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Abstract The aim of this contribution is to discuss approximate Bayesian computation
based on the asymptotic theory of modified likelihood roots and log-likelihood ratios. Results
on third-order approximations for univariate posterior distributions, also in the presence of
nuisance parameters, are reviewed and the computation of asymptotic credible sets for a vector
parameter of interest is illustrated. All these approximations are available at little additional
computational cost over simple first-order approximations. Some illustrative examples are
discussed, with particular attention to the use of matching priors.

Keywords Bayesian simulation · Credible set · Higher-order asymptotics · Laplace
approximation · Marginal posterior distribution · Matching priors · Modified likelihood
root · Nuisance parameter · Pereira–Stern measure of evidence · Precise null hypothesis ·
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1 Introduction

Asymptotic arguments are widely used in Bayesian inference, and in recent years there
have been considerable developments of so-called higher-order asymptotics. The aim of this
contribution is to discuss recent advances in approximate Bayesian computation based on
the theory of higher-order asymptotics. The theory provides very accurate approximations to
posterior distributions, and to various summary quantities of interest, including tail areas and
credible regions. The approximations are based on modifications of the usual log-likelihood
ratio statistic. It is argued that analytic approximations still have an important role to play in
Bayesian statistics.
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232 L. Ventura, N. Reid

Higher-order approximations for posterior distributions have been widely discussed in
Bayesian inference; see, among others, [4,7,8,18,19,24,26,27,32], and references therein.
One appealing feature of these approximations is that they may routinely be applied in prac-
tical Bayesian inference, since they require little more than standard likelihood quantities for
their implementation, and hence they may be available at little additional computational cost
over simple first-order approximations. Moreover, they are particularly useful for sensitivity
analyses [11,20,21].

In this paper, recent results on asymptotic approximations based on modifications of the
log-likelihood ratio are reviewed and their use in Bayesian computation is illustrated. A first
result shows that third-order approximations give rise to a simple simulation scheme [21] for
Bayesian computation of marginal posterior distributions for a scalar parameter of interest.
Its main advantage over Markov chain Monte Carlo methods is that samples are drawn
independently, so that much less computational time is needed. We then show how third-
order tail area approximations can be used for testing precise a null hypothesis [5,16]. Finally,
we also review how approximate Bayesian computations based on modified log-likelihood
ratios can be generalized for a vector parameter of interest [31]. As is the case with the
approximations for univariate posterior distributions, the results are based on the asymptotic
theory of modified log-likelihood ratios and require only routine maximization output for
implementation. The theory is illustrated by some examples, with particular attention to the
use of matching priors.

The paper is organized as follows. Section 2 illustrates higher-order Bayesian approxima-
tions for inference about a scalar parameter of interest; tail areas, simulation methods, and
testing are described. Section 3 indicates how these ideas generalize to the multi-parameter
case. Some concluding remarks are given in Sect. 4.

2 Scalar parameter of interest

2.1 Modified likelihood roots

Consider a sampling model f (y; θ) with scalar parameter θ ∈ � ⊆ R, and let L(θ) =
L(θ; y) = exp{�(θ)} be the likelihood function based on data y = (y1, . . . , yn). Given a prior
density π(θ) for θ , Bayesian inference is based on the posterior density π(θ |y) ∝ π(θ) L(θ).
In several applications, an approximation to an integral of the form

∞∫

θ0

π(θ |y) dθ = Pr(θ ≥ θ0|y) (1)

is required. The derivation of a tail area approximation is simple in the scalar case. See,
among others, [18,19,24,26,27], [6, Chap. 11], [4, Chap. 8], and references therein. The first
step is to consider in (1) the Laplace approximation to the normalizing constant, which gives
an approximation to π(θ |y):

π(θ |y) =̇ 1√
2π

| j (θ̂)|1/2 π(θ)
π(θ̂)

exp
{
�(θ)− �(θ̂)

}
, (2)

where θ̂ is the maximum likelihood estimator (MLE) of θ and j (θ) = −�′′(θ) is the observed
information function. The notation =̇ indicates that the approximation has relative error
O(n−1) as n → ∞, in so-called moderate deviation regions, where |θ − θ̂ | < δ/

√
n.
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Approximate Bayesian computation with modified log-likelihood ratios 233

Expressions for the O(n−1) and O(n−2) terms are given explicitly in [29]. The posterior
survival function for θ is then approximated to the same order by

∞∫

θ0

π(θ |y) dθ =̇ 1√
2π

∞∫

θ0

| j (θ̂)|1/2 π(θ)
π(θ̂)

exp

{
−1

2
r(θ)2

}
dθ, (3)

where r(θ) = sign(θ̂ − θ)W (θ)1/2 is the likelihood root, with W (θ) = 2{�(θ̂) − �(θ)}
log-likelihood ratio.

