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Abstract. The intraday trading volume of a security is the total amount of traded contracts dis-
tributed over the day. Consequently, the intraday trading volume captures part of the intraday trad-
ing activity and represents a proxy for the intraday liquidity of a market. When executing orders
in the market, it is important to avoid impacting the market and, consequently, the prices. Usually,
the market impact causes adverse price movements implying in an implicit cost of the execution
process. Clearly, the intraday trading volume is important when developing execution strategies.
In the literature, the intraday trading volume for equities has been reported to possess an intraday
U-shaped pattern. In this paper, we investigate for the first time the statistical factors behind the
intraday trading volume using non-negative matrix factorization (NNMF). The obtained factors are
directly applicable to the design of execution strategies. Additionally, we observe that the factors
obtained using NNMF are more intuitively interpretable than the factors obtained using principal
component analysis. Our empirical conclusion helps to corroborate several other applications of
NNMF from the literature where the same behavior is observed.
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INTRODUCTION

The total amount of traded contracts of a security over the trading period of a day is
called intraday trading volume. For traders, the intraday trading volume is very important
because of its use in technical analysis [1]. Obviously, the intraday trading volume
captures part of the intraday trading activity and represents a proxy for the intraday
liquidity of a security. The intraday liquidity is the source of contracts from where the
execution of an order is made possible. Evidently, the lack of liquidity causes a problem
when the amount of contracts to be executed is very large. In such a case, the execution
of the order becomes impossible or causes adverse price distortion.

The price distortion is called market impact cost. In other words, the market impact
cost measures the adverse change in the market price due to the execution of an order and
is rapidly becoming the dominant transaction cost [2]. Discernibly, the intraday trading
volume is important when developing execution strategies. The execution strategies
are part of the service provided by traders and brokers to their clients. Additionally,
the increase of investments in trading technologies enabled the automation of such
strategies. An important benchmark for execution strategies is the volume weighted
average price (VWAP) which requires models for the intraday trading volume.

In the literature, the intraday trading volume for equities has been reported to possess
an intraday U-shaped pattern, i.e. heavy trading volume at the beginning and at the end

Bayesian Inference and Maximum Entropy Methods in Science and Engineering
AIP Conf. Proc. 1757, 060006-1–060006-8; doi: 10.1063/1.4959065

Published by AIP Publishing. 978-0-7354-1415-0/$30.00

060006-1



of the trading day and the relatively light trading volume at the middle of the trading day
(see for example [3]). As a consequence, several approaches were developed to model
the intraday trading volume (e.g. it is used a beta density function to fit the U-shaped
pattern in [4]). In this paper, we investigate the statistical factors behind the intraday
trading volume. Statistical factors are unobserved variables used to describe observed
data.

Non-negative matrix factorization (NNMF) is a multivariate data analysis technique
aimed to estimate non-negative factors and factor loadings from non-negative data.
NNMF was invented by Paatero and Tapper in 1994 under the name positive matrix
factorization (PMF) [5] and the name NNMF was established by Lee and Seung in 1999
[6]. There are several applications of NNMF such as text mining [7], image processing
[8], sound processing [9], identification of concentrations in chemistry [5], recognition
of underlying trends in stock prices [10], modeling of the term structure of interest rates
[11], and so on.

In terms of factorization techniques, the most popular approach is the principal
component analysis (PCA) which was introduced by Pearson [12] and developed by
Hotelling [13]. In this paper, we compare the factors and factor loadings obtained from
intraday trading volume using PCA to those using NNMF. Since the trading volume
is represented by non-negative quantities, it is a natural choice the use of NNMF. The
NNMF factors and factor loadings are intuitively interpretable and directly applicable to
the design of execution strategies with VWAP as their benchmark.

INTRADAY TRADING VOLUME PATTERN

Since 1980s, several works in the related literature report the U-shaped pattern of
intraday trading volume [14, 15], i.e. heavy trading volume at the beginning and at the
end of the trading day and relatively light trading volume at the middle of the trading
day. Typically, markets with defined daily openings and closures (e.g. equity and bond
markets) present a distorted U-shaped trading activity over the trading day. Differently,
markets with round-the-clock trading (e.g. foreign exchange interbank market) produce
more complex patterns.

Several rationalizations were made to explain the U-shape from the interaction of
distinct customer groups and market makers. For example, [16] provides a partial expla-
nation of the empirical findings concerning the pattern of volume in intraday transaction
data showing that concentrated-trading patterns arises endogenously as a result of the
strategic behavior of liquidity traders and informed traders. Alternatively, [17] associates
the U-shaped curves to market closure, the power of dealers, and portfolio rebalancing.

