
Stat Papers (2019) 60:89–104
https://doi.org/10.1007/s00362-016-0828-x

REGULAR ARTICLE

Application of the full Bayesian significance test to
model selection under informative sampling

A. Sikov1 · J. M. Stern1

Received: 23 October 2015 / Revised: 13 June 2016 / Published online: 8 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Adopting likelihood based methods of inference in the case of informative
sampling often presents a number of difficulties, particularly, if the parametric form of
themodel that describes the sample selectionmechanism is unknown, and thus requires
application of some model selection approach. These difficulties generally arise either
due to complexity of themodel holding in the sample, or due to identifiability problems.
As a remedy we propose alternative approach to model selection and estimation in the
case of informative sampling.Our approach is based onweighted estimation equations,
where the contribution to the estimation equation from each observation isweighted by
the inverse probability of being selected. We show howweighted estimation equations
can be incorporated in a Bayesian analysis, and how the full Bayesian significance
test can be implemented as a model selection tool. We illustrate the efficiency of the
proposed methodology by a simulation study.

Keywords Informative sampling · Design variables · Inclusion probability ·
Bayesian significance measures · Horvitz–Thompson estimator · Population
distribution · Sample distribution

1 Introduction

Survey sampling distinguishes the cases of non-informative and informative sampling.
In the case of informative sampling, the sampling scheme is explicitly or implicitly
associated with the variable under investigation. Consequently, the distribution of this
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variable holding in the sample may be different from the distribution holding in the
population. In many practical situations the analyst faces a problem of estimation
and identification of the model, holding in the whole population based only on the
information contained in a sample drawn from this population. It is generally known
that if the sample was selected using a simple random sampling mechanism, then
the model holding in the population coincides with the model holding in the sample.
However, in survey selection practice it is often the case that the sample selection
process employs a more complex mechanism. In this case approximation of the pop-
ulation model by a sample model may lead to biased inference. This often occurs
when the sample selection probabilities are proportional to a design variable, which is
associated with the variable under investigation (the outcome variable). For example,
in business surveys, the inclusion probabilities of sample units (companies) are often
proportional to company size, measured by the number of employees. Therefore, if
the outcome variable is business income, which is positively correlated with a design
variable (company size), this type of sample selection is informative in the sense that
large companies with higher income might be overrepresented in the sample, whereas
companies with smaller income might be underrepresented. This type of sampling
mechanism is widely used in practice, and is referred to as Probability Proportional to
Size (PPS) sampling. In our research we assume that probability of each population
unit to be selected into the sample is proportional to some design variable, which is
associated with an outcome variable. We consider an often practical situation, such
as public use data, where the only design information, available to the analyst is the
vector of the sample selection probabilities for the sampled units (see Pfeffermann
et al. (1998) for discussion). In this case the sample selection mechanism is typically
unknown to the analyst, which can considerably complicate estimation of the popula-
tionmodel. There exist various approaches to handling informative sampling, however
they generally focus on estimation of unknown parameters, leaving the problem of
model selection almost unaddressed. Many of such procedures use classical infer-
ence methods, such as maximum likelihood estimation based on the approximation of
the model holding for the sample measurements, see Pfeffermann et al. (1998), Pfef-
fermann and Sverchkov (2003) and Pfeffermann and Sverchkov (1999). Other well
known procedures use weighting methods, which use either reciprocals of sampling
probabilities, as in Binder (1983), Pfeffermann (1993), Pfeffermann (1996), Skinner
et al. (1989), or modified sampling probabilities specifically designed for variance
reduction, see Beaumont (2008), Kim and Skinner (2013) and Pfeffermann and Sver-
chkov (1999). In this research, we focus on the problem of model selection strategies
to guide the choice of models describing the sampling process. As we shell see in
Sect. 2, applicability of the classical approach to model selection may be question-
able in the case of informative sampling due to complexity of the resulting models
and possibly problems of identifiability. As in many other applications (see for exam-
ple Ahmadi and Doostparast (2006), Kim et al. (2011), Miazhynskaia and Dorffner
(2006)), the problems that arisewhen using themaximum likelihood framework can be
resolved through the use of Bayesian paradigm and MCMC techniques. In this article
we develop an approach within the Bayesian framework, which can be used as amodel
selection tool to choose an appropriate statistical model, via hypothesis testing, using
the Full Bayesian Significance Test (FBST) (see Pereira and Stern (1999)). Assum-
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ing that the sample inclusion probabilities are observed for all the sampled units, we
specify weighted estimation equations and show how they can be incorporated into
Bayesian paradigm. Our approach is implementedwith the aid ofMarkov chainMonte
Carlo techniques.We further apply the FBST, which is based on the Bayesian measure
of evidence favoring the null hypothesis (see Sect. 3).

