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ABSTRACT. Gene clustering is a useful exploratory technique 
to group together genes with similar expression levels under dis-
tinct cell cycle phases or distinct conditions. It helps the biologist 
to identify potentially meaningful relationships between genes. In 
this study, we propose a clustering method based on multivariate 
normal mixture models, where the number of clusters is predicted 
via sequential hypothesis tests: at each step, the method considers a 
mixture model of m components (m = 2 in the first step) and tests if 
in fact it should be m - 1. If the hypothesis is rejected, m is increased 
and a new test is carried out. The method continues (increasing m) 
until the hypothesis is accepted. The theoretical core of the method 
is the full Bayesian significance test, an intuitive Bayesian approach, 
which needs no model complexity penalization nor positive prob-
abilities for sharp hypotheses. Numerical experiments were based 
on a cDNA microarray dataset consisting of expression levels of 205 
genes belonging to four functional categories, for 10 distinct strains 
of Saccharomyces cerevisiae. To analyze the method’s sensitivity to 
data dimension, we performed principal components analysis on the 
original dataset and predicted the number of classes using 2 to 10 
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principal components. Compared to Mclust (model-based cluster-
ing), our method shows more consistent results.  

Key words: Gene clustering; Mixture models; Significance test;
Expression data analysis

INTRODUCTION

Clustering is a useful exploratory technique for gene expression data, as it groups 
similar objects together and allows the biologist to identify potentially meaningful relation-
ships between the objects - e.g., genes, tissues, etc. (Yeung et al., 2003). In gene clustering, the 
interest is to group genes with similar expression levels under distinct phases of the cell cycle, 
or under distinct conditions (e.g., normal vs cancer tissues).

Several clustering methods are available in the literature and have been widely ap-
plied in expression data analysis - see below. A particular family of parametric methods based 
on normal mixture models shows good comparative results (Banfield and Raftery, 1993; Bier-
nacki and Govaert, 1998; Yeung et al., 2001; Thalamuthu et al., 2006).

In this study, we propose a clustering method based on normal mixture models, where 
the number of clusters is decided by sequential significance tests. The starting point is to con-
sider a mixture model with two clusters and to test if one cluster’s weight is zero. If, in this first 
step, the null hypothesis is rejected, a new cluster must be considered. A new test of two against 
three clusters is performed. Again, if the null hypothesis is rejected, a fourth cluster must be 
considered. The theoretical core of the method is the full Bayesian significance test (FBST), 
an intuitive Bayesian approach that needs no model complexity penalization nor positive prob-
abilities for sharp hypotheses. In this aspect, FBST is an intrinsic regularization criterion.

In Material and Methods section, we introduce the FBST and the theory and implementa-
tion of normal mixture models in the FBST context, and describe the method for deciding the num-
ber of mixture components. In Data Analysis section, we describe the analysis performed on a gene 
expression dataset, and in Discussion and Final Remarks section, we discuss the results obtained.

In the remainder of this section, we briefly introduce some classic methods widely 
applied to gene expression analysis - hierarchical clustering (HC), K-means, fuzzy C-means, 
support vector clustering, and mixture model clustering. In particular, we briefly discuss two 
approaches for determination of the number of clusters in mixture models.

Hierarchical clustering

This is one of the most widely used algorithms, due to its conceptual and practical sim-
plicity. Agglomerative HC (Johnson, 1967) starts by considering the n data points as n clusters, 
and at each iterative stage, a pair of clusters with the shortest distance between them is joined 
to form a new cluster. Divisive HC starts by considering a unique cluster and at each iterative 
step a cluster is divided in two. In both methods, a hierarchical tree is constructed after n - 1 
steps. Initially, a distance (or dissimilarity) matrix of all pairs of points must be computed, using 
some distance function (Euclidean, Mahalanobis, Manhattan, etc.). To define distances between 
two clusters, different linkages including single linkage (shortest pair-wise distance), complete 
linkage (largest distance) or average linkage (average distance) may be chosen.
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Two difficulties with this method are its lack of robustness due to local optimization 
and the sensitivity of the results to different distance and linkage criteria used.

