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a b s t r a c t

We discuss an approach for deriving robust posterior distributions from M-estimating
functions using Approximate Bayesian Computation (ABC) methods. In particular, we
use M-estimating functions to construct suitable summary statistics in ABC algorithms.
The theoretical properties of the robust posterior distributions are discussed. Special
attention is given to the application of the method to linear mixed models. Simulation
results and an application to a clinical study demonstrate the usefulness of the method.
An R implementation is also provided in the robustBLME package.
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1. Introduction

The normality assumption is the usual basis of many statistical analyses in several fields, such as medicine, health
sciences, quality control and engineering statistics. Under this assumption, standard parametric estimation and testing
procedures are simple and efficient. However, both from a frequentist or a Bayesian perspective, it is well known that these
procedures are not robust when the normal distribution is just an approximate model or in the presence of outliers in the
observed data. In these situations, robust statistical methods can be considered in order to produce statistical procedures
that are stable with respect to small changes in the data or to small model departures; see Huber and Ronchetti (2009)
for a review on robust methods.

The concept of robustness has been widely discussed in the frequentist literature; see, for instance, Hampel et al.
(1986), Tsou and Royall (1995) and Markatou et al. (1998). Also Bayesian robustness with respect to model misspecification
have attracted considerable attention. For instance, Lazar (2003), Greco et al. (2008), Ventura et al. (2010) and Agostinelli
and Greco (2013) discuss approaches based on robust pseudo-likelihood functions, such as the empirical likelihood, as
replacement of the genuine likelihood in Bayes’ formula. Lewis et al. (2014) discuss an approach for building posterior
distributions from robustM-estimators using constrained Markov Chain Monte Carlo (MCMC) methods. Recent approaches
based on tilted likelihoods can be found in Grünwald and van Ommen (2017), Watson and Holmes (2016), Miller
and Dunson (2018). Finally, approaches based on model embedding through heavy-tailed distributions are discussed
by Andrade and O’Hagan (2006).

The aforementioned approaches may present some drawbacks. The empirical likelihood is not computable for small
sample sizes and posterior distributions based on the quasi-likelihood can be easily obtained only for scalar parameters.
The restricted likelihood approach of Lewis et al. (2014), as well as all the approaches based on estimating equations can be
computationally cumbersome with some robust M-estimating functions (such as, for instance, those used in linear mixed
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effects models). The tilted and the weighted likelihood approaches refer to concepts of robustness that are not directly
related to the one considered in this paper, which is based on the influence function (Hampel et al., 1986; Huber and
Ronchetti, 2009). Finally, the idea of embedding the model in a larger structure has the cost of requiring the elicitation of
a prior distribution for the extra parameters introduced. Moreover, the statistical procedures derived under an embedded
model are not necessarily robust in a broad sense, since the larger model may still be too restricted.

Here we focus on the robustness approach based on the influence function and on the derivation of robust posterior dis-
tributions from robust M-estimating functions, i.e. estimating equations with bounded influence function (see, e.g., Huber
and Ronchetti, 2009, Chap. 3). In particular, we propose an approach based on Approximate Bayesian Computation (ABC)
methods (see, e.g., Beaumont et al., 2002) using robust M-estimating functions as summary statistics. The idea extends
results of Ruli et al. (2016) on composite score functions to Bayesian robustness. The method is easy to implement and
computationally efficient, even when the M-estimating functions are potentially cumbersome to evaluate. Theoretical
properties, implementation details and simulation results are discussed.

The rest of the paper is structured as follows. Section 2 sets the background. Section 3 describes the proposed method
and its properties. Section 4 investigates the properties of the proposed method in the context of linear mixed models
through simulations and an application to a clinical study. Concluding remarks are given in Section 5.

2. Background on robust M-estimating functions

Let y = (y1, . . . , yn) be a random sample of size n, having independent and identically distributed components,
according to a distribution function Fθ = F (y; θ ), with θ ∈ Θ ⊆ IRd, d ≥ 1 and y ∈ Y . Let L(θ ) be the likelihood
function based on model Fθ .

Furthermore, let

Ψθ = Ψ (y; θ ) =

n∑
i=1

ψ(yi; θ ) − c(θ ) , (1)

be an unbiased estimating function for θ , i.e. such that Eθ (Ψ (Y ; θ )) = 0 for every θ . In (1), ψ(·) is a known function, Eθ (·)
is the expectation with respect to Fθ and the function c(·) is a consistency correction which ensures unbiasedness of the
estimating function.

