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Abstract: There are several electricity generation technologies based on different sources such as
wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the
future costs of such technologies is crucial for planning purposes. In the literature, the allocation of
resources in the available technologies has been solved as a mean-variance optimization problem
assuming knowledge of the expected values and the covariance matrix of the costs. However,
in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations
from the mean-variance optimization are not robust to possible estimation errors of such parameters.
Additionally, it is usual to have electricity generation technology specialists participating in the
planning processes and, obviously, the consideration of useful prior information based on their
previous experience is of utmost importance. The Bayesian models consider not only the uncertainty
in the parameters, but also the prior information from the specialists. In this paper, we introduce the
classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning
problem using both improper and proper prior distributions for the parameters. In order to illustrate
our approach, we present an application comparing the classical-equivalent Bayesian with the naive
mean-variance optimal portfolios.
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1. Introduction

During the time, the mankind has developed several electricity generation technologies based
on different primary sources such as wind, biomass, gas, coal, nuclear, and so on. Evidently,
each technology has associated costs, sustainability and security of supply characteristics, efficiency
and environmental concerns. According to the United States Environmental Protection Agency,
the different primary energy sources are organized by conventional power, such as oil, natural gas,
coal and nuclear; renewable energy, such as large hydropower and municipal solid waste; and green
power, such as wind, solar, biomass, geothermal, biogas and low-impact hydropower. In particular,
the low-impact hydropower is the use of hydroelectric power on a scale suitable for local community
and industry, or to contribute to distributed generation in a regional electricity grid, with a lower
negative environmental impact compared to the large hydropower. In terms of less environmental
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impacts, the conventional power sources are the least beneficial and the green power sources are the
most beneficial.

The worldwide demand for energy has been increasing over the last decades and it will continue
to grow [1]. Consequently, for both countries and companies, the long-term planning of the electricity
generation infrastructure is of utmost importance. Actually, it should be part of the central objectives of
any energy policy. The achievement of an optimal designed electricity generation infrastructure bends
towards a more balanced portfolio allocation among the different available technologies. In addition,
it is also important to distinguish in the planning process the already existing electricity producing
plants with maintenance costs from the ones desired to be built. Economically, drastic changes of the
current electricity investment allocations are not feasible. In this paper, our model distinguishes the
costs of the already existing from the costs of the prospective or desired to be built plants.

The United States Energy Information Administration not only has the history of the average
annual maintenance, operational, and fuel costs for existing power plants by energy source or major
fuel types, but also projections for electricity generation costs [2]. However, even so, the costs
have a significant uncertainty. For instance, future control on CO2 emission and the corresponding
mechanisms will surely impact the electricity generation costs. Precisely, the future price of an
emitted ton of CO2 is uncertain and this uncertainty should be considered in the planning process.
Consequently, electricity generation policies solely relying on the evolution of historical average
costs of electricity generation technologies are unsatisfactory. The careful consideration of the
uncertainties associated with the current and the prospective costs of such technologies is fundamental
for planning purposes.

Considering the costs as random variables, in the literature, the allocation of resources in
the available electricity generation technologies has been solved as a mean-variance optimization
problem using the expected values and covariance matrix of the technology costs in megawatt hours
(see, for instance, [3–6]). The mean-variance optimization, introduced by Markowitz [7], was the first
mathematical formalization of investment diversification and it is part of the modern portfolio theory
(MPT). The mean-variance optimized portfolios compose the called efficient frontier, a set of portfolios
that dominate all other feasible portfolios in terms of their mean and variance tradeoff. Clearly,
in the MPT, the random variables of interest are the returns of the risky assets instead of the costs of
the technologies.

In practice, the expected values and the covariance matrix of the electricity generation technology
costs for a future time horizon are not exactly known. The use of only historical data to estimate
the expected values and covariance matrix is a naive approach because the past will not necessarily
repeat in the future. Noticeably, the usefulness of the allocations obtained from the mean-variance
optimization depends on the preciseness of such parameters. For instance, in the MPT context, it was
shown in [8] that minor changes in the expected values of returns can produce major changes in asset
allocation decisions. Consequently, several robust versions of the mean-variance optimization were
proposed in the MPT literature to consider uncertainties on the expected returns and covariance matrix
(see, for instance, [9–11]).