K-means

Proposed by MacQueen (1967), K-means aims to split the data into K clusters by 
minimizing the within cluster dispersion 

where C1 … CK denotes the clusters, vj is the center of cluster j and ||.|| denotes Euclidean dis-
tance. The method starts with K arbitrary cluster centers. Each step consists in labeling data 
points with their nearest cluster centers, and to update the centers of the new clusters. The pro-
cedure stops when the clusters formed at two consecutive steps are the same. One way to avoid 
the dependence on the initial centers is to run K-means algorithm multiple times with random 
initial centers and select the center solution with the smallest within cluster sum of squares.

Fuzzy C-means

This algorithm aims to find a partition of C clusters, which minimizes the weighted 
sum of within cluster distances (Dunn, 1973; Bezdek, 1981). Formally, the method minimizes 
the objective function

(Equation 1)

(Equation 2)

where vj is the center of cluster j, uij is the probability of point i belonging to cluster j, d is a 
function distance (usually the Euclidean distance) and m >1 is the Fuzzy parameter.

Fuzzy partitioning is carried out through an iterative optimization of the objective 
function shown above, with the update of membership uij and the cluster center cj by: 

(Equation 3)

Support vector clustering

In support vector clustering (Ben-Hur et al., 2001), data points are mapped from data 
space to a high dimensional feature space using a Gaussian kernel. In feature space, the algo-
rithm looks for the smallest sphere that encloses the image of the data. This sphere is mapped 
back to data space, where it forms a set of contours, which enclose the data points. These 
contours are interpreted as cluster boundaries, and points enclosed by each separate contour 
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are associated with the same cluster. As the width parameter of the Gaussian kernel is de-
creased, the number of disconnected in data space increases, leading to an increasing number 
of clusters. Since the contours can be interpreted as delineating the support of the underlying 
probability distribution, the algorithm can be viewed as one identifying valleys in this prob-
ability distribution.

Mixture model clustering

In a mixture model, the probability density function (pdf) is a linear combination of 
several pdf’s; that is,

(Equation 4)

where f (. | ψ) is a given parametric family of densities indexed by a parameter ψ (usually normal). 
In the classification context, given a dataset X, each observation is assumed to have arisen from 
one of m (possibly unknown) groups. The mixture proportion wk represents the relative frequency 
of group k in the population. This model provides a framework from which observations may be 
clustered together into groups for discrimination or classification (Stephens, 1997).

One important aspect of mixture models is that the mixture parameters (cluster propor-
tions, means and covariance structures) provide, in a compact form, the structural information 
of the sample space. Moreover, the classification probabilities assigned by the mixture model 
for the sample data are also more suitable and informative than the cluster labels provided by 
some traditional clustering methods.

To decide the number of components, information criteria are commonly used. Akai-
ke (1974) information criterion (AIC) and Schwartz’ Bayesian information criterion (BIC) 
(Schwarz, 1978; Fraley and Raftery, 1999) are the most often used, and are computed by 

(Equation 5)

where λ is the maximum model log-likelihood, κ its number of parameters, and n the sample 
size. These are regularization criteria, weighting the model fit against the number of parameters. 
Larger AIC and BIC scores indicate stronger evidence for the corresponding model.

One alternative approach is the reversible jump Markov Chain Monte Carlo (MCMC) 
method (Richardson and Green, 1997), which is capable of “jumping” between the parameter 
subspaces corresponding to different numbers of components in the mixture. A sample from 
the full joint distribution of all unknown variables is thereby generated and used as a basis for 
estimating the number of components.

In the family of mixture model approaches, the software Mclust (Banfield and Raftery, 
1993; Fraley and Raftery, 1999) is available as an R package and has been used in many applica-
tions. In Mclust, each covariance matrix is parameterized by eigenvalue decomposition in the form 

(Equation 6)

where Qk is the orthogonal matrix of eigenvectors, Dk is a diagonal matrix whose elements are 
proportional to the eigenvalues of Vk, and λk is a scalar. Qk determines the orientation of the 
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principal components of Vk, Dk determines its shape and λk determines its volume. Different 
constraints over some of these parameters provide several alternative models (Celeux et al., 
1996), some of them implemented in Mclust. Given a specific covariance model and number 
of components, the weights wk, the mean vectors bk and constrained covariance matrixes Vk 

are estimated via the expectation-maximization (EM) algorithm (described later in this study). 
The variance structure and the number of components are selected via BIC. In this paper, the 
performance of our proposed method is compared to Mclust.

