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Abstract
We discuss and characterise connections between frequentist, confidence distribu-

tion and objective Bayesian inference, when considering higher-order asymptotics,

matching priors, and confidence distributions based on pivotal quantities. The focus

is on testing precise or sharp null hypotheses on a scalar parameter of interest.

Moreover, we illustrate that the application of these procedures requires little

additional effort compared to the application of standard first-order theory. In this

respect, using the R software, we indicate how to perform in practice the compu-

tation with three examples in the context of data from inter-laboratory studies, of the

stress–strength reliability, and of a growth curve from dose–response data.

Keywords Credible interval � First-order theory � Full Bayesian significance

test � Higher-order asymptotics � Likelihood inference � Marginal posterior

distribution � Matching prior � Pivotal quantity � Precise null hypothesis � p value �
Tail area probability

1 Introduction

In recent years, the interplay between Bayesian and frequentist inference has lead to

several connections. Some instances are, among others, the use of pseudo-

likelihoods for Bayesian inference; the derivation of default priors, such as

matching priors; the development of higher-order asymptotics for likelihood
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methods, posterior distributions and related quantities; the definition of fiducial

inference and confidence distributions, without the need for prior information; see,

among others, Fraser and Reid (2002), Reid (2003), Xie and Singh (2013), Ventura

and Reid (2014), Nadarajaha et al. (2015), Ventura and Racugno (2016), Hjort and

Schweder (2018) and references therein.

To first-order, Bayesian, frequentist and confidence distribution (CD) inference

may be based on familiar large sample theory for the maximum likelihood estimator

and the Wald statistic. This theory involves simple approximations, that may be

justified when the sample size is large, and in this case the three modes of inference

agree. However, it is well-known that first-order approximations can be inaccurate

in many applications, in particular when the sample is small, and that standard first-

order theory can be readily improved. The purpose of this review article is to

investigate and characterise higher-order relationships between Bayesian, frequen-

tist and CD inference based on: a posterior distribution, when a suitable objective

prior is used; modern likelihood methods; a CD based on a pivotal quantity. The

focus is on testing precise or sharp null hypotheses on a scalar parameter of interest

and it is of interest to relate frequentist and Bayesian significance indices. In

particular, the procedures involved in this paper are:

1. higher-order likelihood inference based on the profile modified likelihood root

(see, e.g., Brazzale et al. 2007; Pierce and Bellio 2017);

2. higher-order approximations of the measure of evidence for the full Bayesian

significance test (see, e.g., Madruga et al. 2003), when using matching priors

(Cabras et al. 2015):

3. CD inference based on higher-order pivots (see, e.g, Xie and Singh 2013;

Nadarajaha et al. 2015; Hjort and Schweder 2018; Fraser et al. 2018).

From a practical point of view, it is shown how these procedures can be easily

applied in practical problems using the likelihoodAsy package (Bellio and

Pierce 2018) of the statistical software R.
The rest of paper is organised as follows. Section 2 illustrates first-order

agreement between frequentist, Bayesian and CD significance indices, while higher-

order connections are discussed in Sect. 3. Section 4 illustrates how to perform in

practice the computations with three examples in the context of: data from inter-

laboratory studies, the stress–strength reliability, and a growth curve from dose–

response data. Concluding remarks are given in Sect. 5.

2 First-order agreement between frequentist, Bayesian and CD
inference

Consider a random sample y ¼ ðy1; . . .; ynÞ of size n from a parametric model with

probability density function f ðy; hÞ, indexed by a d-dimensional parameter h. Write

h ¼ ðw; kÞ, where w is a scalar parameter for which inference is required and k
represents the remaining ðd � 1Þ nuisance parameters. We wish to test the precise

(or sharp) null hypothesis
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H0 : w ¼ w0 against H1 : w 6¼ w0: ð1Þ

Possible examples occur, for instance, when the parameter of interest is the stress–

strength reliability and the null hypothesis is H0 : w ¼ 0:5, or in regression prob-

lems, when w is a regression coefficient and the null hypothesis is H0 : w ¼ 0.