The next step is to change the variable of integration from θ to r = r(θ). A motivation
for considering such a transformation is that the quantity exp(−r2/2) is the kernel of the
standard normal density. The Jacobian of the transformation is dr(θ)/dθ = −�′(θ)/r(θ),
where �′(θ) is the score function. We obtain

∞∫

θ0

π(θ |y) dθ =̇ 1√
2π

r0∫

−∞
exp

{
−1

2
r2 + log b(r)

}
dr, (4)

where r0 = r(θ0) and the positive quantity b(r) = | j (θ̂)|1/2{π(θ)/π(θ̂)}{r(θ)/�′(θ)} is a
function of r . This change of variable expresses the posterior density of r as

π(r |y) =̇ 1√
2π

exp

{
−1

2
r2 + log b(r)

}
.

The final step is a further change of variable from r to r∗ = r∗(θ) = r − r−1 log b(r), so

that −(r∗)2 = −r2 + 2 log b(r) − (
r−1 log b(r)

)2
. The Jacobian of the transformation and

the third term in −(r∗)2 contribute only to the error of (4), and it can be shown that

∞∫

θ0

π(θ |y) dθ =̈ 1√
2π

r∗
0∫

−∞
exp

{
−1

2
(r∗)2

}
dr∗ = �(r∗

0 ), (5)

where �(·) is the standard normal distribution function,

r∗
0 = r∗(θ0) = r0 + 1

r0
log

q0

r0
, (6)

with q0 = q(θ0) and

q(θ) = r

b(r)
= �′(θ)| j (θ̂ )|−1/2 π(θ̂)

π(θ)
.

The notation =̈ indicates that the approximation is accurate to order O(n−3/2) in moderate
deviation regions; see, e.g., [8] or [22, Chap. 2]. The improvement in the accuracy from the
density, O(n−1), to the distribution function, O(n−3/2), follows from detailed examination
of the Taylor series expansions relating r , q , and hence r∗.

If θ = (ψ, λ), where ψ is a scalar parameter of interest and λ is a (d − 1)-dimensional
nuisance parameter, then a similar argument can be applied to the marginal posterior density
for ψ ,

πm(ψ |y) =
∫
π(ψ, λ|y) dλ. (7)
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The Laplace approximation to (7) is (see, e.g., [18,19,29])

πm(ψ |y) =̈ 1√
2π

| jp(ψ̂)|1/2 exp{�p(ψ)− �p(ψ̂)} | jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ)|1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)
, (8)

where �p(ψ) = log L(ψ, λ̂ψ) is the profile log-likelihood for ψ , with λ̂ψ the constrained
MLE of λ given ψ , jp(ψ) = −∂2�p(ψ)/∂ψ

2 is the observed information function cor-
responding to the profile log-likelihood, and jλλ(ψ, λ) is the (λ, λ)-block of the observed
information function from the full log-likelihood �(ψ, λ). Expression (8) has the same struc-
ture as (2), and can be integrated using similar arguments:

∞∫

ψ0

πm(ψ |y) dψ =̈ 1√
2π

∞∫

ψ0

| jp(ψ̂)|1/2 exp{�p(ψ)− �p(ψ̂)} | jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ )|1/2

π(ψ, λ̂ψ )

π(ψ̂, λ̂)
dψ

= 1√
2π

rp(ψ0)∫

−∞
exp

(
−1

2
r2

p

)
r p

| jp(ψ̂)|1/2
�′p(ψ̂)

| jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ )|1/2

π(ψ, λ̂ψ )

π(ψ̂, λ̂)
dr p

= 1√
2π

rp(ψ0)∫

−∞
exp

(
−1

2
r2

p + log b(r p)

)
dr p ,

= 1√
2π

r∗
p(ψ0)∫

−∞
exp

(
−1

2
(r∗

p)
2
)

dr∗
p = �

(
r∗

p(ψ0)
)
, (9)

where

rp = rp(ψ) = sign(ψ̂ − ψ)[2(�p(ψ̂)− �p(ψ))]1/2,

b(rp) = rp
| jp(ψ̂)|1/2
�′p(ψ̂)

| jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ)|1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)
,

r∗
p = r∗

p(ψ) = rp(ψ)+ 1

rp(ψ)
log

qB(ψ)

rp(ψ)
,

qB(ψ) = �′p(ψ) | jp(ψ̂)|−1/2 | jλλ(ψ, λ̂ψ)|1/2
| jλλ(ψ̂, λ̂)|1/2

π(ψ̂, λ̂)

π(ψ, λ̂ψ)
.

