood function may be intractable or com-
putationally cumbersome. In order to take into proper account of such difficulties,
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206 L.Ventura and W.Racugno

it is possible to consider surrogates of the original likelihood, which produce the
wide class of the so-called pseudo-likelihoods; see, for instance, [55, Chap.4], [71,
Chaps. 8 and 9], and [76], and references therein.

The aim of this paper is to review the properties and to illustrate some applications
of the so-called pseudo-posterior distributions, i.e., distributions derived from the
combination of a pseudo-likelihood function with suitable prior information. It is
a Bayesian non-orthodox procedure widely used in the recent statistical literature
and theoretically motivated in several papers; see, among others [4,11,12,17,19-
21,30,34,36,40,46,51,58,60,63,67-69,73,77-79,81], and references therein.

The outline of the paper is as follows. Section?2 gives a brief review on pseudo-
likelihood functions. Section 3 introduces the notion of pseudo-posterior distribution,
discusses the choice of the prior and the validation of a pseudo-posterior distribution,
also through first and higher-order asymptotic results. In Sect.4 we illustrate the
calculation of pseudo-posterior distributions using a one-way random effects model
with heteroscedastic error variances, the Cox proportional hazards model, and a
multilevel probit model. Finally, some concluding remarks close the paper.

2 Notion of Pseudo-Likelihood

Lety = (y1, ..., y») be arandom sample of size n from a statistical model with para-
meter space ©, not necessarily finite-dimensional. Let T = 7(0), witht € T C RX,
k > 1, be the parameter of interest. The more complex is the component comple-
mentary to T in €, then the more useful is the possibility of basing inference on a
likelihood function which depends on t only.

Let us denote with L (1) = Ls(7; y) a pseudo-likelihood function for 7, that is
a function of the data y which depends only on the parameter of interest t and which
behaves, in some respects, as it were a genuine likelihood. This means that, under mild
regularity conditions, L () has unbiased score function, the pseudo-maximum
likelihood estimator 7, is consistent and asymptotically normal, and the pseudo-
likelihood ratio test W, (1) = 2(£ p5(Tps) — £ps(7)), With £,5(7) = log L ,5(7), has
null asymptotic X/? distribution. Some well-known examples of pseudo-likelihood
functions are the marginal, the conditional, the profile, the approximate conditional,
the modified profile, the integrated, the partial, the quasi, the empirical, the weighted,
the composite and the pairwise likelihood. For reviews on pseudo-likelihood func-
tions see, e.g., [55, Chap.4], [71, Chaps. 8 and 9], and [76], and references therein.

There are several reasons for introducing a pseudo-likelihood function for infer-
ence on t. Here we propose a possible taxonomy of pseudo-likelihoods based on
three main classes.

1. Elimination of nuisance parameters. Consider a parametric model with density
function p(y;6),0 € ® CR?, p > 1, and write 6 = (7, 1), where the nuisance
parameter A is of dimension p — k. For inference on 7, pseudo-likelihoods based on
astatistical model defined as a reduction of the original model are the marginal and the
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conditional likelihoods [ 71, see Chap. 8]. However, they are available essentially only
in exponential and in group families. Outside of these cases, one simple and general
way of obtaining a pseudo-likelihood for 7 is to replace the nuisance parameter
A with its maximum likelihood estimate (MLE) for fixed 7, i.e., )A»t, in the original
likelihood L(z, 1). The corresponding function L ,(t) = L(z, 5\,) is the well-known
profile likelihood. 1t is not a genuine likelihood and its behavior may not be entirely
satisfactory, especially when the dimension of A is large. Various modifications of
L ,(t) have been proposed, starting from the approximate conditional likelihood
of [24], which is based on the choice of an orthogonal parameterization, to the
various proposals of modified profile likelihoods, which require notions about higher-
order asymptotic methods (see [71, Chap.9]). All the available modifications of the
profile likelihood are equivalent to the second order and share the common feature
of reducing the score bias to O(n~!) (see, e.g., [56]). A further approach that can
be applied generally for the elimination of nuisance parameters is to average the
likelihood function L (7, A) with respect to a “weight” function 7t (A) on A, in order to
define the integrated likelihood function Lj(t) = f L(z,A)m())dA (see[71, Chap.
81, [10]).

