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Abstract: Conditional value at risk (CVaR), or expected shortfall, is a risk measure for investments
according to Rockafellar and Uryasev. Yamai and Yoshiba define CVaR as the conditional expectation of
loss given that the loss is beyond the value at risk (VaR) level. The VaR is a risk measure that represents
how much an investment might lose during usual market conditions with a given probability in a time
interval. In particular, Rockafellar and Uryasev show that CVaR is superior to VaR in applications related
to investment portfolio optimization. On the other hand, the Shannon entropy has been used as an
uncertainty measure in investments and, in particular, to forecast the Bitcoin’s daily VaR. In this paper,
we estimate the entropy of intraday distribution of Bitcoin’s logreturns through the symbolic time series
analysis (STSA) and we forecast Bitcoin’s daily CVaR using the estimated entropy. We find that the
entropy is positively correlated to the likelihood of extreme values of Bitcoin’s daily logreturns using a
logistic regression model based on CVaR and the use of entropy to forecast the Bitcoin’s daily CVaR of
the next day performs better than the naive use of the historical CVaR.

Keywords: entropy; conditional value at risk; cryptocurrency

1. Introduction

In finance, risk management is the activity of identifying, analyzing, estimating and controlling the
risk of losing money. For our purposes, risk management is a procedure for shaping a loss distribution of
an investment. The value at risk (VaR) is the most popular risk measure and it represents how much an
investment might lose during usual market conditions with a given probability in a time interval. In other
words, VaR is a percentile of a loss distribution. Another very popular risk measure is the conditional
value at risk (CVaR), or the expected shortfall. CVaR is a risk measure for investments reintroduced in
the literature by Rockafellar and Uryasev [1], for a former reference see Love et al. [2]. According to
Sarykalin et al. [3], it approximately (or exactly, under certain conditions) equals the average of some
percentage of the worst-case loss scenarios.

Relative to the definitions, there is a near correspondence between VaR and CVaR. For instance,
Yamai and Yoshiba [4] defined CVaR as the conditional expectation of loss given that the loss is beyond
the VaR level. Consequently, considering the same confidence level, VaR is a lower bound for CVaR.
In particular, Rockafellar and Uryasev [1,5] showed that CVaR is superior to VaR in applications related to
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investment portfolio optimization. In practice, the choice between VaR and CVaR rests on the differences
in mathematical properties, stability of statistical estimation, simplicity of optimization procedures,
acceptance by regulators, and so on [3]. For instance, in terms of mathematical properties, the CVaR of a
portfolio is a continuous and convex function with respect to positions in instruments, whereas the VaR
may be even a discontinuous function.

The volatility is the standard deviation of the distribution of logreturns and a very simple and earlier
measure of financial risk. The corresponding variance is a natural measure of the statistical uncertainty but
it just captures a small portion of the informational content of the distribution of the logreturns. On the
other hand, the entropy is a more general measure of uncertainty than the variance because it may be
related to higher-order moments of a distribution [6–8]. According to Dionisio et al. [8], the variance
measures the concentration around the mean while the entropy measures the dispersion of the density
irrespective of the location of the concentration. Finally, for Pele et al. [9], the entropy of a distribution
function is strongly related to its tails and this feature is more important for distributions with heavy tails
or with an infinite second-order moment for which the variance does not make sense.

In the literature, there are empirical papers showing that entropy has good predictive power for
risk. For instance, Billio et al. [10] showed that entropy has the ability to forecast and predict banking
crises using directly the entropy of systemic risk measures. In addition, Pele et al. [9] showed that
entropy of the intraday distribution of logreturns is a strong predictor of daily VaR, performing better
than the classical GARCH models, for a time series of EUR/JPY exchange rates. Similarly, Pele and
Mazurencu-Marinescu-Pele [11], instead of using the entropy of the intraday distribution of logreturns,
defined the entropy using symbolic time series analysis (STSA) showing that their entropy is a strong
predictor of daily VaR, performing better than the classical GARCH models, using high-frequency data
for Bitcoin.

There is a recent interest in the statistical properties and risk behavior of cryptocurrencies [12–14] and,
in particular, Bitcoin [15]. Consequently, in this paper, we estimate the entropy of the symbolic intraday
distribution of Bitcoin’s logreturns through the STSA [11] and we model and forecast the Bitcoin’s daily
CVaR using the estimated entropy. The main contribution of this paper is the extension of the study
performed by Pele and Mazurencu-Marinescu-Pele [11] to include the CVaR. The rest of the paper is
organized as follows: in Section 2, we present the details of the methodology; in Section 3, we present our
empirical study describing the dataset, the results and the corresponding comments; finally, in Section 4,
we conclude the paper.

