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a b s t r a c t

Higher-order asymptotic arguments for a scalar parameter of interest have been widely
investigated for Bayesian inference. In this paper the theory of asymptotic expansions is
discussed for a vector parameter of interest. A modified loglikelihood ratio is suggested,
which can be used to derive approximate Bayesian credible sets with accurate frequentist
coverage. Three examples are illustrated.
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1. Introduction

The aim of this contribution is to discuss recent advances in approximate Bayesian inference based on the asymptotic
theory of modified loglikelihood ratios. This theory provides asymptotic formulas for approximate credible regions for a
multidimensional parameter with accurate frequentist coverage.

Approximate credible intervals for a scalar parameter based on modifications of the likelihood root have been widely
discussed in the Bayesian literature; see, among others, DiCiccio et al. (1990), Sweeting (1995, 1996, 1999), Ventura et al.
(2013), and the references therein. One appealing feature of these higher-order results is that theymay routinely be applied
for Bayesian inference, since they require littlemore than standard likelihood quantities for their implementation, and hence
they may be available at little additional computational cost over simple first-order approximations.

In this paper we indicate how approximate Bayesian credible sets may be derived for a vector parameter of interest.
As is the case with the approximations for a scalar parameter, the proposed results are based on the asymptotic theory of
modified loglikelihood ratios (Skovgaard, 2001), they require only routine maximization output for their implementation,
and they are constructed for arbitrary prior distributions.

The paper is organized as follows. Section 2 reviews higher-order Bayesian approximations for a scalar parameter of
interest. Section 3 indicates how these ideas generalize to the multiparameter case. Section 4 illustrates some numerical
examples. Finally, some concluding remarks are given in Section 5.

2. Preliminaries and background

Consider a sampling model f (y; θ) with scalar parameter θ ∈ Θ ⊆ R, and let L(θ) = L(θ; y) = exp{ℓ(θ)} denote the
likelihood function based on data y. Given a prior density π(θ) for θ , Bayesian inference is based on the posterior density
π(θ |y) ∝ π(θ) L(θ).
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Let θ̂ be the maximum likelihood estimator (MLE) of θ , and let r(θ) = sign(θ̂ − θ)W (θ)1/2 be the likelihood root, where
W (θ) = 2(ℓ(θ̂) − ℓ(θ)) is the loglikelihood ratio statistic. Furthermore, let q(θ) = ℓ′(θ)|j(θ̂)|−1/2 π(θ̂)

π(θ)
, where ℓ′(θ) is the

score function and j(θ) is the observed information. For Bayesian inference under the prior π(θ), the modified likelihood
root is given by (see Sweeting, 1996; Brazzale et al., 2007; Ventura et al., 2013)

r∗(θ) = r(θ) +
1

r(θ)
log

q(θ)

r(θ)
, (1)

whose posterior distribution is standard normal to O(n−3/2). Note that, for Jeffreys’ prior π(θ) ∝ i(θ)1/2, with i(θ) expected
information, (1) coincides with the modified likelihood root discussed in Barndorff-Nielsen and Chamberlin (1994).

The modified likelihood root (1) can be derived following the three-step procedure discussed in Skovgaard (2001); see
also Davison (2003, Chapter 11), and the references therein.

Step 1: Consider the Laplace expansion of π(θ |y), given by

π(θ |y)=̇
1

√
2π

|j(θ̂)|1/2
π(θ)

π(θ̂)
exp


−

1
2
r(θ)2


, (2)

where the symbol ‘‘=̇’’ indicates that the approximation is accurate to order O(n−1).
Step 2: Change the variable from θ to r = r(θ). Amotivation for considering such a transformation is that, in terms of r2, the

quantity exp(−r2/2) in (2) is the kernel of the standard normal density. The Jacobian is dr(θ)/dθ = −ℓ′(θ)/r(θ),
and thus

π(r|y)=̇
1

√
2π

exp

−

1
2
r2 + log b(r)


,

where the positive quantity b(r) = |j(θ̂)|1/2 π(θ)

π(θ̂)

r(θ)

ℓ′(θ)
is regarded as a function of r .

