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FBST for Unit Root Problems 
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Abstract. This paper presents the Full Bayesian Significance Test for unit roots in auto-regressive 
time series, and compares it to other approaches on a benchmark of 14 econometric series. 
Keywords. ARMA models, e-values, FBST, Unit roots. 

INTRODUCTION 

Testing for unit roots in ARMA time series models is a problem that presents well known 
and documented difficulties for standard Bayes Factor methodologies, see [1], [2], [4], 
[6], [10], and [13] to [16]. In [2, p. 159], the authors state: 

"Testing for unit root is a Bayesian framework in one of the most controversial topics 
in the economic literature. There are several reasons for this: 

- First... [the use of] information that is not contained in the likelihood function and 
this violates the likelihood principle to which Bayesians stick. 

- Secondly, the unit root hypothesis is a point hypothesis and Bayesians do not like 
testing point hypothesis because it is not natural to compare an interval which receives 
a positive probability with a point null hypothesis of zero mass. 

- Finally, classical and Bayesian unit root tests do not give the same answer This 
is a striking example where it is not possible to recover the classical results using a 
non-informative prior." 

We will show that the FBST, or Full Bayesian Significance Test, presented in [9], 
easily overcomes all these difficulties, see also [7], and [17]. Moreover, the FBST e-
values are computed following the absolutely standard form of FBST formalism, using 
non-informative priors, and in strict observance of the likelihood principle. Finally, 
the FBST analysis agrees with the classic analysis on a benchmark of 14 time series 
commonly used in the econometric literature. 

The first section describes the problem and the general model used to test for unit 
roots and derives the posterior distribution used in the present work to perform the FB ST. 
Afterwards, we describe the numerical procedures to calculate the e-values. Concluding, 
we compare the classical and bayesian procedures, pointing the FBST advantages. 

FBST REVIEW 

The FBST was specially designed to give an epistemic value, or value of evidence, sup­
porting a sharp hypothesis H. This support function is the e-value, ev(/f). Furthermore, 
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the e-value has many necessary or desirable properties for a statistical support function, 
such as: 

(I) Give an intuitive and simple measure of significance for the hypothesis in test, 
ideally, ^probability defined directly in the original ox natural parameter space. 

(II) Have an intrinsically geometric definition, independent of any non-geometric as­
pect, like the particular parameterization of the (manifold representing the) null hypoth­
esis being tested, or the particular coordinate system chosen for the parameter space, 
i.e., be an invariant procedure. 

(III) Give a measure of significance that is smooth, i.e. continuous and differentiable, 
on the hypothesis parameters and sample statistics, under appropriate regularity condi­
tions of the model. 

(IV) Obey the likelihood principle , i.e., the information gathered from observations 
should be represented by, and only by, the likelihood function. 

(V) Require no ad hoc artifice like assigning a positive prior probability to zero 
measure sets, or setting an arbitrary initial belief ratio between hypotheses. 

(VI) Be apossibilistic support function, where the support of a logical disjunction is 
the maximum support among the support of the disjuncts. 

(VII) Be able to provide a consistent test for a given sharp hypothesis. 
(VIII) Be able to provide compositionality operations in complex models. 
(IX) Be an exact procedure, i.e., make no use of "large sample" asymptotic approxi­

mations when computing the e-value. 
(X) Allow the incorporation of previous experience or expert's opinion via (subjec­

tive) prior distributions. 
The objective of this section is to provide a very short review of the FBST theoretical 

framework, summarizing the most important statistical properties of its support function, 
the e-value. It also summarizes the logical (algebraic) properties of the e-value, and its 
relations to other classical support calculi, including possibihstic calculus and logic, 
paraconsistent and classical. Further details, demonstrations of theoretical properties, 
comparison with other statistical tests for sharp hypotheses, and an extensive list of 
references can be found in the author's previous papers. 

