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Abstract

One of the major challenges of today’s policy makers and industry strategists is to achieve an electricity

mix that presents a high level of energy security within a range of affordable costs and environmental

constraints. Bearing in mind the planning of a more reliable electricity mix, the main contribution of this

paper is to consider parameter uncertainties on the electricity portfolio optimization problem. We assume

that the expected and the covariance matrix of the costs for the different energy technologies, such as gas,

coal, nuclear, oil, biomass, wind, large and small hydropower, are not exactly known. We consider that

these parameters belong to some uncertainty sets (box, ellipsoidal, lower and upper bounds, and convex

polytopic). Three problems are analyzed: (i) finding a energy portfolio of minimum worst case volatility

with guaranteed fixed maximum expected energy cost; (ii) finding an energy portfolio of minimum worst

case expected cost with guaranteed fixed maximum volatility of the energy cost; (iii) finding a combination

of the expected and variance of the cost, weighted by a risk aversion parameter. These problems are written

as quadratic, second order cone programming (SOCP), and semidefinite programming (SDP), so that robust

optimization tools can be applied. These results are illustrated by analyzing the efficient Brazilian electricity

energy mix considered in [1] assuming possible uncertainties in the vector of expected costs and covariance

matrix. The results suggests that the robust approach, being by nature more conservative, can be useful in

providing a reasonable electricity energy mix conciliating CO2 emission, risk and costs under uncertainties

on the parameters of the model.
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1. Introduction

Working to ensure either energy security as a whole, or electricity security in particular, is a major

responsibility of national governments. One of the major challenges of today’s policy makers and industry

strategists is to achieve an electricity mix that presents a high level of energy security within a range of

affordable costs, considering environmental and economic scenarios. There is no doubt that an electricity

shortage can severely harm economies. This was, for instance, what happened in Brazil in 2001 when, due to

rationing, the total Brazilian electricity consumption decreased by 7.89%, while the GDP variation was still

positive, by + 1.3%. However, according to [2], the growth rate for the year 2001 would be in a range of 2.4%

and 3.6%, without the crisis of the electricity sector. At the same time, the local industry had to deal with

the scarce supply associated with skyrocketing electricity prices in the short term market, that ultimately

transformed positive margins of electric intensive companies into negative ones. From January 2001 up to

May of that same year the spot market price in the Southeast submarket increased by twelvefold, jumping

from R$ 56.92 to R$ 684.00 in Brazilian reals, during the rationing period. Since the required infrastructure

to provide electricity takes time to be in place, good planning is always critical in this industry, especially in

large populated developing countries such as China, India, Indonesia, Brazil, and many others which present

high increasing rates for their electricity demand.

Mean-variance optimization, originally introduced by [3], is one of the most important models in port-

folio optimization and also the basis for asset allocation. However, as pointed out in [4], for the optimal

mean-variance strategy to be useful the set of expected return of the component assets and the covariance

matrix should be sufficiently precise. Indeed it was shown by [5] that small changes in the expected returns

can produce large changes in asset allocation decisions. In practice this lack of robustness with respect to the

inherent inaccuracy of the expected returns and covariance matrix estimates prevents the widespread use of

mean-variance optimization by practitioners. Due to that several robust versions of portfolio optimization

problems, including mean-variance optimization, have been proposed in the literature, considering uncer-

tainties on the expected returns and covariance matrix (see, for instance, [4, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

Nowadays the mean-variance optimization tools have been widely applied in energy policy, considering

the trade-off between the risks and costs of using different energy generation technologies (see, for instance,

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]). Usually the analogy with the financial market is to

consider the random price per MWh of each technology instead of the returns of the assets, so that it is

desired to minimize the expected cost of the energy portfolio for a given level of uncertainty obtained from

the covariance matrix of the costs. Frequently these expected values and covariance matrix of the different

energy technology costs are obtained from Monte Carlo simulations using the levelized cost of electricity

(LCOE), which naturally yields to imprecision on these parameters.

To deal with the challenge of fostering a more reliable electricity mix, the main contribution of this
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paper is to workout the application of some of the results from robust asset portfolio theory (see for instance

[7, 10, 11, 12, 13, 28]) for electricity planning and policy-making. Similarly as considered in the robust

financial portfolio literature, we assume that the expected costs and the covariance matrix for the different

energy technologies are not exactly known but, instead, belong to some uncertainty sets (box, ellipsoidal,

componentwise lower and upper bounds, and convex polytope defined by some known vertices). The mo-

tivation for that is, as pointed out above, Monte Carlo simulations are usually used for obtaining these

parameters, which naturally yields to imprecision on them. Besides that, this approach gives room for the

possible inclusion of different future scenarios for the expected energy costs and covariance matrices.

Three problems will be analyzed in this paper: the first one is to find an energy portfolio of minimum

worst case volatility with guaranteed fixed maximum expected energy cost. The second one is to find an

energy portfolio of minimum worst case expected cost with guaranteed fixed maximum volatility of the energy

cost. The third one is a combination of the expected and variance of the cost, weighted by a risk aversion

parameter. As in the robust financial portfolio literature (see for instance [9, 10, 12, 28]) these problems

can be written as quadratic, second order cone programming (SOCP) or semidefinite programming (SDP)

(see the Appendix), so that the robust optimization numerical packages nowadays available for this class

of problems can be used (see, for instance, [29]). For the case in which the model distinguishes the energy

coming from already existing plants (denoted by “old” energy) of the energy that comes from the new ones

(denoted by “new” energy) the problems mentioned above can be simplified. In this situation all the old

energy will be used in the energy portfolio so that any increase in size of each technology, must be with

“new plants” (see for instance, [1]), yielding to a reduction on the number of variables in the optimization

problems.