Assuming the U-shaped pattern of intraday trading volume, there are approaches
available to identify and estimate some parametric specifications [4, 18]. In practice,
practitioners obtain the intraday trading volume pattern using the average of historical
executed volumes of the last 21 days [19]. As it was mentioned, a model for intraday
trading volume is important because of VWAP benchmark. Actually, the VWAP is the
target of several execution strategies and the design of such strategies also depends on
models for intraday trading volume. In the next section, we explore the U-shaped pattern
using factor models such as PCA and NNMF.
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INTRADAY TRADING VOLUME FACTORS

Basically, statistical factors are obtained from factor analysis, a statistical procedure to
describe observed data in terms of unobserved variables called factors. The objective of
factor analysis is to reduce the dimensionality of the original data D = [di j] ∈ Rm×p,
m∧ p ∈ N+, using an approximation ∆ = [δi j] ∈ Rm×p such that

D≈ ∆ = ΦΛ, (1)

where Φ = [φi j] ∈ Rm×k is the matrix of factors or unobserved (latent) variables; Λ =

[λi j] ∈ Rk×p is the matrix of factor loadings or weights; k represents the number of
factors (k ≤ min(m, p)). In the literature, the most popular approach for factor analysis
is PCA. On the other hand, NNMF is a more recent approach.

In our case, D represents the intraday traded volume in number of contracts, p repre-
sents the number of time bins during a trading day (e.g. a time bin is from 10:00 a.m.
until 11:00 a.m.) and m is the amount of different days and/or equity names. The securi-
ties selected are from the Brazilian stock exchange (BM&F Bovespa) for the period from
April 2013 until September 2013. Additionally, we present the results obtained with time
bins equal to 1 hour with a total of p = 8 time bins a day. We investigate factors and fac-
tor loadings from intraday traded volume for only one individual equity name or for a
set of different equities. Consequently, we focus not only individual estimations but also
joint estimations to obtain intraday trading volume patterns.

In particular, the ticker names of the equities chosen are: PETR3, PETR4, VALE3,
VALE5, BBDC3 and BBDC4. PETR3 is the ordinary stock of an oil and gas company,
PETR4 is the preferential stock of the same company and one of the most liquid shares
traded in Brazil; VALE3 is the ordinary stock of an mining company and VALE5 is
the preferential stock of the same company; BBDC3 is the ordinary stock of a financial
services company and BBDC4 is the preferential stock of the same company. In the
following, we describe the procedures to obtain the PCA and the NNMF factorizations.

Factors using PCA

The singular value decomposition (SVD) is a technique from linear algebra used
to obtain the factors and factor loadings from PCA [20] and results in the following
factorization

Ḋ =USV ′, (2)

where Ḋ= [ḋi j]∈Rm×p is obtained mean centering the data matrix D; U = [ui j]∈Rm×p;
S = [si j] ∈ Rp×p is a diagonal matrix such that s11 ≥ s22 ≥ ... ≥ spp; V = [vi j] ∈ Rp×p;
VV ′ = Ip. Given the number of factors k, the PCA k-factor model is

Ḋ≈ D̂ =UŜV̂ ′, (3)

where Ŝ = [si j]∈Rp×k and V̂ = [vi j]∈Rp×k. The columns of F̂ =UŜ = [ f̂i j]∈Rm×k are
the factors and the rows of L̂ = V̂ ′ = [l̂i j] ∈ Rk×p are the corresponding factor loadings
(D̂ = F̂L̂).
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In Figures 1 and 2, we show the first four factor loadings {[l̂1 j], [l̂2 j], [l̂3 j], [l̂4 j]} and
the percentage of total explained variance of D according to the number of factors for
PETR4 and for the set of equities, respectively. It is possible to notice that the first factor
loading (with higher percentage of total explained variance) for both cases has the U-
shaped pattern. However, the second, third and fourth factor loadings do not possess
a direct interpretation. Additionally, the percentage of total explained variance for the
first factors are very low indicating the need of more factors (not only one) to be used
in the PCA based factor model for intraday trading volume (for example, in both cases
illustrated in Figures 1 and 2, it is necessary to include at least three factors to explain
more than 70% of the total data variance).

FIGURE 1. The first four factor loadings {[l̂1 j], [l̂2 j], [l̂3 j], [l̂4 j]} (left figure) and the percentage of total
explained variance of D according to the number of factors (right figure) for PETR4.

FIGURE 2. The first four factor loadings {[l̂1 j], [l̂2 j], [l̂3 j], [l̂4 j]} (left figure) and the percentage of total
explained variance of D according to the number of factors (right figure) for the set of equities.
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Factors using NNMF

Observing that the data matrix D containing the traded volume is non-negative D =
[di j] ∈ Rm×p

≥0 and given the number of factors k, the NNMF approach aims to find the
following approximation

D≈ D̃ = F̃L̃, (4)

where D̃ = [d̃i j] ∈ Rm×p
≥0 ; F̃ = [ f̃i j] ∈ Rm×k

≥0 ; L̃ = [l̃i j] ∈ Rk×p
≥0 . It is important to state that

the columns of F̃ are the factors and the rows of L̃ are the factor loadings.
The NNMF optimization procedures minimize the approximation error between D

and D̃. In a generalized way, the Bregman divergence Dϕ(D‖D̃) is used as the objective
function to be minimized [21, 22]. Considering only separable Bregman divergences,

