
Haphazard intentional allocation and rerandomization to improve covariate balance in
experiments
Marcelo S. Lauretto, Rafael B. Stern, Kari L. Morgan, Margaret H. Clark, and Julio M. Stern

Citation: AIP Conference Proceedings 1853, 050003 (2017); doi: 10.1063/1.4985356
View online: http://dx.doi.org/10.1063/1.4985356
View Table of Contents: http://aip.scitation.org/toc/apc/1853/1
Published by the American Institute of Physics

Articles you may be interested in
 Elements of the cognitive universe
AIP Conference Proceedings 1853, 040002 (2017); 10.1063/1.4985353

 Maximum entropy PDF projection: A review
AIP Conference Proceedings 1853, 070001 (2017); 10.1063/1.4985362

 On portfolio risk diversification
AIP Conference Proceedings 1853, 070002 (2017); 10.1063/1.4985363

 Consistent maximum entropy representations of pipe flow networks
AIP Conference Proceedings 1853, 070004 (2017); 10.1063/1.4985365

 Preface: 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering
AIP Conference Proceedings 1853, 010001 (2017); 10.1063/1.4985348

 Maximum entropy analysis of transport networks
AIP Conference Proceedings 1853, 070003 (2017); 10.1063/1.4985364

http://aip.scitation.org/author/Lauretto%2C+Marcelo+S
http://aip.scitation.org/author/Stern%2C+Rafael+B
http://aip.scitation.org/author/Morgan%2C+Kari+L
http://aip.scitation.org/author/Clark%2C+Margaret+H
http://aip.scitation.org/author/Stern%2C+Julio+M
/loi/apc
http://dx.doi.org/10.1063/1.4985356
http://aip.scitation.org/toc/apc/1853/1
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4985353
http://aip.scitation.org/doi/abs/10.1063/1.4985362
http://aip.scitation.org/doi/abs/10.1063/1.4985363
http://aip.scitation.org/doi/abs/10.1063/1.4985365
http://aip.scitation.org/doi/abs/10.1063/1.4985348
http://aip.scitation.org/doi/abs/10.1063/1.4985348
http://aip.scitation.org/doi/abs/10.1063/1.4985364


Haphazard Intentional Allocation and Rerandomization
to Improve Covariate Balance in Experiments

Marcelo S. Lauretto1, Rafael B. Stern2, Kari L. Morgan3, Margaret H. Clark4 and
Julio M. Stern1,a)

1Universidade de S˜ao Paulo, Brazil
2Universidade Federal de S˜ao Carlos, Brazil

 3Penn State University, USA
4University of Central Florida, USA

a)Corresponding author: jstern@ime.usp.br

Abstract. In randomized experiments, a single random allocation can yield groups that differ meaningfully with respect to a
given covariate. Furthermore, it is only feasible to use classical control procedures of allocation for a very modest number of
covariates. As a response to this problem, Morgan and Rubin [11, 12] proposed an approach based on rerandomization (repeated
randomization) to ensure that the final allocation obtained is balanced. However, despite the benefits of the rerandomization method,
it has an exponential computational cost in the number of covariates, for fixed balance constraints. Here, we propose the use of
haphazard intentional allocation, an alternative allocation method based on optimal balance of the covariates extended by random
noise, see Lauretto et al. [7]. Our proposed method can be divided into a randomization and an optimization step. The randomization
step consists of creating new (artificial) covariates according a specified distribution. The optimization step consists of finding
the allocation that minimizes a linear combination of the imbalance in the original covariates and the imbalance in the artificial
covariates. Numerical experiments on real and simulated data show a remarkable superiority of haphazard intentional allocation
over the rerandomization method, both in terms of balance between groups and in terms of inference power.

INTRODUCTION

This paper addresses the problem of allocation in the design of experiments, which is illustrated with the following
example: Consider a research laboratory which develops a new drug. In order to test the effectiveness of this drug, the
laboratory may treat some patients with the new drug and some with a placebo. The problem of allocation consists
of determining, for each patient in the trial, whether he will be treated with the new drug or the placebo. Often, the
main interest is in understanding the effectiveness of the drug according to some covariates, such as gender, age, blood
type, etc. In order to obtain meaningful conclusions from the study, the researchers often wish the allocation to be
balanced, in the sense that the distribution of the covariates be the same among the two groups of patients (new drug
and placebo), and at the same time to be free of ad-hoc interferences in allocation decisions. The standard solution for
this problem involves a random allocation.

