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Abstract The problem of detecting a signal of known form in a noisy message is a
long-studied problem. In this paper, we formulate it as the test of a sharp hypothesis,
and propose the Full Bayesian significance test of Pereira and Stern as the tool for
the job. We study the FBST in the signal detection problem using simulated data,
and also using data from OceanPod, a hydrophone designed and operated by the
Dynamics and Instrumentation Laboratory at EP-USP.
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1 Introduction

The problem of detecting the presence of a signal in a noisy sample can be stated
as an inference problem where we compare two alternative hypothesis, H0: data
is composed of noise only, against H1: data is signal plus noise. By signal, we
understand a function of time, usually discretely sampled; data is, thus, a sequence
of points indexed by a time variable.

One common application of signal detection is in telecommunications, where
one intends to transmit a message through a noisy channel from a transmitter to a
receiver; when the message is binary, the receiver must decide at each instant if a
given (known) signal is present (in which case she assumes a 1 was transmitted) or
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absent (in which case she assumes a 0 was transmitted). In this kind of application,
usually, the exact signal form is known both at the transmitter and the receiver, and
the problem arises only because the channel is not ideal, i.e. it adds noise to the data
that is collected at the receiver.

It is natural, in this situation, to postulate the model [1] Y = ξ X + R, where Y
is the recorded noisy message, X is the particular signal form we are interested in,
and R is noise, where by noise we understand whatever forms of random or non-
random patterns besides the one that codifies the signal. The unknown parameter ξ

is interpreted as a nonnegative gain factor. In this formulation, the problem of signal
detection amounts to testing H0 : ξ = 0 against H1 : ξ > 0.

Testing hypothesis of equality, like the one defined above, is the main goal of
the FBST (Full Bayesian significance test) [2] framework. In this work, we analyze
the problem of signal detection as a sharp hypothesis test problem, and propose the
FBST as the tool of choice for the job. We analyze both the simplest case, where
the signal form is completely known at the receiver, and a more complicated version
of the signal detection problem, namely the situation where the functional form of
the signal is known, but not the values of the parameters that completely define it.
After analyzing the performance of the FBST with simulated data, we apply it to the
problem of detecting the presence of ships in soundscape data.

2 FBST for Signal Detection

2.1 Signal Known at the Receiver

We analyze first the problem of digital signal detection, which can be stated in the
following terms: a transmitter sends a signal, modelled as a continuous function
of time x(t), t ∈ [0, T ], through a noisy channel. The signal plus noise reaches
a receiver, whose task is to analyze the message and decide whether the signal
was or was not embedded in the message. The received message can be modelled
as y(t) = ξ x(t) + r(t), t ∈ [0, T ], where r(t) is noise, and ξ is a gain factor that
represents the intensity of the signal (assumed constant for t ∈ [0, T ]).

From a statistical point of view, the problem can be stated as the test of the sharp
hypothesis H0 : ξ = 0. Acceptance of the null hypothesis implies that no signal was
present in the recording (i.e. a 0 was transmitted), whereas its rejection means that a
signal was indeed present (a 1 was transmitted).

In many applications, specially in communications, the exact form of the signal is
known both at the transmitter and the receiver. Given this information, the problem
is greatly simplified, since our parametric space is only one-dimensional (ξ is the
only unknown quantity, if one assumes known noise power).

In this section, we evaluate the performance of the Full Bayesian significance test
(FBST) in this simpler version of the problem using simulated data. We consider,
henceforth. a signal of the following form
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x(t) =
m∑

h=1

Ahcos (2πhωt + φh) (1)

This form is the one of a sinusoidal wave with fundamental frequency ω and m
harmonics. The Ah and φh represent each harmonic’s amplitude and phase, respec-
tively.

The choice for this particular form is motivated by our later application, namely
the detection of ships in hydrophone recordings. The literature [3–6] of subaquatic
acoustics suggests that the noise radiated by a moving ship is of the form in (1), plus
broadband noise. We discuss this model in further detail in a later section.