2 Informative sampling

In this section we provide a brief description of the problem of informative sampling
and the principle methods to handle it. Since these methods generally adopt a frequen-
tist approach, suppose first that the parameters, indexing the postulated models are
fixed.

Let Yi denote the value of the outcome variable Y , associated with unit i , belonging
to a sample S drawn from a finite population U , and let Xi and Vi denote the vectors
of auxiliary variables, associated with unit i . Suppose that the population values of Yi
are independent realizations from a population distribution with probability density
function f p(Yi |xi , vi ; θ), where θ is an unknown (vector) parameter, and that the
sample selection process is independent between the units. The sample distribution
fs(Yi |xi , vi ;˜θ) with the vector of unknown parameters˜θ , is regarded as a conditional
distribution, given the fact that the unit i has already been selected. Therefore, denoting
by Ii the sampling indicator, which takes the value 1 if unit i was selected to the sample
and 0 otherwise, we obtain fs(Yi |xi , vi ;˜θ) = f p(Yi |xi , vi , Ii = 1;˜θ).

Following Pfeffermann et al. (1998), the distribution holding in the sample can be
expressed as

fs(Yi |xi , vi ;˜θ) = f p(Yi |xi , vi , Ii = 1;˜θ) = f p(Yi |xi , vi ; θ)
P(Ii = 1|yi , xi , vi ; γ )

P(Ii = 1|xi , vi ; θ, γ )
,

where γ denotes the vector of unknown parameters, indexing the model for sample
selection probabilities and

P(Ii = 1|xi , vi ; θ, γ ) =
∫

f p(yi |xi , vi ; θ)P(Ii = 1|yi , xi , vi ; γ )dyi .

Obviously, ˜θ = (θ, γ ). Note that if a selection probability of a unit i does not
depend on the outcome variable (the sample selection process is not informative),
then fs(Yi |xi , vi ; θ) = f p(Yi |xi , vi ; θ).

In what follows we assume that the population model contains the covariates, xi ,
and the model for the sample selection probabilities contains the covariates vi , so that
the sample distribution can be rewritten as

fs(Yi |xi , vi ; θ, γ ) = f p(Yi |xi ; θ)
P(Ii = 1|yi , vi ; γ )

P(Ii = 1|xi , vi ; θ, γ )
(1)
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Now, let πi be the sample inclusion probability of a unit i . Noting that

P(Ii = 1|yi , vi ; γ ) =
∫

P(Ii = 1|yi , vi , πi ) f (πi |yi , vi ; γ )dπi = Ep(πi |yi , vi ; γ ),

the relationship (1) can be also written in the form:

fs(Yi |xi , vi ; θ, γ ) = f p(Yi |xi ; θ)
Ep(πi |yi , vi ; γ )

Ep(πi |xi , vi ; θ, γ )
(2)

The representation (2) is quite general and is not restricted to any specific sample
selection mechanism. In Sect. 4, we consider the case where the sample selection
mechanism involves some design variable Zi which depends on the outcome variable
Yi and the covariates Vi , such that the probability of a unit i to be selected into the
sample is proportional to the value of Zi .

Note that, in order to derive the distribution holding in the sample, it is sufficient
to assume a parametric form for the population distribution, f p(Yi |xi ; θ) and for the
expectations of inclusion probabilities Ep(πi |yi , vi ; γ ).

Example Let the population distribution be normal, Yi |xi ∼ N (β0 + xti β, σ 2), with
θ = (β t , σ 2)t and Ep(πi |yi , vi ) ∝ exp(A1yi +g(vi )) for some function g(v). Then it

is easy to show that Ep(πi |vi , xi ) ∝ exp(g(vi )+ A1xti β + A2
1σ

2

2 ), and substituting this
expression into (2), after some simple algebra we obtain that the sample distribution
is Yi |xi , vi ∼ N ((β0 + A1σ

2) + xti β, σ 2).