MATERIAL AND METHODS

The full Bayesian significance test

The FBST was proposed by Pereira and Stern (1999) as a coherent and intuitive test. 
It considers the parameter space, Θ, as a subset of Rn, and the hypothesis is defined as a further 
restricted subset defined by vector valued inequality and equality constraints:

(Equation 7)

For simplicity, we often use H for ΘH. FBST is particularly focused on precise hypotheses, 
with dim(ΘH)<dim(Θ). The posterior probability density function is denoted by f(θ).

The computation of the evidence measure used on the FBST is performed in two steps:
The optimization step consists of finding f *, the maximum (supremum) of the poste-

rior under the null hypothesis.
The integration step consists of integrating the posterior density over the tangential set 

T, where the posterior is higher than anywhere in the hypothesis, i.e., 

(Equation 8)

(Equation 9)

where: 

The measure ev*(H) is the evidence against H, and ev(H) = 1 - ev*(H) is the evidence 
supporting (or in favor of) H. Intuitively, if ev*(H) is “large”, T is “heavy”, and the hypothesis 
set is in a region of “low” posterior density, meaning a “strong” evidence against H.

For a hypothesis test procedure, a critical level τ must be chosen such that H is re-
jected if and only if ev*(H) > τ. We discuss briefly some criteria in the last subsection. 

Multivariate normal mixtures 

In a d-dimensional multivariate finite mixture model with m components (or classes), 
and sample size n, any given sample x j is of class k with probability wk; the weights, wk, give 
the probability that a new observation is of class k. A sample j of class k = c(j) is distributed 
with density f (xj | ψk). 
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This paragraph defines some general matrix notation. Let r : s : t indicate either the 
vector [r,r + s,r + 2s,…t] or the corresponding index range from r to t with step s; r: t is short 
hand for r: 1: t. A matrix array has a superscript index, like S1 … Sm. So Sk

h,i is the h-row, i-
column element of matrix S k. We may write a rectangular matrix, X, with the row (or shorter 
range) index subscript, and the column (or longer range) index superscript. Thus, xi, xj, and xj

i 
are row i, column j, and element (i,j) of matrix X. 0 and 1 are matrices of zeros and ones, where 
dimensions are given by the context. V > 0 is a positive definite matrix. In this paper, let h, i be 
indices in the range 1: d, k in 1: m, and j in 1: n.

The classifications z j
k are boolean variables indicating whether or not xj is of class k, 

i.e., z jk = 1 if c(j) = k. Z is not observed, being therefore called named latent variable or missing 
data. Conditioning on the missing data, we get:

(Equation 10)

Given the mixture parameters, θ = {w1…wm, ψ1…ψm} and the observed data, X, the 
conditional classification probabilities, P = f(Z | X, θ), are: 

(Equation 11)

The likelihood for the “completed” data, X,Z, is: 

(Equation 12)

where yk is the number of samples of class k, i.e., yk = Ʃ jzj
k or y = Z 1.

We will see in the following sections that considering the missing data Z, and the 
conditional classification probabilities P, is the key for successfully solving the numerical 
integration and optimization steps of the FBST.

In this article, we will focus on Gaussian finite mixture models, where each compo-
nent follows a normal density with mean bk and variance matrix Vk, or precision Rk = (Vk) -1 :

(Equation 13)

Next, we focus the theory of general mixture models on the Dirichlet-normal-
Wishart case.