A general M-estimator (see, e.g., Hampel et al., 1986, Huber and Ronchetti, 2009) is defined as the root θ̃ of the
estimating equation Ψθ = 0. The class of M-estimators is wide and includes a variety of well-known estimators. For
example, it includes the maximum likelihood estimator (MLE), the maximum composite likelihood estimator (see, e.g.,
Ruli et al., 2016, and references therein) and the scoring rule estimator (see e.g. Dawid et al., 2016, and references therein).
Under broad regularity conditions, assumed throughout this paper, an M-estimator is consistent and approximately
normal with mean θ and variance

K (θ ) = H(θ )−1J(θ )H(θ )−T, (2)

where H(θ ) = −Eθ (∂Ψθ/∂θT) and J(θ ) = Eθ (ΨθΨ T
θ ) are the sensitivity and the variability matrices, respectively. The matrix

G(θ ) = K (θ )−1 is known as the Godambe information and the form of K (θ ) is due to the failure of the information identity
since, in general, H(θ ) ̸= J(θ ).

The influence function (IF ) of the estimator θ̃ is IF (x; θ̃ , Fθ ) ∝ ψ(x; θ ) and it measures the effect on the estimator θ̃ of an
infinitesimal contamination at the point x, standardised by the mass of the contamination. A desirable robustness property
for θ̃ is that its IF is bounded (B-robustness), i.e. that ψ(x; θ ) is bounded. Note that the IF of the MLE is proportional to
the score function; therefore, in general, the MLE has unbounded IF, i.e. it is not B-robust.

3. Robust ABC inference

One possibility to perform robust Bayesian inference is to resort to a pseudo-posterior distribution of the form

πR(θ |y) ∝ π (θ ) LR(θ ) , (3)

where π (θ ) is a prior distribution for θ and LR(θ ) is a pseudo-likelihood based on a robust Ψθ , such as the quasi- or the
empirical likelihood. This approach has two main drawbacks: the empirical likelihood is not computable for very small
sample sizes and for moderate sample sizes the corresponding posterior appears to have always heavy tails (see, e.g.,
Greco et al., 2008); moreover, the posterior distribution based on the quasi-likelihood can be easily obtained only for
scalar parameters. A further limitation of this approach is related to computational cost, in the sense that it requires
repeated evaluations of the consistency correction c(θ ) in (1), which in practice is often cumbersome.

We propose an alternative method for computing posterior distributions based on robust M-estimating functions,
extending the idea in Ruli et al. (2016). The method resorts to the ABC machinery (see, e.g., Beaumont et al., 2002) in
which a standardised version of Ψθ , evaluated at a fixed value of θ , is used as a summary statistic. In Ruli et al. (2016)
the composite score function is used as a model-based data reduction procedure for ABC in complex models. Here we
generalise the approach to general unbiased robust estimating functions. In particular, let θ̃ = θ̃ (y) be the M-estimate of
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θ based on the observed sample y. Furthermore, let BR(θ ) be such that J(θ ) = BR(θ )BR(θ )T. The summary statistic in ABC
is then the rescaled M-estimating function

ηR(y∗
; θ ) = BR(θ )−1Ψ (y∗

; θ ) , (4)

evaluated at θ̃ , where y∗ is a simulated sample. In the sequel we use the shorthand notation η̃R(y∗) = ηR(y∗
; θ̃ ).

To generate posterior samples we propose to use the ABC-R algorithm with an MCMC kernel (Algorithm 1), which
is similar to Algorithm 2 of Fearnhead and Prangle (2012); see also Marjoram et al. (2003). More specifically, the ABC-R
algorithm (Algorithm 1) involves a kernel density Kh(·), which is governed by the bandwidth h > 0 and a proposal density
q(·|·); see Appendix for the implementation details.

Result: A Markov dependent sample (θ (1), . . . , θ (m)) from πABC
R (θ |θ̃ )

Data: a starting value θ (0), a proposal density q(·|·)
for i = 1 → m do

draw θ∗
∼ q(·|θ (i−1))

draw y∗
∼ Fθ∗

draw u ∼ U(0, 1)
if u ≤

Kh(η̃R(y∗))
Kh(η̃R(y(i−1)))

π (θ∗)q(θ (i−1)
|θ∗)

π (θ (i−1))q(θ∗|θ (i−1))
then

set (θ (i), η̃(i)R ) = (θ∗, η̃R(y∗))
else

set (θ (i), η̃(i)R ) = (θ (i−1), η̃R(y(i−1)))
end

end
Algorithm 1: ABC-R algorithm with MCMC.