Following the results obtained in Pfeffermann et al. (1998), which state that, under cer-
tain regularity conditions, the sample measurements are asymptotically independent
as the population size, N tends to infinity, the sample likelihood can be approximated
as

LSamp ≈
n

∏

i=1

f p(Yi |xi ; θ)
Ep(πi |yi , vi ; γ )

Ep(πi |xi , vi ; θ, γ )
, (3)

where the unknown parameters θ and γ index, respectively, the model, holding in the
population, and the model underlying sample selection mechanism. The authors show
that asymptotic independence holds for various commonly used sampling schemes,
including the PPS scheme.

As noted by Pfeffermann et al. (1998), the functional form of the expectations,
Ep(πi |yi , vi ; γ ) is not necessarily known, and therefore, must be approximated. The
authors propose two possible approximations:

Ep(πi |yi , vi ) ≈ C1

J
∑

j=0

A j y
j
i + h(vi ) (4)
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and

Ep(πi |yi , vi ) ≈ C2 exp

⎛

⎝

J
∑

j=0

A j y
j
i + h(vi )

⎞

⎠ , (5)

where h(vi ) = ∑m
p=1

∑K (p)
k=1 Bkpv

k
ip,

{

A j
}

and
{

Bkp
}

are unknown parameters and
C1 and C2 are some normalizing constants. However, if the number of parameters
indexing the resulting sample model is large, estimation of unknown parameters based
on the sample likelihood (3) with the approximations (4) or (5) may lead to complex
computations and consequently, unstable estimates which may limit the use of this
approach in practical applications. In addition, under approximation (5), the result-
ing sample distribution may be non-identifiable (as in the example above). In order
to avoid identification problems and to facilitate computations, the authors propose
to split the estimation process into two steps, where in the first step the parameters
A j and Bkp are estimated from the observed inclusion probabilities πi , and in the
second step the parameters, indexing the populationmodel are estimated from the like-
lihood (3), with the parameters A j and Bkp substituted by their estimates. Apart from
solving identifiability and computational problems, this approach utilizes additional
information, contained in the vector of inclusion probabilities. The disadvantage of
this approach is that it is not directly helpful for choosing a model for the underlying
sample selection mechanism. For example, in Eqs. (4) and (5), it is not clear how to
determine the polynomial degree, J .

The problem of identifying the form of Ep(πi |yi , vi ) was partially resolved by
Pfeffermann and Sverchkov (1999). The authors propose an approach to test whether
the sample selection mechanism is informative, based on the following identity (see
Skinner (1994)),

Ep(Yi |xi , vi ) = Es(wi Yi |xi , vi )
Es(wi |xi , vi ) , (6)

where the index s implies that the expectations are calculated under the sample distrib-
ution, andwi = π−1

i denote the samplingweights.Assuming a linear regressionmodel
in the population, and denoting by εi = yi − Ep(Yi |xi ) the regression residuals, asso-
ciated with the unit i , one can test the hypothesis of the form Ep(ε

k
i ) = Es(ε

k
i ), k =

1, 2, . . ., which by (6) is equivalent to testing that Corrs(εki , wi ) = 0, k = 1, 2, . . .,
where Corrs denotes correlation under the sample distribution. The authors point out
that it generally suffices to test the first 2–3 correlations. Obviously, this approach
can only be useful if the question of the main interest is whether the sample selection
mechanism is informative, and therefore, it can not be utilized as a basis for model
selection. There exist a few other approaches to test whether the sampling mechanism
is informative. All these approaches are generally based on the difference between
the estimators of the regression coefficients under the assumed model and the model
under ignorable sampling design (see Pfeffermann (1993) for discussion).

Application of the Bayesian approach and the FBST to handle the model selection
problem seems a promising solution. We propose to choose a suitable model among

123



94 A. Sikov, J. M. Stern

a collection of viable competitors by carrying out pairwise comparisons between the
candidate models using hypothesis testing. At each step we compare between nested
models by computing the Bayesian measure of evidence favoring the model under
the null hypothesis. In particular, this approach can be applied in order to define the
polynomial degree, J in the approximations (4) and (5). In Sect. 3 we provide a
brief description of the FBST. For a comprehensive review of popular model selection
methods in theBayesian framework, andmodel comparison criteria, seeMiazhynskaia
and Dorffner (2006) and Cancho et al. (2012).