The Dirichlet-normal-Wishart prior

Consider the random matrix X ji, i in 1: d, j in 1: n, n > d, where each column contains 
a sample element from a d-multivariate normal distribution with parameters b (mean) and V 
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(covariance), or R = V-1 (precision). Let u and S denote the statistics: 

(Equation 14)

The random vector u has a normal distribution with mean b and precision nR. The 
random matrix S has a Wishart distribution with n degrees of freedom and precision matrix R. 
The normal, Wishart and normal-Wishart pdfs have the expressions: 

(Equation 15)

with normalization constant

(Equation 16)

Now consider the matrix X as above, with unknown mean b and unknown precision matrix R, 
and the statistic 

(Equation 17)

The conjugate family of priors for multivariate normal distributions is the normal-
Wishart (DeGroot, 1970). For the precision matrix R, take as prior the Wishart distribution 
with ė > d - 1 degrees of freedom and precision matrix Ṡ and, given R, take as prior for b a 
multivariate normal with mean  and precision ṅR, i.e., let us take the normal-Wishart prior 
NW(b, R | ṅ,ė, ,Ṡ). Then, the posterior distribution for R is a Wishart distribution with ë degrees 
of freedom and precision , and the posterior for b, given R, is k-normal with mean ü and pre-
cision R, i.e., we have the normal-Wishart posterior: 

(Equation 18)

All covariance and precision matrices are supposed to be positive definite, and proper 
priors have ė ≥ d and ṅ ≥ 1. Non-informative normal-Wishart improper priors are given by ṅ = 0, 

 = 0, ė = 0, Ṡ = 0, i.e., we take a Wishart with 0 degrees of freedom as prior for R, and a constant 
prior for b (DeGroot, 1970). Then, the posterior for R is a Wishart with n degrees of freedom and 
precision S, and the posterior for b, given R, is d-normal with mean u and precision nR.
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The conjugate prior for a multinomial distribution is a Dirichlet distribution: 

(Equation 19)

with w > 0 and w1 = 1. Prior information given by ẏ, and observation y, result in the posterior 
parameter ÿ = ẏ + y. A non-informative prior is given by ẏ = 1.

Finally, for the Gaussian mixture model with Dirichlet-normal-Wishart prior, we can 
write the posterior

(Equation 20)

and completed posterior: 

(Equation 21)

Gibbs sampling

In order to integrate a function over the posterior measure, we use an ergodic Markov 
chain. The form of the chain below is known as Gibbs sampling, and its use for numerical 
integration is known as Markov Chain Monte Carlo or MCMC.

At each iteration, given θ, we can compute P. Given P, we draw z j by means of 
multinomial distribution f (z j | p j). Given the latent variables, Z, we have simple conditional 
posterior density expressions for the mixture parameters:

(Equation 22)
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Gibbs sampling is the MCMC generated by cyclically updating variables Z, θ, and 
P, by drawing θ and Z from the above distributions (Gilks et al., 1996; Häggström, 2002). 
A multinomial variate can be drawn using a uniform generator. A Dirichlet variate w can be 
drawn using a gamma generator with shape and scale parameters α and β (Gentle, 1998). 
Johnson (1987) describes a simple procedure to generate the Cholesky factor of a Wishart 
variate W = U' U with n degrees of freedom, from the Cholesky factorization of the covari-
ance parameter V = R-1 = C' C, and a chi-square generator: 

(Equation 23)

For good performance, all subsequent matrix computations proceed directly from 
Cholesky factors (Golub and van Loan, 1989; Jones, 1985).

Given a mixture model, we obtain an equivalent model renumbering the components 
1: m by a permutation σ ([1: m]). This symmetry must be broken in order to have an identifi-
able model (Stephens, 1997). Let us assume that there is an order criterion that can be used 
when numbering the components. If the components are not in the correct order, label switch-
ing is the operation of finding permutation σ ([1: m]) and renumbering the components, so that 
the order criterion is satisfied.

If we want to look consistently at the classifications produced during an MCMC run, 
we must enforce a label switching to break all non-identifiability symmetries. For example, in 
the Dirichlet-normal mixture model, we could choose to order the components (switch labels) 
according to the rank given by:

1. A given linear combination of the vector means, c' bk;
2. The variance determinant |Vk|.
The choice of a good label switching criterion should consider not only the model 

structure and the data, but also the semantics and interpretation of the model.
The semantics and interpretation of the model may also dictate that some states, like 

certain configurations of the latent variables Z, are either meaningless or invalid, and shall not 
be considered as possible solutions. The MCMC can be adapted to deal with forbidden states 
by implementing rejection rules that prevent the chain from entering the forbidden regions of 
the complete and/or incomplete state space (Bennett, 1976; Meng and Wong, 1996).