2. Semi or nonparametric models. The quasi-likelihood (see [2,6,8,48]) is a
pseudo-likelihood function associated to a semi parametric model specified in terms
of first (and sometimes second) order moments of a particular unbiased estimating
function. Instead, the empirical likelihood [ 54] was introduced to deal with inference
problems on k-dimensional smooth functionals in nonparametric models. The study
of these pseudo-likelihoods, when derived from M -estimators, has been investigated
in [1,3,54]. When robustness with respect to influential observations or to model
misspecifications is of interest, also the weighted likelihood can be considered (see,
e.g., [38,47]), which is a pseudo-likelihood defined through a set of weights which
are supposed to opportunely down-weight likelihood single term components.

3. Complex models. The class of composite likelihoods (see [76], and references
therein) is useful when the fully specified likelihood is computationally cumber-
some as well as when a fully specified model is out of reach. This class contains
the ordinary likelihood, as well as many other interesting alternatives, such as the
Besag pseudo-likelihood [13], the m-order likelihood for stationary processes [5], the
approximate likelihood of [74], and the composite marginal likelihood and the pair-
wise likelihood [26], constructed from marginal densities. Also the partial likelihood
[22,23], introduced for inference about the regression coefficients in the proportional
hazards model, may be considered a member of this class.

Finally, we remark that since the 1970s numerous other pseudo-likelihoods have
been considered. Some of these are: the pseudo-likelihood of [35], where nuisance
parameters are eliminated by means of a simple plug-in estimate; the bootstrap
likelihood [28,29], which is in the spirit of empirical likelihood; the dual likelihood
[53], which associates a likelihood to a martingale estimating equation; the projected
likelihood [49,82] for semi parametric models; the penalized likelihood [25,37] for an
infinite-dimensional parameter of interest such as a density or a regression function;
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the various instances of predictive likelihood [14,16]; the h-likelihood [44,45,50],
that is a hierarchical likelihood, for inferences from random effect models.

3 Pseudo-Posterior Distributions

Assuming a prior distribution 7 (7) on T and treating L ,,; () as an ordinary likelihood,
from a purely formal expression of Bayes’ theorem we obtain

ﬂps(fly) x 7 (1) Lps(f) . (D

The posterior distribution 7,s(t|y) is obtained “miming” the Bayesian procedure
and thus is called pseudo-posterior. In general, Bayesian inferential procedures based
on pseudo-likelihoods are called hybrid, or quasi or pseudo Bayesian methods.

When basing inference on t on the pseudo-posterior distribution 7 s(z|y), three
issues need to be addressed

(a) the choice of the suitable pseudo-likelihood L s (7);
(b) the choice of the prior 7 (7);
(c) the validation of inference based on 7 s (t|y).

Section 3.1 focuses on the choice of the pseudo-likelihood to be used in (1), which
depends on the model and the objectives of the analysis. Section3.2 reviews the
results on the choice of the prior. Finally, Sect.3.3 discusses the validation of a
pseudo-posterior distribution, both numerically and through asymptotic results.

3.1 Areas of Application of Pseudo-Posterior Distributions

Although (1) cannot always be considered as orthodox in a Bayesian setting, the use
of alternative likelihoods is nowadays widely shared, and several papers focus on the
Bayesian application of some well-known pseudo-likelihoods. Of course, the choice
of the pseudo-likelihood to be used in (1) depends on the objectives of the analysis.
A possible classification of the main areas of applications of the pseudo-posterior
7ps(T|y) may be based on the following five classes.

Elimination of nuisance parameters. When = (t, A) and only inference on t is of
interest, the marginal, the conditional, the modified profile, and the approximate con-
ditional likelihoods can be used in (1). Note that the use of these pseudo-likelihoods
in 75 (t|y) has the advantages of avoiding the elicitation on the nuisance parameter
A and of the computation of a multidimensional integral necessary to compute the
marginal posterior distribution for . Moreover, these pseudo-likelihood functions
L »5(7) have an orthodox Bayesian interpretation. This means that they are equiv-
alent to a suitable integrated likelihood, of the form L;(7) = f L(t, ) m(A|t)dA,
for a specific conditional prior 7 (A|7) (see, e.g., [57,70]). As a further remark, note
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that the pseudo-posterior distribution 7 ,;(7|y) is a genuine posterior distribution
when using in (1) the modified profile likelihood with the corresponding match-
ing prior (see [77,81]) or in non-normal regression-scale models, in which there is
no loss of information about t when using a pseudo-posterior distribution derived
from a marginal likelihood (see [60]). For Bayesian applications of the marginal,
the conditional, the modified profile, and of the approximate conditional likelihoods
see, among others [10-12,17,19,20,32,34,51,60,64,70,77,79-81], and references
therein.