Step 3: Change of variable from r to r∗
= r∗(θ) = r − r−1 log b(r), so that

− (r∗)2 = −r2 + 2 log b(r) −

r−1 log b(r)

2
. (3)

The Jacobian of the transformation and the third term in (3) contribute only to the error, and it can be shown that
(see Sweeting, 1995, 1996, Severini, 2000, Chapter 2)

π(r∗
|y)=̈

1
√
2π

exp

−

1
2
(r∗)2


, (4)

where the symbol ‘‘=̈’’ indicates that the approximation is accurate to order O(n−3/2).

Note that from (4) the following tail area approximation can be derived: θ0

−∞

π(θ |y) dθ=̈
1

√
2π

 r∗0

−∞

exp

−

1
2
(r∗)2


dr∗

= Φ(r∗

0 ), (5)

where Φ(·) is the standard normal distribution function and r∗

0 = r∗(θ0). Formula (5) gives an explicit expression for the
posterior quantiles, and 1−Φ(r∗

0 ) is the Bayesian survivor probability.Moreover, (5) gives rise to a simple simulation scheme
(Ruli et al., in press), alternative to MCMC, for Bayesian computation of posterior distributions.

From (4) an approximate credible interval for θ can be computed as CI = {θ : w∗(θ) ≤ χ2
1,1−α}, where w∗(θ) = r∗(θ)2

and χ2
1,1−α is the (1 − α)-quantile of the χ2

1 distribution. Equivalently, CI can be computed as

CI =

θ : |r∗(θ)| ≤ z1−α/2


, (6)

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. Note that (6) defines a third-order equi-tailed
credible interval for θ with frequentist accurate coverage.

3. Approximate Bayesian computation for multidimensional parameters

Suppose that θ ∈ Θ ⊆ Rd, with d > 1. Paralleling results in Section 2, in this section we study asymptotic expansions
based on modifications of the loglikelihood ratio. As in the scalar parameter case, the derivation of these asymptotic
expansions can be based on the following three steps (see Skovgaard, 2001):

Step 1: computation of the Laplace approximation of π(θ |y), given by

π(θ |y)=̇(2π)−d/2
|j(θ̂)|1/2

π(θ)

π(θ̂)
exp


−

1
2
W (θ)


;
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Step 2: change of the variable of integration from θ to rm = rm(θ), such that for the loglikelihood ratio we have W (θ) =

2

ℓ(θ̂) − ℓ(θ)


= rm(θ)

T rm(θ);
Step 3: change of the variable of integration from rm to a more accurate version of the form r∗

m = r∗
m(θ) = rm − δ(rm), with

δ = δ(rm) chosen to satisfy rT
mδ(rm) = log g(rm) for a suitably defined term g(rm), so that (rm − δ)

T
(rm − δ) =

rT
mrm − 2 log g(rm) + O(n−2) is asymptotically χ2

d .

In order to compute Step 2, we need a statistic rm = rm(θ) for which rT
mrm = W (θ). Let us consider the signed root loglikeli-

hood ratio transformation defined in Sweeting (1995, 1996); see also Kharroubi and Sweeting (2010). Let θ = (θ1, . . . , θd) =

(θ i, θ (i+1)), where θ i
= (θ1, . . . , θi) is the vector of the first i components of θ and θ (i+1)

= (θi+1, . . . , θd). Let θ̂
(i+1)
θ i

be the

partial MLE of θ (i+1) given θ i, and let θ̂j,θ i be the jth component of (θ i, θ̂
(i+1)
θ i

), for j > i. The signed root loglikelihood ratio
transformation is thus defined as

rm(θ) = (rm1, . . . , rmd), (7)
with

rmi = sign(θi − θ̂i,θ i−1)

2


ℓ

θ i−1, θ̂

(i)
θ i−1


− ℓ


θ i, θ̂

(i+1)
θ i

1/2
, i = 1, . . . , d. (8)