The improvement in the order of the remainder term from O(n−1) in (2) to O(n−3/2) in
(8) is due to the similarity of the integrals in the numerator and denominator [29]. For
details of the derivation of (9) see, e.g., [8], although they derive a different version of the
approximation,�(rp)+φ(rp)(1/rp − 1/qB), accurate to the same order. Formula (9) gives
an explicit expression for the posterior quantiles. The derivation implicitly assumes enough
regularity in the model to ensure that rp , and hence r∗

p is a monotone function of ψ . Thus
the normal approximation to the distribution of r∗

p(ψ) gives an equi-tailed credible interval
for ψ computed as

C I =
{
ψ : |r∗

p(ψ)| ≤ z1−α/2
}
, (10)
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Approximate Bayesian computation with modified log-likelihood ratios 235

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. From (9) the
posterior median of (7) can be computed as the solution ψ̂∗ in ψ of the estimating equation
r∗

p(ψ) = 0.
A version of the tail area approximation (9) can also be developed by expanding the log-

posterior density around the posterior mode, with the same order of approximation error, but
possibly better finite sample performance (see, e.g., [21]).

2.2 Approximations with matching priors

The order of the approximations of the previous section refers to the posterior distribution
function, and may depend more or less strongly on the choice of prior. A so-called matching
prior ensures that the credible intervals based on the posterior marginal distribution also have
frequentist coverage to O(n−1) (see, e.g., [8,25,28]). Using a matching prior, [30,32] showed
that approximation (7) to the marginal posterior density for ψ can be expressed to O(n−1)

as

πm(ψ |y) ∝ Lmp(ψ) πmp(ψ), (11)

where Lmp(ψ) = L p(ψ)M(ψ) is the modified profile likelihood for a suitably defined
correction term M(ψ) (discussed, for example, in [22, Chap. 9] and in [15, Chap. 11]) and

πmp(ψ) ∝ iψψ.λ(ψ, λ̂ψ)
1/2,

where iψψ.λ(ψ, λ) = iψψ(ψ, λ)− iψλ(ψ, λ)iλλ(ψ, λ)−1iλψ(ψ, λ). The use of the matching
prior πmp(ψ) has the advantage that it does not require elicitation of a prior distribution,
and the approximation in (11) can be used to avoid numerical integration over λ, or MCMC
simulation, in order to obtain an O(n−1) approximation to the marginal posterior density.

Following [32], the marginal posterior density (11) can also be written, to second-order,
as

πm(ψ |y) ∝ exp

(
−1

2
r∗

p(ψ)
2
) ∣∣∣∣ sp(ψ)

rp(ψ)

∣∣∣∣ , (12)

where sp(ψ) = �′p(ψ)/jp(ψ̂)
1/2 is the profile score statistic, and r∗

p(ψ) has the form (10),
with qB(ψ) = qp(ψ), where

qp(ψ) = �′p(ψ)
jp(ψ̂)1/2

iψψ.λ(ψ̂, λ̂)1/2

iψψ.λ(ψ, λ̂ψ)1/2
1

M(ψ)
. (13)

This version of r∗
p(ψ) was derived in [2] as an O(n−1) approximation to the non-Bayesian

version of r∗
p(ψ) of [1], thus verifying that πmp(ψ) is also a strong matching prior, in the

sense of [9].
A remarkable advantage of Eq. (12) is that its expression automatically includes the

matching prior, without requiring its explicit computation. Moreover, in (12) the modified
directed likelihood r∗

p(ψ) may be replaced by the modified directed likelihood of [1] or by
the adjusted directed likelihoods discussed in [2]; see also [3, Chap. 6], and [22, Chap. 7].
Indeed, all these versions are closely related to each other in the sense that they are equivalent
to second order (see [2, Sect. 5]).

Finally, from (12) accurate tail area probabilities are computable as in (9) with qB(ψ) =
qp(ψ). In this situation, the credible interval (10) for ψ coincides with an accurate higher-
order likelihood-based confidence interval for ψ with approximate level (1 − α). Moreover,
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236 L. Ventura, N. Reid

the posterior median coincides with the frequentist estimator defined as the zero-level con-
fidence interval based on r∗

p(ψ) [23]. Such an estimator has been shown to be a refinement

of the MLE ψ̂ [10].