The role of randomization is a controversial subject in Bayesian statistics. This controversy stems from the
following result in Decision Theory: there exists no randomized decision which is more desirable than the optimal
deterministic decision. Based on this result, Lindley [8] argues that randomization is not a necessary condition for an
adequate experiment. Indeed, according to Lindley, the experiment is adequate as long it is well-balanced according
to the relevant covariates. In this sense, a randomized experiment might not be adequate, since it can yield groups that
differ meaningfully with respect to a covariate. Lindley concludes from this approach based on Decision Theory that
an adequate allocation can be obtained by deterministically selecting a balanced allocation.

However, one can argue that Decision Theory is not the adequate framework for the design of experiments. While
Decision Theory is concerned with the preferences of a single agent, the design of experiments should often consider
the preferences of several agents simultaneously. For instance, the goal of experiments is often to prove an hypothesis
to others [6]. These situations can be covered by frameworks such as non-cooperative and cooperative game theory
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[1]. In these frameworks, good experimental designs often require a trade-off between purposive balance of covariates
and randomization.

Morgan and Rubin [11, 12] propose an approach to allocation that satisfies these conditions. This approach is
based on rerandomization (repeated randomization) to ensure that the allocation that is obtained is balanced. One can
divide the algorithm in Morgan and Rubin [11] into two processes. On the base level, one obtains proposed allocations
from a simple random sampling. This process guarantees the stochastic behavior of the chosen allocation. On the upper
level, one rejects the proposals until the allocation that is obtained is sufficiently balanced. This process optimizes the
allocation with respect to its balance.

Despite the benefits of the above algorithm, it can be hard to use it in a way that yields a highly balanced
allocation at a low computational cost. The following two examples illustrate this idea in a problem of allocation into
two groups of the same size:

1. The probability that a simple random sampling generates an allocation that is significantly unbalanced (at level
α) for at least one out of d covariates is proportinal to (1 − α)d. As a result, the expected number of rerandom-
izations that are required in order for the sample to be balanced in every covariate grows exponentially with the
number of covariates.

2. Consider a group of 2n people such that n are male and n are female. Although there exists approximately
22n/
√

n allocations that are perfectly balanced with respect to gender, random sampling obtains, with high

probability, allocations with an imbalance of the order of n
1
2 individuals. Furthermore, the expected number of

simple random allocations that must be performed until perfect balance is obtained is of the order of n
1
2 . If one

were to control for d binary covariates, then the expected number of such allocations is of the order of n
d
2 .

Here, we propose the use of haphazard intentional allocation, an alternative allocation process that is an adapta-
tion of the method described in Lauretto et al. [7], see also Fossaluza et al. [2]. Similarly to the allocation process in
Morgan and Rubin [11], our proposal can be divided into a randomization and an optimization step. The randomiza-
tion step consists of creating new covariates that are distributed according to a standard multivariate normal. We say
that these new covariates are artificial and that the original covariates are of interest. The optimization step consists
of finding the allocation that minimizes a linear combination of the imbalance in the covariates of interest and the
imbalance in the artificial covariates.

HAPHAZARD ALLOCATION

Let X denote the covariates of interest. X is a matrix in Rn×d, where n is the number of individuals to be allocated and
d is the number of covariates of interest. An allocation consists of assigning to each individual a group chosen from a
set of possible groups, G. For simplicity, we assume that G = {0, 1}. We denote an allocation, w, by a 1 × n vector in
Gn. The goal of the allocation problem is to generate an allocation that, with high probability, is close to the infimum
of the imbalance between groups with respect to individuals covariate values, measured by a loss function, L(w,X).

The haphazard allocation consists of finding the minimum of a noisy version of the loss function. Let Z be
an artificially generated matrix in Rn×k, with elements that are independent and identically distributed according to
the standard normal distribution. For a given tuning parameter, λ ∈ [0, 1], the haphazard allocation finds a feasible
allocation, w∗, that minimizes (1 − λ)L(w,X) + λL(w,Z). λ controls the amount of perturbation that is added to the
original loss, L(w,X). If λ = 0, then w∗ is the deterministic minimizer of L(w,X). If λ = 1, then w∗ is the minimizer
of the unrelated random loss, L(w,Z). By choosing an intermediate value of λ, one can obtain w∗ to be a random
allocation such that, with a high probability, L(w∗,X), is close to the infimum loss.