This paper is organized in the following way: Section 2 presents the notation, basic results, and problem

formulation that will be considered throughout the work. Sections 3 and 4 introduce the robust electricity

energy mix optimization problems, the considered uncertainty sets, and the formulation of the robust port-

folio optimization problems in terms of quadratic, SOCP or SDP optimization problems. Section 5 considers

the situation in which all the “old” energy will be used in the energy portfolio so that any increase in size of

each technology must be with “new plants”, which yields to a reduction on the number of variables in the

optimization problems. In section 6 we illustrate the robust technique by analyzing the efficient Brazilian

electricity energy mix considered in [1] with 8 energy technologies, classified as “new” energy and “old”

energy. The paper is concluded in section 7 with some final comments. We recall in the Appendix some

basic facts on SDP and SOCP.
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2. Preliminaries

2.1. Notation

We denote by R
m the m-dimensional euclidian space (R = R

1 for simplicity) and by ‖.‖2 the usual

euclidian norm. We define by 1 the vector of appropriate dimension formed by 1 in all positions, and ′

denotes the transpose of a vector or matrix. For symmetric matrices Q and R, and a matrix S, we write for

notational simplicity


Q S

⋆ R


 :=


Q S

S′ R


. By P ≻ 0 (P ! 0 respectively) we mean that the symmetric

matrix P is positive definite (positive semi-definite), and P 1/2 represents the square root matrix of P . For

two matrices P and S with the same dimension we write P > S (respectively P ≥ S) if for each element of

P and S we have Pij > Sij (Pij ≥ Sij). For real number xi, i = 1, . . . , n we denote by diag(xi) the n × n

diagonal matrix with the element xi on the entry (i, i), and zero elsewhere. Let X be a space of real vectors

or matrices. For a collection of points vi ∈ X, i = 1, . . . , κ, we define the convex polytope Con{v1, . . . vκ} as

Con{v1, . . . vκ} :=
{
v ∈ X; v =

κ∑

i=1

λivi,

κ∑

i=1

λi = 1, λi ≥ 0

}
.

Finally the expected value of a random vector V will be denoted by E(V ), its covariance matrix by Cov(V ),

and for V , U random vectors we define Cov(V,U) = E((V − E(V ))(U − E(U))′). If V is a scalar random

variable we set V ar(V ) as the variance of V .

2.2. Mean Variance Theory

Harry Markowitz [3] developed the Theory of Portfolio Selection (TPS) in the 1950’s to answer the

question of how a risk averse investor should allocate resources among different investments. According

to his theory, the investor should consider the trade-off between risk and return with risk being measured

through the variance of asset returns. This model became a new paradigm in finance. Based on TPS

approach, it is possible to construct an efficient frontier describing the optimal return for each possible level

of risk. According to the investor’s risk preference - or the investor’s utility function - he or she will choose

a point in the efficient frontier, and will obtain a specific portfolio. Formally, the mean variance portfolio

problem is modeled through optimization. Assume the investor will choose a portfolio within a universe

of m risky assets. Considering a decision vector ω representing the percentage of each asset held in the

portfolio, and supposing the assets have expected returns given by the m-dimensional vector r and a m×m

positive definite covariance matrix Ψ, the investor problem is a constrained minimization problem defined

as:

min
ω

ω′Ψω

subject to ω′r = τ, ω ∈ Γ.
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Parameter τ represents the expected return that it is desired to be obtained by the investor, and Γ represents

the set of constraints on the portfolio components. An equivalent approach consists of finding a portfolio of

maximum expected return constrained to a fixed level of risk, and a portfolio that maximizes a combination

of the expected minus the variance of the cost, weighted by a risk aversion parameter. The analogy with the

electricity energy mix optimization will be explained in subsection 2.4, and has been considered by many

authors (see for instance, [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]). It is important to stress however

that none of these papers has taken into account parameter uncertainties in the model, as it will be proposed

in this work.

2.3. The Levelized Cost of Energy (LCOE)

Measuring costs is the first step to the understanding of electricity mix. A common and useful measure to

compare different electricity generating technologies is the Levelized Cost of Energy (LCOE) (see for instance,

[16]) representing the cost per kilowatt-hour of building and operating a generating plant. It considers

different costs for an electricity generating technology over its operating life, including land, infrastructure,

operation, maintenance, fuels and other costs over a span of time. There is no consensus about LCOE

calculation ([1, 24]), and it can additionally include costs (or benefits) from carbon abatement, intermittence

and dispatch characteristics.

The calculation of the LCOE is based on the equivalence of the present value of the sum of discounted

revenues and the present value of the sum of discounted costs (see for instance, [23], Appendix A). Based

on forecasts about cost future values, LCOE values present high uncertainty and can vary according to

the region in a country and across time due to technologic evolution and fuel prices movements. Two

distinct environments sets of power generation shall be considered when analyzing the Brazilian electric

energy supply in section 6: (I) electric energy from existing power plants (“old energy”) and (II) electric

energy from new power plants yet to be built (“new energy”). Old power plants already in operation usually

have low total costs, while new power plants usually have high costs since they are still in the process of

amortizing payments, which are mainly charged on their first years of operations. Additionally, old power

plants are mostly owned by the federal government while many of the new ones can either be government

owned, partially owned, or can have only private partners.