Semi or nonparametric models. When dealing with semi parametric or nonpara-
metric statistical models, for Bayesian inference on 7 the quasi and the empirical
likelihoods can be used. Note that the use of these pseudo-likelihoods in s (|y)
has the advantages of requiring the elicitation of the prior only on the parameter of
interest . For applications of these pseudo-likelihoods for Bayesian inference see
[42,46,60,68,78], and references therein.

Robustness. When robustness with respect to outliers, influential observations or
model misspecifications is required, the quasi, the empirical and the weighted like-
lihoods can be used to obtain resistant pseudo-posterior distributions. Indeed, the
occurrence of anomalous values can seriously alter the shape of the ordinary like-
lihood function and then lead to ordinary posterior distributions far from those one
would obtain without these data inadequacies, as illustrated in [4,36,78].

Complex models. The composite and pairwise likelihoods deal with complex sta-
tistical models, for which the ordinary likelihood and thus the ordinary posterior dis-
tribution are impractical to compute or even analytically unknown. The use of these
pseudo-likelihood in Bayesian inference has been discussed in [58,63,65,67,73].

Proportional hazards model. In the Bayesian framework, the use of the partial
likelihood to derive a posterior distribution on the regression parameters of the Cox
model has the advantage of avoiding the specification of a prior process on the
unknown baseline cumulative hazard function. For the use of this pseudo-likelihood
in Bayesian inference, see, among others [21,39,40,67,69].

3.2 Choice of the Prior

The choice of the prior distribution on t in (1) involves the same problems typical of
the standard Bayesian perspective. In particular, this occurs both when the elicitation
of a proper prior distribution is required and when using default prior distributions
that are often improper. For instance, the choice of parametric priors in 7 s (t|y) has
been considered in several papers (see, e.g., [4,36,40,42,58,60,67,73]).

Non-informative priors have been considered by [21,58,60]. Ventura et al. [78]
discuss how to modify the Jeffreys’ prior to yield a default prior for T to be used
with a general pseudo-likelihood L (7). It is shown that the Jeffreys-type prior for
T associated to L ,(7) is given by

75 (0) 0\ lips (D] @)
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where i s(7) is the pseudo-expected information matrix, i.e.,
ips(t) = E(—8%€s(1)/dTdT") .

This means that a parametrization invariant prior distribution for 7, derived from a
pseudo-likelihood function, is proportional to the square root of the determinant of
the pseudo-expected information.

The other prominent studied default priors are the matching priors, designed to
produce Bayesian credible sets which are optimal frequentist confidence sets in a
certain asymptotic sense (see, e.g., [27]). The use of matching priors has been widely
discussed in (1) with L ,(7) denoting a marginal, conditional or modified profile
likelihood for a scalar parameter of interest t; see, e.g., [17,19,51,61,64,77,79-81].
For instance, when using the modified profile likelihood, the corresponding matching
prior is (see [77]),

7Tmp(77) X irra(T, ir)l/z > (3)

With ip7 (T, &) = iz (T, A) — ipa (T, Visa(t, M) Lz (1, 1) partial information, and
irr (T, X), i (T, M), ix. (T, A) and i, ; (7, A) blocks of the expected Fisher information
from the genuine likelihood L(z, A).

3.3 Validation of the Pseudo-Posterior Distribution

The pseudo-posterior distribution 77,5 (7| y) calls forits validation for Bayesian infer-
ence. At the current state, a general finite-sample theory for pseudo-posterior distri-
butions is not available, and every single problem has to be examined.

