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Abstract Nowadays, there are several electricity generation technologies based on
the different sources, such as wind, biomass, gas, coal, and so on. Considering the
uncertainties associated with the future costs of such technologies is crucial for plan-
ning purposes. In the literature, the allocation of resources in the available technolo-
gies have been solved as a mean-variance optimization problem using the expected
costs and the correspondent covariance matrix. However, in practice, the expected
values and the covariance matrix of interest are not exactly known parameters. Con-
sequently, the optimal allocations obtained from the mean-variance optimization are
not robust to possible errors in the estimation of such parameters. Additionally, there
are specialists in the electricity generation technologies participating in the planning
process and, obviously, the consideration of useful prior information based on their
previous experience is of utmost importance. The Bayesian models consider not only
the uncertainty in the parameters, but also the prior information from the special-
ists. In this paper, we introduce the Bayesian mean-variance optimization to solve
the electricity generation planning problem using both improper and proper prior
distributions for the parameters. In order to illustrate our approach, we present an
application comparing theBayesianwith the naivemean-variance optimal portfolios.
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1 Introduction

In the early and middle years of the nineteenth century, the fundamental principles of
electricity generation were discovered by scientists such as Alessandro Volta, André
Ampère, Benjamin Franklin and Michael Faraday [5]. Since then, already in the
last years of the nineteenth century, the electricity generation plants started to be
built together with the transmission networks [9]. During the time, the mankind has
developed several electricity generation technologies based on the different sources,
such as wind, biomass, gas, coal, nuclear, and so on. Evidently, each technology has
associated costs, sustainability, and security of supply characteristics, efficiency, and
environmental concerns.

The worldwide demand for energy has been increasing over the last decades and
it will continue to grow [10]. Consequently, for both countries and companies, the
long-term planning of the electricity generation infrastructure is of utmost impor-
tance. Actually, it should be part of the central objectives of any energy policy. The
achievement of an optimally designed electricity generation infrastructure bends
toward a more balanced portfolio allocation among the different available technolo-
gies. In addition, it is also important to distinguish in the planning process the already
existing electricity producing plants with maintenance costs from the ones desired
to be built. Obviously, drastic changes of the electricity investment allocations is not
feasible.

The U.S. Energy Information Administration has not only historical data on the
average annual operation, maintenance, and fuel costs for existing power plants by
major fuel or energy source types, but also projections for electricity generation costs
[18]. However, even so, the costs have a significant uncertainty. For instance, future
control on CO2 emission and the corresponding mechanisms will surely impact the
electricity generation costs. Precisely, the future price of an emitted ton of CO2 is
uncertain and this uncertainty should be taken into account in the planning pro-
cess. Consequently, electricity generation policies solely relying on the evolution of
historical average costs of electricity generation technologies are unsatisfactory.

Considering the costs as random variables, in the literature, the allocation of
resources in the available electricity generation technologies has been solved as
a mean-variance optimization problem using the expected values and covariance
matrix of the technology costs in megawatt hours (see, for instance, [1, 2, 14,
15]). The mean-variance optimization, introduced by Markowitz [13], was the first
mathematical formalization of investment diversification and it is part of the modern
portfolio theory (MPT). The mean-variance optimized portfolios compose the called
efficient frontier, a set of portfolios that dominate all other feasible portfolios in terms
of their mean and variance tradeoff. Obviously, in the MPT the random variables of
interest are the returns of the risky assets instead of the costs of the technologies.

In practice, the expected values and the covariancematrix of the electricity genera-
tion technology costs for a future time horizon are not exactly known. Noticeably, the
usefulness of the allocations obtained from the mean-variance optimization depends
on the preciseness of such parameters. For instance, in theMPT context, it was shown
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in [3] that small changes in the expected returns can produce large changes in asset
allocation decisions. Consequently, several robust versions of the mean-variance
optimization were proposed in the MPT literature to consider uncertainties on the
expected returns and covariance matrix (see, for instance, [4, 8, 11]). Particularly
in [6], for the first time in the electricity planning context, it was presented a robust
portfolio optimization approach to deal with uncertainties in the input parameters.

In the electricity planning processes, it is usual to have the participation of special-
ists in the electricity generation technologies of interest. Undoubtedly, a natural way
of conducting a comprehensive planning process is to take into account the avail-
able data together with the prior experience of the participant specialists. Bayesian
approaches treat probability distributions as uncertain and subject to updates as new
information becomes available. Consequently, the Bayesian approach has been suc-
cessfully applied in the MPT context to take into account not only the beliefs of
the investors but also the uncertainties in the expected returns and the correspondent
covariance matrix (see, for instance, [3, 16, 17]). The Bayesian mean-variance port-
folio optimizations could take into account both the estimation uncertainty and the
specialist prior information.

