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Information Criterion for Selection of 
Ubiquitous Factors 

Hellinton H. Takadaa, b and Julio M. Sternb 

aQuantitative Research, Itaú Asset Management, São Paulo, Brazil 
bInstitute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil 

Abstract. Factor analysis is a statistical procedure to describe observed data in terms of 
unobserved variables called factors. Naturally, it is necessary to determine the number of factors 
to represent the system. There are several existent criteria to deal with the tradeoff between 
reduction of approximation error and avoidance of overparameterization. However, given the 
factors there is a lack of an approach to verify if they are really equally inherent to the entire 
data. In this paper, the term ubiquitous factors is coined to describe such equally omnipresent 
factors. An information criterion is proposed to fill the existent blank. Additionally, we show the 
possibility to use the criterion to compare ubiquity of factors from two different techniques: 
principal component analysis and non-negative matrix factorization. Finally, the proposed 
criterion is extended to identify factors more suitable to describe only a partition of the data. 

Keywords: Information theory, Entropy, Financial markets. 
PACS: 89.70.-a, 89.70.Cf, 89.65.Gh 

INTRODUCTION 

Originally, factor analysis (FA) was developed in social sciences and psychology 
. It is a statistical procedure to describe observed data in terms of unobserved 

variables called factors . The objective of FA is to reduce the dimensionality of 
the original data  , using an approximation 

 such that: 
 

  (1) 
 

where  is the matrix of factors or unobserved (latent) variables; 
 is the matrix of factor loadings or weights;  represents the number 

of factors . In the literature, there are some factorization techniques to find  
and . The most popular approach is the principal component analysis (PCA) which 
was introduced by Pearson  and developed by Hotelling . An example of a more 
recent technique is the non-negative matrix factorization (NNMF) introduced by 
Paatero and Tapper  and popularized by Lee and Seung . 

In exploratory FA, it is necessary to determine the number of factors . PCA has a 
long list of possible approaches to select : Akaike information criterion , 
minimum description length , imbedded error function , cumulative percent 
variance , scree test on residual percent variance , average eigenvalue , 
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parallel analysis , autocorrelation , cross validation based on the PRESS and 
R ratio , variance of the reconstruction error , etc. On the other hand, NNMF 
also has some alternatives to choose: three Bayesian information criterion , 
relative root of sum of square differences , volume-based method , cophenetic 
correlation coe cient method , bi-cross-validation method , etc. 

Obviously, the existent criteria deal with the tradeoff between reduction of 
approximation error and avoidance of overparameterization. However, it is not true 
that the factors produced using the mentioned criteria are necessarily equally inherent 
to all data. In the FA literature, the factors are usually referred as common trends. 
However, that is not true because sometimes obtained factors describe only part of the 

 columns of . In this paper, given the factors a criterion is presented to find the most 
ubiquitous (or omnipresent) factor or factors to all of the  columns of . 
Additionally, it is possible to use the proposed criterion to compare the ubiquity 
degree of factors obtained from different factorization techniques. 

The paper is organized as follows: firstly, the ubiquitous factor criterion (UFC) is 
introduced. Then, the UFC is applied to PCA and NNMF in the context of financial 
time series to find the more nearly ubiquitous factors. In the sequence, the UFC is 
extended to enable the identification of specific factors for partitions of the  columns 
of . Finally, the conclusion together with more comments about the results are given 
at the end. 

UBIQUITOUS FACTORS 

Ubiquitous Factor Criterion 

In this section, the ubiquitous factor criterion (UFC) is introduced. The factor 
model given by  is usually implemented with the following restrictions on factor 
loadings: 

 
   (2) 
 

Considering the restriction  and noticing that 
, it is possible to define  for each factor  using the discrete Shannon 

entropy  as follows: 
 

  (3) 
 

The Shannon entropy quantifies the expected value of information contained in the 
sequence . In the previous definition, it is usual to consider . 
Using , it is possible to state the UFC: 

 
Given a number  of factors and calculating ,  

the higher the value of , the more nearly ubiquitous (or 
omnipresent) the factor . 
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It is also important to notice that the lower the value of , the more specific the 

factor . In the next section, a sample application using financial time series is 
presented. 

Sample Application 

In this section, the UFC is applied to PCA and NNMF to find the most ubiquitous 
factors in financial time series. PCA has been applied to several problems in finance 
from yield curves to investment risk factors. On the other hand, NNMF was applied in 

 to identify factors in stock market data. The prices considered here are from some 
exchange tradable funds (ETFs) from the Brazilian stock exchange (BM&F Bovespa) 
for the period from 01/02/2012 to 03/19/2014. Specifically, the ETFs chosen are: 1) 
BOVA11, 2) BRAX11, 3) CSMO11, 4) DIVO11, 5) FIND11,     6) GOVE11, 7) 
ISUS11, 8) MATB11, 9) MILA11, 10) MOBI11, 11) PIBB11 and 12) SMAL11. 
Consequently,  and . Additionally, all the prices were normalized to 
begin at ; the resulting factors are in variance decreasing order; the restriction  is 
respected; for comparison purposes, it will be adopted  for both PCA and 
NNMF. 