For the pseudo-posterior distributions listed in Sect. 3.1, the validation may be
based on asymptotic results. In particular, paralleling the results for the full posterior
distribution and under standard regularity conditions, it can be shown that (see [36,
42,58])

Tps (1Y) ~ Nic (Bpss Jps(Eps) ™) 4)

where j,(T,s) is the pseudo-observed information evaluated at the pseudo-MLE.
An asymptotically equivalent normal approximation is 7,s(z|y) ~ Ni (fps,

fps (fps)_l), where T is the pseudo-posterior mode and fps (Tps) = —(01og L s

(1))/ (ara‘cT ) |f:fm . Moreover, paralleling results for the full posterior distribution,
also a higher-order tail area approximation can be derived for a scalar parameter of
interest T (see [67]). In particular, it holds

/ mps(Tly) dT = @ (r,5(%0)) , (5)

0
where ®(-) is the standard normal distribution function and

P (1) = rpg(T) + (1) log b(rpy (1))
with
rps(T) = sign(£ps — D2 ps(Tps) — Lps (T2
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pseudo-signed likelihood root and

)1/2 rps(f) ()
RGBS

The symbol “=” in (5) indicates that the approximation holds with error of order
O(n~3/%). From a practical point of view, the tail area approximation (5) can be
used to compute posterior quantiles of t, or equi-tailed credible intervals as {7 :
|r;s(t )| < Z1—a/2), Where 2142 is the (1 — o/2)-quantile of the standard normal
distribution. Moreover, it can be used to approximate posterior moments or highest
posterior density (HPD) credible intervals when using the HOTA algorithm (see
[64,67]). The HOTA algorithm is essentially an inverse transform sampling method,
which gives independent samples from the pseudo-posterior distribution.

A numerical possibility for a finite-sample validation of Bayesian inference based
on 7 ,s(t|y) is to use the procedure by Mohanan-Boos (1992). These authors dis-
cuss a criterion for evaluating whether or not an alternative likelihood can be used for
Bayesian inference and, to this end, they introduce a definition of validity, based on
the coverage properties of posterior credible sets. In practice, they compute the sta-
tistic H = f_r ~ Tps(t]y) dt, which corresponds to posterior coverage set functions
of the form (—oo0, t“], where t* is the ath percentile of the pseudo-posterior distrib-
ution. They assume that 7 (7 |y) is valid by coverage if H is uniformly distributed
in (0, 1). Validity of Bayesian inference for the empirical likelihood was assessed in
[42], for the quasi-likelihood in [36], and for the weighted likelihood in [4].

b(rps (r) = jps(fps

4 Three Examples of Pseudo-Posterior Distributions

In this section we illustrate the calculation of pseudo-posterior distributions in three
illustrative examples based on: the modified profile likelihood in a one-way random
effects model with heteroscedastic error variances, the partial likelihood in the Cox
proportional hazards model, and the composite likelihood in a multilevel probit
model. It is argued that pseudo-posterior distributions have an important role to play
in Bayesian statistics.

4.1 Elimination of Nuisance Parameters with Matching Priors

Let 6 = (t, A), with T scalar parameter of interest and A multidimensional nuisance
parameter. Bayesian inference on 7 is based on the marginal posterior distribution
Jw(x, A)L(t, 1) dx
[7(z, A)L(z,\) drdt
The computation of (6) may present some difficulties. First of all, it requires the

elicitation on both ¢ and A. Second, it requires a multidimensional numerical inte-
gration.

T (Tly) = /n(em i = 6)
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These drawbacks can be avoided when using the class of matching priors in
7, (t]y). In this case, the marginal posterior distribution can be written as (see, e.g.,
[81], and references therein)

T (T|y) nmp(f)me(t) > (N

where 1, (7) is the matching prior (3), and Ly, (t) = L,(t)M(7) is the modified
profile likelihood for T with M (7) suitable defined correction term. The advantages of
(7) are that: (1) no elicitation on the nuisance parameter A is required; (2) no numerical
integration or MCMC simulation is needed; (3) accurate Bayesian inference even
for small sample sizes. Moreover, it can routinely be applied in practice using results
from likelihood asymptotics and the R package bundle hoa (see [81]).

Accurate tail probabilities from (7) can be computed using the third-order approx-
imation (5), which reduces to (see also [80])

| mateindr = 0w, ®)

0
where
q(t)

r;s(r) =rps(T) + rps(r)_1 log @)

is the modified directed profile likelihood of [7], with
irr.k(fv 5‘)1/2 1
irza (T, Xt)l/Z M(7) ‘

The prior 7,,,(7) is also a strong matching prior [33] since a frequentist p-value
coincides with a Bayesian posterior survivor probability. Moreover, note that the equi-
tailed credible interval {u : |r; (t)| < Z1—q/2) for T derived from (8) coincides with
an accurate higher-order likelihood-based confidence interval for t with approximate
level (1 — «). Therefore, this credible interval is also a likelihood-based confidence
interval for 7, with accurate frequentist coverage.