Likelihood inference Let ‘ðhÞ ¼ log LðhÞ ¼ log f ðy; hÞ be the log-likelihood func-

tion, maximized by the maximum likelihood estimator (MLE) ĥ ¼ ðŵ; k̂Þ, assumed

to be finite. Moreover, let ĥw ¼ ðw; k̂wÞ be the MLE when w is held fixed. Well-

known bases to test (1) are the profile Wald pivot

wpðwÞ ¼
ŵ� w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jpðŵÞ�1
q ; ð2Þ

where jpðwÞ ¼ �o2‘ðĥwÞ=ow2 is the profile observed information, and the profile

likelihood root

rpðwÞ ¼ signðŵ� wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð‘ðĥÞ � ‘ðĥwÞÞ
q

: ð3Þ

Both have a first-order standard normal null distribution. When testing (1), the p

values based on (2) and (3) are, respectively,

pw ¼ 2ð1� Uðjwpðw0ÞjÞÞ and pr ¼ 2ð1� Uðjrpðw0ÞjÞÞ;

where Uð�Þ is the cumulative distribution function of the standard normal

distribution.

The approximate normal distribution of wpðwÞ provides the most common basis

for inference about w. It is well-known that true significance levels may differ

substantially from their nominal values, because the shape of the log-likelihood

about its maximum is not accommodated. Moreover, inference based on wpðwÞ is
not invariant to transformations of the parameter. On the contrary, rpðwÞ takes

potential asymmetry of the log-likelihood into account and is invariant to

reparametrizations. However, when the sample size is relatively small, in general

first-order approximations are often inaccurate, especially if the dimension of the

nuisance parameter k is high with respect to n. In these situations, further accuracy

can be achieved by resorting to modern likelihood theory based on higher-order

asymptotics (see, e.g., Brazzale et al. 2007; Lozada-Can and Davison 2010; Pierce

and Bellio 2017).

Bayesian inference Given a prior density pðhÞ ¼ pðw; kÞ for h, Bayesian inference

for w is based on the marginal posterior density

123

Can Bayesian, confidence distribution and frequentist...



pmðwjyÞ ¼
Z

pðw; kjyÞ dk /
Z

pðw; kÞLðw; kÞ dk; ð4Þ

provided the integral on the right hand side of (4) is finite. The usual Bayesian

testing procedure is based on the well-known Bayes factor (BF), defined as the ratio

of the posterior to the prior odds in favour of H0. We decide in favour of H0

whenever the BF, or the corresponding weight of evidence log(BF), assumes high

value. However, it is well known that, when improper priors are used, the BF can be

undetermined and, when the null hypothesis is precise, the BF can lead to the so-

called Jeffreys–Lindley’s paradox; see, e.g. Kass and Raftery (1995). Moreover, the

BF is not calibrated, i.e. its finite sampling distribution is unknown and it may

depend on the nuisance parameter.

Alternative to the BF, Pereira and Stern (1999, 2001) provide an intuitive

measure of evidence for the full Bayesian significance test (FBST) in favour of H0.

This measure is the posterior probability related to the less probable points of the

parametric space, and it favours the null hypothesis whenever it is large; see, e.g.

Madruga et al. (2001, 2003) and references therein. Moreover, the FBST is based on

a specific loss function, and thus the decision made under this procedure is the

action that minimizes the corresponding posterior risk. Specifically, consider the

marginal posterior distribution pmðwjyÞ for the parameter of interest w and consider

the set TyðwÞ ¼ fw : pmðwjyÞ� pmðw0jyÞg. Starting from pmðwjyÞ, the Pereira–Stern
measure of evidence in favour of H0 can be computed as (see Cabras et al. 2015,

and Fig. 1)

pp ¼ 1� Ppðw 2 TyðwÞÞ;

where Ppð�Þ denotes posterior probability. The null hypothesis H0 is accepted

whenever pp is large enough.

A first-order approximation for pp, but without any notion of a prior distribution

involved, is simply given by (Pereira et al. 2008; Diniz et al. 2012)

Fig. 1 The measure of evidence
pp for the precise hypothesis
H0 : w ¼ w0 (shaded area)
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pp _¼ 2U
w0 � ŵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jpðŵÞ�1
q
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; ð5Þ

where the symbol ‘ _¼’ indicates that the approximation is accurate to Oðn�1=2Þ.
Thus, to first-order, pp agrees with pw, i.e. the p value based on the Wald statistic. In

practice, this approximation of pp is often inaccurate, in particular when the

dimension of k is large with respect to the sample size, because it forces the

marginal posterior distribution to be symmetric. Thus, in order to have a more

accurate evaluation of pp, it may be useful to resort to higher-order approximations

based on tail area approximations (see, e.g., Reid 2003; Ventura and Reid 2014;

Ruli et al. 2014).