Note that (8) is a function of the first i components θ i
= (θ1, . . . , θi) of θ . Moreover, rm(θ) is a one-to-one data-dependent

transformation of θ , such that exp

−

1
2 r

T
mrm


= L(θ)/L(θ̂). Finally, rm(θ) is asymptotically multivariate standard normal to

O(n−1/2).
In the second step, when changing the variable of integration from θ to the statistic rm given in (7), the Jacobian matrix

drm/dθ is lower triangular, i.e.drmdθ

 =

d
i=1


ℓi


θ i, θ̂

(i+1)
θ i


rmi

 ,
where ℓi(θ) is the ith component of the score vector ∂ℓ(θ)/∂θ , for i = 1, . . . , d.

The last step is again a change of variable. Following Skovgaard (2001), we perturb rm to r∗
m = r∗

m(θ) = rm − δ(rm), with
δ(rm) chosen to satisfy rT

mδ(rm) = log g(rm), so that

− (rm − δ(rm))
T
(rm − δ(rm)) = −rT

mrm + 2 log g(rm) + O(n−2). (9)
In order to compute (9), we only need the existence of δ(rm) to calculate

w∗

m = w∗

m(θ) = rm(θ)
T rm(θ) − 2 log g(rm(θ)), (10)

with

g(rm(θ)) = |j(θ̂)|1/2
π(θ)

π(θ̂)

 d
i=1


ℓi


θ i, θ̂

(i+1)
θ i


rmi


−1

. (11)

The asymptotic distribution of w∗
m is χ2

d with relative error O(n−1) in a large deviation region. To obtain a statistic which
generalizes the scalar version (1), Skovgaard (2001) suggests to use the asymptotically equivalent approximation

w∗∗

m = w∗∗

m (θ) = rT

mrm


1 −

log g(rm)

rT
mrm

2

. (12)

Indeed, note that, for d = 1, the quantity (11) reduces to g(θ) = r(θ)/q(θ), and thuswe havew∗∗
m (θ) = (r−(1/r) log b(r))2

= (r∗)2.
From (12), or from (10), as for the scalar parameter case, an approximate credible set for θ can be computed as

CR =

θ : w∗∗(θ) ≤ χ2

d,1−α


. (13)

This credible region has 100(1 − α)% coverage in repeated sampling with relative error O(n−1) in a large deviation region,
thus improving the first-order credible region

CRN =


θ : (θ − θ̃ )

T jπ (θ̃)(θ − θ̃ ) ≤ χ2
d,1−α


, (14)

where θ̃ is the posterior mode and jπ (θ) = −∂2 logπ(θ |y)/(∂θ∂θ
T
), and the likelihood-type credible region

CRL =


θ : −2 log

π(θ |y)

π(θ̃ |y)
≤ χ2

d,1−α


. (15)

Note that, in general, first-order inference based on (14)may be questionable since it forces credible sets to have an elliptical
shape; see Hills and Smith (1992) for the determination of good parameterizations in the Bayesian framework to take into
account this drawback.
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Table 1
Normal distribution: empirical coverage probabilities of credible regions.

1−α π1 π2

0.90 0.95 0.99 0.90 0.95 0.99

n = 10 n = 10

CRN 0.7280 0.7830 0.8685 0.5905 0.6470 0.7402
CRL 0.8540 0.9130 0.9770 0.7871 0.8688 0.9578
CR 0.9075 0.9510 0.9925 0.9020 0.9517 0.9904

n = 15 n = 15

CRN 0.7615 0.8280 0.900 0.6698 0.7302 0.8189
CRL 0.8485 0.9225 0.984 0.8276 0.8992 0.9738
CR 0.8935 0.9500 0.990 0.9050 0.9544 0.9916

n = 30 n = 30

CRN 0.8275 0.889 0.9495 0.7688 0.8250 0.9031
CRL 0.8775 0.936 0.9840 0.8606 0.9242 0.9824
CR 0.8980 0.948 0.9875 0.9023 0.9533 0.9888

n = 50 n = 50

CRN 0.8630 0.9240 0.9730 0.8160 0.8761 0.9436
CRL 0.8965 0.9435 0.9890 0.8791 0.9346 0.9836
CR 0.9045 0.9525 0.9890 0.9011 0.9514 0.9897

Fig. 1. Normal distribution: credible regions for (µ, σ 2).