In order to illustrate the use of (7), consider inference for the consensus mean
in inter-laboratory studies. The analysis of data from inter-laboratory studies has
received attention over the past several years, and it deals with the one-way random
effects model with heteroscedastic error variances; see, among others [72], and ref-
erences therein. Let us assume that there are m laboratories, with n ; observations at
the j-th laboratory, for j = 1, ..., m. The model is

q(v) = €,(v)

Yij =T+7Tj +¢ij, i:l,...,nj, j=1,...,m, 9)

where y;; denotes the i-th observation at the j-th laboratory, and 7; and &;; are
independent random variables with distribution 7; ~ N (0, o?)and ¢; i~ N(, ajz),
respectively. The parameter of interest is the consensus mean t, which is also the
meanofthey;;,i =1,...,njand j = 1, ..., m. Theremaining (m + 1) parameters
of the model, i.e., within-laboratory variances (012, e 0,121) and between laboratory
variability o2, are nuisance parameters. Consider the marginal posterior distribution
for t based on the matching prior 7, (7). With respect to a standard Bayesian
approach (see, e.g., [75]), it does not require the elicitation on the nuisance parameter
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A= (02, 012, R a,%) and it enables us to perform simple and accurate Bayesian
inference also when m and/or the n;, j =1, ..., m, are small. The log likelihood

function for T and A = (02, 012, el crn%) from model (9) is given by

m

! 2 . 2, (0= Dsj
K(T,K):—EZ (nj — Dlogo; —logp; +p;(3; — 1) + ——L ],

o

Jj=1 J

with p; = 1/(c? +Uf/nj), ¥ =01, vij/n; and sz = >0 0ij — 5 (nj —
1), for j =1,..., m. Starting from €(z, A), all the quantities involved in (7) are
given in [72], which discuss higher-order frequentist confidence intervals for 7. In
particular, the matching prior of 7 is given by

m
1
Tmp (T) X PR
\ jZ:; 03 + O_j7:/nj
with 63 and 6.2r partial MLEs of 02 and 02, j = 1, ..., m, for fixed 7. Note that to

compute (7), the HOTA simulation scheme can be used [64].

Let us consider the study involving nine laboratories carried out by the Nutrient
Composition Laboratory of the US Department of Agriculture. The objective was to
validate a proposed simple nonenzymatic gravimetric method for determining total
dietary fiber in some foods. Six samples (apple, apricots, cabbage, carrots, onions,
and soy fiber) were sent in blind duplicates to the participating laboratories. The
data on fiber in apples were analyzed by [75], using non informative priors. For this
example, m = 9 and the number of measurements 7 ; made by the jth laboratory is
2,for j =1,...,9. The posterior distributions for t are illustrated in Fig. 1, and the
credible intervals for the consensus mean and some summary statistics are given in
the following table:

mean (sd) median 0.95 equi-tailed | 0.95 HPD

Tmp (T]y) 12.91 (0.27) 12.93 (12.35,13.46) (12.33,13.43)
m (tly) 12.87 (0.66) 12.90 (12.19,13.61) (12.19,13.61)
4) 12.91 (0.22) 12.91 (12.47,13.34) (12.47,13.34)
Fig.1 HOTA posterior MR
distribution (histogram), a M1~
! (t]y) (solid) and A
first-order approximation (4) . U
(dashed) for the mean G
dietary fiber in apples 8 o

o

=]

S T 1 T T |

11.5 12.0 12.5 13.0 135 14.0
M
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The overall computation time was 1 s. The dashed curve in Fig.1 is the first-
order approximation (4), while the solid curve is the marginal posterior 7, (t|y)
for t discussed in [75]. This posterior is based on the independent priors 7w (t) o 1,
m(oj)ox1/oj, j=1,...,m, and 7 (o) o 1. Note that the first-order 95 % equi-
tailed credible interval appears unsuitable since it is too short owing to a poor normal
approximation to the posterior distribution (see also [15]).