Confidence distribution. Recently, the concept of CD has received a great attention

(see, e.g., Xie and Singh 2013; Nadarajaha et al. 2015; Veronese and Melilli 2015,

and references therein, and the special issue by Hjort and Schweder 2018).

A CD is a distribution estimator and, conceptually, is not different from a point

estimator or a confidence interval. As in Fisher’s fiducial development, pivotal

functions play a crucial role to the derivation of a CD. The inversion of a pivot

gives probabilities on the parameter space. More precisely, let qðy;wÞ be a pivot

function, monotone in w. Then, the sample-dependent distribution function on the

parameter space HðwÞ ¼ Fðqðy;wÞÞ is a CD for w, where Fð�Þ is the cumulative

distribution function of the pivot quantity qðy;wÞ. The confidence density for w is

thus
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Mo Mean Median

point estimators

one-sided p-value

95% CI

Fig. 2 Illustration of making
inference using a confidence
density
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hðw; yÞ ¼ dHðwÞ
dw

:

The distribution HðwÞ ¼ Fðqðy;wÞÞ is called an asymptotic CD if Fð�Þ is the

asymptotic cumulative distribution function of the pivot qðy;wÞ.
The plot in Fig. 2 gives an illustration on making inference using a CD: point

estimators (mode, median and mean), 95% confidence interval and one-sided p

value. Since the CD by design is unbiased, then the confidence median is a median

unbiased point estimator. To test (1), the p value is given by (see, e.g., Xie and

Singh 2013)

pcd ¼ 2minfHðw0Þ; 1� Hðw0Þg:

Under H0 it is immediate that pcd �Uð0; 1Þ, since Hðw0Þ�Uð0; 1Þ by the definition

of a CD.

First-order pivot functions are wpðwÞ and rpðwÞ, which can be used to derive an

asymptotic CD (see, e.g., Schweder and Hjort 2016). For instance, using the Wald

statistic we have HðwÞ _¼UðwpðwÞÞ and a first-order CD p value is (5), while using

rpðwÞ we have HðwÞ _¼UðrpðwÞÞ and a first-order CD p value is pr.

In summary . . . to first-order the p value pw agrees with both pp and pcd. That is,

when the sample size is sufficiently high, Bayesian, confidence distribution and

frequentist significance indices agree. But what happens when using a higher-order

pivot function and objective Bayes?

3 Higher-order agreement between frequentist, Bayesian and CD
inference

Modern likelihood inference Improved likelihood inference may be obtained

through higher-order asymptotics, on which there is a large literature (see, among

others, Severini 2000; Reid 2003; Brazzale et al. 2007, and references therein). One

key formula is the modified profile likelihood root

r�pðwÞ ¼ rpðwÞ þ
1

rpðwÞ
log

qpðwÞ
rpðwÞ

; ð6Þ

which has a third-order standard normal null distribution. In (6), the quantity qpðwÞ
is a suitably defined correction term (see, e.g., Severini 2000, Chapter 9).

The quantity r�pðwÞ is a higher-order pivot obtained as a refinement of the

likelihood root rpðwÞ, which allow us to obtain accurate p values and confidence

limits for w. The p value based on (6) is

p�r ¼ 2ð1� Uðjr�pðw0ÞjÞÞ: ð7Þ

The computation of qpðwÞ is straightforward in simple models, such as exponential

families, but in general it is awkward and approximations must be derived; see Reid

and Fraser (2010) for a discussion on different versions of qpðwÞ. However,
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inference based on r�pðwÞ can be implemented in practice for many commonly used

parametric models by using the package likelyhoodAsy of the R software

(Bellio and Pierce 2018), which adopts the version of qpðwÞ developed by Skov-

gaard (1996, 2001). In practice, the advantage of using this of the package is that it

does not require the function qpðwÞ explicitly but it only requires the code for

computing the log-likelihood function and for generating data from the assumed

model.