Let 0 G 0 C i?^ be a vector parameter of interest, and L{9\x) be the likehhood 
associated to the observed data x, a standard statistical model. Under the Bayesian 
paradigm the posterior density, p„{9), is proportional to the product of the likehhood 
and a prior density. The (null) hypothesis H states that the parameter lies in the null set, 
defined by inequality and equality constraints given by vector functions g and h in the 
parameter space. 

p„{9) oc L{9 \X)po{9) , 0ff = {0 G 0 \g{9) <0Ah{9) = 0} . 

From now on, we use a relaxed notation, writing H instead of QH- We are particularly 
interested in sharp (precise) hypotheses, i.e., those in which dim(/f) < dim(0), i.e. there 
is at least one equality constraint. 

The FBST defines ev(/f), the e-value, the epistemic value or value of (presented or 
observed) evidence supporting (in favor of) the hypothesis H, and ev(/f), the e-value 
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against H, as 

T{v) = {de@\s(d)<v} , W(v)= I p„(e)de, ey{H) = W(s*), 
JT(V) 

T{v) = 0 - r(v) , W{v) = 1 - W{v) , ev(/f) = W{s*) = 1 - ev(/f) . 

The function s{9) is known as the posterior surprise relative to a given reference 
density, r{9). W{y) is the cumulative surprise distribution. The surprise function was 
used, among other statisticians, by Good, Evans and Royall. Its role in the FBST is to 
make ev(/f) explicitly invariant under suitable transformations on the coordinate system 
of the parameter space, see next section. 

The tangential (to the hypothesis) set T = T{s*),\s a Highest Relative Surprise Set 
(HRSS). It contains the points of the parameter space with higher surprise, relative to 
the reference density, than any point in the null set H. When r(0) oc l̂  the possibly 
improper uniform density, T is the Posterior's Highest Density Probability Set (HDPS) 
tangential to the null set H. Small values of ev(/f) indicate that the hypothesis traverses 
high density regions, favoring the hypothesis. 

In the FBST the role of the reference density, r(0) is to make ev(/f) explicitly 
invariant under suitable transformations of the coordinate system. Invariance, as used 
in statistics, is a metric concept. The reference density can be interpreted as a compact 
and interpretable representation for the reference metric in the original parameter space. 
This metric is given by the geodesic distance on the density surface. The natural choice 
of reference density is an uninformative prior, interpreted as a representation of no 
information in the parameter space, or the limit prior for no observations, or the neutral 
ground state for the Bayesian operation. Standard (possibly improper) uninformative 
priors include the uniform and maximum entropy densities. 

Let us consider the cumulative distribution of the e-value against the hypothesis, 
F(c) = Pr(ev < c), given 0", the true value of the parameter Under appropriate reg­
ularity conditions, for increasing sample size, n ^^,WQ can say the following: 
- If/f is false, 0" ^ H, then ev converges (in probability) to 1, that is, F(0 < c < 1 ) ^ 0 . 
- IfH is true, 0" G H, then V{c), the confidence level, is approximated by the function 

QQ{t,h,c) = Q_{t-h,Qr\t,c)) , where 

Q(^,x) = T{k/l,x/l)/T{k/l,^) , T{k,x) = ly-^e-ydy , 

t = dim(0), h = dim(/f) and Q(^,x) is the cumulative chi-square distribution with k 
degrees of freedom. Figure 2.2 portrays QQ{t,h,c) Q{t — h,Q^^{t,c)) f o r /= 2 . . . 4 and 
h = 0...t-l. 

Under the same regularity conditions, an appropriate choice of threshold or critical 
level, c(«), provides a consistent test, TC , that rejects the hypothesis if ev(/f) > c. 