In principle, we can opt for a fully Bayesian analysis, based on the sample likeli-
hood (3), however this may require tailored programming to perform the necessary
computations. The other potential limitation is that identifiability problems can be
encountered when using the approximation (5). In addition, our experience shows
that, in order to apply a Bayesian approach, an informative prior distribution for the
parameters indexing the sample selection model may be required. For example if
approximation (4) is used, it could prove to be impossible to obtain proper mixing and
convergence of the MCMC algorithm unless an informative prior distribution is spec-
ified. An example of a successful implementation of a Bayesian approach based on
the sample likelihood is demonstrated in Pfeffermann et al. (2006). In that application
the authors consider a multi-level modeling under informative multi-stage sampling,
where the sample model is defined by a hierarchical model, holding in the population,
and the first- and lower-level sample selection probabilities. In Sect. 4, we propose an
alternative approach, which, on one hand, allows application of Bayesian techniques
and the FBST, but on the other hand does not use the sample likelihood defined in (3),
thus avoiding the problems mentioned above.

3 The full Bayesian significance test

As previously stated, implementation of the Bayesian approach permits application
of the FBST for solving the problem of model selection via hypothesis testing. This
can be carried out by determining whether the fitted model contains non-significant
parameters. In our application this reduces to testing nested models, where the more
complex model is tested versus the model under the null hypothesis, H, obtained by
setting the coefficients of some group of variables to zero. Therefore, the FBST can
be used as a tool for selecting the model which best fits the data within the class of
nested models. The FBST is based on the measure of evidence in favor of hypothesis
H, given the observed data, and is defined as follows.

Let us consider a standard parametric statistical model, i.e., for an integer n, θ ∈
� ⊆ �n is the parameter, g(θ) a prior probability density over �, x is the observation
(a scalar or a vector), and Lx (θ) is the likelihood generated by the data x . After the
data x have been observed, the sole relevant entity for the evaluation of the Bayesian
evidence value ev, is the posterior probability (density) for θ given x , denoted by

gx (θ) = g(θ |x) ∝ g(θ)Lx (θ) (7)

We are restricted to the case where the posterior probability distribution over � is
absolutely continuous, that is gx (θ) is a density over �. We are focusing on testing of
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sharp hypothesis, H : θ ∈ �H ⊂ �. Let s̃ = sup
H

gx (θ) and T = {θ ∈ � : gx (θ) > s̃}.
The Bayesian evidence value agains H is defined as the posterior probability of the
tangential set, i.e.,

ev = P(θ ∈ T |x) =
∫

T
gx (θ)dθ (8)

The evidence value supporting H is 1 − ev, not to be interpreted as an evidence
against the alternative hypothesis A. The FBST rejects H whenever ev is small, with
asymptotic levels prescribed in Pereira et al. (2008).

4 Proposed approach

4.1 Weighted estimation equations and Bayesian model

In what follows we consider a probability proportional to size sampling scheme where
the sample selection probabilities,πi are proportional to the value of the design variable
Zi , which depends on the outcomes Yi and the covariates Vi . As discussed in Sect. 2,
simultaneous estimation of the parameters θ and γ based on the sample likelihood
(3), results in laborious computations and unstable estimates. Therefore, following
Pfeffermann et al. (1998) we propose to estimate θ and γ separately. In order to
define the weighted estimation equations, suppose that the model parameters are fixed.
We first consider estimation of the parameters γ indexing a sample selection model.
Suppose that

E(πi |vi , yi ; γ ) = γ t
vvi + γq+1yi , i = 1, . . . , n , (9)

where dim(vi ) = q, γ = (γ t
v , γq+1)

t , γv = (γ1, . . . , γq). Although the defined
sample selection model is a special case of model (4), where J = 1 and h() is a linear
function of the covariates, our approach can be easily extended to the cases where
J > 1 and h() is a polynomial of an order m, for some m > 1.

Let W (γ ) define the population sum of squares of the regression residuals of the
model for the sample selection probabilities,

W (γ ) =
N

∑

i=1

(πi − (γ t
vvi + γy yi ))

2, (10)

and by ˜W (γ ) the Horvitz–Thompson (H–T 1952) estimator of W (γ ), based on the
observed sample S.

˜W (γ ) =
∑

i∈S

(πi − (γ t
vvi + γy yi ))2

πi
. (11)
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Taking the derivatives of (11) with respect to γ yields the weighted estimation equa-
tions (originally introduced by Binder (1983)).