To model the electricity portfolio mix, each different electricity generation technology is characterized by

the expected LCOE, together with the standard deviation on this cost. Assuming that the expected value

and the covariance between different costs are known, it is possible to obtain optimal portfolios and to find

the efficient frontier by solving one of two optimization problems: minimize risk or minimize cost, adding a

restriction on either a fixed cost or a fixed risk (see subsection 2.4). The investment costs, costs of operation

and maintenance and fuel costs that constitute LCOE are random variables with high variability. Although

it is possible to obtain forecasts of expected costs and covariance matrix, there is a huge uncertainty in

5
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these parameters. Practitioners analyzing energy policies must be aware of the importance of considering

this uncertainty in their decisions.

2.4. Mean-Variance Electricity Generation Mix Problems

In this subsection we present the mean-variance energy planning portfolio problems that will be con-

sidered in the paper. For this we consider the availability of m energy technologies, with the random m

dimensional LCOE vector for the technologies costs (in USD/KWh) denoted by:

C =




C1
...

Cm


 . (1)

For i = 1, . . . ,m, the components of the vector ω ∈ R
m represent the weights on each technology, that is,

the ith entry ωi ≥ 0 of ω is the energy portfolio’s proportion generated by the technology i. We denote by

Γ the set of admissible electricity generation mix so that we must have ω ∈ Γ. The set Γ will represent

constraints like the sum of the portfolio components ω being equal to 1, and minimum and maximum values

for the contributions of each technology (ωmini and ωmaxi respectively), that is, constraints of the form

ω′1 = 1, ωmini ≤ ωi ≤ ωmaxi , i = 1, . . . ,m.

In what follows we define r := E(C) and Cov(C) := Ψ (that is, the positive semi-definite m×m covariance

matrix of C). The random energy cost associated to a portfolio ω ∈ Γ, denoted by C(ω), is given by

C(ω) =
m∑

i=1

ωiCi = ω′C. (2)

From (2) it follows that the expected cost is given by E(C(ω)) = ω′r and the variance V ar(C(ω)) = ω′Ψω.

For the case in which the vector of expected costs r and the covariance matrix Ψ are known, three kinds of

mean-variance problems are usually considered in the literature. The first one is to minimize the variance

of the energy cost conditional on a target maximum expected cost τ . By target expected cost we mean

a positive real number τ provided by the energy policy planner which represents the maximum allowable

expected energy cost. More formally, the problem can be written as

min
ω

ω′Ψω

subject to ω′r ≤ τ, ω ∈ Γ. (3)

Another problem is to minimize the expected energy cost conditional on a maximum value ϑ2 for the variance

of the energy cost. The value ϑ2, provided by the energy policy planner, represents the maximum value that

the variance of the energy cost could achieve. Mathematically, this problem can be written as

min
ω

ω′r

subject to ω′Ψω ≤ ϑ2, ω ∈ Γ. (4)
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A third problem is the minimization of a combination of the expected and variance of the cost, weighted by

a risk aversion parameter λ > 0, a higher value of λ indicates a greater risk aversion. Mathematically it can

be written as

min
ω

ω′r + λω′Ψω

subject to ω ∈ Γ. (5)

By using solvers for quadratic programming or quadratically constrained quadratic program (QCQP), the

above problems can be solved for the case in which the vector of expected costs r and covariance matrix Ψ

are assumed to be known.

3. Robust Energy Mix Optimization

Fabozzi ([10]) highlights that the mean variance portfolio model can be unreliable in practice as it is

very sensitive to changes in inputs (the covariance matrix of asset returns and expected returns of assets).

Estimation errors notably affect the resulting portfolios and uncertainties in parameters of these models can

lead to a bad performance in practical applications. Two well-known approaches in optimization theory deal

with parameter uncertainty: Stochastic Programming and Robust Optimization. The first one considers

scenarios of realization of random inputs but, in practice, it suffers from the curse of dimensionality: the

model size grows exponentially with the number of scenarios. The robust approach, on its turn, incorporates

explicitly the uncertainty about the inputs in the optimization model through the definition of deterministic

“uncertainty sets” as it will be presented in section 4. The first step in robust optimization is to describe

a model - what will be called here the original model - based on nominal values of the parameters. The

uncertain parameters are then assumed to belong to a set and the resulting model is called the robust

counterpart of the original model.

Following this robust approach, we consider in this section the case in which the vector of expected costs

r and covariance matrix Ψ are not assumed to be known. According to the worst case approach as, for

instance, presented in [11, 12, 13, 14], it is assumed that (r,Ψ) ∈ U , where U = X × Y and X represents

the uncertainty set for the expected cost r and Y represents the uncertainty set for the covariance matrix

Ψ. We present the following definitions regarding the robustness properties we shall consider:

Definition 3.1. We say that a portfolio ω is robust with respect to a maximum expected energy cost τ if

ω ∈ Γ and maxr∈X r′ω ≤ τ. Similarly we say that a portfolio ω is robust with respect to a maximum variance

ϑ2 if maxΨ∈Y ω′Ψω ≤ ϑ2.