Example 1: Nonlinear regression. In a nonlinear regression model the responses y1, . . . , yn

are related to explanatory variables xi as

yi = μ(xi ;β)+ σ εi , i = 1, . . . , n, (14)

where xi is a known p×1 vector, the unknown parameters are the p×1 vector β and the scale
parameter σ > 0, μ(xi ;β) is the mean function, and the εi are independent and generated
from a known continuous density function f (·). The standard normal density is widely used,
especially for dose-response curves in bioassays. A more general form is

yi j = μ(xi ;β)+ σi εi j , i = 1, . . . ,m, j = 1, . . . , ni , (15)

where m is the number of design points xi , ni is the number of replicates at design points,
yi j represents the response of the j th experimental unit at the i th design point, and the εi j

are N (0, 1) variates. The variance can be modelled as σ 2
i = σ 2V (xi ;β, g), where σ 2 and

the q × 1 vector g are variance parameters and V (·) is a given function.
A study on a radioimmunoassay (RIA) taken to estimate the concentrations of a drug in

samples of porcine serum is discussed in [4, Sect. 5.4]. The experiment consists of 16 obser-
vations made at 8 different drug levels with 2 replications at each level. The data are available
in the data frame ria of the nlreg package: count (y) represents the observed percentage of
radioactive gamma counts, and conc (x) the drug concentration (ng/ml). The concentration-
response relationship is modeled by means of the four-parameter logistic function

μ(x;β) = β1 + β2 − β1

1 + (x/β4)2β3
, x ≥ 0,

and the variance of the associated error distribution may be captured by a power-of-the-mean
variance function, i.e., V (xi ;β, g) = μ(xi ;β)g , where g is a scalar variance parameter.

The computation of the marginal posterior (11) based on the matching prior πmp(ψ) can
be performed using the profile method available for objects of class nlreg, of the library
HOA [4]. Figure 1 (left) gives the plot of the posterior distribution (12) and of the first-order
approximation

π I
m(ψ |y) ∼ N (ψ̂, jp(ψ̂)

−1)

for the parameter of interestψ = g. The corresponding third-order and first-order asymptotic
95 % equi-tailed credible intervals are (−0.02, 2.92) and (1.06, 3.13), respectively. These
credible intervals can be easily computed from the output of the profile method as shown in
Fig. 1 (right).

2.3 Tail area approximations for Bayesian simulation

Starting from the higher-order tail area approximation (HOTA) (9), it is possible to develop
a sampling scheme that gives rise to an accurate computation of marginal posterior densities,
and related quantities, such as posterior summaries [21].

The implementation of the HOTA sampling scheme is available at little additional com-
putational cost over simple first-order approximations, and it has the advantage over MCMC
methods that samples are drawn independently, resulting in much lower computation time.
Starting from (7), the simulation algorithm can be summarized as follows. For t = 1, . . . , T :
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g −1 0 1 2 3

−
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−
1
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1

2

parameter of interest g

Fig. 1 RIA data. Left approximations to the posterior marginal density πm (ψ |y), for ψ = g, using the
matching prior and (12) (solid line) and using the normal approximation (dashed line). Right the pivotal
quantities r∗

p(ψ) (solid line), r p(ψ) (dotted line) and Wald (dashed line); the horizontal lines are the quantiles
±z0.975

1. Draw zt ∼ N (0, 1);
2. Find ψt as the solution of r∗

p(ψt ) = zt .

Then (ψ1, . . . , ψT ) is an approximate sample from the marginal density πm(ψ |y). Note that
the main computational effort involved in the HOTA scheme is the solution of the equation
r∗

p(ψt ) = zt for each sample value zt of r∗
p(ψ). A numerical procedure is usually required

in order to solve this equation (see [21] for details).
The HOTA simulation procedure is essentially an inverse method of sampling and it gives

independent samples from (7) by inverting the cumulative distribution function approxima-
tion (9). In this respect, it has an obvious advantage over MCMC algorithms, which usually
require more tuning by the practitioner. Another possible use of the HOTA sampling scheme
is to provide quick prior sensitivity analyses [11,20]. Indeed, it is possible to easily assess
the effect of different priors on marginal posterior distributions, given the same Monte Carlo
error. This is not generally true for MCMC or importance sampling methods, which in gen-
eral have to be tuned for the specific model and prior.