The proposed method gives Markov-dependent samples from the ABC-R posterior

πABC
R (θ |θ̃ ) =

∫
Y∗ π (θ ) f (y∗

; θ )Kh(η̃R(y∗)) dy∗∫
Y∗×Θ

π (θ ) f (y∗; θ )Kh(η̃R(y∗)) dy∗dθ
. (5)

While Algorithm 1 or the use of a kernel in (5) is not a new idea in the ABC literature, the novelty here is to incorporate
in such machinery the robust summary statistic η̃R(y∗) in order to obtain a simulated sample from a robust posterior
distribution. Using similar arguments to Soubeyrand et al. (2013), it can be shown that, for h → 0, πABC

R (θ |θ̃ ) converges
to π (θ |θ̃ ) pointwise (see also Blum, 2010), in the sense that πABC

R (θ |θ̃ ) and π (θ |θ̃ ) are equivalent for sufficiently small h.
Since in general (4) does not give a sufficient summary statistic, then π (θ |θ̃ ) differs from π (θ |y) and information is lost
by using (4) instead of y. However this difference pays off in terms of robustness in inference about θ .

Posteriors conditional on partial information have been extensively discussed in the literature. Soubeyrand and Haon-
Lasportes (2015) study the properties of the ABC posterior when the summary statistic is the MLE or the pseudo-MLE
derived from a simplified parametric model. An alternative version of the ABC-R algorithm could be based directly on
θ̃ , used as the summary statistic and a, possibly rescaled, distance among the observed and the simulated value of the
statistic. Apparently, these two versions of ABC, namely the one based on θ̃ and that based on (4) seem to be treated
in the literature as two separate approaches (see, e.g., Drovandi et al., 2015). However, both alternatives use essentially
the same information, i.e. θ̃ , but through different distance metrics. In addition, for small tolerance levels, these two
distances converge to zero, and both methods give a posterior distribution conditional on the same statistic θ̃ . Indeed,
let θ̃ be the summary statistic of the ABC posterior and let the corresponding tolerance threshold ϵ be sufficiently small
and consider the random draw θ∗ and its corresponding simulated summary statistics θ̃∗ taken with the ABC algorithm.
Then, by construction θ̃∗ will be close to θ̃ . This implies that also η̃R(y∗) = ηR(y∗

; θ̃ ) will be close to ηR(y∗
; θ̃∗) = 0, and

hence θ∗ is also a sample from the ABC-R posterior which uses the summary statistic η̃R.
Nevertheless, the use of θ̃ as summary statistic requires the solution of Ψθ = 0 at each iteration of the algorithm, which

could be computationally cumbersome. On the contrary, the proposed approach, besides sharing the same invariance
properties stated by Ruli et al. (2016), i.e. invariance with respect to both monotonic transformation of the data and with
respect to reparameterisations, has the advantage of avoiding computational problems related to the repeated evaluation
of Ψθ as shown by the following lemma.

Lemma 3.1. The ABC-R algorithm does not require repeated evaluations of the consistency correction c(θ ) involved in Ψθ , as
given by (1).
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Proof. Let θ̃ be the solution of Ψθ = 0, with Ψθ of the form (1). Then, for a given simulated y∗ from Fθ∗ , we have

η̃R(y∗) = BR(θ̃ )−1(Ψ (y∗
; θ̃ ) − Ψ (y; θ̃ )) =

n∑
i=1

(ψ(y∗

i , θ̃ ) − ψ(yi, θ̃ )) .

This implies that c(θ ) is computed only once, at θ̃ .

Theorem 3.1 shows that the proposed method gives a robust approximate posterior distribution with the correct
curvature, even though Ψθ , unlike the full score function, does not satisfy the information identity. Here, correct curvature
means that asymptotically the robust posterior distribution and its normal approximation have the same covariance
matrix, which is the inverse of the Godambe information, i.e. K (θ ).

Theorem 3.1. The ABC-R algorithm with rescaled M-estimating function η̃R(y) as summary statistic, as h → 0, leads to an
approximate posterior distribution with the correct curvature and is also invariant to reparameterisations.

Proof. The proof follows from Theorem 3.2 of Ruli et al. (2016), by substituting the composite estimating equation with
the more general M-estimating function Ψθ .

The ABC-R algorithm delivers thus a robust approximate posterior distribution which does not need calibration. On
the contrary, for (3) a calibration is typically required.

Theorem 3.2 shows that the proposed ABC posterior distribution is asymptotically normal.

Theorem 3.2. Assume the regularity assumptions of Soubeyrand and Haon-Lasportes (2015) and the usual regularity condition
on M-estimators (Huber and Ronchetti, 2009, Chap. 4) are satisfied. Then, for n → ∞ and h → 0, the posterior πABC

R (θ |θ̃ ) is
asymptotically equivalent to the density of the normal distribution with mean vector θ̃ and covariance matrix K (θ̃ ):

πABC
R (θ |θ̃ ) ∼̇Nd(θ̃ , K (θ̃ )) . (6)

Proof. The proof follows from Lemma 2 and Theorem 1 in Soubeyrand and Haon-Lasportes (2015) and from the
asymptotic relation between the Wald-type statistic and the score-type statistic, i.e.