Three kinds of problem are considered, which can be seen as robust versions of problems (3), (4) and (5)

respectively:
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Definition 3.2. The MVGCU problem (minimum worst case variance, guaranteed maximum expected cost

under uncertainty): Find a portfolio ωτ such that it is robust with respect to a maximum expected energy

cost τ and for any other portfolio ω robust with respect to the maximum expected energy cost τ we have

max
Ψ∈Y

ω′
τΨωτ ≤ max

Ψ∈Y
ω′Ψω. (6)

It is easy to see that the MVGCU problem is equivalent to the following min-max problem:

min
ω∈Γ

max
Ψ∈Y

ω′Ψω

subject to max
r∈X

ω′r ≤ τ. (7)

Definition 3.3. The MCGVU problem (minimum worst case expected energy cost, guaranteed variance

under uncertainty): Find a portfolio ωϑ such that it is robust with respect to a maximum variance ϑ2, and

for any other portfolio ω robust with respect to the maximum variance ϑ2, we have

max
r∈X

r′ωϑ ≤ max
r∈X

r′ω. (8)

As before, it is easy to see that the MCGVU problem is equivalent to the following min-max problem:

min
ω∈Γ

max
r∈X

ω′r

subject to max
Ψ∈Y

ω′Ψω ≤ ϑ2. (9)

Finally the robust version of problem (5) (minimization of a combination of the expected and variance of

the cost, weighted by a risk aversion parameter λ > 0) is as follows:

min
ω∈Γ

max
(r,Ψ)∈U

(
ω′r + λω′Ψω

)
. (10)

The goal of the next section is to write these 3 problems as quadratic, SCOP or SDP, depending on the

uncertainty sets that is being considered, and also consider the case in which the cost can be decomposed

into p independent cost categories following the LCOE methodology (see subsection 2.3).

4. Uncertainty Sets and Numerical Formulations

We present in this section some possible uncertainty sets X and Y and the respective numerical formu-

lations for problems (7), (9) and (10).

4.1. Box and Ellipsoidal Uncertainty for r

We start by considering uncertainty sets for the vector of expected cost r. The simplest one is the so-called

box uncertainty set (see for instance [13]), which is written as X := {r ∈ R
m; ri ≤ ri ≤ r̄i, i = 1, . . . ,m} for

8
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some vectors r, r̄ ∈ R
m, r ≥ 0, r̄ ≥ 0. Since all the weights ωi in the electricity energy mix are positive we

have that

max
r∈X

ω′r = ω′r̄

and problems (7), (9), (10), considering Ψ fixed, can be re-written appropriately and solved via quadratic

programming.

Another more interesting uncertainty set for r is the so-called ellipsoidal constraint set (see again [13]).

In this case X := {r ∈ R
m; (r − r̄)′S−1(r − r̄) ≤ 1} for some S ≻ 0 and r̄ ∈ R

m, r̄ ≥ 0. For this case we

have, after making the change of variable r̃ = S−1/2(r − r̄), that

max
r∈X

ω′r = ω′r̄ + max
‖r̃‖≤1

ω′S1/2r̃. (11)

Since the optimal solution for (11) is r̃∗ = S1/2ω
‖S1/2ω‖

we get that

max
r∈X

ω′r = ω′r̄ +
√
ω′Sω = ω′r̄ + ‖S1/2ω‖. (12)

Problems (7) and (9) considering Ψ fixed, can be re-written as SOCP as follows. For problem (7), we have

min
ρ≥0, ω∈Γ

ρ

subject to ‖Ψ1/2ω‖ ≤ ρ, ω′r̄ + ‖S1/2ω‖ ≤ τ. (13)

Similarly for problem (9) we have

min
ρ≥0, ω∈Γ

ρ

subject to ‖Ψ1/2ω‖ ≤ ϑ, ω′r̄ + ‖S1/2ω‖ ≤ ρ.

Finally for problem (10), considering Ψ fixed, we can write it, using the Schur complement (see Proposition

??), as a SDP as follows:

min
β≥0, ρ≥0, ω∈Γ

ρ+ β

subject to


λ

−1ρ (Ψω)′

⋆ Ψ


 ! 0,


β − r̄′ω (S1/2ω)′

⋆ (β − r̄′ω)I


 ! 0.

4.2. Uncertainty Sets for r and Ψ

In this subsection we consider uncertainty sets for both the vector of expected cost r and covariance

matrix Ψ. For the componentwise bound uncertainty set case, we have for r, as in the previous subsection,

that X = {r ∈ R
m; r ≤ r ≤ r̄} and for the covariance matrix Ψ that Y := {Ψ;Ψ ≤ Ψ ≤ Ψ̄}. Since

the electricity energy mix vector ω must be non-negative, and considering Ψ̄ ! 0 we have, as shown in

Proposition 3 of [14], that

max
r∈X

ω′r = ω′r̄, max
Ψ∈Y

ω′Ψω = ω′Ψ̄ω.

9
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Thus in this case problems (7), (9) and (10) can be solved via quadratic programming and QCQP replacing,

in (3), (4), (5), r and Ψ by, respectively, r̄ and Ψ̄.

For the independent convex polytopic uncertainty set case for r and Ψ, consider a set of covariance

matrices Ψi ! 0, i = 1, . . . , κ and vector of costs rℓ ≥ 0, ℓ = 1, . . . , κ (for simplicity we assume that the

number of vertices κ is the same for the vector of costs and covariance matrices). We consider in this case

that

Y := Con{Ψ1, . . . ,Ψκ}, X := Con{r1, . . . , rκ}.