In this paper, our objective is the introduction of the Bayesian approach to electric-
ity generation planning. First, we give a brief review of the classical mean-variance
optimization with the basic notation and fundamental concepts. Then, the Bayesian
approach is presented using both improper and proper priors. For illustration pur-
poses, an application comparing the Bayesian with the naive mean-variance optimal
portfolios is given. Finally, some final comments are presented.

2 Classical Approach

Traditionally, the classical or naive mean-variance optimization presumes that cost
and risk, the last one measured as the portfolio volatility, are known when making
portfolio-selection decisions. Therefore, a rational planner would prefer a portfolio
with a lower expected cost for a given level of risk. Alternatively, a preferred portfolio
is one that minimizes risk for a given expected cost level. The set of portfolios that are
optimal is called the efficient frontier. No rational planner would select a portfolio
lying above the efficient frontier, since that would mean accepting a higher cost
for the same amount of risk as an efficient portfolio. Equivalently, it would mean
accepting greater risk for the same expected cost as an efficient portfolio.

As already mentioned and following [6, 12], it is important to distinguish in the
planning process an already existing electricity producing plant using technology i ,
with random cost Ce

i in USD/MWh, from a prospective idea of using i , with random
cost C p

i in USD/MWh. The random vectors of costs for existing and prospective
technologies when there are N different technologies are given by

Ce ≡ (
Ce
1 C

e
2 . . . Ce

N

)′
and Cp ≡ (

C p
1 C p

2 . . . C p
N

)′
, (1)
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respectively. It is also usual to assume that the random costs are multivariate normal

Ce|μe,Σe ∼ N
(
μe,Σe

)
and Cp|μp,Σ p ∼ N

(
μp,Σ p

)
, (2)

whereμe = (μe
i )N×1 andμp = (μ

p
i )N×1 aremeanvectors andΣe andΣ p are N × N

covariance matrices. The means μe
i and μ

p
i are different, because maintenance costs

are different from the costs of building a new plant. Additionally, the risk of mainte-
nance σ e

i is also different from the risk of building a new plant σ
p
i . However, since

the technology is the same, the correlation betweenCe
i andC

p
i is equal to ρCe

i ,C
p
i

= 1.
Thus, we canwrite almost surely (with probability 1) that (see Proposition 1.1.2 from
[7])

Ce
i = σ e

i

σ
p
i

(
C p
i − μ

p
i

) + μe
i . (3)

Essentially, the Eq.3 says that the source of uncertainty for both Ce
i and C p

i is the
same. Additionally, Σe = diag (σ e)R diag (σ e) and Σ p = diag (σ p)R diag (σ p),
where the correlation matrix R is the same for both the existing and the prospective
costs, σ e = (

σ e
i

)
N×1 and σ p = (

σ
p
i

)
N×1.

Defining C = (
Ce′ Cp′)′

, it follows that

C|μ,Σ ∼ N (μ,Σ) , (4)

where

μ = (
μe′ μp′)′

and Σ =
(

Σe diag (σ e)R diag (σ p)

diag (σ e)R diag (σ p) Σ p

)
. (5)

The portfolio weights are the proportions of the total budget allocated in each
technology. The allocation vectors in the existent and prospective technologies are
denoted by ωe = (ωe

i )N×1 and ωp = (ω
p
i )N×1, respectively. Naturally, 0 ≤ ωe

i ≤ 1,
∀i = 1, 2, . . . , N ; 0 ≤ ω

p
i ≤ 1, ∀i = 1, 2, . . . , N ; and

N∑

i=1

(
ωe
i + ω

p
i

) = 1. (6)

Defining ω = (
ωe′ ωp′)′

, we denote by Ω the set of admissible electricity gen-
eration mix so that we must have ω ∈ Ω . The set Ω will represent constraints like
Eq.6, ω′12N = 1 (12N is a 2N × 1 vector of ones), and minimum and/or maximum
values for the allocations (ωmin ≤ ω and/or ω ≤ ωmax). Using the ω definition, the
total cost of the portfolio is given by
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C = ω′C. (7)

Using the previous Eq.7, the expected cost of the portfolio is given by

E [C ] = ω′μ (8)

and the variance of the portfolio is given by

Var [C ] = ω′Σω. (9)