The empirical power analysis developed in [7] and [18], provides critical levels that 
are consistent and also effective for small samples. 
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THE AUTO REGRESSIVE TIME SERIES MODEL 

TheAR{l) process 
yt = <l>yt-i + £t 

where ê  '-^ i.i.d.iQ, a^), has a unit root if ^ = 1. In this case its mean and its variance 
do not exist. If |^| < I, then the mean of yt is zero and its variance CJ^/(I — ^^) and 
the process has a strong tendency to return to its mean value after a shock. However, if 
the process has a unit root, a shock has an everlasting effect. This can be seen if j^^ is 
expressed as the cumulated sum of past errors, each with the same weight. Therefore, 
test for a unit root consists in testing the precise hypothesis HQ: (j) = I. 

The economic and econometric literature has given great importance to the develop­
ment of unit root tests in the past two and a half decades. It is very important to know 
if, for instance, economic recessions have permanent consequences for the level of fu­
ture GNP, or instead represent just a temporary downturn with the output lost eventually 
made up during recovery. Nelson and Plosser, [10], argued that many economic series 
are better characterized by unit roots than by deterministic trends. 

However, in the development of the tests difficulties arised because the asymptotic 
distribution of the ordinary least squares estimators presents a discontinuity at ^ = I. 
The ADF test is the most used in unit root tests and assumes, in its more general form, 
that the data generating process has a constant, a deterministic trend and follows an 
AR{p) structure with i.i.d. errors. Below we introduce this model assuming gaussian 
disturbances to develop the bayesian inference. 

The AR{p), or order p auto-regressive time series model with white Gaussian noise 
and deterministic intercept and trend, is written as: 

yt = ii + 5t + ^\yt-\ + . . . + ^pyt-p + £t 

where ê  '-̂  7V(0, <T )̂ V/ = I , . . . , T. This series can also be written in the differenced or 
correction form: 

Ayt = jX + 5t + T^yt-i + TiAyt-i + ... + Yp_iAyt-p+i + ê  

where Ayt =yt-yt-\,TQ = ^\ (pp—l andr . -5:^=,+i'^;'for/: I , I. 

If using this parametrization, the series has a unit root if FQ = 0. The ADF tests this 
hypothesis against FQ < 0, but if FQ > 0 the process is non-stationary. 

This model can also be written in standard regression form, using the parameter vector 
0 = [/3, <T], where /3 is a vector with all the hnear parameters, Yp=\yi.. .yp] is the vector 
of the first p observations, and Y is the vector of all remaining observations: 

Y =X/3 +e ,where 

5 
To Ayp+2 

Ayr 

X -

I I yp Ayp 
I 2 yp+\ Ayp+i 

I T yr-i Ayr-I 

A>'2 
Ays 

263 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  130.237.29.138 On: Tue, 11 Aug 2015 21:56:11



The dimensions of these matrices are, respectively, /> + 2 x 1 for /3, T — /> x 1 for 7, and 
T-pxp + 2forX. 

Using the matrix regression form, it is easy to see that the ML estimator of /3, the 
predicted ML observations, and the sum of squared errors is given by 

p = {X'xy^X'Y , f = X ^ , and 

e'e = (7-Xi3) ' (7-Xi3) = (7 - f ) ' ( 7 - f ) + (i3 -^)'X'X(i3 - ^ ) . 

Using the standard non-informative prior / ( /3 , <T) OC 1/CJ^ the model posterior can be 
written as: 

/(i3,CT|7,7^) oc cT-(^-/'+i) exp ( ^ - ^ ((7 - 7 ) ' ( 7 - 7 ) + (0 - 0)'X'X(0 - e; 

NUMERICAL EXPERIMENTS AND RESULTS 

After the model derived above we tested for unit roots 14 U.S. macroeconomic time 
series first mentioned in Nelson and Plosser, [10]. Here we use the extended series, used 
in Schotman and van Dijk, [14]. 

The following table shows the e-values and ADF test for the aforementioned econo­
metric time series. The ADF, Augmented Dickey and Fuller test, based on the Frisch-
Waugh-Lovell theorem, is arguably the most used unit root test in econometrics. We 
have used the computer procedure described in James MacKinnon, at Queen's Univer­
sity, [8]. All numerical time series follow the specification in Bauwens et al. [2], so that 
the results are comparable. 