ηR(y; θ )T ηR(y; θ ) = Ψ T
θ J(θ )

−1Ψθ = (θ̃ − θ )TK (θ )−1(θ̃ − θ ) + op(1) .

If ψ(y; θ ) is bounded in y, i.e. if the estimator θ̃ is B-robust, then the ABC-R posterior is resistant with respect to
slight violations of model assumptions. More precisely, the following theorem shows that the ABC-R posterior inherits
the robustness properties of the estimating equation.

Theorem 3.3. If ψ(y; θ ) is bounded in y, i.e. if the estimator θ̃ is B-robust, then asymptotically the posterior mode, as well as
other posterior summaries of πABC

R (θ |θ̃ ) have bounded IF.

Proof. From Theorem 3.2, the asymptotic posterior mode of πABC
R (θ |θ̃ ) is θ̃ , which is B-robust. Moreover, following results

in Greco et al. (2008), it can be shown that asymptotic posterior summaries have bounded IF if and only if the posterior
mode has bounded IF.

Example. We consider an illustrative example in which we compare numerically the ABC-R posterior, with the classical
posterior based on the assumed model and the pseudo-posterior (3) based on the empirical likelihood (Lazar, 2003; Greco
et al., 2008). Scenarios with data simulated either from the assumed model or from a slightly misspecified model are
considered.

Let Fθ be a location-scale distribution with location µ and scale σ > 0, and let θ = (µ, σ ). The Huber’s estimating
function is a standard choice for robust estimation of location and scale parameters. The M-estimating function is
Ψθ = (Ψµ,Ψσ ), with

Ψµ =

n∑
i=1

ψc1 (zi) and Ψσ =

n∑
i=1

(
ψc2 (zi)

2
− k(c2)

)
, (7)

where zi = (yi − µ)/σ , i = 1, . . . , n, ψc(z) = max[−c,min(c, z)] is the Huber ψ-function, c > 0 is a scalar tuning
constant which controls the desired degree of robustness of θ̃ , and k(·) is a consistency correction term. Let Fθ be the
normal distribution N(µ, σ 2) and assume µ and σ a priori independent with µ ∼ N(0, 102) and σ ∼ halfCauchy(5),
where halfCauchy(a) is the halfCauchy distribution with scale parameter equal to a. We consider random samples
of sizes n = {15, 30} drawn from either the normal distribution with θ = (0, 1) and from a contaminated model
(1 − δ)N(0, 1) + δN(0, σ 2

1 ), with σ 2
1 > 0. We set the contamination level equal to 10%, i.e. δ = 0.1, and σ 2

1 = 10.
Moreover, we fix c1 = 1.345 and c2 = 2.07, which imply that µ̃ and σ̃ are, respectively, 5% and 10% less efficient than
the corresponding MLE under the assumed model (see Huber and Ronchetti, 2009, Chap. 6).
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Fig. 1. First row: genuine (black solid), EL (blue dashed) and ABC-R posteriors (shaded image and histogram) for the normal model, when the data
come from the central model N(0, 1) with (a) n = 15 and (b) n = 30. Second row: genuine, EL and ABC-R posteriors for the normal model, when
the data come from the contaminated model with δ = 0.1, (c) n = 15 and (d) and n = 30.

The genuine, e.g. the posterior based on the likelihood function of the normal model, and the pseudo-posterior (3)
based on the empirical likelihood (EL) are computed by numerical integration. The ABC-R posterior is obtained using
Algorithm 1. From the posterior distributions illustrated in Fig. 1 we note that, when the data come from the central
model (panels (a)–(b)), i.e. for δ = 0, all the posteriors are in reasonable agreement, even if the EL posterior behaves
slightly worse, especially the marginal posterior of σ with n = 15. When the data are contaminated (panels (c)–(d)), the
genuine posterior is less trustworthy as the bulk of the posterior drifts away from the true parameter value (vertical and
horizontal straight lines). This is not the case however for the ABC-R posterior which remains centred around the true
parameter value. We note that in the contaminated case, the ABC-R posterior is the one with smaller variability. This is
due to the fact that the ABC-R posterior is not affected by the very outlying observations coming from the contamination
component.