For the case in which the vector of expected costs μ and the covariance matrix
Σ are known, three kinds of mean-variance problems are usually considered in the
literature. The first approach minimizes the variance of the costs conditional on
a target maximum expected cost c. The target maximum expected cost c ∈ �+ is
provided by the electricity energy policy planner which represents the maximum
allowable expected energy cost. Formally, the problem is written as follows

min
ω

ω′Σω (10)

s. t. ω′μ ≤ c, ω ∈ Ω. (11)

The second approach, a dual form of the first approach, minimizes the expected
cost conditional on a maximum value s2 for the variance of the costs. The value
s2 ∈ �+, provided by the policy planner, represents the maximum value that the
variance of the cost could achieve. Formally, the problem is written as follows

min
ω

ω′μ (12)

s. t. ω′Σω ≤ s2, ω ∈ Ω. (13)

The third approach minimizes a combination of the expectation and variance of
the costs, weighted by a risk aversion parameter λ > 0. Higher value of λ indicates
a greater risk aversion. Formally, the problem is written as follows

min
ω

ω′μ + λω′Σω (14)

s. t. ω ∈ Ω. (15)

Trivially, using quadratic programming solvers, the previous three problems can
be solved for the case in which the vector of expected costs μ and covariance matrix
Σ are assumed to be known.
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3 Bayesian Approach

In terms of modeling, the Bayesian approaches address estimation risk from a con-
ceptually different perspective. Instead of treating the unknown parameters as con-
stants, they are considered random. Additionally, the belief or prior knowledge of
the specialist about the input parameters is combined with the observed data. The
Bayesian models yield an entire distribution of predicted costs which explicitly takes
into account the estimation and predictive uncertainty.

The predictive, posterior, or updated distribution of the unknown parameters μ

and Σ , according to the Bayes’ theorem, is given by

p (μ,Σ |c1, . . . , cT ) ∝ L (μ,Σ |c1, . . . , cT ) π (μ,Σ) , (16)

where c1, . . . , cT are recorded observations; π (·) is the prior distribution; and L (·|·)
is the likelihood function. Particularly, the likelihood function is given by

L (μ,Σ |c1, . . . , cT ) ∝ |Σ |− T
2 exp

[

−1

2

T∑

i=1

(ci − μ)′ Σ−1 (ci − μ)

]

. (17)

In the following subsections, we present the predictive distributions using improper
and proper priors for the unknown parameters μ and Σ .

3.1 Improper Prior Case

In many cases, our prior beliefs are vague and thus difficult to translate into an
informative prior. Therefore, we want to reflect our uncertainty about the model
parameters without substantially influencing the predictive parameter inference. The
so-called noninformative priors, also called vague or diffuse priors, are employed to
that end. We consider the case when the investor is uncertain about the distribution
of both parameters, μ and Σ , and has no particular prior knowledge of them. This
uncertainty can be represented by a improper or diffuse prior, which is typically taken
to be the Jeffreys’ prior,

π (μ,Σ) ∝ |Σ |− (2N+1)
2 , (18)

where μ and Σ are considered independent in the prior, and μ is not restricted. The
prior is noninformative in the sense that only changes in the data exert an influence
on the predictive distribution of the parameters.

When the sample mean, μ̂, and sample covariance matrix, Σ̂ , are given, it is
straightforward to verify that the predictive distribution of the costs is a multivariate
Student’s t-distribution
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C|μ̃, Σ̃ ∼ tT−2N

(
μ̃, Σ̃

)
, T − 2N ≥ 2, (19)

where the predictive mean and covariance matrix are, respectively,

μ̃ = μ̂ and Σ̃ =
(
1 + T−1

)
(T − 1)

T − 2N − 2
Σ̂. (20)

The predictive covariance here represents the sample covariance scaled up by a
factor, reflecting estimation risk. For a given number of technologies N , the uncer-
tainty Σ̃ decreases as more historical data become available. Actually, when N is
fixed and T → ∞, we have Σ̃ → Σ̂ . On the other hand, with a fixed number of
historical observations T , increasing the number of technologies N respecting the
constraint T − 2N − 2 > 0, leads to higher uncertainty and estimation risk, since the
relative amount of available data declines. In practice, there is relevant information
coming from specialists on energy costs. Consequently, in the next subsection, we
present a study with proper priors.