Objective Bayesian inference Let us consider a so-called strong matching prior

(Fraser and Reid 2002; Ventura et al. 2013), i.e. a prior such that a frequentist p

value coincides with a Bayesian posterior survivor probability to a high degree of

approximation, in the marginal posterior density (4). In this case, the tail area of the

marginal posterior for w can be approximated to third-order as

Z 1

w0

pmðwjyÞ dw ¼... Uðr�pðw0ÞÞ; ð8Þ

where the symbol ‘¼... ’ indicates that the approximation is accurate to Oðn�3=2Þ.
Following Ventura et al. (2013), the marginal posterior density can be written, to

second-order, as

pmðwjyÞ €/ exp � 1

2
r�pðwÞ

2

� �

spðwÞ
rpðwÞ

�

�

�

�

�

�

�

�

; ð9Þ

where spðwÞ ¼ ‘0pðwÞ=jpðŵÞ
1=2

is the profile score statistic. Using (9), an asymptotic

equi-tailed credible interval for w can be computed as fw : jr�pðwÞj� z1�a=2g, i.e., as
a confidence interval for w based on (6) with approximate level ð1� aÞ, where
z1�a=2 is the ð1� a=2Þ-quantile of the standard normal distribution. Note from (8)

that, the posterior median of pmðwjyÞ can be computed as the solution in w of the

estimating equation r�pðwÞ ¼ 0, and thus it coincides with the frequentist estimator

defined as the zero-level confidence interval based on r�pðwÞ. Such an estimator has

been shown to be a refinement of the MLE ŵ (Giummolé and Ventura 2002).

Using the tail area approximation (8), a third-order approximation of the measure

of evidence pp is (Cabras et al. 2015)

p�p ¼ 1� Uðr�pðw0ÞÞ þ Uðr�pðw�
0ÞÞ; ð10Þ

with w�
0 the value of the parameter such that pmðw�

0jyÞ ¼ pmðw0jyÞ (see Fig. 1). The
measure p�p is calibrated to second order with respect to the U(0,1) distribution. Note

that Uðr�pðw0ÞÞ � Uðr�pðw�
0ÞÞ ¼

... R w0

w�
0
pmðwjyÞ dw in (10) gives the posterior proba-

bility of the HPD (High Posterior Density) credible interval ðw0;w
�
0Þ. Therefore the

higher-order measure of evidence (10) differs from (7), since the former is a den-

sity-based measure while the latter is a quantile-based quantity. However, if
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pmðwjyÞ is symmetric, (10) reduces to 2ð1� Uðjr�pðw0ÞjÞÞ, and thus it coincides with
p�r .

Asymptotically third-order accurate CD Starting from the profile modified

likelihood root (6), it is easy to derive an asymptotically third-order accurate CD,

i.e. with error of order Oðn�3=2Þ. Indeed, using r�pðwÞ, the CD can be expressed as

HðwÞ ¼... Uðr�pðwÞÞ: ð11Þ

Thus, the corresponding hðw; yÞ coincides with (9), that is (9) is both a confidence

density and a posterior density for w. In view of this, both the posterior and the

confidence medians are the solution of r�pðwÞ ¼ 0 and coincide with the frequentist

estimator defined as the zero-level confidence interval based on r�pðwÞ. Moreover,

the ð1� aÞ equi-tailed credible interval fw : jr�pðwÞj � z1�a=2g coincides with the

ð1� aÞ confidence interval for w, which also coincides with the higher-order

likelihood-based confidence interval for w. Finally, to test (1), the CD p value based

on (11) is given by

p�cd ¼ 2ð1� Uðjr�pðw0ÞjÞÞ;

which coincides with p�r . If (9) is asymmetric, p�cd is not equal to p�p.

In summary . . . this shows that when using strong matching priors and higher-order

asymptotics, there is an agreement between Bayesian, CD and frequentist point and

interval estimation. However, when focus is on significance indices, even though the

CD density hðw; yÞ coincides with the marginal posterior (9), the inferential

meaning of the two distributions remains different. Indeed, a p value is a tail

evaluation of the sampling distribution under H0, while the measure of evidence for

the FBST is a tail evaluation of the posterior distribution conditional on the

observed sample. Furthermore, while the tail for the p value evaluation starts at the

observed value of the test statistic, the tail for pp starts at the sharp null hypothesis.