There are many published research on uncertainty analysis using Bayesian methods for the
energy industry. For instance, the application of Bayesian networks in the renewable energy area to
deal with storage, smart grids and assessment are ample (for a complete survey, see [12]). Bayesian
network is a technique used to deal with problems with uncertainty [13,14]. The related literature
is diverse including a building occupants representation model for energy efficiency using Bayesian
networks [15] to a Bayesian framework for power network planning using statistical emulators [16].
A model and the computer program used to implement it are referred to as a simulator and an emulator
is a statistical approximation of a simulator [17,18]. Basically, the uncertainty in the inputs of the
models is represented as a probability distribution in a Bayesian framework.

Particularly in [19], in the electricity planning context using MPT, it was presented a robust
portfolio optimization approach to deal with uncertainties in the input parameters. The uncertainty



Entropy 2018, 20, 42 3 of 12

in the robust portfolio optimization approach is represented by an uncertainty set for the input
parameters. In [19], the uncertainty sets considered were the box, the ellipsoidal, the lower and the
upper bounds, and the convex polytopic. However, the energy planning process is very complex and
involves other concerns such as sustainability, resiliency, availability, reliability, efficiency, safety and
security of the generation technologies. Such concerns add not only additional uncertainty in the costs
of such technologies but also beliefs that come from technology specialists. Actually, it is usual to have
the participation of specialists in the electricity generation technologies of interest in the electricity
planning processes.

Undoubtedly, a natural way of conducting a comprehensive planning process is to take into
account the available data together with the prior experience of the participant specialists. Bayesian
approaches treat the probability distributions themselves as uncertain and subject to updates as new
information arrives. Consequently, the Bayesian approach has been successfully applied in the MPT
context to take into account not only the beliefs of the investors but also the uncertainties in the
expected returns and the correspondent covariance matrix (see, for instance, [8,20,21]). The Bayesian
mean-variance portfolio optimizations consider both the estimation uncertainty and the specialist
prior information. In a few words, the prior probability represents the beliefs of the investment
specialists, the probability update represents the incorporation of the available data in the model and
the predictive probability represents the updated beliefs of the specialists using the available data.

In the literature, there are different existent Bayesian approaches to deal with the parameter
uncertainty in the context of MPT (for instance, see [22–29]). Historically, the initial applications
of Bayesian approaches in 1970s were based on improper or data-based priors [30]. The Bayesian
approaches based on improper priors usually give comparable results to the classical methods and
the difference arises when some risky assets have longer historical data than others [31]. Then, trying
to incorporate prior information into the asset allocation model, the Black–Litterman model was
introduced using a Bayesian approach to include investors views and equilibrium relations in the
portfolio allocation [8]. The main difficulty to apply Black-Litterman model in practice is that it requires
the investors views as inputs and, usually, they are not publicly available. Other studies are centering
prior beliefs around values implied by asset pricing theories [32,33] or using investment objectives to
obtain useful priors [34].

In this paper, our objective is the introduction of the classical-equivalent Bayesian portfolio
optimization to electricity generation planning. The main contribution of our Bayesian approach is the
possibility to take into account both the estimation uncertainty and the specialists’ information at the
same time in the energy planning process. In the next section, we give a brief review of the classical
mean-variance optimization with the basic notation and fundamental concepts. Then, we present
the classical-equivalent Bayesian approach using both improper and proper priors. In addition,
for illustration purposes, we compare the classical-equivalent Bayesian optimal portfolios with the
classical mean-variance optimal portfolios using the same data from [19,35]. Finally, we present
some final comments about our proposed approach and suggestions for future research at the end
of the paper.

2. Classical or Naive Mean-Variance Approach

Traditionally, the classical or naive mean-variance optimization assumes that cost and risk, the last
one measured as the portfolio volatility, are known when making portfolio allocation decisions. For that
reason, a rational planner would prefer a portfolio with a lower expected cost for a given level of
risk. Alternatively, a preferred portfolio is the one that minimizes risk for a given expected cost level.
The set of portfolios that are optimal is called the efficient frontier. No rational planner would select
a portfolio lying above the efficient frontier, since that would mean accepting a higher cost for the
same amount of risk as an efficient portfolio. Similarly, it would mean accepting greater risk for the
same expected cost as an efficient portfolio.
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Following [19,35], it is important to distinguish in the planning process an already existing
electricity producing plant using technology i, with random cost Ce

i in USD/MWh, from a prospective
idea of building a new plant using i, with random cost Cp

i in USD/MWh. In practice, substantial
changes of the current electricity investment allocations are not feasible and the maintenance costs
of existing plants are different from the implementation costs of new plants. The random vectors
of costs for existing plants and prospective ideas of building new plants when there are N different
technologies are given by

Ce ≡ (Ce
1 Ce

2 . . . Ce
N)
′ and Cp ≡ (Cp

1 Cp
2 . . . Cp

N)
′, (1)

respectively. It is also usual to assume that the random costs are multivariate normal

Ce|µe, Σe ∼ N (µe, Σe) and Cp|µp, Σp ∼ N (µp, Σp) , (2)

where µe = (µe
i )N×1 and µp = (µ

p
i )N×1 are mean vectors and Σe and Σp are N×N covariance matrices.