2. Methodology

In this section, we review the methodology to estimate the entropy of the symbolic intraday
distribution of logreturns through the STSA, a logistic model connecting the daily VaR and the entropy,
and a forecasting model for the daily VaR using the entropy based on a quantile regression published by
Pele and Mazurencu-Marinescu-Pele [11]. In addition, we introduce the two main contributions of this
paper: a logistic model connecting the daily CVaR and the entropy, and a forecasting model for the daily
CVaR using the entropy based on a modified quantile regression model. It is also important to mention
that the Bitcoin exchange rate is hereinafter referred to as Bitcoin price.

2.1. Entropy of Symbolic Intraday Logreturns

In the intraday context, it is usual to consider a set of days d ∈ {1, . . . , D} and each day equally
partitioned in M time bins. Consequently, for a day d and a time bin m ∈ {1, . . . , M}, we associate a price
Pd,m and a logprice pd,m = ln Pd,m. Then, the intraday logreturn of an asset is defined as follows:
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rd,m = pd,m − pd,m−1; d = 1, . . . , D; m = 2, . . . M. (1)

For the empirical study of this paper, it is possible to define rd,1 = pd,1 − pd−1,M; d = 2, . . . , D because
the Bitcoin is continuously traded. However, it is important to point that for other kind of assets, it would
be better to ignore the logreturn rd,1. In addition, r1,1 is not defined.

The intraday logreturns is usually very noisy. The idea behind the STSA technique [16] to produce
low-resolution data from high-resolution data. In particular, STSA is a transformation of a real number
sequence to a binary sequence. In our case, the STSA transformation is applied to the intraday logreturn to
obtain the symbolic intraday logreturn. The symbolic intraday logreturn is defined as follows:

sd,m =

{
1, rd,m ≤ 0
0, rd,m > 0

. (2)

Basically, the symbolic intraday logreturn is a binary sequence of 0s representing increasing prices
and 1s representing decreasing prices.

Based on the Shannon entropy definition [17], the entropy of the symbolic intraday logreturns is
defined as follows:

hd = −πd log2 πd − (1− πd) log2 (1− πd) , (3)

where πd = Pr (sd,m = 1) and 1 − πd = Pr (sd,m = 0). It is possible to notice that the entropy of the
symbolic intraday logreturns is a daily entropy. In addition, we estimate πd, d = 2, . . . , D using the sample
frequency ∑M

m=1 sd,m/M, d = 2, . . . , D and π1 using the sample frequency ∑M
m=2 s1,m/ (M− 1).

2.2. Entropy and Daily VaR and CVaR

Intuitively, the entropy of the symbolic intraday logreturns is higher at the presence of higher
uncertainty in the returns and lower at the presence of lower uncertainty in the returns. Consequently, the
likelihood of extreme negative daily logreturns is explained by higher values of entropy. In [11], it was
verified that the entropy is positively correlated to the likelihood of extreme negative daily logreturns and
the relation between VaR and entropy was modeled using the following logistic regression model:

Pr (yd = 1) =
eb0+b1hd

1 + eb0+b1hd
, (4)

where b0 and b1 are constants to be estimated;

yd =

{
1, rd ≤ −VaRα

0, rd > −VaRα
, d = 2, . . . , D (5)

are the indicators of the lower tails of the daily logreturns; rd = ln Pd − ln Pd−1, d = 2, . . . , D are the daily
logreturns; Pd is the closing price of day d; and VaRα is the daily value at risk at the significance level
α ∈ ]0, 1[ defined by

Pr (rd ≤ −VaRα) = α (6)

or, alternatively,
VaRα = − inf {z|F(z) ≥ α} , (7)

where F (·) is the cumulative distribution function of the daily logreturns.
In this paper, the hypothesis is also that the entropy is positively correlated to the likelihood of extreme

negative daily logreturns and we model the relation between CVaR and entropy using the following
logistic regression model:
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Pr (ud = 1) =
ec0+c1hd

1 + ec0+c1hd
, (8)

where c0 and c1 are constants to be estimated;

ud =

{
1, rd ≤ −CVaRα

0, rd > −CVaRα
, d = 2, . . . , D (9)

are the indicators of the lower tails of the daily logreturns; and CVaRα is the daily conditional value at risk
at the significance level α ∈ ]0, 1[ defined by

CVaRα = − 1
α

∫ −VaRα

−∞
z f (z) dz, (10)

where f (·) is the continuous probability density function of the daily logreturns.