4 Three examples

We discuss three examples in the context of data from inter-laboratory studies,

stress–strength reliability, and growth curves from dose–response data. From a

practical point of view, it is shown how all these procedures can be easily applied in

practical problems using the likelihoodAsy package of the statistical software

R, which does not require to derive explicitly the quantity qpðwÞ involved in the

modified profile likelihood root (Bellio and Pierce 2018).

The focus is on highlighting inferential agreement and disagreement reached

when considering higher-order asymptotics, matching priors, and confidence

distributions based on pivotal quantities. The R code and the data used for the

examples can be found in the supplementary material.
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4.1 Heteroscedastic one-way random effects model

The analysis of data from inter-laboratory studies has received a great deal of

attention over the past years, and it deals with the one-way random effects model

with heteroscedastic error variance (see, e.g., Sharma and Mathew 2011, and

references therein). The basic setting is as follow. There are m laboratories, with nj
observations at the jth laboratory, for j ¼ 1; . . .;m. The model is

yij ¼ lþ bj þ eij; ð12Þ

where yij denotes the ith observation at the jth laboratory, and bj and eij are inde-

pendent random variables with distribution bj �Nð0; r2Þ and eij �Nð0;r2j Þ,
respectively. Typically, the parameter of interest is the consensus mean l, which, in
case of (12), is also the mean of yij, i ¼ 1; . . .; nj and j ¼ 1; . . .;m. The remaining

ðmþ 1Þ parameters of the model, i.e., within-laboratory variances ðr21; . . .; r2mÞ and
the between laboratory variability r2, are nuisance parameters.

The log-likelihood function for l and k ¼ ðr2; r21; . . .; r2mÞ from model (12) is

‘ðl; kÞ ¼ � 1

2

X

m

j¼1

ðnj � 1Þ log r2j � log qj þ qjð�yj � lÞ2 þ
ðnj � 1Þs2j

r2j

 !

; ð13Þ

with qj ¼ 1=ðr2 þ r2j =njÞ, �yj ¼
Pnj

i¼1 yij=nj and s2j ¼
Pnj

i¼1ðyij � �yjÞ2=ðnj � 1Þ for

j ¼ 1; . . .;m.
As a numerical example, consider data on the Ki-67 protein on 245 adrenocor-

tical tumors, coming from an inter-laboratory study (Duregon et al. 2013). It is of

interest to carry out inference on the mean of the Ki-67 level (on logarithmic scale),

i.e. the parameter of interest is the consensus mean l of the Ki-67 protein (on

logarithmic scale). The higher-order approximation (9) to the marginal posterior

Fig. 3 Inference for the consensus mean l from the Ki-67 protein data. Left: profile (black) and modified
profile (red) likelihood roots as functions of l; right: higher-order (red) and normal (black)
approximations of the marginal posterior distribution (9) of l. The latters are also confidence
distributions for l (color figure online)
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density of l, which is also the confidence distribution for l, along with the first-

order normal approximation are illustrated in Fig. 3 (right plot).

The higher-order interval ð�0:125; 3:26Þ is both an 0.95 equi-tailed credible

interval derived from (9) and a frequentist interval based on r�pðlÞ; the first-order

0.95 confidence intervals based on the rpðwÞ and wpðwÞ pivots are ð0:31; 2:85Þ and
(0.60, 2.63), respectively.

It is of interest to test the hypotheses H0 : l ¼ 0 versus H1 : l 6¼ 0. The p value

p�r based on (6) and the p value p�cd based on the CD (11) are equal to 0.062. In this

case, the measure of evidence based on FBST also coincides, up to four decimal

places, to p�r ¼ 0:062, in view of the symmetry of the marginal posterior of l. The
first-order p values pr and pw are 0.024 and 0.002, respectively. Hence, first-order

results suggest that H0 must be rejected, whereas third-order accurate significance

indices do not.