We have that problems (7) and (9) can be re-written as SOCP as follows. For problem (7), define the

following SOCP:

min
ρ≥0, ω∈Γ

ρ

subject to ‖(Ψℓ)1/2ω‖ ≤ ρ, ω′rℓ ≤ τ, ℓ = 1, . . . , κ, (14)

Proposition 4.1. (a) Problem (14) has a solution (ρ̂, ω̂) if and only if (b) the MVGCU problem (see Defi-

nition 3.2) has a solution ωτ . Moreover, if (a) holds then ωτ = ω̂ is a solution to the MVGCU problem and

similarly if (b) holds then (ρ̂, ω̂) is a solution to problem (14) where ω̂ = ωτ and ρ̂ = maxℓ=1,...,κ ‖(Ψℓ)1/2ωτ‖.

Proof: Let (ρ, ω) be any feasible solution for problem (14). Without loss of generality we can con-

sider that ρ = maxℓ=1,...,κ ‖(Ψℓ)1/2ω‖. Suppose that (ρ̂, ω̂) is an optimal solution for problem (14). Then

maxℓ=1,...,κ ω
′rℓ = maxr∈X ω′r ≤ τ , maxℓ=1,...,κ ω̂

′rℓ = maxr∈X ω̂′r ≤ τ , and from the optimality of (ρ̂, ω̂)

we have that ρ̂ 2 = maxℓ=1,...,κ ω̂′Ψℓω̂ = maxΨ∈Y ω̂′Ψω̂ ≤ ρ2 = maxℓ=1,...,κ ω′Ψℓω = maxΨ∈Y ω′Ψω,

showing that ω̂ is a solution for problem MVGCU. On the other hand, if ωτ is a solution for the MVGCU

problem then from Definitions 3.1 and 3.2, maxℓ=1,...,κ ω
′
τr

ℓ = maxr∈X ω′
τr ≤ τ and for any other other port-

folio ω robust with respect to the maximum energy cost τ we have that maxℓ=1,...,κ ω
′rℓ = maxr∈X ω′r ≤ τ

and from (6), ρ̂ 2 = maxℓ=1,...,κ ω
′
τΨ

ℓωτ = maxΨ∈Y ω′
τΨωτ ≤ maxΨ∈Y ω′Ψω = maxℓ=1,...,κ ω

′Ψℓω, showing

that (ρ̂, ωτ ) is an optimal solution for problem (14). ✷

For problem (9) define the following SOCP:

min
ρ≥0, ω∈Γ

ρ

subject to ‖(Ψℓ)1/2ω‖ ≤ ϑ, ω′rℓ ≤ ρ, ℓ = 1, . . . , κ. (15)

The proof of the following proposition follows the same lines as the proof of Proposition 4.1 and will be

omitted.

Proposition 4.2. (a) Problem (15) has a solution (ρ̂, ω̂) if and only if (b) the MCGVU problem has a

solution ωϑ. Moreover, if (a) holds then ωϑ = ω̂ is a solution to the MCGVU problem and similarly if (b)

holds then (ρ̂, ω̂) is a solution to problem (15) where ω̂ = ωϑ and ρ̂ = maxℓ=1,...,κ ω
′rℓ.

10
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For problem (10) with the independent polytopic uncertainty case U = X × Y considered above, we have

that it can be written as the following QCQP

min
ρ≥0, β≥0, ω∈Γ

ρ+ β

subject to ω′Ψℓω ≤ ρ

λ
, ω′rℓ ≤ β, ℓ = 1, . . . , κ,

and for the joint polytopic uncertainty case U := Con{
(
Ψ1 r1

)
, . . . ,

(
Ψκ rκ

)
} it can be written as the

following QCQP

min
ρ≥0,ω∈Γ

ρ

subject to ω′rℓ + λω′Ψℓω ≤ ρ, ℓ = 1, . . . , κ, (16)

4.3. Decomposition of the Costs

According to the LCOE method (see subsection 2.3), the costs Ci can be written as the sum of p

categories (usually fuel costs, operation and maintenance (OM) costs, investment costs, emission costs and

intermittence costs), so that

C =

p∑

j=1

V j , V j =




V
j
1

...

V j
m


 , j = 1, . . . , p, (17)

with {V j ; j = 1, . . . , p} independent random vectors. Defining vj = E(V j) and Ψj = Cov(V j) we have

from (17) that r =
∑p

j=1 v
j and, from independence of the random vectors V j , that Ψ =

∑p
j=1Ψ

j . For

the box and ellipsoidal uncertainty for vj seen in subsection 4.1 we would have, considering first X = {r =
∑p

j=1 v
j ; vj ∈ R

m, vj ≤ vj ≤ v̄j , j = 1, . . . , p} for some vectors vj , v̄j ∈ R
m, vj ≥ 0, v̄j ≥ 0, that

max
r∈X

ω′r = ω′r̄, r̄ =

p∑

j=1

v̄j

and again problems (7), (9), (10) can be re-written appropriately and solved via quadratic programming or

QCQP. For the ellipsoidal constraint set consider X = {r =
∑p

j=1 v
j ; vj ∈ R

m, (vj−v̄j)′(Sj)−1(vj−v̄j) ≤ 1}
for Sj ≻ 0 and v̄j ∈ R

m, v̄j ≥ 0. For this case we have, after making the change of variable ṽj =

(Sj)−1/2(vj − v̄j), that

max
r∈X

ω′r = max
r∈X

ω′(

p∑

j=1

vj) = ω′r̄ +

p∑

j=1

max
‖ṽj‖≤1

ω′(Sj)1/2ṽj , r̄ =

p∑

j=1

v̄j . (18)