4. Numerical examples

Example 1 (Normal Distribution). Consider a random sample y = (y1, . . . , yn) from a N(µ, σ 2) distribution, with θ =

(µ, σ 2) unknown. We assume two different prior distributions of θ , i.e. the improper prior π1(θ) ∝ 1/σ 2 and the normal-
gamma prior π2(θ). In this case, all the quantities involved in the computation of w∗ and w∗∗ are easy to compute.

To judge the coverage quality of the credible region (13), a simulation study based on 10000 Monte Carlo trials has been
performed. Table 1 gives the empirical frequentist coverages for (1 − α) posterior credible regions (13) in comparison to
the first-order credible regions CRN and CRL. From Table 1 we note that, for every n, CR clearly improves on (14) and (15).
Larger sample sizes would show, as one would expect, rather little differences between the results of all the procedures.

For a sample of size n = 10, Fig. 1 gives the contours of several credible regions for θ = (µ, σ 2), i.e. CRN , CRL, the 95%
HPD credible region, and the CR based on w∗∗

m . The posterior probability of CRN is 0.674, of CRL is 0.881 and of CR is 0.949.
Only CR has the correct posterior probability.

Example 2 (Gamma Distribution). Consider a random sample y = (y1, . . . , yn) from a gamma distribution, with both the
shape κ and scale σ parameters unknown. Let θ = (log σ , log κ). We assume two prior distributions of θ , that areπ1(θ) ∝ 1
and π2(θ) = N(µ, ν) ×N(µ, ν), where (µ, ν) is a fixed hyperparameter. As in the previous example, to judge the coverage
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Table 2
Gamma distribution: empirical coverage probabilities of credible regions.

1−α π1 π2(µ = 0, ν = 10) π2(µ = 3, ν = 10)
0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

n = 5 n = 5 n = 5

CRN 0.8188 0.7991 0.8801 0.7642 0.8288 0.9040 0.6630 0.7324 0.8374
CRL 0.8405 0.9084 0.9755 0.8624 0.9265 0.9837 0.7787 0.8659 0.9594
CR 0.9018 0.9500 0.9895 0.9166 0.9612 0.9933 0.8753 0.9338 0.9864

n = 10 n = 10 n = 10

CRN 0.8188 0.8779 0.9445 0.8281 0.8868 0.9495 0.7764 0.8381 0.9215
CRL 0.8748 0.9336 0.9832 0.8826 0.9385 0.9854 0.8402 0.9115 0.9764
CR 0.9028 0.9519 0.9893 0.9084 0.9564 0.9908 0.8866 0.9424 0.9872

Table 3
Weibull model: empirical coverage probabilities of credible regions; the hyperparameter µ is fixed equal to (log 2, −1, 1, −1, 1) for p = 4
and to (log 2, −1, 1, −1, 1, −1, 1, −1, 1, −1) for p = 9.

1−α p = 4 p = 4 p = 9 p = 9
π1 π2 π1 π2

0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

n = 10 n = 10 n = 15 n = 15

CRN 0.4292 0.5054 0.6176 0.4530 0.5282 0.6424 0.0128 0.1610 0.2332 0.1380 0.1780 0.2540
CRL 0.7322 0.8270 0.9374 0.7490 0.8432 0.9448 0.5008 0.6094 0.7992 0.5226 0.6314 0.8132
CR 0.9348 0.9700 0.9944 0.9424 0.9754 0.9962 0.9560 0.9776 0.9966 0.9634 0.9828 0.9970