4.2 Inference for the stress–strength reliability

Assume that X and Y are independent random variables with distributions FXðx; hXÞ
and FYðy; hYÞ, respectively. A stress–strength model is concerned with the statistical

problem of evaluating the reliability PðX\YÞ of a component - or a material or a

system - subject to a certain environmental stress. Inference about PðX\YÞ has

revealed an attractive problem in statistical quality control, engineering statistics,

medical statistics and biostatistics, among others. For instance, in a reliability study,

X is the stress applied to the system, Y is the strength of a system and PðX\YÞ
measures the chance that the system does not fail. Moreover, in a clinical study, X

may be the response of a control group, Y the response of a treatment group and the

reliability parameter PðX\YÞ measures the effectiveness of the treatment (see Kotz

et al. 2003).

By the definition of reliability, PðX\YÞ can be evaluated as a function of the

parameter h ¼ ðhX; hYÞ, through the relation

w ¼ wðhÞ ¼ PðX\YÞ ¼
Z

FXðt; hXÞ dFYðt; hYÞ:

Theoretical expressions for w are available under several distributional assumptions

both for the stress and the strength (see Kotz et al. 2003). For instance, let us assume

that X and Y are independent normal random variables; that is X�NðlX ; r2XÞ and
Y �NðlY ; r2YÞ. In this setting, h ¼ ðlX; r2X ; lY ; r2YÞ and the reliability parameter is

w ¼ wðhÞ ¼ U
lY � lx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2X þ r2y
q

0

B

@

1

C

A

:

This expression can be extended to include linear model formulations by assuming

that lX and lY depend on some covariates (see for instance Guttman et al. 1988). In

this case, the log-likelihood function for h can be written as
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‘ðhÞ ¼ 1

2
�nX log r

2
X � nY log r

2
Y � 1

r2X

X

nX

i¼1

ðxi � lXiÞ
2 � 1

r2Y

X

nY

i¼1

ðyi � lYiÞ
2

( )

:

ð14Þ

As a numerical example consider the rocket motor dataset (Guttman et al. 1988;

Kotz et al. 2003, pp. 205–207), which provides nX ¼ 51 stress measures of oper-

ating pressure (x) and ambient temperature (z), and nY ¼ 17 strength data which are

measures of chamber burst (y). We make the reasonable assumption (Guttman et al.

1988) that the stress depends on the ambient temperature according to a linear

model with two parameters. The aim is to make inference on the reliability of a

rocket motor case, at a given ambient temperature value z. Following Guttman et al.

(1988), we consider z ¼ 500. The first-order and the higher-order approximations to

the marginal posterior density of logitðwÞ, which are also the first- and higher-order

CD for w, are illustrated in Fig. 4 (right plot).

The MLE of logitðwÞ is logitðŵÞ ¼ 1:982 and the 0.95 higher-order confidence

interval, the 0.95 credible interval and the 0.95 CD interval for logitðwÞ coincide

and are all equal to ð�0:076; 4:86Þ. The first-order 0.95 confidence intervals based

on the rpðwÞ and wpðwÞ pivots are ð�0:031; 5:03Þ and ð�0:324; 4:287Þ,
respectively.

For the stress–strength reliability it is often of interest to test the null hypothesis

H0 : logitðwÞ ¼ 0 against H1 : logitðwÞ 6¼ 0. In this case, the accurate likelihood p

value p�r based on (6) coincides with the CD p value p�cd based on (11) and is equal

to 0.06. The measure of evidence p�p for H0 is 0.093. The first-order p values pr and

pw are 0.054 and 0.092 respectively. Hence, from a practical perspective, the

conclusion about H0 is roughly the same, that is H0 cannot be rejected.

Fig. 4 Inference for the reliability parameter w (in logit scale) from the rocket motor data (Guttman et al.
1988) with z ¼ 500. Left: profile (black) and modified profile (red) likelihood roots as functions of w;
right: higher-order (red) and normal (black) approximations of the marginal posterior distribution (9) of
logitðwÞ. The latters are also confidence distributions for logitðwÞ (color figure online)
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4.3 Dose–response regression model

A dose–response model is a nonlinear regression model in which the response yi is

related to an explanatory variable xi as yi ¼ lðxi; bÞ þ riei, i ¼ 1; . . .; n, where

lðxi; bÞ is the mean function, xi is fixed, the regression parameters are the p� 1

vector b, and the ei are independent and generated from a known continuous density

function. The standard normal density is widely used, especially for dose–response

curves in bioassays. The variance can be modelled as r2i ¼ r2Vðxi;b; gÞ, where r2

and the q� 1 vector g are variance parameters and Vð�Þ is a given positive function.