For now, supposing thatΘ = {ω, A1, . . . , Am, φ1, . . . , φm} is known, the problem
of detecting this signal in a noisy recording can be modelled in the following way:
the message at the receiver is given by y(t) = ξ x(t) + r(t). We model the noise r(t)
as a Gaussian random variable with 0 db mean amplitude, and a variance of σ 2

r . The
gain factor ξ is constrained to have values between 0 and 1.

We assume the message to be uniformly sampled at the receiver, at a sampling
rate high enough to avoid aliasing problems. Thus our actual data is a set of N points
y[ti ], i = 1, . . . , N .

In this situation, and assuming a uniform prior in [0, 1] for ξ , and an improper
prior for σ 2

r , the posterior distribution for ξ , given data y[ti ], is

p(ξ |y,Θ) = (2πσ 2
r )−N/2exp

[
−

N∑

i=1

(y[ti ] − ξ x[ti ])2
2σ 2

r

]
(2)

Under H0 : ξ = 0, the posterior is

pH0(ξ |y,Θ) = (2πσ 2
r )−N/2exp

[
−

N∑

i=1

y[ti ]2
2σ 2

r

]
(3)

In the FBST framework, the evidence against H0 is defined as the integral of the
posterior distribution over the surprise set, defined as the set of points, in the full
parametric space, whose posterior values are higher than the maximum posterior
under H0. To calculate the evidence, then, we first need to obtain p̂H0 , the maximum
posterior under H0, which in this case is simply the value in (3) calculated at the
maximum likelihood estimate for σ 2

r .
To calculate the integral of the full posterior, we use a traditional Metropolis-

Hasting algorithm, with a uniform [0, 1] candidate distribution for ξ and an inverse
gamma candidate for σ 2

r .

2.2 Simulated Data

To evaluate the FBST performance in the signal detection problem, we simulate
a message with the following form: the signal has the functional form in (1), with
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Fig. 1 Evidence values -
known signal form

m = 5, ω = 60, Ai = {0.005, 0.004, 0.003, 0.002, 0.001}, φi = {−π,−π/2, 0, π/

2, π}. We simulate a 7 s long signal, with ξ = 0 during the first and final 2 s, and
ξ = 1 in the middle 3 s. We assume a sampling rate of 11025Hz. We will use this
same values for both cases (signal form completely known, and signal parameters
unknown).

We simulate the message for four different SNR values: 0.9, 1.2, 1.5, 2 (SNR
is here defined as the quotient between the deterministic signal’s power, and noise
power).

The results for the case where the signal form is completely known, and for the
different SNR values, are shown in the Fig. 1. The results were the same, regardless
of the SNR.

2.3 Unknown Signal Parameters

Now, we complicate matters a little bit further and assume that the signal form is
known at the receiver, but not the parameters that fully define it. This situation might
arise when, for instance, the receiver is not stationary with relation to the transmitter,
or if the characteristics of the channel medium change over time.

Our model remains essentially the same as before, except that now the full poste-
rior is 12-dimensional (the parameters are the gain factor, the fundamental frequency,
the five amplitudes and five phases). In most real situations, however, there is strong
prior information on the signal parameter’s. We model this fact by imposing a Gaus-
sian prior on ω, the fundamental frequency. The prior hyperparameters used were
μω = 50, σω = 10. Amplitudes and fundamental frequency are constrained to be
positive, and phases lie in [−π, π ] by symmetry considerations. For these parame-
ters and also for the signal noise variance, uninformative priors were adopted.
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Given the prior distribution on ω, the new posterior has the form

p(ξ,Θ|y) = (200π)−1exp

[
− (ω − 50)2

200

]
× (4)

(2πσ 2
r )−N/2exp

[
−

N∑

i=1

(y[ti ] − ξ x[ti ])2
2σ 2

r

]
(5)

This time the evaluation of the posterior integral is not so straightforward; the
parametric space is multidimensional, and there might me many local maxima in
the posterior. Actually, the signal model we adopted is guaranteed to possess at
least m local maxima, for ω = ω0, 2ω0, . . . ,mω0, where ω0 is the true value of the
fundamental frequency.