EM algorithm for maximum likelihood and maximum a posteriori estimation

The EM algorithm optimizes the log-posterior function fl (X | θ)+fl (θ | ) (Dempster 
et al., 1977; Ormoneit and Tresp, 1995). The EM is derived from the conditional log-likeli-
hood, and the Jensen inequality: 
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Let θ and  be our current and next estimate of the maximum a posteriori, and 
 the conditional classification probabilities. At each iteration, the log-posterior im-

provement is: 

(Equation 24)

(Equation 25)

Hence,

(Equation 26)

is a lower limit to . Also,

(Equation 27)

Thus, under mild differentiability conditions, both surfaces are tangent, assuring con-
vergence of EM to the nearest local maximum. However, maximizing  over  is the 
same as maximizing 

(Equation 28)

and each iteration of the EM algorithm breaks down in two steps:

E-step: compute P = E (Z | X,θ).
M-step: optimize Q( ,θ), given P.

For the Gaussian mixture model, with a Dirichlet-normal-Wishart prior, 

(Equation 29)
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For normal mixture models, the E-step is performed as explained in Equation 20. The 
Lagrange optimality conditions give an analytical solution for the M-step: 

(Equation 30)

In more general (non-Gaussian) mixture models, if an analytical solution for the M-step is 
not available, a robust local optimization algorithm can be used, for example, Martínez (2000).

The EM is a local optimizer, but the MCMC provides many starting points, so that we 
have the basic elements for a global optimizer. To avoid using many starting points going to a 
same local maximum, we can filter the top portion of the MCMC output (i.e., points of highest 
posterior densities) using a clustering algorithm, and select a starting point from each cluster. 
For better efficiency, or more complex problems, the stochastic EM algorithm can be used to 
provide starting points near each important local maximum (Celeux et al., 1996; Pflug, 1996; 
Spall, 2003). Numerical integration and global optimization are relatively costly. The average 
computing time of a single FBST e-value on the mixture models discussed in this paper is about 
1 min on a Pentium 4 personal computer. In contrast, Mclust (see Introduction) takes about 
3 s. Nevertheless, one should note that Mclust is a well-developed and optimized production 
software, while we are using a naively programmed prototype. Although slower than most heu-
ristic algorithms, including Mclust, we do not see this computing time as an impediment to data 
analysis. Nevertheless, heuristic algorithms may be more appropriate for the exploration of large 
databanks, while our procedure could be used for a more refined final analysis.

Choice of number of clusters

A procedural description of the method used to decide the number of components in 
the mixture is given next.

Step 0: Set m←2
Step 1: Consider the mixture model 

(Equation 31)

and test the hypothesis H:wm
 = 0.

Step 2: If H is not rejected, ev*(H)≤τ, stop testing and consider the model as having m - 1 
components.

If H is rejected, ev*(H)˃τ, it means that the model must have at least m components. 
In this case, increment m by 1 and go to Step 1.
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As with any significance test, this procedure requires the choice of a significance thresh-
old level, τ. Several alternative methods have been developed for establishing this threshold:

• An asymptotically consistent threshold for a given confidence level was given by 
Stern (2005) and Borges and Stern (2007).

• An empirical power analysis, developed by Stern and Zacks (2002) and Lauretto et al. 
(2003, 2005), provides critical levels that are consistent and also effective for small samples.

• A threshold based on reference sensitivity analysis and paraconsistent logic is given 
by Stern (2004).

• Varuzza et al. (2008) relate the e-value threshold to standard p-value thresholds.
• Finally, Madruga et al. (2001) prove the existence of a loss function that renders the FBST 

a true Bayesian decision-theoretic procedure. We use this framework to justify setting τ = 0.5.