Let

˜Jl = ∂ ˜W (γ )

∂γl
=

∑

i∈S

(πi − (γ t
vvi + γy yi ))vli

πi
, l = 1, . . . , q + 1,

where vl+1i = yi . Note that the equations specified above, can be alternatively written
as

˜Jl = ∂ ˜W (γ )

∂γl
=

N
∑

i=1

(πi − (γ t
vvi + γy yi ))vli

πi
Ii , l = 1, . . . , q + 1,

where Ii denotes the sampling indicator. Note also that in the specified equations the
observed values of the variables Y and V, and of the inclusion probabilities are held
fixed, and the only source of randomness is expressed by the sampling indicators
I1, . . . , IN , which only take the values 0 and 1.

Let

˜J = (˜J1, . . . , ˜Jq , ˜Jq+1)
t =

(

∂ ˜W (γ )

∂γ1
, . . . ,

∂ ˜W (γ )

∂γq
,
∂ ˜W (γ )

∂γq+1

)t

, (12)

and

J = (J1, . . . , Jq , Jq+1)
t =

(

∂W (γ )

∂γ1
, . . . ,

∂W (γ )

∂γq
,
∂W (γ )

∂γq+1

)t

. (13)

Note that

E(˜Jl |π, y, v) =
N

∑

i=1

(πi − (γ t
vvi + γy yi ))vli

πi
E(Ii ) = Jl = 0(q+1)×1,

where 0(q+1)×1 denotes a vector of zeros of dimension (q + 1) and π, y, v denote the
vector of inclusion probabilities and the vectors of the population realizations of the
variables Y and V , respectively. Thus, the following equations can be obtained:

˜J = 0(q+1)×1 + ν, (14)

where ν = (ν1, ν2, . . . , νq+1)
t is a (q + 1)-variate random variable. Implication of

Eq. (14) is that even were the value of γ known, it is unlikely that the components
of ˜J would be equal to zero for any selected sample S, due to sampling variability,
although we expect some of them to be close to zero.

Suppose now, that the vector of unknown parameters γ is random. Since the com-
ponents of the vector ˜J are defined in terms of sums of random variables, we assume
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that given γ , the vector of random variables ν can be approximated by a (q+1)-variate
normal distribution, that is,

ν|γ, πobs, yobs, vobs, ≈ N (0(q+1)×1, �(γ )), (15)

where πobs , yobs and vobs denote the observed parts of the vectors π , y and v, respec-
tively. A well known result of classical sampling theory states (see Cochran (1977))
that the components of the variance matrix �(γ ) can be derived as follows:

[

�(γ )
]

k,l =
N

∑

i=1

N
∑

j=1

ẽi ẽ jvkivl j
πiπ j

(πi j − πiπ j ), (16)

where ẽi = πi − (γvvi + γy yi ).
Then, based on the sample measurements, the variance matrix in (16) can be esti-

mated as

[

�̂(γ )
]

k,l
=

n
∑

i=1

n
∑

j=1

ẽi ẽ jvkivl j

(

1

πiπ j
− 1

πi j

)

. (17)

Note that calculation of the components of the variance matrix �̂(γ ) requires knowl-
edge of the joint inclusion probabilities πkl for the units k and l, where k, l = 1, . . . , n.
These probabilities are generally unavailable, however, they can be obtained using the
Hajek approximation of πi j , proposed in Hajek (1964), which is applicable in the case
of PPS sampling method (see also Berger (2004) for discussion),

πiπ j − πi j ≈ πiπ j (1 − πi )(1 − π j )d
−1,

where d = ∑N
i=1 πi (1 − πi ).

Therefore, (16) can be rewritten as

[

�(γ )
]

k,l ≈ −d−1
N

∑

i=1

ẽivki (1 − πi )

N
∑

j=1

ẽ jvl j (1 − π j ), (18)

which can be estimated as

[

�̂(γ )
]

k,l
= −d̂−1

n
∑

i=1

ẽivki
πi

(1 − πi )

n
∑

j=1

ẽ jvl j
π j

(1 − π j ), (19)

where d̂ = ∑n
i=1(1 − πi )

In order to apply a Bayesian approach we use the model (15) and a diffuse normal
prior centered around zero on γ . It should be noted that a diffuse normal prior is the
typical example of the so-called just proper prior, which is proper but is very close to
being a flat prior (Congdon (2007)).
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Then we obtain that

f (γ |πobs, yobs, vobs) ∝ φ0(q+1)×1,�̂(γ )
(˜J |πobs, yobs, vobs; γ )h(γ ), (20)

where φ0(q+1)×1,�̂(γ )
denotes a (q+1)-variate normal density function with the expec-

tation vector, 0(q+1)×1 and the variance matrix �̂(γ ), and h(γ ) denotes the prior
distribution on γ .