For example, Morgan and Rubin [11] discusses the case in which the loss function is the Mahalanobis distance
between the covariates of interest in each group. In order to define this distance, let A be an arbitrary matrix in Rn×m.
Furthermore, define A∗ := AL, where L is the Cholesky decomposition [3] of Cov(A)−1 = LtL. For an allocation w,

let A∗1 and A∗0 denote the averages of each column of A∗ over individuals allocated to, respectively, groups 1 and 0.
That is,

A∗1 :=
w

1 · wt A∗ and A∗1 :=
(1 − w)

1 · (1 − w)t A∗ . (1)

The Mahalanobis distance between the average of the column values of A in each group defined by w is defined
as:

M(w,A) := m−1‖A∗1 − A∗0‖22 . (2)
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FIGURE 1. Median Mahalanobis loss for each allocation method and time budget

Morgan and Rubin [11] takes the loss function to be M(w,X).
Commonly, one wishes to obtain an allocation with a fixed number of individuals assigned to each group. That

is, there exist integers n1 and n0 such that n1 + n0 = n, 1 ·wt = n1 and 1 · (1−w)t = n0. One can take these restrictions
into consideration by taking the haphazard allocation with the Mahalanobis distance as the solution to the following
optimization problem:

minimize (1 − λ) M(w,X) + λ M(w,Z)
subject to 1 · wt = n1

1 · (1 − w)t = n0

w ∈ {0, 1}n
(3)

The description above is a mixed-integer quadratic programming problem (MIQP) [13, 9, 10, 18] and can be
solved by the use of standard optimization software. Instead of directly solving the problem defined by Equation 3, one
can approximate this solution through a mixed-integer linear programming problem (MILP). This is highly desirable,
since a quadratic programming problem is computationally much more expensive than a linear programming problem.

Ward and Wendell [16] define a surrogate loss function that approximates M(A,w), as a linear combination of
the norms l1 and l∞.

H(w,A) := m−1
(
‖A∗1 − A∗0‖1 +

√
m ‖A∗1 − A∗0‖∞

)
(4)

The minimization of this hybrid norm yields a mixed-integer linear programming problem, see Murtagh [13] and
Wolsey and Nemhauser [18]

minimize (1 − λ) H(w,X) + λ H(w,Z)
subject to 1 · wt = n1

1 · (1 − w)t = n0

w ∈ {0, 1}n
(5)

NUMERICAL EXPERIMENTS

In this section we describe a numerical experiment conducted in order to evaluate the performance of the haphazard
allocation method as defined in problem 5 vis-à-vis the rerandomization method, as described by Morgan and Rubin
[11, 12]. Our empirical analysis was based on the dataset described at Shadish et al. [15], the same dataset used in the
paper of Morgan and Rubin [12]. This dataset describes volunteer students from introductory psychology classes at
a public university, that were assigned randomly to two experimental groups of cardinality n0 = 210 and n1 = 235.
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FIGURE 2. Difference between groups 0 and 1 with respect to average of standardized covariate values for each type of allocation.
Time budget is 300s/allocation.

The dataset covariates relate to demographic characteristics, previous knowledge in vocabulary and mathematics,
personality, mathematics anxiety, depression level and posttest scores on vocabulary and mathematics. This same
dataset had also been used by Morgan and Rubin [12] for the empirical analysis of rerandomization method. From
the 31 original covariates, we kept the maximum subset (24 covariates) with a non-singular covariance matrix and
Cholesky factors.

In our empirical study, we explore the trade-off between randomization and optimization by using well calibrated
values for the parameter λ, as defined in the next equation. The transformation between parameters λ and λ∗ is devised
to equilibrate the weights given to the terms of Equation 5 corresponding to the covariates of interest and artificial,
which have distinct dimensions, d and k.

λ = λ∗ /
[
λ∗(1 − k/d) + k/d

]
, where λ∗ ∈ {0.01, 0.1, 0.5}. (6)

The performance of the haphazard randomization method was evaluated on a bi-dimensional grid were the pa-
rameter λ took the values defined by Equation 6, and processing time budget was set to 5, 10, 20, 60, 300 and 900
seconds. For each point of this grid, the haphazard allocation method was repeated 500 times (each time with a
fresh random matrix of artificial covariates, Z). For comparison, we drew 500 allocations using the rerandomization
method, in the slightly modified fixed-time version, that chooses the best allocation obtained with a given processing
time budget. Finally, as a benchmark, we also drew 500 allocations using the standard (pure) randomization.
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FIGURE 3. 95% percentile of the Yule correlation between allocations for each allocation method and time budget

Computational tests were conducted on a desktop computer with a processor Intel I7-4930K (3.4Ghz, 6 cores,
2 threads/core), Motherboard ASUS P9X79 LE, 24Gb RAM DDR3 and Linux Ubuntu Desktop v.14.04. The MILP
problems were solved using Gurobi v.6.5.2 [5], a high performance solver that allows us to easily control all parameters
of interest. Each allocation problem – among the batch of 500 allocations per allocation method, time budget and λ
value – was distributed to one of the 12 logical cores available.