Example 1: Nonlinear regression (cont). The computation, with the HOTA algorithm, of the
approximate posterior densities, using (11) and using the normal approximation π I

m(ψ |y)
is illustrated in Fig. 2 for the parameters β1 and g. The total computation time was 4 s.
Moreover, we can use qB(ψ) in (9) to find approximate posterior marginal densities (and
related quantities) for any fixed prior, and this gives a quick way to judge sensitivity to the
prior (see [20,21]). In Fig. 2 we also show the approximation marginal posterior densities
π f (ψ |y) based on a flat prior.

Based on the HOTA simulations, the 0.95 highest posterior density (HPD) interval for β1

is (1.05, 2.46) using the matching prior; is (1.02, 2.37) using the flat prior; and is (1.42, 2.18)
based on the normal approximation to the posterior. The HOTA posterior for g gives an HPD
interval of (0.14, 3.03) using the matching prior and (0.13, 3.09) using the flat prior. While
the resulting intervals are not very sensitive to the choice of prior, it is clear that the shape
of the variance function is not very well determined in this example. The lower bounds for
g based on the HPD interval and the equi-tailed interval (see Fig. 1) are also fairly different,
reflecting the skewness in the left tail of the posterior marginal.
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Fig. 2 RIA data and HOTA algorithm: posteriorsπm (ψ |y)based on (11) (solid line), first-order approximation
π I

m (ψ |y) (dashed line) and π f (ψ |y) based on a flat prior (bold dotted line) for ψ = g (left) and for ψ = β1
(right)

−0.5−1.0−1.5−2.0
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π(
τ|

y)

MCMC
HOTA

Fig. 3 Censored regression: the HOTA and MCMC simulation methods give nearly identical marginal pos-
terior distributions for the parameter τ

Example 2: Censored regression. This example is discussed in [21]; see also the references
therein. The dataset consists on temperature accelerated life tests on electrical insulation
in n = 40 motorettes. Ten motorettes were tested at each of four temperatures in degrees
Centigrade (150◦, 170◦, 190◦ and 220◦), the test termination (censoring) time being different
at each temperature. The model is

yi = β0 + β1xi + σεi , i = 1, . . . , n,

where yi is the log10(failure time)with time in hours, xi = 1,000/(temperature+273.2) and
εi are independent standard normal errors. Reordering the data so that the first m observations
are uncensored, with observed log-failure times yi , and the remaining n − m are censored at
times ui , the log-likelihood function for θ = (β0, β1, σ ) is

�(θ) = −m log σ − 1

2σ 2

m∑
i=1

(yi − β0 − β1xi )
2 +

n∑
i=m+1

log

{
1 −�

(
ui − β0 − β1xi

σ

)}
.

For (β0, β1, τ ), with τ = log σ , the non-informative prior π(β0, β1, τ ) ∝ 1 is assumed.
The posterior distribution π(β0, β1, τ |y) does not have a closed form expression and direct
integration is not possible in order to compute πm(ψ |y) and related quantities, where ψ is
one of the parameters of the model. Therefore numerical or analytical approximations are
needed.

Figure 3 illustrates the HOTA and MCMC marginal posterior distributions of τ . The
HOTA sampling scheme and MCMC give similar results. The same pattern holds also for the
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Table 1 Censored regression: comparison of marginal posterior densities obtained using Markov chain Monte
Carlo (MCMC) and HOTA, for the three parameters in the model

Method Posterior Mean SD Q0.025 Median Q0.975 0.95 HPD

MCMC πm (τ |y) −1.240 0.201 −1.600 −1.253 −0.811 (−1.616, −0.832)

HOTA πm (τ |y) −1.240 0.202 −1.601 −1.251 −0.808 (−1.624,−0.837)

MCMC πm (β0|y) −6.204 1.117 −8.570 −6.139 −4.149 (−8.413, −4.010)

HOTA πm (β0|y) −6.191 1.128 −8.596 −6.134 −4.130 (−8.475, −4.038)

MCMC πm (β1|y) 4.409 0.518 3.461 4.382 5.512 (3.425, 5.470)

HOTA πm (β1|y) 4.401 0.521 3.459 4.370 5.521 (3.398, 5.443)

other parameters (not shown here). Table 1 gives some summary statistics (mean, standard
deviation, 2.5 percentile, median, 97.5 percentile and 0.95 HPD credible set) calculated over
the three marginal posterior distributions. The results based on the two methods are in good
agreement.