To highlight the robustness properties of the ABC-R posterior, we consider a sensitivity analysis. A sample y of size
n = 31 is taken from the central model and the aforementioned posteriors are computed from the contaminated data yw
given by the original data with the median observation y(n+1)/2 replaced by y(n+1)/2 +w; w is a contamination scalar with
possible values {−15,−14, . . . , 15}. The results of the sensitivity analysis, illustrated by means of violin plots in Fig. 2,
highlight that the posterior median of the genuine posterior (panel (c)) is substantially driven by w. On the other hand,
ABC-R and EL posteriors are robust. For all posteriors, the behaviour of the posterior median reflects the behaviour of
the IF of the posterior mode. Furthermore, the variability of all posteriors is comparable for values of w close to 0. More
generally, these plots confirm that the genuine and EL posteriors under contamination are much more dispersed than the
ABC-R posterior.

4. Application to linear mixed models

Linear mixed models (LMM) are a popular choice when analysing data in the context of hierarchical, longitudinal or
repeated measures. A general formulation is

y = Xα +

c−1∑
i=1

Ziβi + ε , (8)
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Fig. 2. Sensitivity analysis for marginal ABC-R (a), EL (b) and genuine (c) posteriors for µ (left columns) and σ (right) represented by means of
violin plots. For each violin plot, the central circle represents the posterior median. The horizontal lines denote the corresponding posterior medians
under yw with w = 0.

where y is a n-dimensional vector of response observations, X and Zi are known n × q and n × pi design matrices, α is a
q-vector of unknown fixed effects, the βi are pi-vectors of unobserved random effects (1 ≤ i ≤ c − 1) and ε is a vector of
unobserved errors. The pi levels of each random effect βi are assumed to be independent with mean zero and variance
σ 2
i . Moreover, each random error εi is assumed to be independent with mean zero and variance σ 2

c and β1, . . . , βc−1 and
ε are assumed to be independent.

Here we focus on the classical normal LMM, which assumes that ε ∼ Nn(0n, σ
2
c In) and βi ∼ N(0, σ 2

i ), i = 1, . . . , c − 1.
For a normal LMM, it follows that Y is multivariate normal with E(Y ) = Xα and var(Y ) = V =

∑c
i=1 σ

2
i ZiZ

T
i , where

Zc = In. We assume that the set of d = q + c unknown parameters θ = (α, σ 2) = (α, σ 2
1 , . . . , σ

2
c ) is identifiable. The

validity and performance of this LMM requires strict adherence to the assumed model, which is usually chosen because
it simplifies the analyses and not because it fits exactly the data at hand. The robust procedure discussed in this paper
specifically takes into account the fact that the normal model is only approximate and then it produces statistical analyses
that are stable with respect to outliers, deviations from the model or model misspecifications.

Although the n observations y are not independent, if the random effects are nested, then independent subgroups
of observations can be found. Indeed, in many situations, y can be split into g independent groups of observations yj,



16 E. Ruli, N. Sartori and L. Ventura / Journal of Statistical Planning and Inference 205 (2020) 10–22

j = 1, . . . , g , and the log-likelihood is

ℓ(θ ) = log L(θ ) = −
1
2

g∑
j=1

{
log |Vj| + (yj − Xjα)TV−1

j (yj − Xjα)
}
, (9)

where (y1, . . . , yg ) and X and V are partitioned accordingly. Classical Bayesian inference for θ is based on π (θ |y) ∝

L(θ )π (θ ), where π (θ ) is a prior distribution for θ . However, (9) can be very sensitive to model deviations (Richardson and
Welsh, 1995; Richardson, 1997; Copt and Victoria-Feser, 2006); see also results of the simulation study in Section 4.1.

In the frequentist literature, there are two broad classes of estimators for robust estimation of Gaussian LMM: M-
estimators (see, e.g., Richardson and Welsh, 1995; Richardson, 1997, and references therein) and S-estimators (Copt and
Victoria-Feser, 2006). The latter are generally available for balanced designs whereas the former can be applied to a
wide variety of situations; for instance it can deal with unbalanced designs and robustness with respect to the design
matrix (Richardson, 1997). In this work we focus on M-estimators but it is worth stressing that the idea can be applied
to S-estimators as well. Following Richardson and Welsh (1995), we focus on the system of M-estimating equations

XTV−1/2ψc1 (r) = 0 , (10)

ψc2 (r)
T V−1/2ZiZT

i V
−1/2ψc2 (r)− tr(CPZiZT

i ) = 0, i = 1, . . . , c, (11)

where r = V−1/2(y − Xα) is the vector or scaled marginal residuals, C = Eθ
[
ψc2 (R)ψc2 (R)

T
]
, with R = V−1/2(Y − Xα),

P = V−1
− V−1X(XTV−1X)−1XTV−1 and tr(·) is the trace operator. The function tr(CPZiZi) is a correction factor needed

to ensure consistency at the Gaussian model for each i = 1, . . . , c. Eqs. (10)–(11) are called robust REML II estimating
equations and are bounded versions of restricted likelihood equations. Richardson (1997) shows that the M-estimator
based on (10)–(11) is asymptotically normal with mean equal to the true parameter θ and covariance matrix of the form
(2). The ABC-R procedure in the normal LMM based on (10)–(11) will be studied by means of simulations in Section 4.1
and then applied to a dataset from a clinical study in Section 4.2.