4.2 Inference on the Cox Proportional Hazards Model

The Cox proportional hazards model [22,23] is widely used for semiparametric
survival data modeling. In its simplest form the failure times 71, ..., T,, for n
independent individuals, have hazard functions A(z; x;) = ho(¢) exp{xiT B}, where
B = (B1, ..., Bp)isavector of unknown regression parameters, x; isa (p x 1) vec-
tor of covariates for the ith individual,i = 1..., n, and hg(¢) is the baseline hazard
function. Suppose that the failure time is subject to right-censoring by a mechanism
independent of their values and uninformative about their distribution. The data are
n pairs (¢, 8;), where f; denotes the observed lifetimes for the ith individual and §;
is an indicator of the survival status, with d; = 1 if #; is a failure time (uncensored)
and d; = 0if ¢; represents a right-censored value, thatisif 7; > f;,i = 1, ..., n. The
partial likelihood for § is given by

m exiTIB
Lr) =] ———— - (10)
i=l1 Zje%(t(i)) e/

where ¢(;) is the ordered failure time, Z(t;) is the risk set comprising those indi-
viduals at risk at time 7y, i = 1,...,n,andm = ), §;.

In the Bayesian framework prior opinion should be modeled through a prior
process on the baseline cumulative hazard function and a prior density 7 (8) on the
regression parameters, since both /g(¢) and 8 are unknown. To avoid issues related
to the elicitation on /¢ (¢), in practice the partial likelihood (10) can be used directly
to derive the pseudo-posterior distribution

7p(Bly) xmw(B) Lp(B); (11)

see [39,40,69], and references therein, for various Bayesian applications of (11).
Suppose it is of interest to focus on the scalar parameter f;, i.e., the jth compo-
nent of B. Let then B = (¥, 1), with ¥ = B; the parameter of interest and A =
(Bis---,Bj—1,Bjt1, ..., Bp) the (p — 1)-dimensional nuisance parameter. Non-
informative priors on B, such as w(B) o< 1 (see, e.g., [21]) or vague normal priors
(see, e.g., [40]), can be considered.

Let us consider a real dataset concerning a clinical study on malignant mesothe-
lioma (MM) [31]; this example is discussed in [67]. The dataset reports censored
survival times for n = 109 and the type of malignant mesothelioma, i.e., type epithe-
lioid, biphasic, or sarcomatoid. The partial likelihood (10) is thus a function of

B = (B1. B2).
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Fig. 2 Marginal posterior distributions for 81 and 8, computed with HOTA and MCMC for the
Cox regression model

The marginal partial posterior distributions for 81 and 8, can be computed both
using the HOTA algorithm based on higher-order approximations or with MCMC,
both based on 10* simulations and a non-informative prior on 8. A graphical compar-
ison of the two cumulative distribution functions is given in Fig. 2, whereas numerical
comparisons are reported in the following table:

Method Mean Std. Dev | Qp.025 Median Q0.975 0.95 HPD
HOTA B1 0.084 0.291 —0.501 0.089 0.641 (—0.480,
0.656)
HOTA B2 0.974 0.291 0.396 0.976 1.540 (0.415,
1.557)
MCMC B1 0.084 0.291 —0.501 0.089 0.640 (—0.488,
0.644)
MCMC B2 0.975 0.292 0.397 0.976 1.541 (0.395,
1.541)

The results indicate that the MCMC and the HOTA algorithm give virtually indis-
tinguishable results. MCMC is run for a large number of simulations and the usual
convergence checks and post processing tasks are applied (e.g., thinning, burn-in,
etc.), whereas HOTA is very simple to implement in this example since it is available
at little additional computational cost over simple first-order approximations. More-
over, HOTA gives independent samples at a negligible computational cost and it can
be used for quick prior sensitivity analyses [62], since it is possible to easily assess the
effect of different priors on marginal posterior distributions, given the same Monte
Carlo error. This is not generally true for MCMC or importance sampling methods,
which in general have to be tuned for the specific model and prior.
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4.3 Correlated Binary Data

The pairwise likelihood is particularly useful for modeling correlated binary out-
comes, as discussed in [43]. This kind of data arise, e.g., in the context of repeated
measurements on the same subject, where a maximum likelihood analysis involves
multivariate integrals whose dimension equals the cluster sizes.