The means µe
i and µ

p
i are different because maintenance costs are different from the costs of building

a new plant. Additionally, the risk or standard deviation of maintenance σe
i is also different from the

risk or standard deviation of building a new plant σ
p
i . However, since the technology is the same,

the correlation between Ce
i and Cp

i is equal to ρCe
i ,Cp

i
= 1. Thus, we can write almost surely (with

probability 1) that (see Proposition 1.1.2 from [36])

Ce
i =

σe
i

σ
p
i

(
Cp

i − µ
p
i

)
+ µe

i . (3)

Essentially, Equation (3) says that the source of uncertainty for both Ce
i and Cp

i is the same.
Additionally, Σe = diag (σe) R diag (σe) and Σp = diag (σp) R diag (σp), where the correlation matrix
R is the same for both the existing and the prospective costs and σe = (σe

i )N×1, σp = (σ
p
i )N×1 are

standard deviation vectors.
Defining C =

(
Ce′ Cp′)′, it follows that

C|µ, Σ ∼ N (µ, Σ) , (4)

where

µ =
(
µe′ µp′)′ and Σ =

(
Σe diag (σe) R diag (σp)

diag (σe) R diag (σp) Σp

)
. (5)

The portfolio weights are the proportions of the total budget allocated in each technology.
The allocation vectors in the existent and prospective technologies are denoted by ωe = (ωe

i )N×1 and
ωp = (ω

p
i )N×1, respectively. Naturally, 0 ≤ ωe

i ≤ 1, ∀i = 1, 2, . . . , N; 0 ≤ ω
p
i ≤ 1, ∀i = 1, 2, . . . , N; and

N

∑
i=1

(
ωe

i + ω
p
i

)
= 1. (6)

Defining ω = (ωe′ ωp′)′, we denote by Ω the set of admissible electricity generation mix so
that we must have ω ∈ Ω. The set Ω will represent constraints like Equation (6), ω′12N = 1 (12N is
a 2N× 1 vector of ones), and minimum and/or maximum values for the allocations (ωmin ≤ ω and/or
ω ≤ ωmax). Using the ω definition, the total cost of the portfolio is given by

C = ω′C. (7)

Using the previous Equation (7), the expected cost of the portfolio is given by

E [C] = ω′µ (8)
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and the variance of the portfolio is given by

Var [C] = ω′Σω. (9)

For the case in which the vector of expected costs µ and the covariance matrix Σ are known,
three kinds of mean-variance problems are usually considered in the MPT literature (for the details,
see [20]). In the following, we translate the three kinds of mean-variance problems to the electricity
generation planning context. The first approach minimizes the variance of the costs conditional on
a target maximum expected cost c. The target maximum expected cost c ∈ <+ is provided by the
electricity energy policy planner, which represents the maximum allowable expected energy cost.
Formally, the problem is written as follows:

min
ω

ω′Σ, ω (10)

s. t. ω′µ ≤ c, ω ∈ Ω. (11)

The second approach, a dual form of the first approach, minimizes the expected cost conditional
on a maximum value s2 for the variance of the costs. The value s2 ∈ <+, provided by the policy planner,
represents the maximum value that the variance of the cost could achieve. Formally, the problem is
written as follows:

min
ω

ω′µ, (12)

s. t. ω′Σω ≤ s2, ω ∈ Ω. (13)

The third approach minimizes a combination of the expectation and variance of the costs, weighted
by a risk aversion parameter λ > 0. Higher value of λ indicates a greater risk aversion. Formally,
the problem is written as follows:

min
ω∈Ω

ω′µ + λω′Σω. (14)

Considering linear constraints and known expected costs µ and covariance matrix Σ, the solution
of the previous optimization problem is trivially obtained using any quadratic programming solver.
Actually, it is possible to rewrite the previous optimization problem as follows:

min
ω∈Ω

E [ϕ (C)] ≡ min
ω∈Ω

E
[
ϕ
(
ω′C

)]
≡ min

ω∈Ω

∫
ϕ
(
ω′c
)

p (c|µ, Σ) dc, (15)

where ϕ is the quadratic cost function such that

E [ϕ (C)] ≡ ω′µ + λω′Σω (16)

and p (c|µ, Σ) is the multivariate Gaussian or normal probability density function with mean µ

and covariance matrix Σ. In the MPT context, the approximation of the investor utility function
using a quadratic function was shown to be exact when the input data is elliptically distributed [37].
For instance, elliptical distribution includes the normal, Student’s t and Levy distributions.