n = 20 n = 20 n = 20 n = 20

CRN 0.6736 0.7444 0.8496 0.6814 0.7528 0.8550 0.2656 0.3300 0.4584 0.2758 0.3332 0.4548
CRL 0.8382 0.9114 0.9774 0.8452 0.9154 0.9792 0.6582 0.7628 0.9034 0.6592 0.7650 0.9100
CR 0.9190 0.9592 0.9920 0.9234 0.9636 0.9932 0.9472 0.9750 0.9954 0.9528 0.9796 0.9964

n = 30 n = 30 n = 30 n = 30

CRN 0.7526 0.8242 0.9114 0.7564 0.8282 0.9130 0.4332 0.5134 0.6536 0.4580 0.5378 0.6694
CRL 0.8616 0.9238 0.9794 0.8650 0.9262 0.9806 0.7562 0.8480 0.9494 0.7692 0.8516 0.9540
CR 0.9074 0.9534 0.9912 0.9104 0.9558 0.9914 0.9356 0.9686 0.9948 0.9388 0.9708 0.9954

n = 50 n = 50 n = 50 n = 50

CRN 0.8058 0.8756 0.9454 0.8088 0.8768 0.9464 0.6286 0.7090 0.8290 0.6178 0.7006 0.8254
CRL 0.8762 0.9336 0.9864 0.8784 0.9360 0.9870 0.8294 0.9044 0.9716 0.8254 0.9032 0.9756
CR 0.9052 0.9530 0.9926 0.9072 0.9534 0.9926 0.9220 0.9616 0.9928 0.9220 0.9608 0.9918

quality of CR, a simulation study based on 2000Monte Carlo trials has been performed. Table 2 gives the empirical frequentist
coverages for (13) in comparison to the first-order credible regions CRN and CRL. From Table 2 we note that, for every n, CR
improves on (14) and (15). Observe also that for parameter values in regions of low prior density there may be, as expected,
some degradation in the coverage accuracy.

Example 3 (Weibull Model). Let us consider a random sample (t1, . . . , tn) from a Weibull model with shape parameter κ
and scale parameter λi = xT

i β , where xi is a known p × 1 vector, i = 1, . . . , n, and the unknown parameters are the p × 1
vector β and κ . Note that yi = log ti follows a regression and scale model of the form yi = xT

i β + σεi, with σ = 1/κ and εi
log-Weibull or extreme-value random variable, i = 1, . . . , n.

For the parameter θ = (β, τ ), with τ = log σ , we assume two prior distributions, i.e. the noninformative priorπ1(θ) ∝ 1
and the proper prior π2(θ) =

p+1
i=1 N(µi, 20), where µ = (µ1, . . . , µp+1) is a fixed hyperparameter. A simulation study

based on 5000 Monte Carlo trials has been performed with p = 4 and p = 9 in order to judge the coverage quality of CR
in comparison to the first-order credible regions CRN and CRL. From Table 3 we note that, for every n and p, CR is always
preferable to (14) and (15).

5. Final remarks

To obtain credible regions for a vector parameter, approximate Bayesian computations based on loglikelihood ratios
provide important quantities of the posterior distribution with very little computational effort, in a fraction of the time re-
quired for a full simulation approach. Although the approximations described in this paper are derived from asymptotic
considerations, they perform extremely well in small sample situations.

A key feature of the approximations discussed and developed in this paper is that they do not require the calculation
of loglikelihood derivatives beyond the second order for their implementation. In this respect, higher-order expansions
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represent a very quick and accurate method for computing posterior quantities and they make quite straightforward to
assess the effect of changing priors; see, e.g., Kass et al. (1988), Reid and Sun (2010), Ruli et al. (in press), and Ventura et al.
(2013).

Finally, note that the signed root loglikelihood ratio transformation (7) in general depends on the chosen parameter
order. However, in certain situations, such as the examples considered in the previous section, the results of the simulation
studies do not change (results not reported here) when inverting the parameter order.
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