As in (11) we get that max‖ṽj‖≤1 ω′(Sj)1/2ṽj = ‖(Sj)1/2ω‖ and thus from (18),

max
r∈X

ω′r = ω′r̄ +

p∑

j=1

‖(Sj)1/2ω‖. (19)

11
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Again problems (7) and (9) considering Ψ fixed, can be re-written as SOCP as follows. For problem (7), we

have

min
ρ≥0, ξj≥0, ω∈Γ

ρ

subject to ‖Ψ1/2ω‖ ≤ ρ, ‖(Sj)1/2ω‖ ≤ ξj , j = 1, . . . , p, ω′r̄ +

p∑

j=1

ξj ≤ τ,

and for problem (9) we have

min
ρ≥0, ξj≥0, ω∈Γ

ρ

subject to ‖Ψ1/2ω‖ ≤ ϑ, ‖(Sj)1/2ω‖ ≤ ξj , j = 1, . . . , p, ω′r̄ +

p∑

j=1

ξj ≤ ρ.

Problem (10) can be re-written as a SDP as follows:

min
β≥0,ρ≥0, ξj≥0, ω∈Γ

ρ+ β

subject to


λ

−1ρ (Ψω)′

⋆ Ψ


 ! 0,


ξ

j ((Sj)1/2ω)′

⋆ ξjI


 ! 0, j = 1, . . . , p, ω′r̄ +

p∑

j=1

ξj ≤ β.

For the componentwise bound uncertainty sets for r and Ψ as in subsection 4.2, consider X as the box

uncertainty set presented above, and Y := {Ψ =
∑p

j=1Ψ
j ,Ψj ≤ Ψj ≤ Ψ̄j}. Again recalling that the

electricity energy mix vector ω must be non-negative, and considering Ψ̄j ! 0 for each j = 1, . . . , p, we have

from Proposition 3 of [14] that

max
r∈X

ω′r = ω′r̄, r̄ =

p∑

j=1

v̄j , max
Ψ∈Y

ω′Ψω = ω′Ψ̄ω, Ψ̄ =

p∑

j=1

Ψ̄j .

As before, problems (7), (9) and (10) can be solved via quadratic programming or QCQP replacing, in (3),

(4), (5), r and Ψ by, respectively, r̄ and Ψ̄. For the convex polytopic uncertainty set case, consider a set of

covariance matrices Ψℓj ! 0 and vector of costs vℓj ≥ 0, ℓ = 1, . . . , κ, j = 1, . . . , p (as before, for simplicity,

we assume that the number of vertices κ is the same for the vector of costs and covariance matrices of all

the p cost categories). We consider in this case that U = X × Y with

Y := {Ψ =

p∑

j=1

Ψj ; Ψj ∈ Con{Ψ1j , . . . ,Ψκj}}, X := {r =
p∑

j=1

vj ; vj ∈ Con{v1j , . . . , vκj}}.

We have that problems (7) and (9) can be re-written as SOCP as follows. For problem (7) we have the

following SOCP:

min
ρ≥0, ω∈Γ

ρ

subject to ‖
( p∑

j=1

Ψℓjj
)1/2

ω‖ ≤ ρ, ω′
( p∑

j=1

vℓjj
)
≤ τ, j = 1, . . . , p, ℓj = 1, . . . , κ. (20)

12
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As in Proposition 4.1, problem (20) has a solution (ρ̂, ω̂) if and only if the MVGCU problem (see Definition

3.2) has a solution ωτ . This follows from the same arguments as in the proof of Proposition 4.1, only noticing

that now for any ω ∈ Γ, maxr∈X ω′r =
∑p

j=1maxℓ=1,...,κ ω
′vℓj =

∑p
j=1 ω

′vℓjj for some ℓj ∈ {1, . . . , κ} and

similarly maxΨ∈Y ω′Ψω =
∑p

j=1maxℓ=1,...,κ ω
′Ψℓjω =

∑p
j=1 ω

′Ψℓjjω = ‖
(∑p

j=1Ψ
ℓjj
)1/2

ω‖2 for some

ℓj ∈ {1, . . . , κ}. For problem (9) define the following SOCP:

min
ρ≥0, ω∈Γ

ρ

subject to ‖
( p∑

j=1

Ψℓjj
)1/2

ω‖ ≤ ϑ, ω′
( p∑

j=1

vℓjj
)
≤ ρ, j = 1, . . . , p, ℓj = 1, . . . , κ. (21)

As in the Proposition 4.2 and the same arguments as above, problem (21) has a solution ( ρ̂, ω̂) if and

only if the MCGVU problem has a solution ωϑ. Finally for problem (10) with the independent polytopic

uncertainty case U = X × Y considered above, we have that it can be written as the following QCQP

min
ρ≥0, β≥0, ω∈Γ

ρ+ β

subject to ω′
( p∑

j=1

Ψℓjj
)
ω ≤ ρ

λ
, ω′

( p∑

j=1

vℓjj
)
≤ β, j = 1, . . . , p, ℓj = 1, . . . , κ

and for the joint polytopic uncertainty case U j := Con{
(
Ψ1j r1j

)
, . . . ,

(
Ψκj rκj

)
}, U := {

(
Ψ r

)
=

∑p
j=1

(
Ψj rj

)
;
(
Ψj rj

)
∈ U j}, it can be written as the following QCQP

min
ρ≥0,ω∈Γ

ρ

subject to ω′
( p∑

j=1

vℓjj
)
+ λω′

( p∑

j=1

Ψℓjj
)
ω ≤ ρ, j = 1, . . . , p, ℓj = 1, . . . , κ. (22)