3. Classical-Equivalent Bayesian Mean-Variance Approach

In terms of modeling, the Bayesian approaches, compared with the approaches from the last
section, address estimation risk from a different angle. In place of treating the unknown parameters as
constants, they are considered random. Additionally, the belief or prior knowledge of the specialist
about the input parameters is combined with the observed data. The Bayesian models provide an entire
distribution of predicted costs that explicitly consider the estimation and predictive uncertainty [21].
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The predictive, posterior or updated density of the unknown parameters µ and Σ, according to
the Bayes’ theorem, is given by

p (µ, Σ|c1, . . . , cT) ∝ L (µ, Σ|c1, . . . , cT)π (µ, Σ) , (17)

where c1, . . . , cT are recorded observations; L (·|·) is the likelihood function; and π (·) is the prior
distribution. Particularly, the likelihood function is given by

L (µ, Σ|c1, . . . , cT) ∝ |Σ|−
T
2 exp

[
−1

2

T

∑
i=1

(ci − µ)′ Σ−1 (ci − µ)

]
, (18)

where |Σ| is the determinant of the covariance matrix.
Using the predictive density of the unknown parameters µ and Σ from Equation (17), it is possible

to obtain the predictive density of the costs as

p (c|c1, . . . , cT) ∝
∫

p (c|µ, Σ)p (µ, Σ|c1, . . . , cT) dµdΣ. (19)

Then, using the predictive density of the costs in the optimization problem from Equation (15),
the Bayesian optimization problem is defined by

arg min
ω∈Ω

∫
ϕ
(
ω′c
)

p (c|c1, . . . , cT) dc. (20)

In the following subsections, we present the predictive distributions using improper and proper
priors for the unknown parameters µ and Σ.

3.1. Improper Prior Case

In some cases, our prior beliefs are vague and thus difficult to express into an informative
prior. Consequently, we would like to still consider the uncertainty of the model parameters without
impacting them with any prior belief. The improper priors, also called non-informative, diffuse or
vague priors, are employed to that end. We consider the case when the investor is uncertain about the
distribution of both parameters, µ and Σ, and has no particular prior knowledge of them. This case is
modeled using an improper prior, which is typically chosen to be the Jeffreys’ prior [38]

π (µ, Σ) ∝ |Σ|−
(2N+1)

2 , (21)

where µ and Σ are considered independent in the prior, and µ is not restricted as to the values it can
take. The prior is non-informative in the sense that only changes in the data exert an influence on the
predictive distribution of the parameters. When the sample mean, µ̂, and sample covariance matrix, Σ̂,
are given, it is straightforward to verify that the predictive distribution of the costs is a multivariate
Student’s t-distribution (for the complete derivation of the following result, see [20] or [21])

C|µ̃, Σ̃ ∼ tT−2N
(
µ̃, Σ̃

)
, T − 2N ≥ 2, (22)

where the predictive mean and covariance matrix are, respectively,

µ̃ = µ̂ and Σ̃ =

(
1 + T−1) (T − 1)

T − 2N − 2
Σ̂. (23)

Here, the predictive covariance matrix represents the sample covariance scaled up by a factor,
reflecting the estimation risk. For a given number of technologies N, Σ̃ becomes closer to Σ̂ as more
historical data are available. Actually, when N is fixed and T → ∞, we have Σ̃→ Σ̂. On the other hand,
with a fixed number of historical observations T, increasing the number of technologies N respecting
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the constraint T− 2N− 2 > 0, leads to higher absolute numerical values for the covariance matrix and
estimation risk, since the relative amount of available data decreases. In practice, there are relevant
information coming from specialists on energy costs. Consequently, in the next subsection, we present
a study with proper priors.