It is important to emphasize, however, that the proposed method does not constitute
a canonical Bayesian approach, in the sense that it is not based on an observed data
likelihood. In the proposed method the role of observations plays the vector ˜J , the
components of which depend on the parameters γ . However, as we have seen, given γ ,
the distribution of ˜J can be approximated by a multivariate normal distribution, thus
allowing for incorporation of ˜J in the Bayesian formalism. Obviously, the proposed
method is applicable to the situations where the sample selection mechanism follows
model (5).

The approach described above can also be applied to estimation of parameters
indexing the population model. For example, if the population model is given by
Yi |xi ∼ N (xiβ, σ 2), we can define U (β) = ∑N

i=1(yi − xiβ)2 and the corresponding
Horvitz–Thompson estimators,

˜U (β) =
n

∑

i=1

(yi − xiβ)2

πi
. (21)

If the population model belongs to the family of GLMwith a canonical link function,

f p(Yi |xi ; θ) = exp

{

a(φ)

[

yi

h
∑

k=0

βk xki − g

(

h
∑

k=0

βk xki

)

+ d(yi )

]

+ η(φ, yi )

}

,

where xi is of dimension (h + 1), θ = (β t , φ) defines the set of unknown parameters
and g(.) , a(.), d(.) and η(.) are known real functions with g() strictly increasing and
differentiable, then Eq. (21) can be rewritten as

˜U (β) =
n

∑

i=1

(yi − g′(
∑h

k=0 βk xki ))2

πi
.

Then, application of the same reasoning as in the case of estimation of γ , yields a
normal approximation, as in (15), where the corresponding matrix of variances is
calculated and approximated similarly to (16) and (19).

4.2 Application of the FBST

In this section we consider a simple case of hypothesis testing under the sampling
model defined by (9), H : γq+1 = 0, where rejection of H implies that the sample
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selection mechanism is not informative. Extension of the proposed approach to the
case of hypotheses of the form ˜H : γ̃ = 0, where Span(γ \ γ̃ ) ⊆ Span(γ ) for more
complex sample selection models, is straightforward.

Denote by γ̂ post the vector of random draws from the posterior distribution
f (γ |πobs, yobs, vobs), obtained using the MCMC technique, in the case of the full
model, and let dim(γ̂ post ) = K × (q + 1). Let γ0 be the vector of unknown parame-
ters, indexing the sampling selection model under H. Then, the mode of the posterior
distribution of γ under H is defined as

γ̂0 = argmaxγ∈Hφ0(q+1)×1),�̂(γ )
(˜J |πobs, yobs, vobs; γ )h(γ ) (22)

Now let

T = {

γ : f (γ |πobs, yobs, vobs) > f (γ̂0|πobs, yobs, vobs)
}

(23)

It follows then (see Lauretto et al. (2003), Pereira and Stern (1999), Pereira et al.
(2008), Rifo and Bernardini (2011)) that derivation of the value ev, requires computa-
tion of the probability P(T |πobs, yobs, vobs). We propose to estimate this probability
using the posterior draws γ̂ post as follows.

P(T |πobs, yobs, vobs) ≈ 1

K

K
∑

k=1

I{ f (γk |πobs ,yobs ,vobs )
f (γ̂0 |πobs ,yobs ,vobs ) >1

}, (24)

where

f (γk |πobs, yobs, vobs)
f (γ̂0|πobs, yobs, vobs)

=
φ0((q+1)×1),�̂(γk )

(˜J |πobs, yobs, vobs; γk)h(γk)

φ0(q×1),�̂(γ̂0)
(˜J |πobs, yobs, vobs; γ̂0)h(γ̂0)

ρ(πobs, yobs, vobs) (25)

and

ρ(πobs, yobs, vobs) =
∫

φ0((q+1)×1),�̂(γ )
(˜J |πobs, yobs, vobs; γ )h(γ )dγ

∫

φ0(q×1),�̂(γ0)
(˜J |πobs, yobs, vobs; γ0)h(γ0)dγ0

(26)

Therefore, application of the FBST requires carrying out the two following steps:

1. A maximization step, defined in (22).
2. Computation of the ratio of the integrals, defined in (26).

The first step constitutes a standard maximization problem, which can usually be car-
ried out by application of the Newton–Raphson algorithm, which generally does not
require laborious computations. The second step is usually much more computation-
ally demanding. In order to facilitate the computation of the integrals involved, the
MCMC techniques can be applied, as described by Stern and Zacks (2003). In that

123



100 A. Sikov, J. M. Stern

work, the authors also show how to determine the required MCMC run length for
attaining the desired precision of the evidence value.