4.1. Simulation study

Let us consider the two-component nested model

yij = µ+ αj + βi + εij , (12)

where µ is the grand mean, αj are the fixed effects, constrained such that
∑q

j=1 αj = 0, βi ∼ N(0, σ 2
1 ) are the random

effects and εij ∼ N(0, σ 2
2 ) is the residual term, for j = 1, . . . , q and i = 1, . . . , g . Model (12) is a particular case of (8)

with c = 2, a single random effect β1 with p1 = g levels and Z1 the unit diagonal matrix. Moreover, the covariate is a
categorical variable with q levels; hence the design matrix is given by q − 1 dummy variables.

We assess the properties of the proposed method via simulations with 500 Monte Carlo replications. For each Monte
Carlo replication, the true values for (σ 2

1 , σ
2
2 ) and for α are drawn uniformly in (1, 10)× (1, 10) and (−5, 5), respectively.

With these values, two datasets of size g are generated: one from the central model and one from the contaminated
model (1 − δ)N(XT

i α, Vi) + δN(XT
i α, 15Vi), where Xi is the matrix of covariates for the ith unit, θ = (α, σ 2

1 , σ
2
2 ) and

δ = 0.10. We consider q = {3, 5, 7} and g = {30, 50, 70}. The prior distributions are α ∼ Nq(0, 102Iq) and (σ 2
1 , σ

2
2 ) ∼

halfCauchy(7)×halfCauchy(7). For each scenario, we fit model (12) in the classical Bayesian way, using an adaptive random
walk Metropolis–Hastings algorithm. The same model is fitted by the ABC-R method using the estimating equations (10)–
(11). As in Richardson and Welsh (1995), we set c1 = 1.345 and c2 = 2.07 and we find θ̃ solving (10)–(11) iteratively
until convergence. The classical REML estimate, computed by the function lmer of the lme4 package, is used as starting
value. In our experiments, the convergence of the solution is quite rapid, i.e. θ̃ stabilises within 10–15 iterations.

We assess the component-wise bias of the posterior median θ̃m by the modulus of θ̃m − θ0 in logarithmic scale, where
θ0 is the true value. Moreover, the efficiency of the classical Bayesian estimator relative to the ABC-R estimator is assessed
through the index MDMCMC/MDABC , where MD = med(|θ̃m −θ0|); see Richardson and Welsh (1995) and Copt and Victoria-
Feser (2006). In addition, for each Monte Carlo replication we compute the Euclidean distance of θ̃m from θ0, which can
be considered as a global measure of bias. Contrary to Richardson and Welsh (1995), we consider a different θ0 for each
Monte Carlo replication. The bias and efficiency of the classical Bayesian posterior and of the ABC-R posterior for the 500
replications are illustrated in Figs. 3 and 4, respectively.

Under the central model, inference with the ABC-R and the classical Bayesian posteriors is roughly similar, i.e. both bias
and efficiency compare equally well across the two methods. This holds both for the fixed effects α and for the variance
components (σ 2

1 , σ
2
2 ). Under the contaminated model, we notice important differences among ABC-R and the classical

Bayesian estimation. In particular, θ̃m based on ABC-R is less biased, both globally and on a component by component
basis, and more efficient. The gain in efficiency is particularly evident for the variance components.
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Fig. 3. Bias of the ABC-R and classical (MCMC) Bayesian estimation of LMM under either the central (Full) or the contaminated model (Mix) for
varying g and q. Rows refer to a parameter or combination of parameters (row all_par); columns within each cell refer to different values of q;
e.g. the last two rows (starting from top) have only two boxplots since α6 and α7 are available only with q = 7.