Singular value decomposition (SVD) is a technique from linear algebra used to 
obtain the principal components . The SVD factorization results: 

 
  (4) 
 
where  is obtained mean centering the data matrix ; ; 

; ; ; ; the columns of  and  are 
orthonormal eigenvectors of ;  is a diagonal matrix containing the square roots of 
the corresponding eigenvalues from  or  such that , since 
usually . Given , the PCA -factor model is: 

 
  (5) 
 
where  and . The columns of  are the factors 
and the columns of  are the corresponding factor loadings. Consequently, the UFC 
statistics for PCA are given by: 

 
  (6) 
 

The obtained factors and factor loadings for PCA are in FIGURE 1 and FIGURE 
2, respectively. The UFC statistics  are in TABLE 1. It is possible to notice that 
the first factor is the most nearly ubiquitous one. On the other hand, the third factor is 
the second most nearly ubiquitous one while the second factor is the third in terms of 
nearly ubiquity. 
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FIGURE 1.  Factors obtained using PCA. 
 

 

FIGURE 2.  Factor loadings obtained using PCA. 
 
Since the matrix of historical prices is nonnegative  and given the 

integer , the NNMF problem is to find the following approximation: 
 

  (7) 
 
where ; ; . It is possible to 
notice that the columns of  represent the factors and the rows of  the factor 
loadings. 

The NNMF optimization procedures minimizes the approximation error between  
and . In a generalized way, the Bregman divergence  is used as the 
objective function to be minimized [26,27]. Considering only separable Bregman 
divergences, 

 
 

 (8) 
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where  is a strictly convex function with a continuous first derivative. Formally, 
the resulting optimization problems are: 

 
  (9) 
 
or 

 
  (10) 
 
where  and  are penalty functions to enforce certain application-dependent 
characteristics of the solution, such as sparsity and/or smoothness. It is also important 
to remember that the Bregman divergences are not symmetric in general. Here, we 
consider . 

Adopting  and , there are some known algorithms to 
solve the NNMF problem divided in general classes [28]: gradient descent algorithms, 
multiplicative update algorithms and alternating least squares algorithms (ALS). Here, 
the ALS will be adopted (the use of other algorithms does not provide great 
differences to the sample example presented here) and the UFC statistics for NNMF 
are 

 
  (11) 
 

The obtained factors and factor loadings for NNMF are in FIGURE 3 and 
FIGURE 4, respectively. The UFC statistics  are in TABLE 1. It is possible to 
notice that factors are already in the decreasing nearly ubiquity degree order. 

 

 

FIGURE 3.  Factors obtained using NNMF. 
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FIGURE 4.  Factor loadings obtained using NNMF. 
 

TABLE 1. UFC and SFC statistics for PCA and NNMF factors.  
     
first factor ( ) 
second factor ( ) 
third factor ( ) 

 
Finally, it is also possible to notice that the nearly ubiquity degree for NNMF 

factors are higher when compared with the statistics for PCA. Consequently, for the 
considered data the NNMF factors represent better nearly ubiquitous factors than 
PCA. In other words, in our example, the NNMF factors are better to find common 
trends than PCA factors. 

SPECIFIC FACTOR CRITERION 

Cluster analysis has the objective of grouping objects in partitions. In the literature, 
there are several related algorithms: hierarchical clustering and k-means are popular 
examples. Additionally, the use of information theory in cluster analysis is not new. 
Particularly, the Kullback-Leibler divergence has already been applied to cluster 
analysis [29]. However, the problem here is quite different: given the factors, a 
criterion is proposed to select the best factor that describes partitions of the  columns 
of . For each factor , it is possible to define a statistic based on the discrete 
Kullback-Leibler [30] divergence: 

 
  (12) 

 
The discrete Kullback-Leibler divergence is a non-symmetric measure of the 
difference between two mass distributions. Using , it is possible to state the 
specific factor criterion (SFC): 

 
Given a number  of factors and calculating ,  

the lower the value of , the more specific is the factor   
to a partition of the  columns of  described by . 
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The vector  is chosen to create partitions of the  columns of . In the following, 

some particular cases of  are empirically studied using the same data from the 
previous section. Considering a vector  given by: 

 
  (13) 

 
the SFC acts as the UFC. The SFC statistics obtained are presented in TABLE 1 and 
they bring the same conclusions obtained using the UFC statistics. 

Arbitrarily, choosing a vector  such that 
 

  (14) 

 
and a second vector  

 

  (15) 

 
where  is a very small positive number (considered here ), the SFC statistics 

were calculated and the results are in TABLE 2. Clearly, the factor that best describes 
the partition given by  is the factor 3 and the partition  is the factor 2. 
Observing FIGURE 3, it is possible to notice an increasing trend (given by factor 3) 
and a decreasing trend (given by factor 2). Obviously, the ETFs CSMO11, FIND11 
and ISUS11 have predominantly increased, while BOVA11, MOBI11 and SMAL11 
have predominantly decreased in the considered historical data. Consequently, the 
SFC identified the factors that best describe the common trend of each set of ETFs 
chosen. 

 
TABLE 2. SFC statistics for PCA and NNMF factors.  

   
first factor ( ) 
second factor ( ) 
third factor ( ) 

 

CONCLUSIONS 

In the literature, there are several existent criteria to find the number of factors 
considering the tradeoff between reduction of approximation error and avoidance of 
overfitting. However, given the factors there is a lack of an approach to verify if they 
are really ubiquitous to the entire data. In this paper, the ubiquitous factor criterion is 
introduced to fill the blank. Additionally, a criterion is also proposed to identify more 
suitable factors to describe only a partition of the data. Applications of the criteria 
using financial time series show their usefulness to select the best overall and partition 
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specific trends and to compare different factorization techniques such as PCA and 
NNMF.  
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