DATA ANALYSIS

The present case study was based on a cDNA microarray dataset planned and pro-
duced by Ideker et al. (1985). The authors explored the process of galactose (GAL) utiliza-
tion in the yeast Saccharomyces cerevisiae. They applied 10 initial perturbations to the GAL 
pathway. Wild-type and nine genetically altered yeast strains were examined, each with a 
complete deletion of a gene involved in GAL processing. Global changes in mRNA expres-
sion resulting from each perturbation were examined with DNA microarrays of approxi-
mately 6200 genes. In each experiment, fluorescently labeled cDNA from a perturbed strain 
was hybridized against labeled cDNA from the reference (wild) strain. For robustness, four 
replicate hybridizations were performed for each perturbation.

From these data, Yeung et al. (2003) selected a subset of 205 genes that are reproduc-
ibly measured, whose expression patterns reflect four functional categories in the Gene Ontol-
ogy listings (Ashburner et al., 2000) and that are expected to be clustered together.

In our study, the input data is a matrix Y of dimension 205 × 10, where Yi,j corresponds 
to the average expression level of gene i under condition j.

Figure 1 shows the expression profiles of the selected genes in the 10 strains. The 
colors distinguish the four functional classes of genes.

Figure 1. Expression profiles of 205 genes selected in 10 distinct strains, identified in four functional classes.
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Due to the high level of noise and redundancy (distinct strains with very similar ex-
pression profiles), we applied principal components analysis as a filter for dimensionality re-
duction (Everitt and Dunn 1992). The cumulative variance in the principal components is 
presented in Table 1.

PC   1   2   3   4   5   6   7   8   9   10

% Variation 75.5 88.8 92.5 95.0 96.8 98.1 98.8 99.4 99.7 100

Table 1. Yeast cell data: cumulative variance on principal components (PC).

We performed a comparative analysis of FBST and Mclust (see Introduction), where 
we applied both methods on the original dataset and on the transformed data with 2 to 10 
principal components, using the four functional categories as our external knowledge. The 
performance of algorithms was evaluated by two criteria: 

• Correct prediction of the number of classes; 
• Percentage of genes classified correctly according to their functional classes. 
Table 2 presents the numerical results for this analysis, where each row contains the 

number of principal components used in data, the predicted number of clusters and the per-
centage of genes classified correctly for each method. The last row contains the number of 
predicted classes and classification precision for the original dataset. 

DISCUSSION AND FINAL REMARKS

In the first numerical experiments (results in Table 2), the clustering method based on 
FBST predicts the correct number of clusters in four situations (with 3, 4, 5, and 6 principal 
components), while Mclust provides the correct answer only in two situations (with 2 and 3 
principal components). Moreover, the clustering based on FBST shows a stable behavior. That 
is, in the presence of little information (2 principal components), FBST predicts more clusters 
than the expected (5). As more relevant information is added to the data (3 and 4 principal 
components), FBST provides the correct number of clusters and a high percentage of genes 

Principal  FBST  Mclust

components Predicted % Correct Predicted % Correct
 clusters classification clusters classification

  2 5 97 4 96
  3 4 99 4 97
  4 4 97 5 84
  5 4 84 7 60
  6 4 83 7 59
  7 3 91 6 68
  8 3 90 6 63
  9 3 87 7 64
10 3 88 7 61
Original 3 89 3 92

Table 2. FBST and Mclust predicted number of clusters and percentage of genes classified correctly, according 
to the number of principal components (last row refers to original dataset).

FBST = full Bayesian significance test; Mclust = model-based clustering.
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classified correctly. On the other hand, the predicted number of clusters in Mclust oscillates as 
the number of principal components increases. That is, the behavior of Mclust is very sensitive 
to redundancy and noise. 

Also notice that the data filtered with 10 principal components are just the original 
data in transformed coordinates. Since the FBST is an invariant procedure, the numerical 
results are the same, up to numerical precision, for the original and transformed coordinate 
systems. In contrast, Mclust, which is a non-invariant procedure, is highly sensitive to this 
change of coordinates, yielding quite different results.

These results suggest that our approach is robust for model selection and deserves fur-
ther development and investigation for gene expression clustering. Some possible refinements 
are the analysis of alternative priors, the implementation of stochastic EM or the integration of 
the MCMC and the optimization procedures for a better computational performance. 
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