5. Old and New Energy

In this section we consider as, for instance, in [1, 16], that the model distinguishes the energy coming

from already existing plants (denoted by “old” energy) of the energy that comes from the projects to be

constructed (denoted by “new” energy). It will be assumed, as in [1], that all the old energy will be used

in the energy portfolio and thus, any increase in size of each technology, must be with “new plants”. Under

these assumptions the optimization problems considered in (3), (4) and (5) can be simplified. In Remark 5.1

we point out that this will not represent any loss of generality since we could consider in the optimization

problem all the technologies as “new” energy and recast the same framework as in previous sections. More

formally suppose that the random vector of costs C can be decomposed into the random vector for the

13
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technologies costs for the old energy Co and the new energy Cn as follows:

C =


Co

Cn


 with Co =




Co
1

...

Co
N


 and Cn =




Cn
1

...

Cn
N


 , (23)

and thus m = 2N . We decompose the vector ω as ω =


ωo

ωn


, where for i = 1, . . . , N , the components

of the vector ωo represent the weights on each “old” technology, that is, the ith entry ωoi ≥ 0 of ωo is

the energy portfolio’s proportion generated by the “old” technology i. Similarly the components of the

vector ωn represent the weights on each “new” technology, that is, the ith entry ωni ≥ 0 of ωn is the energy

portfolio’s proportion generated by the “new” technology i. As mentioned above, ωo will be assumed to

be fixed and the decision vector for the optimization problem will be given by ωn. Clearly we must have
∑N

i=1(ω
o
i + ωni ) = 1. Define d = 1 −

∑N
i=1 ω

o
i , r

o = E(Co), ζ = ωo′ro, rn = E(Cn), Ψo = Cov(Co),

Ψn = Cov(Cn), Ψon = Cov(Co, Cn) and the matrix Ψ =


Ψ

o Ψon

⋆ Ψn


. It is easy to see that Cov(C) = Ψ.

As before, the set Γ represents the constraints for the sum of the portfolio components ωn is equal to d

and minimum and maximum values for the contributions of each new energy technology (ωni
min and ωni

max

respectively), that is, constraints of the form (ωni )
′1 = d, ωni

min ≤ ωni ≤ ωni
max, i = 1, . . . , N . The random

energy cost associated to a portfolio ωn, denoted by C(ωn), is given by

C(ωn) =
N∑

i=1

(ωoiC
o
i + ωni C

n
i ). (24)

From (24) we have that

E(C(ωn)) = ωo
′
ro + ωn

′
rn = ζ + ωn

′
rn, (25)

and

V ar(C(ωn)) = ω′Cov(C)ω =
(
ωo′ ωn′

)
Ψ


ωo

ωn




= ωo
′
Cov(Co)ωo + 2ωo′

Cov(Co, Cn)(ωn) + ωn
′
Cov(Cn)ωn

= ωo
′Ψoωo + 2ωo′Ψonωn + (ωn)′Ψnωn

= c+ b′ωn + ωn
′Ψnωn (26)

where c = ωo′Ψoωo and b = 2Ψonωo. From (25) and (26) we have that problem (3) can be written as

min
ωn∈Γ

ωn
′Ψnωn + b′ωn + c

subject to ζ + ωn
′
rn ≤ τ, (27)

14
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problem (4) as

min
ωn∈Γ

ωn
′
rn + ζ

subject to ωn
′Ψnωn + b′ωn + c ≤ ϑ2, (28)

and problem (5) as

min
ωn∈Γ

ωn
′
rn + ζ + λ(ωn′Ψnωn + b′ωn + c). (29)

Robust versions for problems (27)-(29) as presented in sections 3 and 4 with respect to uncertainties on the

expected value vectors ro, rn, and covariance matrix Ψ can be readily formulated.

Remark 5.1. Notice that the case in which there is no “old” energy we would have ωoi = 0 so that ζ = 0,

d = 1, b = 0, c = 0, and problems (27)-(29) would recover problems (3)-(5), corresponding to the usual

situation in which all the technologies could be changed in the portfolio optimization problems.

Remark 5.2. Suppose, as in subsection 4.3, that the random vector of costs C can be decomposed as in

(17) and that, similarly, Co, Cn can be written as

Co =

p∑

j=1

V oj , V oj =




V
oj
1

...

V
oj
N


 , Cn =

p∑

j=1

V nj , V nj =




V
nj
1

...