4.2. Effects of GRP94-based complexes on IL-10

The GRP94 dataset (Tramentozzi et al., 2016) concerns the measurement of glucose-regulated protein94 in plasma
or other biological fluids and the study of its role as a tumour antigen, i.e. its ability to alter the production of
immunoglobulines (IgGs) and inflammatory cytokines in the peripheral blood mononuclear cells (PBMCs) of tumour
patients. The study involved 27 patients admitted to the division of General Surgery of the Civil Hospital of Padova for
ablation of primary, solid cancer of the gastro-intestinal tract. For each patient, gender, age (expressed in years), type
and stage of tumour (ordinal scales of four levels) are given. Patients’ plasma and PBMCs were challenged with GRP94
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Fig. 4. Efficiency of the ABC-R compared to the classical Bayesian estimation of LMM under the central (Full) and the contaminated models (Mix)
for varying g and q. Rows refer to a parameter and columns within each cell refer to different values of q; e.g. the last two rows (starting from
top) have only two boxplots since α6 and α7 are available only with q = 7.

complexes and the level of IgG and of the cytokines: interferonγ (IFNγ ), interleukin 6 (IL-6), interleukin 10 (IL-10) and
tumour necrosis factor α (TNFα) were measured. Owing to time and cost constraints, for patients IDs 17, 27 and 28 only
IgG was measured. The following five treatments were considered: GRP94 at the dose of either 10 ng/ml or 100 ng/ml,
GRP94 in complex with IgG (GRP94+IgG) at the doses 10 ng/ml or 100 ng/ml and IgG at the dose 100 ng/ml. Finally,
baseline measurements of IgG and of the aforementioned cytokines were taken from untreated PMBCs. Although fresh
patient’s plasma and PMBCs are taken for each treatment and patient, the resulting measures are likely to be correlated
since plasma and PMBCs are taken from the same patient. Hence, a LMM can be suitable for these data. Using paired Mann–
Whitney tests, Tramentozzi et al. (2016) show that GRP94 in complex with IgG at the higher dose can significantly inhibit
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Fig. 5. Strip plots of IgG, IFNγ , IL-6, IL-10 and TNFα (in logarithmic scale) measured from PBMCs at baseline and after challenging with complexes
of GRP94 and IgG. Values on the horizontal axis are (arbitrarily) ordered according to patient ID. Patient ID 15 was removed for clinical reasons and
cytokines’ measurements for patients with ID 17, 27 and 28 are missing.

the production of IgG, whereas GRP94 at both doses can stimulate the secretion of IL-6 and TNFα from PBMCs of cancer
patients. In addition, some of the differences between treatments were significant for a specific gender; see Tramentozzi
et al. (2016) for full details.

A feature of these data is the presence of extreme observations, both at baseline and challenged PMBCs-based
measurements, as it can be seen from the strip plots in Fig. 5. Such extreme observations induce high variability on
the response measurements, especially for IFNγ , IL-6, IL-10 and TNFα. Hence, one must be cautious when fitting a LMM
to such data.

We fit the two-component nested LMM (12) to the IL-10 with ABC-R using estimating equations (10)–(11). Since all
measures are positive and some of them are highly skewed, a logarithmic transformation is used in order to alleviate
distributional skewness. Furthermore, since Tramentozzi et al. (2016) highlight a possible gender effect (especially with
respect to the cytokines) we also check for gender effects by including an interaction with gender. The model with
interaction is

yi = XT
i α + XT

i × wiγ + βi16 + εi , i = 1, . . . , 24, (13)

where wi is a dummy variable for gender, γ is the fixed effect of the treatment–gender interaction, and 16 is the unit
vector of dimension 6. The interaction model (13) has 12 unknown fixed effects (α, γ ).

As in this case there is no extra-experimental information, we assume vague priors. In particular, αj ∼ N(0, 100) and
γj ∼ N(0, 100), for j = 1, . . . , 6. For the variance components, following Gelman (2006), we assume σ 2

1 ∼ halfCauchy(7)
and σ 2

2 ∼ halfCauchy(7) in both models. However, we note that one of the features of the proposed method is the
simultaneous ability to have robustness to possible model misspecification and to include prior information on model
parameters, if available.

ABC-R posterior samples are drawn using Algorithm 1. For comparison purposes, we fit also a classical Bayesian LMM
with the aforementioned prior and an adaptive random walk Metropolis–Hastings algorithm is used for sampling from
this posterior. Fig. 6 compares the ABC-R and the classical posterior for a subset of the fixed effects of models (12) and
(13) by means of kernel density estimations. The parameters shown are those referring to the treatments based on GRP94
at the dose of 10 ng/ml (GRP94_10), GRP94 at the dose of 100 ng/ml (GRP94_100) and GRP94 in complex with IgG at
the dose of 100 ng/ml (GRP94+IgG_100), which according to Tramentozzi et al. (2016) are the most prominent. The
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Fig. 6. Comparison of robust (ABC-R) and full (MCMC) posterior distributions of the fixed effects of the LMM without interaction with gender
(12) and with interaction (13), fitted to the log IL-10. The first row refers to the posterior of the effects of the treatments against the baseline
without interaction; the second refers to the posterior considering interactions of the treatments with gender (with baseline and female being
the reference categories). Numbers within parenthesis refer to the FBST evidence in favour of H0 that the parameter is equal to zero; inside the
parenthesis, the first (last) value from left refers to the ABC-R (classical) posterior. Dashed vertical lines correspond to components of θ̃ .

first row (d1) illustrates the marginal posteriors of the parameters of (12) (with baseline being the reference category).
The second row (d2) shows the marginal posteriors of the parameters of (13) (with baseline and female being the
reference categories). Numbers within parenthesis in the plot subtitles give the evidence in favour of the null hypothesis
H0 that the parameter is equal to zero, computed under the Full Bayesian Significance Testing (FBST) setting of Pereira
et al. (2008); inside the parenthesis, the first (last) value from left refers to the ABC-R (classical) posterior.