2.3. Forecasting Model for Daily VaR and CVaR

Pele et al. 2017 and Pele et al. 2019 [9,11] considered a quantile regression model to forecast the
daily VaR using the entropy as the explanatory variable. The forecasting model for the daily VaRα at day
k + w + 1 using the entropy of the day k + w is given by:

ˆVaRα,k+w+1 = −b̂k
0 − b̂k

1hk+w, (11)

where b̂k
0 and b̂k

1 are estimated using a quantile regression model between the dependent variable rd and
the independent variable hd−1 for d ∈ Ww (k);

Ww (k) =

{
{2, . . . , w} , k = 0
{k + 1, . . . , k + w} , k = 1, 2, . . .

. (12)

Based on Koenker and Bassett [18], we consider the following optimization problem for the quantile
regression estimation: {

b̂k
0, b̂k

1

}
= arg min ∑

d∈Ww(k)
ρα

(
rd − bk

0 − bk
1hd−1

)
, (13)

where
ρα (z) = z

(
α− I<<0 (z)

)
(14)

is the asymmetric absolute loss function and

IA (z) =

{
1, z ∈ A
0, z 6∈ A . (15)

is the indicator function.
Our forecasting model for the daily CVaRα at day k + w + 1 using the entropy of the day k + w is

given by:
ˆCVaRα,k+w+1 = −ĉk

0 − ĉk
1hk+w, (16)

where ĉk
0 and ĉk

1 are estimated using a quantile regression model between the dependent variable rd and
the independent variable hd−1 for d ∈ Ww (k). We consider the following optimization problem for the
quantile regression estimation:
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{
ĉk

0, ĉk
1

}
= arg min ∑

d∈Wk

ρα?

(
rd − ck

0 − ck
1hd−1

)
, (17)

where

α? = F̂w,k

(
− 1

α

∫ inf{x|F̂w,k(x)≥α}
−∞

z f̂w,k (z) dz

)
(18)

is the significance level, F̂w,k (·) is the empirical cumulative distribution function of the logreturns estimated
using the time windowWw (k) and f̂w,k (·) is the empirical density function of the logreturns estimated
using the time windowWw (k).

3. Empirical Study

3.1. Bitcoin

There are several time series prices for Bitcoin depeding on the digital currency exchange and the
currency used in the trading process. In order to compare our results to that obtained by Pele and
Mazurencu-Marinescu-Pele [11], we adopt the BTC/USD exchange rate from Gemini Trust Company, LLC
(Gemini). Gemini is a digital currency exchange and custodian that allows customers to buy, sell, and store
digital assets. In particular, we consider the intraday closing prices of the minute-by-minute time bins
and the time period from 8 October 2015 until 29 May 2019. According to Feng et al. [19] apud Pele and
Mazurencu-Marinescu-Pele [11], the market capitalization, the daily transaction volume and the liquididy
of Bitcoin before 2015 was not good.

For illustration purposes, in Figure 1, we present the Bitcoin’s daily closing prices; in Figure 2,
we present the Bitcoin’s daily close-to-close logreturns; and, finally, in Figure 3, we present the empirical
probability density and cumulative distribution functions of the Bitcoin’s daily close-to-close logreturns.
It is possible to notice the huge increase in the Bitcoin’s prices until the end of 2017, the high volatility of
the Bitcoin’s logreturns and the change over time of the volatility pattern. In addition, it is also possible to
notice the existence of extreme values in the distribution of Bitcoin’s logreturns. In the following sections,
we present the entropy of the symbolic intraday distribution of Bitcoin’s logreturns, the logistic model
connecting the daily CVaR and the entropy, and a forecasting model for the daily CVaR using the entropy
based on a modified quantile regression model.
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Figure 1. Bitcoin’s daily closing prices and entropies.
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Figure 2. Bitcoin’s daily close-to-close logreturns and entropies.
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Figure 3. The empirical probability density function and the empirical cumulative distribution distribution
function of the Bitcoin’s daily close-to-close logreturns.