Figure 1 presents the median of the Mahalanobis loss function for the allocations obtained by the haphazard,
rerandomization and pure randomization methods. For haphazard and rerandomization methods, the larger the time
budget, the smaller the median value of the loss function. However, not only the absolute medians of the loss function
yielded by haphazard allocations are much smaller (by an average factor 5.9), but also their decrease rate with time
budget is considerably higher: the median loss in haphazard method decreases 33% from time budgets 5s to 900s,
against 23% in rerandomization. In the haphazard allocation, the smaller the value of λ, the less noise is added to
the optimization problem and, therefore, the smaller the median value of the loss function. Choosing, e.g., λ∗ = 0.1,
haphazard allocation obtains a median loss that is almost 1/7 of the one that is obtained using rerandomization, and
1/17 of that obtained using pure randomization.

Figure 2 illustrates the difference in covariate balance between haphazard (λ∗ = 0.1) and fixed-time rerandom-
ization allocations (900s for both methods). It can be easily seen that standardized differences on covariates between
groups 0 and 1 are remarkably smaller in haphazard allocations than in rerandomization method that, in turn, are
remarkably smaller than using pure randomization.

Figure 3 presents the 95% percentile of the Yule coefficient between pairs of observations. For each pair of
individuals, for (i, j) ∈ {0, 1}2, let zi j denote the number of allocations such that the first individual is assigned to
group i and the second individual is assigned to group j. The Yule coefficient for pairs of observation is computed as

Y = (z00z11 − z01z10) / (z00z11 + z01z10). (7)

This coefficient ranges in the interval [−1, 1] and measures how often the individuals under consideration are allocated
to the same or to different groups. It equals zero when the numbers of agreement and disagreement pairs is equal; and
is maximum (−1 or +1) in the presence of total negative (complete disagreement) or positive (complete agreement)
association. The Yule coefficient for each pair of individuals was computed over the 500 allocations, and Figure 3
displays the 95% percentile taken over all pairs of individuals. The pure randomization method provides the lowest
benchmark for Yule coefficient. As expected, the fixed-time rerandomization method attains the next lowest value
of the Yule coefficient. Indeed, it attains almost the same coefficient as simple random allocation. In the grid set in
this study, the haphazard allocations method was less sensitive to the choice of λ, and the major role was played by
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FIGURE 4. Power curves for each allocation method for testing τ = 0 using a rerandomization test. Difference between haphazard
and rerandomization allocations with respect to the power curves for testing τ = 0 using a rerandomization test.

the time budget. The importance of the time budget parameter can be intuitively understood as follows: A large time
budget implies a very precise solution that, in turn, is highly sensitive even to small perturbations. For the maximum
time budget on the experimental grid, 900 seconds, haphazard allocation obtains a Yule coefficient of 0.15, only 3%
higher than fixed-time rerandomization that, in turn, is 2% higher that pure randomization.

Although the above measures are relevant, they can also be seen as a proxy for optimizing other statistical
properties. For instance, one might be interested in testing the existence of a causal effect of the group assignment on
a given response variable. For example, consider that, for each j ∈ {0, 1}, Y j is a vector of observations of a response
variable when all individuals are assigned to group j. Assume that Y0

i = εi +
∑

j (Xi, j − X̄, j) /Var(X, j), where ε are

independent standard normals. Also, Y1
i = Y0

i + τ. Figures 4 illustrates the difference of power in the allocations
obtained by the haphazard and the rerandomization methods for a rerandomization test for the hypothesis τ = 0. The
tests obtained using the haphazard allocations are uniformly more powerful over τ than the ones obtained using the
rerandomization allocations. Figure 4 shows that the difference in power between these allocation methods can be as
high as 0.6 (at τ = 0.4).
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FINAL COMMENTS

Results presented in this paper indicate that the haphazard intentional allocation method is a promising tool for design
of experiments. In numerical experiments performed on a real dataset used for a two-arms study, the haphazard allo-
cations method outperformed the alternative fixed-time rerandomization method by a factor 6.7 concerning the loss
function of imbalance between the allocated groups. At the same time, measures of association related to possible sys-
tematic bias in non-random allocation had a degradation of less than 3%. Besides, permutation tests using haphazard
allocations are uniformly more powerful than those obtained using the rerandomization allocations.

In future works, we shall explore the use of the haphazard intentional allocation and rerandomization methods in
the application fields of Clinical Trials and Jurimetrics. Future works shall also consider the use of alternative surrogate
Loss functions for balance performance, such as CVaR norms, Deltoidal norms and Block norms [14, 4, 17].
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