Dϕ(D‖D̃) = ∑
i j

Dϕ(di j‖d̃i j) = ∑
i j
{ϕ(di j)−ϕ(d̃i j)−∇ϕ(d̃i j)[ϕ(di j)−ϕ(d̃i j)]}, (5)

where ϕ(.) is a strictly convex function with a continuous first derivative. Formally, the
resulting optimization problems are

min
F̃ ,L̃≥0

{Dϕ(D‖F̃L̃)+ J(F̃)+G(L̃)} (6)

or
min

F̃ ,L̃≥0
{Dϕ(F̃L̃‖D)+ J(F̃)+G(L̃)}, (7)

where J(.) and G(.) are penalty functions to enforce certain application-dependent
characteristics of the solution, such as sparsity and /or smoothness. It is also important
to remember that the Bregman divergences are not symmetric in general. Consequently,
we consider Dϕ(D‖F̃L̃).

Adopting ϕ(x) = x2/2 and J(.) = G(.) = 0, there are some known algorithms to solve
the NNMF problem. The algorithms are divided in general classes [23]: gradient descent
algorithms, multiplicative update algorithms and alternating least squares algorithms
(ALS). Here, the ALS will be adopted (the use of other algorithms does not provide
great differences to the empirical applications presented in the following sections).

One Factor using NNMF

In this section, the objective is to explore the existence of one main factor in the
intraday traded volume (k = 1). In Figure 3, we present the obtained factor loadings [l̃1 j]
for our data set. As expected, it is possible to identify the U-shaped pattern observing
the factor loadings of PETR4 and the set of equities. For the estimation using the set of
equities, we present in Figure 4 the first factors obtained from PCA and from NNMF
(k = 1) for each equity. The NNMF factors can be easily interpreted as the volume level
for each equity. Consequently, it is clear that PETR4 has the highest traded volume over
the time while BBDC3 has the lowest traded volume over the time. Concerning the PCA
factors, since they become negative such an interpretation is not possible.
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FIGURE 3. The NNMF (k = 1) factor loading for PETR4 (left figure) and the NNMF (k = 1) factor
loading for the set of equities (right figure).

FIGURE 4. The PCA first factors (left figure) and the NNMF (k = 1) factors (right figure) for each
equity in the set of equities.

Two Factors using NNMF

In this section, the objective is to explore the existence of two factors in the intraday
trading volume (k = 2). In Figure 5, we present the obtained factor loadings {[l̃1 j], [l̃2 j]}
for our data set. As expected, it is possible to identify an increasing end of day pat-
tern (first factor loading) and a decreasing start of day pattern (second factor loading)
observing the factor loadings for PETR4 and the set of equities.

In Figure 6, we present the first and second factors obtained for each selected equity.
The NNMF two factors can be easily interpreted as the volume level at the beginning and
at the end of the day for each equity name. Consequently, using the two NNMF factors a
financial analysis could study individually the volume levels at the beginning and at the
end of the day. Again, concerning the PCA factors, since they become negative such an
interpretation is not possible.

Finally, the residual sum of squares (RSS) of the factor models for the joint estimation
of the selected equities is given in Table 1. As expected, for a same number of k the
NNMF reduces the RSS compared with the PCA. In Table 2, we present the explained
percentage of the total data variance of the factor models for the joint estimation of
selected equities. Again, as expected, for a same number of k the NNMF explains a
higher percentage of the data variance compared with PCA.
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FIGURE 5. The NNMF (k = 2) factor loadings for PETR4 (left figure) and the NNMF (k = 2) factor
loadings for the set of equities (right figure).

FIGURE 6. The NNMF (k = 2) first factors (left figure) and the NNMF (k = 2) second factors (right
figure) for each selected equity.

TABLE 1. The RSS of the factor
models for the joint estimation of
selected equities.

k PCA NNMF

1 2.04e+16 3.16e+15
2 1.95e+16 2.25e+15

TABLE 2. The explained % of to-
tal data variance of the factor mod-
els for the joint estimation of se-
lected equities.

k PCA NNMF

1 34.09% 72.35%
2 55.60% 80.30%
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CONCLUSIONS

In this paper, NNMF was for the first time applied to capture the intraday trading volume
patterns. Considering NNMF with only one factor, we identified for our selected equities
the well-known U-shaped intraday trading volume pattern. The U-shaped pattern is
very important for execution strategies based on VWAP. Additionally, we also identified
interpretable factors when considering NNMF with two factors. One factor represents
the volume level at the start of the trading day and the other factor represents the volume
level at the end of the trading day. The two factors enable the individual study of
the trading volume level at the start and at the end of the trading day. As expected,
our empirical results show that for a given number of factors the NNMF has a higher
percentage of explained variance and lower RSS than PCA.
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