3.2. Entropy and Daily CVaR

In Figures 1 and 2, we also present the entropy of the symbolic intraday distribution of Bitcoin’s
logreturns. As it was mentioned in Section 2, the entropy of the symbolic intraday logreturns is higher
at the presence of higher uncertainty in the returns and lower at the presence of lower uncertainty in
the returns. In [9,11], they have tested the hypothesis that the daily logprice of Bitcoin is positively
correlated to the entropy of the symbolic intraday distribution of Bitcoin’s logreturns. However, we state
that the logprice time series because of its level, non-stationarity and trend cause possible problems to the
hypothesis verification. Consequently, we test the following model:

|rd| = a0 + a1hd + εd, (19)

where εd is the error term. Our hypothesis about Equation (19) is that the absolute value of daily logreturn
of Bitcoin is positively correlated to the entropy of the symbolic intraday distribution of Bitcoin’s logreturns.
The estimation results of Equation (19) are shown in Table 1. It is possible to notice that the estimated
coefficient a1 of the entropy is positive and significant supporting our hypothesis.
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Table 1. Estimation results of Equation (19).

Parameter Estimation p-Value Standard Error

a0 0.006 0.000 0.005
a1 0.032 0.000 0.008
R2 0.132

In this paper, we propose the study of the relation between entropy of the symbolic intraday
distribution of Bitcoin’s logreturns and the likelihood of extreme negative daily logreturns represented by
the daily CVaR using Equation (8). The estimation results are shown in Tables 2 and 3 for α = 1% and
α = 5%, respectively. It is possible to notice that the estimated coefficients c1 of the entropy for both α = 1%
and α = 5% are positive and significant supporting the hypothesis that entropy is positively correlated to
the likelihood of extreme values of daily logreturns.

Table 2. Estimation results of Equation (8) for α = 1%.

Parameter Estimation p-Value Standard Error

c0 −9.133 0.002 1.316
c1 8.253 0.001 3.488

Table 3. Estimation results of Equation (8) for α = 5%.

Parameter Estimation p-Value Standard Error

c0 −6.961 0.001 0.592
c1 7.800 0.001 1.605

3.3. Forecasting Daily CVaR

Let ˆCVaRα,Ww(k) be the historical daily CVaR at the significance level α calculated in the time window
Ww (k) . The forecasting model for the daily CVaRα at day k + w + 1 using ˆCVaRα,Ww(k) is given by:

ˆCVaRα,k+w+1 = ˆCVaRα,Ww(k). (20)

In order to study the forecasting performance of the daily CVaRα, we estimate Equations (16) and (20)
using a rolling window approach with a window length w = 250 trading days. For comparison purposes,
in Tables 4 and 5, we present a backtest of models (16) and (20) for significance levels α = 1% and 5%,
respectively. The performance of the models is compared with the historical daily CVaR at the significance
level α calculated in the time windowWw (k + 1). In particular, we consider the mean absolute error (MAE)
and the root mean squared error (RMSE) between ˆCVaRα,k+w+1 and ˆCVaRα,Ww(k+1). As it is possible to
notice from our empirical results using Bitcoin, the use of entropy in the forecasting of the daily CVaR of
the next day seems to be better than the naive use of the historical CVaR.

Table 4. Backtest results of daily CVaR at the significance level α = 1%.

Model MAE RMSE

Forecasting using entropy 5.26 × 10−5 7.28 × 10−4

Forecasting using historical CVaR 3.56 × 10−4 4.52 × 10−3
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Table 5. Backtest results of daily CVaR at the significance level α = 5%.

Model MAE RMSE

Forecasting using entropy 1.04 × 10−4 5.42 × 10−4

Forecasting using historical CVaR 3.16 × 10−4 1.51 × 10−3

4. Conclusions

In this paper, we have two main contributions: a logistic model connecting the daily CVaR and the
entropy, and a forecasting model for the daily CVaR using the entropy based on a modified quantile
regression model. Basically, we extend the study performed by Pele and Mazurencu-Marinescu-Pele [11]
to include the CVaR. In [9,11], they have tested the hypothesis that the daily logprice of Bitcoin is positively
correlated to the entropy of the symbolic intraday distribution of Bitcoin’s logreturns. However, since the
logprice time series is in level and presents a non-stationarity behavior and a trend, the verification of
their hypothesis becomes infeasible. Consequently, the hypothesis we verify is that the absolute value of
daily logreturn of Bitcoin is positively correlated to the entropy. In addition, we also verify that entropy
is positively correlated to the likelihood of extreme values of Bitcoin’s daily logreturns using a logistic
regression model based on CVaR and the use of entropy to forecast the Bitcoin’s daily CVaR of the next
day performs better than the naive use of the historical CVaR.
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