Let us focus on a multilevel probit model with constant cluster sizes. In particular,
let S; be alatent g-variate normal with mean y; = X; 8/0, with  unknown regression
coefficient, o known scale parameter and X; design matrix for unit i, and covariance
matrix ¥, with £, = 02, Tk = ozp, h #k,i =1,...,n.Then, the observed y;j,
is equal to 1 if S;; > 0, and O otherwise, forh =1, ..., q.

The full likelihood is cumbersome since it entails calculation of multiple integrals
of the multivariate normal distribution. On the other hand, the pairwise log likelihood
is (see, e.g., [41,43])

n qg—1 ¢
pLB.p)=D_D" > log P(Yin = yin. Yik = yir: B. p) » (12)
i=1 h=1k=h+1

where P(Y;, = 1, Yix = 1; B, p) = ®2(yin, vik; p) denotes the standard bivariate
normal distribution function with correlation coefficient p, and y;, = x;;, /0 is the
component i of )/’~ (i=1,...,n,h,k=1,...,q).Pairwise likelihood inference is
much simpler than using the full likelihood since it involves only bivariate normal
integrals.

In principle, the pairwise likelihood can be used directly in the Bayes’ theorem
as it is a genuine likelihood, giving [73]

pe (B, ply) occ (B, p) exp(pL(B, p)) .

However, [58] suggest to combine a calibrated version of the pairwise likelihood
with the prior, obtaining the calibrated posterior

7o (B, ply) x 7 (B, p) exp(c pt(B, p)) . (13)

with ¢ suitable constant (see formula (2.3) in [58]). The calibration is necessary in
order to alleviate the inefficiency of composite likelihood methods. Moreover, the
use of n; +(B, p|y) recovers, approximately, the asymptotic properties of the pairwise
posterior. Examples of 77, (8, p|y) and of JT;,Z (B, p|y) are discussed also in [63,65].

Letus consider an example in [65], which discuss the use of the pairwise likelihood
function in Approximate Bayesian Computation (ABC) methods. The data have been
generated with 8y = p = 0.5and 81 = o = 1,and withn = 50 and ¢ = 7, where By
is the intercept and B the coefficient of a covariate, which has been generated from
a U(—1, 1). For the parameter 6 = (o, B1, k), with k = logit((p(g — 1)+ 1)/q),
a normal prior N (0, 45)3 is assumed.

The marginal pairwise posteriors for p, By and B, derived from the calibrated
and non-calibrated pairwise posteriors, are illustrated in Fig. 3. For the purposes of
comparison we report also an MCMC approximation of the posterior based on the
full likelihood. Clearly, the non-calibrated pairwise posterior is quite different from
the target (MCMC), whereas the calibrated pairwise posterior behaves much better.
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Fig.3 Correlated binary data: Calibrated pairwise posterior (Cal. Pair) compared with the pairwise
(Pair) and the exact (MCMC) posteriors. The horizontal lines represent the true parameter values

5 Final Remarks

Posterior distributions based on suitable pseudo-likelihoods have been proved useful
for Bayesian inferences on a parameter of interest in several contexts (see also [9]). A
first notable situation arises when elimination of a nuisance parameter is of interest.
In this case the use of a pseudo-likelihood allows to avoid the elicitation of the prior
of the nuisance parameter and the computation of a multidimensional integral in the
integrated likelihood. A second striking situation is when the ordinary likelihood,
and thus the corresponding posterior distribution, is difficult or even impractical
to compute. In this respect, the use of a pseudo-posterior distribution based on the
partial and the composite likelihoods may be particularly useful to deal with complex
models.

Finally, we note that the interplay between Bayesian and likelihood procedures
is still lively and opens to new research topics. A first instance refers to the use of
composite likelihood score functions as summary statistics in Approximate Bayesian
Computation (ABC) in order to obtain accurate approximations to the posterior dis-
tribution in complex models [65]. Moreover, also scoring rules, that generalize the
proper and the composite likelihoods, can be used for developing posterior distrib-
utions using ABC methods (see the preliminary results in [66]). Finally, in [18] it is
shown how higher-order approximations and matching priors are useful to derive an
accurate approximation of the measure of evidence for the full Bayesian significance
test introduced by [59] for precise hypotheses.
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