For the computation with HOTA, grids of 50 points were chosen for each of the parameters
and the total number of simulations was T = 105. The overall computation time on a laptop
with 4 GB RAM was 1.8 s. For MCMC with 106 simulations which were thinned by taking
every 10th observation to reduce the autocorrelation, the computation time was 95 s.

2.4 Tail area approximations for measuring evidence

Suppose we are interested in testing the precise (or sharp) null hypothesis H0 : ψ = ψ0 versus
H1 : ψ �= ψ0. In order to avoid the Jeffreys–Lindley paradox, the measure of evidence (EV )
of the full Bayesian significance test of [16] can be considered; see also [14] and [17], and
references therein.

Following [5], consider the set

T (y) = {ψ : πm(ψ |y) ≥ πm(ψ0|y)} .
Then the Pereira and Stern posterior evidence EV in favor of H0 is

EV = 1 − Pr(ψ ∈ T (y)|y), (16)

and large values of EV indicated consistency with the null hypothesis H0. Using (9), a simple
and accurate higher-order approximation of (16) is

EV =̈ 1 −�(r∗
p(ψ0))+�(r∗

p(ψ
∗
0 )), (17)

where ψ∗
0 is such that πm(ψ

∗
0 |y) = πm(ψ0|y). With respect to the original definition of EV

[16], (17) is simpler to compute, in particular when the dimension of the nuisance parameter
is large. When matching priors are used, as above, the approximation (17) has the further
advantage that it does not require the elicitation of the prior for the nuisance parameter.

Note that

�(r∗
p(ψ0))−�(r∗

p(ψ
∗
0 )) =̈

ψ∗
0∫

ψ0

πm(ψ |y) dψ = Pr(ψ ∈ T (y)|y) = 1 − EV, (18)

gives the posterior probability of the HPD credible interval (ψ0, ψ
∗
0 ).
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0 1 2 30 1 2 3

pi(psi0|y)

pi^I(psi0|y)

Fig. 4 RIA data: Posteriors πm (ψ |y) (solid line) and π I
m (ψ |y) (dashed line) for ψ = g. The EV measures

of evidence for the precise hypothesis H0 : ψ = 1 are the dashed areas

Example 1: Nonlinear regression (cont). Suppose that for the RIA data we are interested in
testing H0 : ψ = 1 versus H0 : ψ �= 1, for ψ = g. The Pereira and Stern posterior evidence
in favor of H0 is illustrated in Fig. 4 for the marginal posterior distribution (11) and for the
first-order approximation π I

m(ψ |y).
The computation of (16) for the HOTA posterior distributions gives EV = 0.26 using (17),

whereas EV = 0.04 if the normal approximation to the posterior is used, the latter suggesting
evidence against the value g = 1, which as we have seen does not seem supported by the data.
This illustrates an important advantage of third-order asymptotics with respect to first-order
results.

3 Approximations for multidimensional parameters

3.1 No nuisance parameters

Suppose that θ ∈ � ⊆ R
d , with d > 1. In this section, we illustrate the approximations based

on modifications of the log-likelihood ratios. As in the scalar parameter case, the derivation
of these approximations can be based on three steps (see [24,31]).

Paralleling the derivation of the tail area approximations discussed in Sect. 2, in the first
step the Laplace approximation of π(θ |y) is considered, i.e.,

π(θ |y) =̇ (2π)−d/2| j (θ̂)|1/2 π(θ)
π(θ̂)

exp

{
−1

2
W (θ)

}
. (19)

The second step is a change of variable from θ to a statistic rm = rm(θ), which is asymptoti-

cally multivariate standard normal to O(n−1/2) and satisfies W (θ) = 2
(
�(θ̂)− �(θ)

)
=

rT
mrm . To this end, the signed root log-likelihood ratio transformation rm(θ) defined in

[26,27] can be considered; see also [13]. Let θ = (θ1, . . . , θd) = (θ i , θ(i+1)), where
θ i = (θ1, . . . , θi ) is the vector of the first i components of θ and θ(i+1) = (θi+1, . . . , θd). Let
θ̂
(i+1)
θ i be the partial MLE of θ(i+1) given θ i , and let θ̂ j,θ i be the j th component of (θ i , θ̂

(i+1)
θ i ),
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for j > i . The signed root log-likelihood ratio transformation is thus given by

rm(θ) = (rm1, . . . , rmd), (20)

with

rmi = sign(θi − θ̂i,θ i−1)
{

2
[
�
(
θ i−1, θ̂

(i)
θ i−1

)
− �

(
θ i , θ̂

(i+1)
θ i

)]}1/2
, (21)

for i = 1, . . . , d . Notice that rmi is a function of the first i components θ i = (θ1, . . . , θi )

of θ , for i = 1, . . . , d . Moreover, the Jacobian matrix (drm/dθ) is lower triangular, and in
particular

