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Abstract. Non-Negative Matrix Factorization (NNMF) is a technique for dimensionality 
reduction with a wide variety of applications from text mining to identification of concentrations 
in chemistry. NNMF deals with non-negative data and results in non-negative factors and factor 
loadings. Consequently, it is a natural choice when studying the term structure of interest rates. 
In this paper, NNMF is applied to obtain factors from the term structure of interest rates and the 
procedure is compared with other very popular techniques: principal component analysis and 
Nelson-Siegel model. The NNMF approximation for the term structure of interest rates is better 
in terms of fitting. From a practitioner point of view, the NNMF factors and factor loadings 
obtained possess straightforward financial interpretations due to their non-negativeness. 

Keywords: Information theory, Entropy, Financial markets. 
PACS: 89.70.-a, 89.70.Cf, 89.65.Gh 

INTRODUCTION 

Non-Negative Matrix Factorization (NNMF) is a multivariate data analysis 
technique aimed to estimate non-negative factors and factor loadings from non-
negative data. NNMF was invented by Paatero and Tapper in 1994 under the name 
Positive Matrix Factorization (PMF) [1] and the name NNMF was established by Lee 
and Seung in 1999 [2]. There are several applications of NNMF and some examples 
from the literature are: text mining [3], image processing [4], sound processing [5], 
identification of concentrations in chemistry [1], recognition of underlying trends in 
stock market data [6], and so on. There are many algorithms for NNMF with different 
optimization strategies such as multiplicative update [4], gradient descent [4] or 
alternating least squares [1]. 

The term structure of interest rates or the yield curve is the relationship between 
interest rates or bond yields and different maturities or terms. The yield curve is 
important in economy and finance because it reflects current expectations of market 
participants about future changes in the interest rates. There are several factor models 
for the yield curve: Litterman and Sheinkman (1991) proposed a three factor model 
based on Principal Component Analysis (PCA) and suggested names for these factors: 
level, steepness (or slope) and curvature [7]. Since then, these factors became 
attributes of the yield curve. Independently, Nelson and Siegel (1987) published a 
parametric model for the yield curve  [8] which was rewritten by Diebold and Li 
(2006) in terms of the yield curve attributes [9]. A plethora of models evolved from 
these two approaches. 

Obviously, the yield curve data is non-negative by nature and, consequently, it is 
appropriate to use NNMF. Since a model for yield curve has the objective to give 
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insights about the current expectations about the future for economic and financial 
analysis, the non-negativity of factors and factor loadings is desired to easy the 
interpretation. Given a number of factors, PCA does not minimize the approximation 
error. Additionally, Nelson-Siegel (NS) model presents some fitting problems and a 
fourth factor was included by Svensson (1994) to improve the original model [10]. 
Fixing the number of factors, NNMF algorithms reduce the approximation error of the 
factorization. Consequently, we expect a better fitting for NNMF when compared with 
PCA or NS. There is a large variety of divergence measures which have been applied 
as objective functions when minimizing the approximation error of NNMF: Bregman 
divergences [11], Renyi's information measure [12], Csiszar's divergences [13], 
Kompass' divergence [14], the -divergence [15] or Itakura-Saito divergence [16]. 

The paper is organized as follows: Firstly, the PCA approach proposed by 
Litterman and Sheinkman (1991) and the NS parametric factor model are presented. 
Then, the NNMF problem is reviewed with some details. After the theory, some 
results using real yield curve data are presented and the obtained factors and factor 
loadings are compared to that from PCA and NS. Finally, the conclusion together with 
more comments about the results are given at the end. 

FACTORS AND TERM STRUCTURE OF INTEREST RATES 

Principal Component Analysis 

Since the three factor model from Litterman and Sheinkman (1991), PCA has been 
used extensively to model the term structure of interest rates and it was verified that a 
large portion of bond return variation (up to 98%) can be explained by the first three 
principal components or factors: level, steepness and curvature. PCA is a statistical 
technique to convert a set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called principal components using orthogonal 
transformation [17]. 

Singular Value Decomposition (SVD) is technique from linear algebra used to 
obtain the principal components [18]. Given a matrix of historical yields 

 with  days and  vertices or maturities, the SVD factorization results: 
 

  (1) 
 
where  is obtained mean centering the data matrix , , 

, , , , the columns of  and  are 
orthonormal eigenvectors of  and  is a diagonal matrix containing the square roots 
of the corresponding eigenvalues from  or  such that , since 
usually . 

Given , the -factor model using PCA is given by: 
 

  (2) 
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where  and . The columns of  are called factors 
and the columns of  are the corresponding factor loadings. When , the first 
column of  is named level, the second is the steepness and the third is the curvature. 

Nelson-Siegel Model 

The Nelson and Siegel proposed a parametric model in 1987 and it has been used to 
fit the term structure of interest rates. Using the formulation from [9], the Nelson-
Siegel (NS) is given by: 

 
 

 (3) 
 

where  is the maturity (usually in years),  is the curve yield at maturity  and 
,  and  are cross-sectional parameters to be determined for each date . It is 

straightforward to notice that these parameters can be determined via a least-squares 
or similar algorithm [9,20]. The  parameter can be determined to minimize the 
possible correlation of  and  over the time to avoid possible identification 
problems.  

There are important interpretations for some of the parameters:  represents the 
long run level of interest rates,  is short-term interest rate and  is the medium 
term component. Using the names from Litterman and Sheinkman (1991),  
represents the level,  captures the steepness and  is the curvature. 