3.2 Proper Prior Case

The specialists have informative beliefs about the mean and covariance of technol-
ogy costs. In this subsection, we adopt conjugate priors because it is an algebraic
convenience producing a closed expression for the posterior. The conjugate prior
for the unknown covariance matrix of the normal distribution is the inverse Wishart
distribution while the conjugate prior for the mean vector of the normal distribution
(conditional on Σ) is the multivariate normal:

μ|Σ ∼ N

(
η,

1

τ
Σ

)
,Σ ∼ W−1 (Ψ, ν) , (21)

where η is the vector of expected costs based on the specialist experience, τ ∈ �+
represents the strength of the confidence the specialist places on the value of η,
Ψ is the covariance matrix based on the specialist experience, ν ∈ � represents the
degrees of freedom of the inverseWishart distribution reflecting the confidence about
Ψ . Lower values of τ and ν indicates higher uncertainty about η andΨ , respectively.

As in the improper prior case, the predictive distribution of the costs is a multi-
variate Student’s t-distribution

C|μ̆, Σ̆ ∼ tT−2N

(
μ̆, Σ̆

)
, T − 2N ≥ 2, (22)

where the predictive mean and covariance matrix are, respectively,

μ̆ = τ

T + τ
η + T

T + τ
μ̂ (23)
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and

Σ̆ = T + 1

T (ν + 2N − 1)

[
Ψ + (T − 1) Σ̂ + T τ

T + τ

(
η − μ̂

) (
η − μ̂

)′
]

. (24)

We notice that the predictive mean μ̆ is a weighted average of the prior mean,
η, and the sample mean, μ̂. In other words, the sample mean is shrunk toward
the prior mean. Actually, the predictive mean and predictive covariance matrix are
not proportional to the sample estimates. The improper prior case is appropriate to
employ when we do not suspect that the sample mean or sample covariance matrix
contains substantial estimation errors. Otherwise, the proper prior case is better when
the planner believes that in the future the expectation and covariance matrix of the
costs will differ substantially from the historical ones.

4 Results

In this section, we present an application to illustrate the robust Bayesian approaches.
In [12], the vector of expected costs and standard deviations are given for 8 different
technologies (differentiating between existent and prospective cases). Additionally,
the correlation matrix of the technologies is also given. For the purpose of our appli-
cation, we consider the data from [12] as the sample estimates of the parameters μ̂

and Σ̂ . The naive mean-variance efficient frontier obtained using μ̂ and Σ̂ is pre-
sented in Figs. 1 and 2 (repeated in the two graphics). It is important to notice that
the portfolios above the efficient frontier are inefficient and the portfolios below the
efficient frontier are unrealizable.

In the improper prior case, illustrated in Fig. 1, the efficient frontier changes
depending on the value of T . As already mentioned, the predictive covariance of
the improper case is the sample covariance scaled up by a factor that approaches to
one when T increases. Obviously, we do not have here T representing the actual size
of the sample used in the estimation. Actually, for us, T is not only a proxy to the size
of the sample used in the estimation but also the degree of confidence the planner
has on the estimations based only on the historical data. Consequently, decreasing
the value of T shifts the efficient frontier to the right. The same shift to the right
was observed in [6] using the robust mean-variance optimization when decreasing
the degree of confidence the planner has on the estimations. However, the robust
mean-variance optimization is computationally more expensive than our approach
because the first requires more optimizations.

In the proper prior case, the hyperparameters η and Ψ represent the prior infor-
mation of the specialist about the expected value and covariance matrix of the tech-
nology costs, respectively. Since we do not have such parameters for the situation
described in [12], we assume, for illustration purposes, that η and Ψ are obtained
increasing in 10% the parameters μ̂, Σ̂e and Σ̂ p. In Fig. 2, we present the obtained
efficient frontiers for different values of τ with T = 50 and ν = 34. Noticeably, the
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Fig. 1 Efficient frontiers using naive and Bayesian approaches for the improper prior case for some
values of T

Fig. 2 Efficient frontiers using naive and Bayesian approaches for the proper prior case for some
values of τ

resulting efficient frontiers are not simple shifts of the naive mean-variance frontier.
Consequently, as already mentioned, the informative proper prior case is better than
the improper prior when the planner believes that in the future the costs will differ
substantially from the historical ones.
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5 Final Remarks

In this paper, we introduce the use of the Bayesian mean-variance optimization in
the electricity generation planning. We illustrate the application of the approach
using improper and proper priors. Comparing with the existent robust approach to
electricity portfolio selection, the Bayesian approach has the advantage of not only
dealing with the estimation uncertainty, but also considering the prior information of
the specialists in the planning process. Particularly, in the proper prior case, we have
assumed that the covariancematrix of the expected value of the costs are proportional
to the covariance matrix of the costs. In practice, the assumption is not necessarily
valid. For future research, we suggest the investigation of changing the proper priors
to give more flexibility to the electricity generation planner.
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