To conclude, the classical-equivalent Bayesian optimization problem for electricity generation
planning for the improper prior case is given by

min
ω∈Ω

ω′µ̃ + λω′Σ̃ω. (24)

3.2. Proper Prior Case

In the proper prior case, the specialists have informative beliefs about the mean and covariance of
technology costs. Particularly, in this subsection, we adopt conjugate priors because it is an algebraic
convenience producing a closed expression for the posterior. Using a similar approach common in the
investment portfolio allocation context [20,21], the conjugate prior for the mean vector of the normal
distribution (conditional on Σ) is taken to be the multivariate normal while the conjugate prior for the
unknown covariance matrix of the normal distribution is taken to be the inverse Wishart distribution:

µ|Σ ∼ N
(

η,
1
τ

Σ

)
, Σ ∼W−1 (Ψ, ν) , (25)

where η is the vector of expected costs based on the specialist experience, τ ∈ <+ represents the
confidence strength the specialist places on the value of η, Ψ is the covariance matrix based on the
specialist experience, and ν ∈ < represents the degrees of freedom of the inverse Wishart distribution
reflecting the confidence about Ψ. Lower values of τ and ν indicates higher uncertainty about η and
Ψ, respectively.

As in the improper prior case, the predictive distribution of the costs is a multivariate Student’s
t-distribution (for the complete derivation of the following result, see [20] or [21])

C|µ̆, Σ̆ ∼ tT−2N
(
µ̆, Σ̆

)
, T − 2N ≥ 2, (26)

where the predictive mean and covariance matrix are, respectively,

µ̆ =
τ

T + τ
η+

T
T + τ

µ̂ (27)

and

Σ̆ =
T + 1

T (ν + 2N − 1)

[
Ψ + (T − 1) Σ̂ +

Tτ

T + τ
(η− µ̂) (η− µ̂)′

]
. (28)

We notice that the predictive mean µ̆ is a weighted average of the prior mean, η, and the sample
mean, µ̂. In other words, the sample mean is shrunk toward the prior mean. Actually, the predictive
mean and predictive covariance matrix are not proportional to the sample estimates. The improper
prior case is suitable to use when we do not suspect that the sample mean or sample covariance matrix
contain considerable estimation errors. Alternatively, the proper prior case is better when the planner
believes that, in the future, the expectation and covariance matrix of the costs will differ substantially
from the historical ones.

To conclude, the classical-equivalent Bayesian optimization problem for electricity generation
planning for the proper prior case is given by

min
ω∈Ω

ω′µ̆ + λω′Σ̆ω. (29)
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4. Results

In this section, we present a application to illustrate the classical-equivalent Bayesian approaches.
In Table 1, we reproduce from [35] the means and standard deviations of costs for maintenance
of existing plants and building of new plants for different energy generation technologies: (1) gas;
(2) coal; (3) nuclear; (4) fuel oil; (5) biomass; (6) large hydropower; (7) wind; and (8) low-impact or
small hydropower. Additionally, in Table 2, we also reproduce from [35] the correlation matrix of the
technologies considering the fuel costs. Since the correlation matrix is symmetric, we do not repeat
the elements. In [35], the data was obtained using the Levelized Busbar Cost (LBC) methodology
(for instance, see [4]). LBC is a valuation technique that calculates the costs over the electric plants’
useful lifetimes and averages them to yield a total production cost. For the purpose of our application,
we consider the data from Tables 1 and 2 as the sample estimates of µ̂e, µ̂p, σ̂e, σ̂p and R̂.

Table 1. The means and standard deviations of costs for existing plants and prospective ideas
of building new plants for different energy generation technologies from [35] (values are in cents
of USD/kWh).

Energy Generation Technology µ̂e
i µ̂

p
i σ̂e

i σ̂
p
i

gas 9.9010 9.2770 0.1500 0.1500
coal 11.5560 11.1180 0.1125 0.1187

nuclear 10.1260 10.0110 0.0625 0.1500
fuel oil 19.0980 16.4680 0.2250 0.2188

biomass 14.0390 13.4560 0.0813 0.0875
large hydropower 4.1200 5.0240 0.0313 0.2062

wind 10.9860 10.4440 0.0250 0.1187
small hydropower 6.8850 6.9090 0.0187 0.1187

Table 2. The correlations of the fuel costs between different energy generation technologies from [35].

Energy Generation Technology 1. 2. 3. 4. 5. 6. 7. 8.