5 Simulation study

In order to test the approach described in this article, we performed a simulation
study consisting of three experiments. For these experiments, we generated M = 500
populations of size N , (N = 500, 5000) and for each generated population we selected
one sample of size n = 50, where the units were randomly selected with inclusion
probabilities proportional to the values of the design variable Z , defined below. Thus
we consider two cases: in the first case the sampling fraction was equal to 0.1, while
in the second case it was equal to 0.01. It should be noted that in practice, sampling
fraction generally varies from one study to another. The choice of these sampling
fractions was made in order to mimic the behavior of the tested approaches under two
different scenarios.

In order to generate the data, we used the population and sample selection models,
defined below.

Yi = 3.5 + 0.8xi − 0.1vi + εi , i = 1, . . . , N (27)

where εi∼N (0, 1.5) and the auxiliary variables X and V were generated from
Gamma(1, 1) and Poisson(3) distributions, respectively. The true model for the
design variable Z is defined as:

Zi = 4 + 2.5vi + 0.15y2i + νi , (28)

where νi ∼ N (0, 2.5).
The main objective of the experiments was to identify the model holding for

E(πi |vi , yi ) by testing the following hypotheses (recall that πi ∝ Zi ):

1. H1 : E(πi |vi , yi ) = γ0 + γ1vi vs E(πi |vi , yi ) = γ0 + γ1vi + γ2yi
2. H2 : E(πi |vi , yi ) = γ0+γ1vi+γ2yi vs E(πi |vi , yi ) = γ0+γ1vi+γ2yi+γ3y2i
3. H3 : E(πi |vi , yi ) = γ0 + γ1vi vs E(πi |vi , yi ) = γ0 + γ1vi + γ2y2i

For each experiment, j = 1, 2, 3 and each sample i, i = 1, . . . , M we computed the
Bayesian evidence value in favor ofH j , ev j i , using a diffuse normal prior, as presented
in Sect. 4.2. As mentioned above, the FBST rejects H whenever ev is small. In order
to define a rejection region, we considered the asymptotic distribution of the evidence
value under H, provided by Pereira et al. (2008). Besides the FBST, we applied the
Likelihood Ratio test (LR), based on themodel defined in (15), and the approach based
on (6) (see Pfeffermann and Sverchkov (1999) for details), which, as previously men-
tioned, can only be implemented to testing informativeness of the sampling selection
mechanism and is not applicable if both tested models are informative. Therefore, this
test was not applied in Experiment 2. It must be emphasized that the classical LR test,
based on the likelihood (3), is generally difficult to implement due to its computational
complexity and potentially unstable estimators (see Sect. 3).
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Table 1 Proportions of samples, where H was rejected (N = 500)

Significance
level

Experiment 1 Experiment 2 Experiment 3

FBST LR Pfeffermann
and Sverchkov
(1999)

FBST LR FBST LR Pfeffermann
and Sverchkov
(1999)

0.010 0.921 0.908 0.910 0 0.116 0.955 0.928 0.938

0.025 0.966 0.940 0.955 0.007 0.176 0.980 0.952 0.964

0.050 0.977 0.960 0.977 0.062 0.284 0.980 0.964 0.964

0.100 0.989 0.984 0.977 0.205 0.396 0.995 0.986 0.992

Table 2 Proportions of samples, where H was rejected (N = 5000)

Significance
level

Experiment 1 Experiment 2 Experiment 3

FBST LR Pfeffermann
and Sverchkov
(1999)

FBST LR FBST LR Pfeffermann
and Sverchkov
(1999)

0.010 0.768 0.734 0.710 0 0.100 0.800 0.778 0.790

0.025 0.812 0.788 0.786 0.004 0.152 0.842 0.810 0.830

0.050 0.860 0.818 0.832 0.050 0.242 0.884 0.832 0.868

0.100 0.934 0.888 0.908 0.176 0.340 0.944 0.906 0.926

Tables 1 and2 summarize the proportions of samples forwhich thehypothesisHwas
rejected by each competitor method, under various significance levels, for N = 500
and for N = 5000 correspondingly. In these tables, higher empirical rejection levels
indicate a lower Type II error rate, the probability of accepting the hypothesis when
it is false.