Given these characteristics of the problem, we choose to apply an evolutionary
strategy to sample from the posterior, namely the DiffeRential Evolution Adaptive
Markov Chain (DREAM) method of ter Braak and Vrugt [7]. This method consists
in initializing a number of parallel Markov chains, which evolve dynamically by
taking steps in a random direction given by the difference between one (or more)
pair of chains. The method preserves ergodicity of the chain by application of the
usual Metropolis acceptance ratio. This method is specially well suited for multi-
modal distributions; details can be found in [7, 8]. We use a version of the algorithm
implemented in MATLAB by ourselves.

Again, the optimization step involved in the FBST calculation is immediate, since
under H0 the parametric space is one-dimensional and the maximum posterior is
obtained by using the maximum likelihood estimate of σ 2

r . We apply the DREAM
algorithm using 7 parallel chains (which as a side effect allows us to monitor the
chain’s convergence using, for instance, Gelman and Rubin’s R̂ statistic [9]), and
sample 15.000 points after a burning period of 15.000. The results are shown in the
Fig. 2.

Fig. 2 Evidence values -
unknown signal parameters
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The method is thus very efficient in pointing out the signal’s presence (rejecting a
false H0). However, it gives high values for the evidence against H0 when it is true.
This is caused by the generality of the model we adopted for our signal. We comment
further on this fact in the next section.

3 Application to Soundscape Data

Soundscape data are audio recordings made by one or more hydrophones (acoustic
recording devices that work underwater). This kind of data is used, among other
things, to monitor the traffic of vessels (military or not) and to study the behaviour
of marine species.

From the past 10 years, the Acoustics and Environment Laboratory (LACMAM)
at EP-USP has been developing technology in the area of subaquatic acoustics.
One of these technologies is the OceanPod [10], a hydrophone capable of 3-month
continuous recordings, with a frequency band of 5–24kHz.

One such hydrophone has been installed at a 20m depth in the region of the
Laje de Santos park, at the city of Santos in the Brazilian coast. This park is a
marine preservation area, with the abundant presence of several marine species. The
hydrophone recorded 3-months of sound before its retrieval by the LACMAM’s
team. The OceanPod mission has being repeated four times already, with a total of
1-year recording time.

In possession of these recordings, the laboratory has been using it with many
different goals [11, 12]. One of these goals is to aid the development of a ship
detection algorithm: since the park is a state preservation area, it is forbidden to fish
in the park’s area (actually, it is forbidden to even navigate through the park with
fishing equipment inside the boat).

Nevertheless, given the abundance of fish in the park, many fishing boats disobey
the park’s regulation, specially at late hours of the night. Since the park’s borders are at
a 40km distance from the coast, fiscalization is costly. Thus, the park administration,
in a combined effort with the laboratory, intend to use the hydrophone’s data to
improve their fiscalization policies.

The problem of ship detection in sound signals is an old and much studied prob-
lem [4–6]. Recent work on the subject proposes the use of classification algorithms
such as neural networks to identify the presence of ships. However, this kind of clas-
sification algorithm demands a large annotated sample, with which algorithms can
be trained. This means that the researcher must either know beforehand the times of
ships’ passages, or else manually (auditively?) inspect the 3-month signal in order to
separate and annotate samples. This is a demanding task, since the passage of boats is
not very frequent. Also, listening to 3-month recordings of subaquatic sounds might
be a rather dull job.
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In order to help the preprocessing of these data, we propose in this paper a non-
supervised classification algorithm, that can be run through the samples to select
samples where it is at least highly likely that a ship was passing in the hydrophone’s
vicinity.

This task is similar to the detection problemwe presented in the previous sections.
However, this setting is a much more complicated one.