As can be seen from the posterior expression, the conditional posteriors 
are n{e\a,Y,Yp) oc N{e,a^V) and n{lla^\e,Y,Yp) oc r{T - p/2,B), where 
B = 0.5(7 - Yy{Y - 7) + (0 - 0)'X'X(0 - 0) and F = {X'X)-\ For the FBST 
computations, several solvers can be used in the optimization step, as [3] or [5], and 
standard Monte Carlo sampling is used in the integration step, see [7]. 

In table 1 we can see that the non-stationary posterior probability is quite distant from 
the ADF p-value. These results were highlighted by Sims, [15] and Sims and Uhlig, 
[16]. Considering the simplest^i?(l) model, they argued that, once classical inference is 
based on the distribution of ^ | ̂  = 1, it reaches counterintuitive conclusions because the 
referred distribution is skewed. Bayesian inference, they conclude, uses the distribution 
of (j>\(j>,yi... ,yT which is not skewed. 

Phillips, [13] claims that the difference in results between classical and bayesian 
approaches is due to the flat prior that puts much weight on the stationary region. He 
proposed the use of Jeffreys priors, which restored the conclusions drawn by the classical 
test. PhiUips argued that the flat prior was, actually, informative when used in time series 
models like those for unit root tests. He made simulations that show the 

" [the use of a]flat prior has a tendency to bias the posterior towards stationarity. ... 
even when [the estimator] is close to unity, there may still be a non negligible downward 
bias in the [flat] posterior probabilities". 
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TABLE 1. Unit root tests for Nelson and Plosser data 

Series 

Real GNP 
Nominal GNP 
Real GNP per capita 
Industrial prod. 
Employment 
Unemployment rate 
GNP deflator 
Consumer prices 
Nominal wages 
Real wages 
Money stock 
Velocity 
Bond yield 
Stock prices 

start 

1909 
1909 
1909 
1860 
1890 
1890 
1889 
1860 
1900 
1900 
1889 
1869 
1900 
1871 

P 

2 
2 
2 
2 
2 
4 
2 
4 
2 
2 
2 
2 
4 
2 

trend 

yes 
yes 
yes 
yes 
yes 
no 
yes 
yes 
yes 
yes 
yes 
yes 
no 
yes 

ADF 

-3.52 
-2.06 
-3.59 
-3.62 
-3.47 
-4.04 
-1.62 
-1.22 
-2.40 
-1.71 
-2.91 
-1.62 
-1.35 
-2.44 

p-value 

0.044 
0.559 
0.037 
0.032 
0.048 
0.019 
0.778 
0.902 
0.377 
0.739 
0.164 
0.779 
0.602 
0.357 

P ( r o > 0 | 7 ) 

0.0005 
0.0238 
0.0004 
0.0003 
0.0004 
0.0001 
0.0584 
0.1154 
0.0106 
0.0475 
0.0029 
0.0620 
0.0962 
0.0103 

e-value 

0.045 
0.542 
0.039 
0.031 
0.049 
0.023 
0.771 
0.984 
0.361 
0.724 
0.157 
0.784 
0.941 
0.363 

TABLE 2. MLE under//o : To = 0 

Parameters 

M 
8 
Ti 
a 

Real GNP 

0.01543 
0.00011 
0.33146 
0.05558 

Ind. Prod. 

0.049427 
-0.00014 
0.03636 
0.09682 

GNP def. 

0.00187 
0.00027 
0.44992 
0.04364 

Wage 

0.01494 
0.00020 
0.46687 
0.05545 

Parameters 

8 

Real GNP 

0.01320 
0.00028 
0.10895 

Ind. Prod. 

0.01806 
0.00024 
0.08966 

GNP def. 