∣∣∣∣drm

dθ

∣∣∣∣ =
d∏

i=1

∣∣∣∣∣∣
�i

(
θ i , θ̂

(i+1)
θ i

)

rmi

∣∣∣∣∣∣ , (22)

where �i (θ) is the i th component of the score vector ∂�(θ)/∂θ , i = 1, . . . , d .
The last step is again a change of variable from rm to a more accurate version of the form

r∗
m = r∗

m(θ) = rm − δ(rm), with δ = δ(rm) chosen to satisfy rT
mδ(rm) = log g(rm), so that

− (rm − δ(rm))
T
(rm − δ(rm)) = −rT

mrm + 2 log g(rm)+ O(n−2). (23)

Actually, we only need the existence of δ(rm) to calculate

w∗
m = w∗

m(θ) = rT
mrm − 2 log g{rm(θ)}, (24)

with

g{rm(θ)} = | j (θ̂ )|1/2 π(θ)
π(θ̂)

⎡
⎣ d∏

i=1

∣∣∣∣∣∣
�i

(
θ i , θ̂

(i+1)
θ i

)

rmi

∣∣∣∣∣∣

⎤
⎦

−1

. (25)

The asymptotic distribution ofw∗
m is χ2

d with relative error O(n−1) in a large deviation region
(see [24]).

To obtain a statistic which generalizes the scalar version (6), [24] suggests the asymptot-
ically equivalent approximation

w∗∗
m = w∗∗

m (θ) = rT
mrm

(
1 − log g(rm)

rT
mrm

)2

. (26)

Note that, for d = 1, the quantity g(θ) reduces to g(θ) = r(θ)/q(θ), and thus we have
w∗∗(θ) = {r − (1/r) log g(θ)}2 = (r∗)2.

Paralleling the scalar parameter case, from (24) or (26) a credible region for θ with
approximately 100(1 − α)% coverage in repeated sampling, can be computed as

C R = {
θ : w∗∗ ≤ χ2

d;1−α
}
, (27)

based on w∗∗, or equivalently on w∗. This region can be interpreted as the extension to the
multidimensional case of the set (10). See [31] for some simulation studies on C R.

Example 3: Nonlinear regression. Let us consider a nonlinear regression model of the form
(15), with μ(xi ;β) = β1(1 − exp(−β2xi )) and with σ 2

i = 0.29 [6, Sect. 10.1] discusses
this model for the calcium data, for which the response is the calcium uptake of cells in hot
calcium suspension, and the covariate is time in minutes; ni = 3, for i = 1, . . . , 9.
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Fig. 5 Calcium data: credible regions for (β1, β2)

Figure 5 gives the contours of several credible regions for (β1, β2), i.e., the first-order
credible regions (Wald)

C RN =
{
θ : (θ − θ̃ )

T j (θ̃)(θ − θ̃ ) ≤ χ2
d;1−α

}
, (28)

where θ̃ is the posterior mode and j (θ̃) = −∂ logπ(θ |y)/(∂θ∂θT
), the likelihood-type

credible regions (W(Chi2))

C RL =
{
θ : −2 log

π(θ |y)
π(θ̃ |y) ≤ χ2

d;1−α
}
, (29)

the 95 % HPD credible region (W(Exact)) computed with MCMC simulation, and two ver-
sions derived from w∗

m and w∗∗
m . The latter are labelled W*, W** for one ordering of the

parameters in the transformation (20), and W*(Rev), W**(Rev) for an inversion of the para-
meter order. The posterior probability of C RN is 0.9129, of C RL is 0.9478, and of (27) is
0.95133. These results indicate that the accuracy of the credible region C R is very high.

3.2 With nuisance parameters

Suppose now that θ = (ψ, λ) , with ψ the parameter of interest of dimension k and λ
the nuisance parameter of dimension d − k, and consider the approximations based on
modifications of the log-likelihood ratios.