The FBST in favour of H0 has been proposed by Pereira and Stern (1999) as an intuitive measure of evidence, defined
as the posterior probability related to the less probable points of the parametric space. It favours H0 whenever it is large
and it is based on a specific loss function and thus the decision made under this procedure is the action that minimises
the corresponding posterior risk (Pereira et al., 2008). The FBST solves the drawback of the usual Bayesian procedure
for testing based on the Bayes factor (BF), that is, when the null hypothesis is precise and improper or vague priors are
assumed, the BF can be undetermined and it can lead to the so-called Jeffreys–Lindley paradox.

There is a high posterior probability that the effect of GRP94_100 with or without interaction with gender is different
from the baseline, since the evidence of H0 is rather low under the classical Bayesian LMM. However, such effects vanish
under the robust ABC-R procedure. This is an indication to the fact that the classical LMM posterior in the case of log
IL-10 is likely to be driven by few extreme observations.

5. Discussion

Currently, the only available approach for obtaining posterior distributions explicitly using robust unbiased estimating
functions is through pseudo-likelihood methods such as the empirical or the quasi-likelihood (Greco et al., 2008). Bissiri
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et al. (2016) show how robust posterior distribution can be based on generic loss functions, in some special cases derived
from robust estimating equations. In this work, we present an alternative approach that directly incorporates robust
estimating functions into approximate Bayesian computation techniques. With respect to available approaches based on
pseudo-likelihoods, our method can be computationally faster when the evaluation of the estimating function is expensive.

Motivated by the GRP94 dataset, we focused on two-component nested LMM, but more complex models can be fitted
since the estimating equations (10)–(11) are very general (see Richardson, 1997). For instance, it is possible to deal with
models with multiple random effects or even with robustness with respect to the design matrix. An R implementation of
the proposed method is provided in the robustBLME package (Ruli et al., 2018).

The proposed method can be applied to any unbiased robust estimating equations, such as S-estimating equations.
The study of the proposed approach with S-estimating in the proposed approach is left for future work.

From a practical perspective we recommend to fit both classical and robust LMMs and compare their posteriors, say
by FSBT. If the differences are mild then the posterior is probably not impacted by outliers so the classical LMM can be
safely used. On the contrary, if there are important differences between them, then it is likely that the LMM posterior is
driven by outliers and therefore the robust posterior would be a safer choice.
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Appendix. Computational details

Provided simulation from Fθ is fast, the main demanding requirement of the proposed method is essentially the
computation of the observed θ̃ and the scaling matrix BR(θ ) evaluated at θ̃ . Given that, for large sample sizes,

ηR(y; θ ) ∼ Nd(0d, Id) ,

where 0d is a d-vector of zeros and Id is the identity matrix of order d, it is reasonable to replace Kh(·) with the multivariate
normal density centred at zero and with covariance matrix hId. In order to choose the bandwidth h we consider several
pilot runs of the ABC-R algorithm for a grid of h values, and select the value of h that delivers approximately 0.1%
acceptance ratio (as done, for instance, by Fearnhead and Prangle, 2012).

Contrary to other ABC–MCMC algorithms in which the proposal requires pilot runs (see, Cabras et al., 2015, for building
proposal distributions in ABC–MCMC), in our case a scaling matrix for the proposal q(·|·) can be readily build, almost
effortlessly, by using the usual sandwich formula (2) evaluated at θ̃ (see also Ruli et al., 2016). Even in cases in which H(θ )
and J(θ ) are not analytically available, they can be straightforwardly estimated via simulation. Indeed, in our experience,
100–500 samples from the model Fθ̃ , give estimates with reasonably low Monte Carlo variability (see also Cattelan and
Sartori, 2015). Throughout the examples considered we use the multivariate t-density with 5 degrees of freedom as the
proposal density q(·|·) and the ABC-R is always started from θ̃ . In the ABC algorithm, we fix the tolerance threshold in
order to give a pre-specified but small acceptance ratio, as frequently done in the ABC literature. In our experimentations
we found that an acceptance value of 0.1% gives satisfactory results.
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