0.00902 
0.00016 
0.09163 

Wage 

0.01247 
0.00024 
0.09661 

TABLE 4. MLE - unrestricted model 

Parameters I Real GNP I Ind. Prod. I GNP def Wage 

8 
To 

0.81849 
0.00567 
-0.17631 
0.41106 
0.05193 

0.05221 
0.00718 
-0.17658 
0.12432 
0.09252 

0.09086 
0.00112 
-0.03164 
0.46979 
0.04329 

0.39792 
0.00309 
-0.06494 
0.50130 
0.05392 

Tables 2 and 3 display some ML estimators and the respective standard errors as­
suming unit roots. Table 4 and 5 show the ML estimators for the same series for the 
unrestricted model. Table 6 and 7 give the number of series which rejected the unit root 
hypothesis in 100 generated samples assuming that there was (table 6) or not (table 7) a 
unit root. We used three criteria to reject the hypothesis: the ADF asymptotic p-value for 
5% significance, the exact ADF p-value for 5% significance and the e-value set in 0.05. 

It is important to remember that finite sample critical values for unit root tests depend 
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TABLE 5. Standard error of MLE - unrestricted model 

Parameters I Real GNP 

8 
To 

0.23279 
0.00163 
0.05104 
0.10436 

Ind. Prod. 

0.01727 
0.00206 
0.04941 
0.08915 

GNP def. 

0.05667 
0.00056 
0.01990 
0.09175 

Wage 

0.16301 
0.00125 
0.02756 
0.09522 

TABLE 6. Simulated series rejecting Ho in hundred gen­
erated assuming Ho 

Series 

Real GNP 
Ind. Prod. 
GNP def. 
Wage 

<ADFy, 

4 
4 
7 
4 

(oo) <ADFy, 

3 
4 
6 
4 

{ex.) I ev<0.05 

3 
4 
6 
4 

TABLE 7. Simulated series rejecting Ho in hundred gen­
erated assuming the unrestricted model 

Series <ADFso/,{oo) I <ADFy/Xex.) I ev<0.05 

Real GNP 
Ind. Prod. 
GNP def 
Wage 

73 
85 
20 
29 

67 
82 
18 
27 

64 
84 
18 
27 

on the assumption that the error terms are NID(0, <T̂ ) once these values were generated 
by simulations that use this assumption. The asymptotic critical values are valid much 
more generally, since they do not require normality or homoskedasticity. Therefore, for 
small samples, it is safer to rely on asymptotic critical values. 

Table 6 shows that the FBST, even using the flat prior, has a power similar to the ADF 
test. Hence, the argument used by Phillips to criticize conclusions based on posterior 
probabilities when flat priors were used is not vahd for the FBST. 

As mentioned in the first section, Hayes Factor tests for unit roots have had many 
difficulties to deal with time series presented in the field of econometrics. Several 
alternative Bayes Factor tests have been proposed in order to overcome these difficulties. 
However, their performance is still in question. For example, [1] concludes: 

"In two Monte Carlo simulations, however, we find that the 'objective' Bayesian test 
have relatively low power in distinguishing between plausible alternatives, making it 
difficult to draw any conclusions concerning long-run [performance]. We conclude that 
at least fijr the 'objective' Bayesian test the Bayesian approach is not necessary better 
than the classical ADF approach." 

Based on simulation studies, [6] suggests that practitioners must assign a high proba­
bility to the value to be tested in order to get high power when using Bayes Factor tests, 
although this means to increase the non-stationary weight when testing for unit root. 

There have also been other tests based on or using specially designed priors, that show 
a better performance. However, the use of such priors departs from some basic para-
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digms of Bayesian statistics, like the Likelihood Principle. Moreover, these techniques 
have to be fine tuned to each particular problem type or application. 

In contrast, the FBST e-value derivation and implementation is straightforward from 
its general definition, using absolutely no ad hoc artifice, like a special prior, or a measure 
on the hypothesis set induced by some special parameterization, or an arbitrary initial 
likehhood ratio. It respects the Likehhood Principle and does not need to ehminate 
nuisance parameters. 
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