The results indicate that for this simulation study the FBST presents good power
properties for the first and third experiments, outperforming the alternative methods.
As expected, all approaches showed lower power in the case of N = 5000. The
high probability of rejection of H in the first experiment implies that our method
succeeds in revealing that the sampling mechanism is indeed informative. Since it is
impossible to test themodel E(πi |vi , yi ) = γ0+γ1vi+γ2yi versus E(πi |vi , yi ) =
γ0 +γ1vi +γ2y2i (see Sect. 3), we propose to compare the evidence values obtained in
the first and the third experiments. The power in the third experiment was higher, as
we tested a non-informative sample selection model against the correct model (recall
that the true model for the sampling selection process included the quadratic term of
the value of outcome variable). For the second experiment, neither model is correct.
The results indicate that, in this case, FBST and LR tend to not reject the model with
a smaller number of coefficients.

In order to validate the significance levels of the competitor methods, we carried
out an additional experiment (Experiment 4) with the same hypothesisH tested in the
Experiment 1, but generating the design variable Z under the model:

Zi = 4 + 2.5vi + νi , (29)
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Table 3 Nominal and empirical significance levels under H

Nominal levels Empirical levels

FBST LR Pfeffermann and
Sverchkov (1999)

0.025 0.014 0.032 0.033

0.050 0.037 0.056 0.044

0.100 0.074 0.096 0.083

0.250 0.200 0.228 0.200

0.500 0.510 0.464 0.510

0.750 0.749 0.732 0.778

0.900 0.900 0.896 0.883

0.950 0.946 0.936 0.939

where νi ∼ N (0, 2.5).
Table 3 presents the nominal and empirical significance levels yielded in Experi-

ment 4, in the case of N = 500. The results for N = 5000 are in general very similar.
Notice that, in this experiment, samples are generated in accordance to the hypothesis
to be tested, and, therefore, we should expect that the simulated significance levels
(proportions of samples where the hypothesis H is rejected) should be close to the
nominal significance level. Denoting by ev4,k the evidence value against H, obtained
from the sample k, k = 1, . . . , 500, the empirical significance level for the FBST,
corresponding to the nominal level α j was computed as 1

500

∑500
k=1 I (ev4,k < evcr(α j )

),

where evcr(α j )
is the critical value for nominal level α j , based on the asymptotic distri-

bution of ev, provided by Pereira et al. (2008). The empirical levels for two other tests
were calculated in a similar way, where the evidence values were substituted by the
corresponding test statistics, and the critical values for nominal levels α j were com-
puted using the parametric bootstrap procedure. In general, the empirical significance
levels of the methods are close to the corresponding nominal values, thus validating
the use of all the discussed methods.

6 Concluding remarks

In this article we consider a problem of model selection via hypotheses testing under
informative sampling, and apply the FBST, in order to test different model forms.
We consider the case where the sample inclusion probabilities are known, and are
utilized for estimation of model parameters and application of the FBST. The method
can be recommended for analysis of survey data, which ordinarily contain inclusion
probabilities (for example, files released for public use). As we mentioned previously,
our approach can be applied, if the sample units are selected with probabilities pro-
portional to some design variable (for example business or household surveys). In this
case the proposed approach does not require knowledge of the joint inclusion proba-
bilities, which are usually unknown. The results of the empirical study illustrate that
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the proposed method has good power properties, however, as is any new approach,
there is always need for extensions. Application of the proposed method requires a
prior specification of the form of the sampling selection mechanism, which is usually
unknown to the analyst. The most interesting and important question in this respect is
whether different parametric forms of the sampling mechanism can be compared (for
example, (4) vs. (5)). Another interesting question is whether the results are sensitive
to the choice of the prior. We would also like to note that the proposed method can be
applied to the problem of nonresponse in household surveys. As noted by Saärndal and
Swensson (1987), nonresponse can be viewed as the result of a self selection process
with usually unknown response probabilities. On the other hand in many household
surveys themain reason for nonresponse is “not at home”, where the larger households
has larger probabilities to respond (to be selected in the sample of the respondents). In
this case design information (household size) is generally observed for all the respond-
ing units, whereas the probabilities to respond are unavailable. We are investigating
these problems, and we hope to be able to report our results in the near future.
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