In the first step we use the Laplace approximation (8) of the marginal posterior πm(ψ |y),
given by

πm(ψ |y) =̈ (2π)−k/2| jp(ψ̂)|1/2 π(ψ, λ̂ψ)
π(ψ̂, λ̂)

exp

{
−1

2
Wp(ψ)

} | jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ)|1/2

, (30)
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where Wp(ψ) = 2(�p(ψ̂)− �p(ψ)) is the profile log likelihood ratio.
The second step is a change of variable from ψ to a statistic rmp = rmp(ψ), such that

it is asymptotically multivariate standard normal to O(n−1/2) and such that for the profile
log-likelihood ratio we have Wp(ψ) = rT

mprmp . To this end, the profile version of the signed
root log-likelihood ratio transformation rm(θ) can be considered.

Let θ = (ψ1, . . . , ψk, λ) = (ψ i , ψ(i+1), λ), where ψ i = (ψ1, . . . , ψi ), i ≤ k, is the
vector of the first i components of ψ and ψ(i+1) = (ψi+1, . . . , ψk). Let ψ̂(i+1)

ψ i and λ̂ψ i be

the partial MLEs ofψ(i+1) and λ, respectively, givenψ i , and let ψ̂ j,ψ i be the j th component

of (ψ i , ψ̂
(i+1)
ψ i , λ̂ψ i ), for i < j . The profile signed root log-likelihood ratio transformation

can be written as

rmp(ψ) = (rmp1, . . . , rmpk), (31)

with

rmpi = sign(ψi − ψ̂i,ψ i−1)
{

2
[
�
(
ψ i−1, ψ̂

(i)
ψ i−1 , λ̂ψ i−1

)
− �

(
ψ i , ψ̂

(i+1)
ψ i , λ̂ψ i

)]}1/2
,

(32)

for i = 1, . . . , k. The determinant of the Jacobian matrix (drmp/dψ) is

∣∣∣∣drmp

dψ

∣∣∣∣ =
k∏

i=1

∣∣∣∣∣∣
�i

(
ψ i , ψ̂

(i+1)
ψ i , λ̂ψ i

)

rmpi

∣∣∣∣∣∣ . (33)

The last step is again a change of variable from rmp to a more accurate version of the form
r∗

mp = r∗
mp(ψ) = rmp − δ(rmp), with δ = δ(rmp) chosen to satisfy rT

mpδ(rmp) = log g(rmp),
so that

− (rmp − δ(rmp))
T
(rmp − δ(rmp)) = −rT

mprmp + 2 log g(rmp)+ O(n−2). (34)

Actually, we only need the existence of δ(rmp) to calculate

w∗
mp = w∗

mp(ψ) = Wp(ψ)− 2 log g(rmp(ψ)), (35)

with

g(rmp(ψ)) = | jp(ψ̂)|1/2 π(ψ, λ̂ψ)
π(ψ̂, λ̂)

| jλλ(ψ̂, λ̂)|1/2
| jλλ(ψ, λ̂ψ)|1/2

⎡
⎣ k∏

i=1

∣∣∣∣∣∣
�i

(
ψ i , ψ̂

(i+1)
ψ i , λ̂ψ i

)

rmpi

∣∣∣∣∣∣

⎤
⎦

−1

.

(36)

The asymptotic distribution ofw∗
mp isχ2

k with error O(n−1). Alternatively, the asymptotically
equivalent approximation

w∗∗
mp = w∗∗

mp(ψ) = rT
mprmp

(
1 − log g(rmp)

rT
mprmp

)2

(37)

can be used. A credible region for ψ can be computed as C R = {ψ : w∗∗
mp(ψ) ≤ χ2

k;(1−α)},
as in the previous section. Simulation studies of w∗

mp(ψ) and w∗∗
mp(ψ) are under study.
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4 Remarks

This paper aims to outline how approximate computational tools have a role to play in
the modern era of Bayesian statistics, where high computational power allows the use of
stochastic simulation techniques to obtain exact (i.e., simulation consistent) answers. In
problems with a large number of nuisance parameters, or to obtain credible regions for a
vector parameter, approximate Bayesian computations based on log-likelihood ratios provide
important quantities of the posterior distribution with very little computational effort, in
a fraction of the time required for a full simulation approach. Moreover, sensitivity and
influence analyses may also be carried out quickly within this framework (see, e.g., [20,21]).

A key feature of the approximations discussed and developed in this paper is that they
do not require the calculation of log-likelihood derivatives beyond the second order for
their implementation. Although the approximations described in this paper are derived from
asymptotic considerations, they perform extremely well in moderate or even small sample
situations. On the other hand, the approximations are only available in regular models; see
[12], for example, for precise regularity conditions; the most important is that the posterior
density have a unique mode, and is smoothly differentiable in a moderate deviation region
of the mode.
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