1. gas 1.00
2. coal 0.47 1.00
3. nuclear 0.06 0.12 1.00
4. fuel oil 0.49 0.27 0.08 1.00
5. biomass −0.44 −0.38 −0.22 −0.17 1.00
6. large hydropower 0.00 0.00 0.00 0.00 0.00 1.00
7. wind 0.00 0.00 0.00 0.00 0.00 0.00 1.00
8. small hydropower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

The naive mean-variance efficient frontier obtained using µ̂ and Σ̂ is presented in Figures 1 and 2
(repeated in the two graphics). The efficient frontier represent the set of all optimal choices. It is
important to notice that the portfolios above the efficient frontier are realizable but inefficient and the
portfolios below the efficient frontier are unrealizable. On the other hand, in the MPT context, since
the random variables are the returns instead of the costs, the portfolios below the efficient frontier
are realizable but inefficient, and the portfolios above the efficient frontier are unrealizable. It is
fundamental to highlight the differences between the set of realizable portfolios in the two contexts to
avoid misinterpretations. In addition, it is also important to notice that the efficient frontier for the
costs is always convex while the efficient frontier for the returns is always concave.

In the MPT context, the efficient frontier is calculated without considering the risk-free asset [20].
The risk-free asset is the one with a certain future return. The identification of the risk-free asset
depends on the context of interest. For example, in the United States, the treasury bills (T-bills)
are considered the risk-free asset because they are backed by the government. Analogously, in the
energy planning context, the efficient frontier must be calculated without considering the risk-free
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energy generation technologies. The existence of risk-free technologies also depends on the context
of interest. For example, government backed subsidized energy generation technologies could be
considered risk-free technologies. After obtaining the efficient frontier, following the MPT procedure,
the risk-free technologies must be linearly combined with the efficient portfolios to obtain new optimal
portfolios [39].

In the improper prior case, illustrated in Figure 1, the efficient frontier changes depending on the
value of T. As mentioned, the predictive covariance of the improper case is the sample covariance
scaled up by a factor that approaches to one when T increases. Obviously, we do not have T here
representing the actual size of the sample used in the estimation. Actually, for us, T is not only a proxy
to the size of the sample used in the estimation but also the degree of confidence the planner has on the
estimations based only on historical data. Consequently, decreasing the value of T shifts the efficient
frontier to the right. The same shift to the right was observed in [19] using the robust mean-variance
optimization with uncertainty sets when decreasing the degree of confidence the planner has on the
estimations. In other words, the robust mean-variance optimization and our improper prior case
include the uncertainty of the estimations in the electricity planning process. However, we highlight
the fact that the robust mean-variance optimization is computationally more expensive than our
approach because it requires several optimizations to cover all the uncertainty set. Our improper prior
case only requires a single optimization.

Figure 1. Efficient frontiers using naive and classical-equivalent Bayesian approaches for the improper
prior case for some values of T.

In the proper prior case, the hyperparameters η and Ψ represent the prior information of the
specialist about the expected value and covariance matrix of the technology costs, respectively. Since
we do not have such parameters for the situation described in [35], we assume, for illustration purposes,
that η and Ψ are obtained increasing by 10% the vectors µ̂, σ̂e and σ̂p. Unfortunately, specialist priors
are not publicly available. Consequently, in the proper prior case, the application is just a toy problem
for illustration purposes. In Figure 2, we present the obtained efficient frontiers for different values
of τ with T = 50 and ν = 34. Noticeably, the resulting efficient frontiers are not simple shifts of the
naive mean-variance frontier. Consequently, as mentioned, the informative proper prior case is most
suitable to use than the improper prior case when the planner believes that in the future the costs will
differ substantially from the historically estimated ones. In this section, the objective was to show the
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flexibility and the potential of applicability of the Bayesian approach to include not only the estimation
uncertainty, but also the specialist information in the energy planning process.

Figure 2. Efficient frontiers using naive and classical-equivalent Bayesian approaches for the proper
prior case for some values of τ.

5. Conclusions

In this paper, we introduce the use of the classical-equivalent Bayesian mean-variance
optimization in the electricity generation planning. We illustrate the application of the approach
using improper and proper priors. Comparing with the existent robust approach to electricity
portfolio selection, the classical-equivalent Bayesian approach has the advantage of not only dealing
with the estimation uncertainty, but also considering the prior information of the specialists in the
planning process. Particularly, in the proper prior case, we have assumed that the covariance matrix
of the expected value of the costs are proportional to the covariance matrix of the costs. In practice,
the assumption is not necessarily valid. For future research, we suggest the investigation of changing
the proper priors to give more flexibility to the electricity generation planner and the use of real
priors from the specialists. The real prior distributions are not necessarily conjugate for the likelihood
function. Consequently, a closed form of posterior distribution may not exist. In this case, it is necessary
to approximate the posterior distribution using, for instance, Markov chain Monte Carlo method via
the Metropolis–Hastings algorithm [40].
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