Non-Negative Matrix Factorization 

NNMF seems to be suitable to model the factors behind the term structure of 
interest rates. Since the matrix of historical yields is nonnegative  
and given an integer , the NNMF problem is to find the following 
approximation: 

 
  (4) 
 
where ,  and . Clearly,  
represents the factors and  the factor loadings. 

The NNMF optimization procedures minimizes the approximation error between  
and . In a generalized way, the Bregman divergence  is used as the 
objective function to be minimized [11,19]. Considering only separable Bregman 
divergences, 

 
 

 (5) 
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where  is a strictly convex function with a continuous first derivative. Formally, 
the resulting optimization problems are: 

 
  (6) 
 
or 

 
  (7) 
 
where  and  are penalty functions to enforce certain application-dependent 
characteristics of the solution, such as sparsity and/or smoothness. It is also important 
to remember that the Bregman divergences are not symmetric in general. Here, we 
consider . 

Adopting  and , there are some known algorithms to 
solve the NNMF problem divided in general classes [21]: gradient descent algorithms, 
multiplicative update algorithms and alternating least squares algorithms (ALS). 
Actually, when  the Bregman divergence is the squared Frobenius norm. 
For example, when  the Bregman divergence is the Kullback-Leibler 
divergence.  

EMPIRICAL COMPARISON OF FACTORS 

In this section, the objective is to present and compare the factors and factor 
loading obtained from real yield curve data using PCA, NS and NNMF. The data used 
for the study is the Brazilian term structure of interest rates obtained from future 
contracts traded at BM&FBovespa. It was used data from 05/13/2003 to 10/09/2013. 
The vertices chosen are: 3 months, 6 months, 1 year, 2 years and 5 years. To be able to 
compare the different approaches and having in mind the factors named by Litterman 
and Sheinkman (1991), the number of factors considered here for the models under 
comparison is three. 

The PCA was implemented using SVD, NS was obtained using an optimization 
procedure to minimize the least-square error and NNMF was calculated using ALS 
with multiple starting points. FIGURE 1 presents the PCA factors and the 
corresponding factor loading are in FIGURE 2. Observing the PCA factor loadings, it 
becomes clear the origin of the names given by Litterman and Sheinkman (1991) for 
each factor. 

The obtained NS factors and factor loadings are in FIGURE 3 and FIGURE 4, 
respectively. The NS factor loadings also capture the idea of level, steepness and 
curvature. As already mentioned, the factors are estimated for each day in the sample. 
Comparing with the PCA factors, the NS factors over the time are not smooth with 
several spikes and, consequently, difficult for economic or financial interpretation. 
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FIGURE 1.  Factors for yield curve using PCA. 
 

 

FIGURE 2.  Factor loadings for yield curve using PCA. 

373
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

201.93.237.235 On: Wed, 14 Jan 2015 12:52:41



 

FIGURE 3.  Factors for yield using NS. 

 

FIGURE 4.  Factor loadings for yield curve using NS. 
 
The factors and factor loadings from NNMF are in FIGURE 5 and FIGURE 6, 

respectively. The obtained factor loadings are not the same ones pointed by Litterman 
and Sheinkman (1991). Actually, we identify a steepness factor and two different 
curvatures. The inclusion of a second curvature to model the yield curve is not new in 
the literature. Actually, a fourth factor is usually included in the NS framework under 
the name Svensson's factor to improve the data adjustment [10]. The Nelson-Siegel-
Svensson model is given by: 
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                                              (8) 

                                          
 

where  is the fourth factor representing a second curvature,  and  represent the 
two curvatures and the remaining parameters are the same from . Clearly, the 
second curvature from NNMF brings the idea of the Svensson's factor. 

The NNMF obtained factors are smooth and, consequently, it is natural to use them 
for investment strategies or economic/financial analysis about the future behavior of 
the term structure of interest rates related to its steepness and two curvatures. The non-
negativeness of the factors and factor loadings implies in a easy interpretation: when a 
factor increases, the yield curve explanation by the corresponding factor loading also 
increases and vice versa. 

Finally, the approximation error for each factor model using the Frobenius norm is 
in TABLE 1. Since the NNMF minimizes the approximation error, the data fitting is 
better. Obviously, the purpose of PCA is not to improve the fitting given a number a 
factors and the NS is not being able to adjust perfectly its parametric form to the data. 

 
 

 
FIGURE 5. Factors for yield curve using NNMF. 

 
TABLE 1.  Approximation errors for PCA, NS and NNMF. 

Factor Models Approximation Error 
PCA 
NS 
NNMF 
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FIGURE 6. Factor loadings for yield curve using NNMF. 

CONCLUSIONS 

In this paper, NNMF technique was applied for the first time to find factors for 
yield curves. The data adjustment is far better than that obtained from usual techniques 
such as PCA or NS. The obtained factors and factor loadings due to their non-
negativeness easy the interpretation for economic and financial analysis. Additionally, 
the NNMF factors are relatively smooth when compared to that from NS and they are 
quite different from the classical ones from Litterman and Sheinkman (1991). 
Actually, for the Brazilian data the three NNMF factors are identified as the steepness 
and two different curvatures. One of the curvatures is that one identified by Litterman 
and Sheinkman (1991) and the other is the called Svensson's factor. In this work, 
NNMF was found to be a suitable factorization model for yield curves.  
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