As a numerical example consider data from a bioassay study taken to estimate the

root length of perennial ryegrass (Inderjit Streibig and Olofsdotter 2002). The

ryegrass dataset reports a covariate x, the dose of ferulic acid (in mM), and the

response y, the root length of perennial ryegrass (in cm) for n ¼ 24 plants. The

concentration–response relationship is modelled by means of the four-parameter

logistic function

lðx; bÞ ¼ b1 þ
b2 � b1

1þ expfb3ðlog x� logb4Þg
; x[ 0:

The parameter b4 [ 0 is also denoted ED50 and it is the dose producing a response

half-way between the upper limit, b2, and lower limit, b1. The parameter b3 denotes
the relative slope around b4. To allow for more flexibility, we permit the variance of

each observation to vary according to the following power function

r2i ¼ r2lðxi; bÞg, where g is a scalar real parameter and r2 [ 0. In this example we

are concerned with inference on g and the aim is to asses the homoscedasticity

hypothesis H0 : g ¼ 0 versus H1 : g 6¼ 0.

The first-order and the higher-order approximations to the marginal posterior

density of g, which are also the first- and higher-order CD for g, are illustrated in

Fig. 5 (right plot). For this model we found that ĝ ¼ 0:836 and the interval

Fig. 5 Inference for the power parameter of the variance function from the ryegrass data (Inderjit
Streibig and Olofsdotter 2002). Left: profile (black) and modified profile (red) likelihood roots as
functions of g; right: higher-order (red) and normal (black) approximation of the marginal posterior
distribution (9) of g. The latters are also confidence distributions for g (color figure online)
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ð�0:001; 1:43Þ is a higher-order 0.95 equi-tailed credible interval, a 0.95 CD

interval and a higher-order 0.95 confidence interval. The first-order 0.95 confidence

intervals based on the rpðwÞ and wpðwÞ pivots are ð0:14; 1:46Þ and (0.2, 1.48),

respectively.

The higher-order frequentist p value p�r and the higher-order CD p value p�cd for

the null hypothesis H0 : g ¼ 0 are both equal to 0.0502, whereas the measure of

evidence is equal to p�p ¼ 0:042. The first-order p values pr and pw are 0.022 and

0.011 respectively. Even though p�r and p�p do not exactly coincide, they both

indicate a similar evidence for H0, while with the first-order significance indices

inferential conclusions would be altered. Thus, also in this example, higher-order

approximation can produce appreciably better inferences when sample sizes are

small or moderate.

5 Final remarks

To first-order, Bayesian, frequentist and CD inference - point and interval

estimation and significance indices - agree. This theory involves approximations

that may be justified when the sample size is large and its accuracy is often

questionable. Standard first-order theory can be readily improved in Bayesian,

frequentist and CD inference, and higher-order approximations can produce

appreciably better inferences.

When using objective Bayesian procedures based on strong matching priors and

higher-order asymptotics, there is an agreement between Bayesian, CD and

frequentist point and interval estimation, but not - in general - in significance

measures. This shows that, even when using objective Bayesian procedures based

on strong matching priors, again the eternal half-disagreement between Bayesians

and frequentists may arise. There is a strong connection between Bayesian and

frequentist significance indices, but while a p value is a tail evaluation of the

sampling distribution under the null hypothesis, the measure of evidence for the

FBST is a tail evaluation of the posterior distribution conditional on the observed

sample.

In this paper we also outline how approximate computational tools have a role to

play in the modern era of frequentist and Bayesian statistics. From a practical point

of view, modern likelihood inference, CD based on higher-order pivots and

approximate Bayesian computations are available at little additional computational

cost over simple first-order approximations. Indeed, all the computations involved

in this paper are performed by using the likelihoodAsy package of the

statistical software R, with only the log-likelihood function (and its derivative) as

the user-provided input.
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