First of all, there is the functional form of the desired signal. As noted already,
the literature of acoustic ship signature indicates that a ship’s noise has mainly two
components: a tonal component, given by a sinusoidal signal with a fundamental
frequency and several harmonics, and a broadband noise component. The funda-
mental frequency of the tonal component, as received by the hydrophone, can vary
depending on the ship’s speed and direction of movement, and several other factors
involving the ocean and wind conditions, the specific features of the ship’s engine
and propeller, etc. For the broadband noise, the situation is even worse, since no
well-accepted functional form is known for this component, which is caused by
many factors, including (but not limited to) cavitation effects from the propeller.

Even if we can find a suitable parametric model for the ship’s noise signal, there’s
the problem of background noise in the recording. Noise, here, is taken to mean
anything but the signal of interest; so it might include fish vocalizations, snapping
shrimp and barnacle noise, the sound ofwaves, rain, etc.Worst of all, many biological
sources of noise have precisely the same spectrum form as the tonal component of a
ship’s noise, namely a sequence of evenly spaced delta functions in the log-frequency
domain.

As a first approach, we replicated the model used in the simulated data, where we
test the presence of a tonal signal with m harmonics, against random, white noise.
This approach failed miserably; the signal recorded by the hydrophone was far from
being well described by a Gaussian noise component, and this first algorithm showed
a profusion of false positives. It became then evident that a more precise model was
needed.

To build this newmodel, we noticed an important difference in the spectrum taken
from two different kinds of ships: Fig. 3 shows a spectrogram of the noise radiated by
a large vessel, moving with close-to-constant speed, and at a large distance from the
hydrophone. We see the equally spaced spectral lines almost parallel to the x-axis,
mainly in the low frequency (20–500Hz) band. It is known that low-frequency sounds
are less attenuated by the ocean than high-frequency ones. Such sounds can then be
detected at large distances, as is the case with the example below.

Figure 4, on the other hand, shows the spectrogram of a small vessel approaching
the hydrophone with non-zero acceleration. The signal to noise ratio is much greater
in this case, and also we see that the spectrum is distorted, showing negatively sloped
lines in the spectrogram.

Since the actual goal of the analysis is to detect small, quicker vessels as the ones
in Fig. 4, and sincemost biological acoustic signatures have the same functional form
as (1), our next model thus incorporates the fact that the fundamental frequency in
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Fig. 3 Spectrogram for large boat

Fig. 4 Spectrogram for small boat
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(1) is time-dependent for the kinds of events we want to detect, but constant to either
large ships moving slowly and far away, or sounds of a biological nature. Our full
model for the small vessel then becomes

x[ti ] =
m∑

h=1

Aicos (2πhω(ti )ti + φi ) (6)

where
ω(ti ) = ω0 + δti (7)

We use, thus, a linear function of time for the fundamental frequency of the ship’s
radiated noise. The full model then becomes

y[ti ] = x[ti ] + r [ti ] (8)

and our new null hypothesis is H0 : δ = 0. This model, we expect, will differentiate
between statical sources and moving ones. Incidentally, this might help us to detect
more specific events, namely the approximation and departure of boats, rather than a
stationary boat with engine turned on. In terms of aiding fiscalization in the park, this
might be of greater interest than detecting any kind of ship-related events whatsoever.

Again, we model prior information available on the ship’s fundamental frequency
with a Gaussian prior, with μω = 40, and σ 2

ω = 25. The reason for such a precise
prior distribution is twofold: first of all, it helps to prevent theMCMC algorithm from
wandering to much in the parametric space, helping it to avoid the inevitable local
maxima at integer factors of the true fundamental frequency. Also, there is plenty of
the literature in the subaquatic acoustic signature of small ships, and this literature
points to fundamental frequencies usually in the range of 20–40Hz.

Thus the posterior for this problem has the same form as in (4). To calculate the
evidence against H0, we first obtain the maximum posterior under H0, applying a
combination of the DREAM method and an interior-point optimization algorithm.
We start 20 parallel chains, run it for a small number of iterations, and then apply
the optimization algorithm to the maximum point of each chain. We then simulate
again the 20 chains, using as starting values the maximum points, and repeat this
procedure until convergence.

After obtaining the maximum posterior under H0, we run the DREAM algorithm
in the full parametric space to estimate the evidence value. We run the chains for
30.000 iterations, discarding the first 15.000.

There remains the choice ofm, the number of fundamental harmonics. The number
of harmonics in a ship’s radiated noise can be as high as 20, if the signal has enough
power. In our tests below, we apply the algorithm using m = 7 and m = 10.
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Fig. 5 Evidence values - m = 7 (LHS) and m = 10 (RHS)

3.1 Results

To test this model, we use a sample where it is known that small boats were passing.1

We calculate the evidence against H0 (i.e. the evidence for the presence of a ship)
using samples of 0.5s. The hydrophone samples the signal at a 11.025Hz, which
gives us a total of 5.516 data points for each window. The results for a 10 s long
signal, using non-overlapping 0.5s samples, are shown in Fig. 5.

As we see in the left-hand side of Fig. 5, the problem of false positives was greatly
reduced with the new model using m = 7. The first non-zero value for the evidence
of a ship’s passage is in the window starting at second 3, during which the signal
first appears. After that, the evidence stays high for 3 s, falling to 0 again when the
signal power falls considerably. After that we see evidence for the signal presence
rise again. There is one possible false positive at the window between 8, 5 and 9s,
but auditive inspection of the signal shows a small occurrence of the engine sound
at this point.

Using m = 10, the sensitivity of the test drops, and we see positive evidence for
the presence of a ship only around second 3 in right-hand side of Fig. 5. This is due
to the high dimensionality of the parametric space under H0 (22 parameters) which
allows for high posterior values under H0.

Finally,we also applied ourmodel in a sample of a large vessel, the one represented
in the spectrogram Fig. 3. As expected, the evidence given by our model was less
than 0.01 in all 0.5s window extracted from that signal. This is another indication of
the potentiality of our method in the detection of small vessels against other events,
specifically against bigger boats in cruising speed.

1This was possible since touristic boats are allowed in the park for diving visits, and we happen to
know that during weekends they are likely to be near the park.
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4 Final Remarks and Future Work

The first goal of this paper was to evaluate the performance of the FBST framework
in the task of signal detection. Being specially designed to calculate the evidence for
sharp hypothesis, the FBST is a natural choice of tool for this job. Using simulated
data, we confirmed that the FBST is a promising technique to be used in this kind of
problems.

Our second goal was to apply the framework to a real data bank, namely audio
recordings from a hydrophone. In this case, we wanted to design an algorithm that
was able to preprocess subaquatic acoustic data, indicating sections of the audio that
are highly likely to register the passage of small vessels. As we saw in the last section
of the paper, by specifying a proper model for the ship’s radiated noise, we obtained
promising results with the FBST: the evidence values for our models are specially
suited to detect the presence of rapidly moving vessels at a small distance from the
hydrophone, which meets well the practical requirements for the problem at hand.

Also, the proposed framework is flexible: the models for the signal form can be
modified to reflect different kinds of events, and the number of harmonics in the
model can be used to adjust the evidence values for different values of signal power.
Prior information can be incorporated easily in themodel to adjust it for specific kinds
of vessels, particularly by the previous estimation of the fundamental low-frequency
of ships of interest using pre-annotated samples.

There are a few drawbacks, however; first of all, the algorithm relies on a MCMC
technique, which in turn demands a large computing time until convergence. The
computation of evidence for a 0.5 s window, with a model of 17 parameters, took
roughly 15min to complete (including both optimization and integration steps) in a
PentiumQuadricore 1.6GHz, 8MbRAMhome computer, andwith a serial algorithm
running in a single core. However, since this method is aimed as a preprocessing
tool, this is not a very serious drawback, and there are many ways to improve the
performance of the algorithm, whichwe intend to investigate further on future works.
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