V
nj
N


 , j = 1, . . . , p. (30)

Since V
oj
i and V

nj
i represent the same category of cost it would be reasonable to consider that the correlation

factor between V
oj
i and V

nj
i , for i = 1, . . . , N , j = 1, . . . , p would be equal to 1. Under this assumption we

would have that with probability one (see Proposition 1.1.2 in [30]),

V
oj
i =

σ
oj
i

σ
nj
i

(V nj
i − r

nj
i ) + r

oj
i (31)

where σ
oj
i and σ

nj
i (roji and r

nj
i ) denote the standard deviation (expected value) of the random variables V

oj
i

and V
nj
i respectively. Equation (31) essentially says that there is only one source of uncertainty between the

costs V
oj
i and V

nj
i , that is, between the cost of the “old” and “new” energy for each cost category j. Define

Ψoj = Cov(V oj), Ψnj = Cov(V nj), Ψonj = Cov(V oj , V nj) and the diagonal matrix Dj := diag
(
σoj
i

σnj
i

)
,

j = 1 . . . , p. From (31) we have that Ψo, Ψn and Ψon can be directly evaluated in terms of Ψnj and Dj as

follows:

Ψo =

p∑

j=1

Ψoj , Ψoj = DjΨnjDj , Ψon =

p∑

j=1

Ψonj , Ψonj = DjΨnj , Ψn =

p∑

j=1

Ψnj .
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6. Brazilian Generation Mix Expansion

6.1. Mean Variance Data for Energy Portfolios in Brazil

Brazilian electric energy mix includes renewable sources, with the predominant role of hydroelectricity.

The reservoirs in southeast Brazil, which accounts for 70% of the water storage capacity of the country,

depleted to 16% of its maximum capacity in November 2014, the worst historical value. Besides, the

southeast reservoirs were, on average, at 30% of their maximum capacity over the years 2014 and 2015.

So, the total contribution of thermal power plants that were around 14% on average in the last 16 years,

sharply increased to 25% on average in the last 4 years. As new hydropower plants in Brazil do not have

significant reservoirs to regulate capacity it seems that thermoelectric power plants will be a trend in the

future. The adjustment capacity — measured by the ratio of the total storage capacity and system load —

of the Brazilian reservoirs dropped from six to five months over the past 10 years and is expected to drop for

four months by 2020. The smaller storage capacity of the reservoirs turns investment in other energy sources

necessary, in order to attend the high growth of demand with safety and reliability. In this context, natural

gas-fired power plant is far appropriate. Energy planners face the problem of how to achieve equilibrium

between security, stability and price, i.e., how much electric energy should be required from each available

source. As the variable cost of a thermo-power plant is essentially the cost of the fuel, when purchasing

electric energy from a thermo-power plant the question of how to compare the different sources of fuel, i.e.,

a natural gas-fired power plant with oil-fired power plant, must also be addressed. To deal with the optimal

Brazilian mix selection problem under cost risks, a quantitative approach based on the TPS was considered

in [1] with 8 energy technologies, each one classified as “old” energy and “new” energy.

In this section we re-visit, from the robust optimization perspective, the efficient Brazilian mix generating

portfolio analyzed in [1]. The data considered in this subsection is based on the expected and variance of the

costs presented in section 4 of [1], obtained from the LCOE method for three possible CO2 emissions costs

(none, intermediate and high emission costs) and parameters as in Table A1 in [1]. It should be pointed

out that, as in [1], it is not included in the present analysis the volatility of hydropower production. Due to

the high volatile hydrology in Brazil, the hydropower “operating cost” should include the opportunity cost

of water in the hydropower reservoir. As this requires a complex calculation, this cost was not considered

in the analysis and, as aforementioned, we considered the same data as in [1]. But it is worth mentioning

that the inclusion of this cost would be an interesting point to be analysed in the future as hydro generation

volatility is one of the main characteristics of the Brazilian electricity system.

According to the “2024 Decennial Plan for Energy Expansion (DPEE2024)”, see [31], the weights of the

“old” energy (vector ωo) were updated as shown in Table 1. The fuel cost correlation matrix, denote by

CorrFuel, and OM cost correlation matrix, denoted by CorrOM , are presented in Tables 2 and 3, following

[16].
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Table 1: Technology mix for the old energy

Gas Coal Nuclear Oil Biomass Hydro Wind Small Hydro

ωo′ 5.87% 1.53% 1.00% 2.42% 5.56% 44.95% 2.46% 2.73%

Table 2: Fuel cost correlation matrix

.

CorrFuel Gas Coal Nuclear Oil Biomass Hydro Wind Small Hydro

Gas 1.00 0.47 0.06 0.49 -0.44 0 0 0

Coal 0.47 1.00 0.12 0.27 -0.38 0 0 0

Nuclear 0.06 0.12 1.00 0.08 -0.22 0 0 0

Oil 0.49 0.27 0.08 1.00 -0.17 0 0 0

Biomass -0.44 -0.38 -0.22 -0.17 1.00 0 0 0

Hydro 0 0 0 0 0 1 0 0

Wind 0 0 0 0 0 0 1 0

Small Hydro 0 0 0 0 0 0 0 1

Table 3: OM cost correlation matrix

.

CorrOM Gas Coal Nuclear Oil Biomass Hydro Wind Small Hydro

Gas 1 0.2500 0.2400 0.0900 0.3200 -0.0400 0 0.0500

Coal 0.2500 1 0 -0.1800 0.1800 0.0300 -0.2200 -0.3900

Nuclear 0.2400 0 1 -0.1700 0.6500 -0.4100 -0.0700 0.3500

Oil 0.0900 -0.1800 -0.1700 1 0.0100 -0.2700 -0.5800 -0.0400

Biomass 0.3200 0.1800 0.6500 0.0100 1 -0.1800 -0.1800 0.2500

Hydro -0.0400 0.0300 -0.4100 -0.2700 -0.1800 1 0.2900 0.3000

Wind 0 -0.2200 -0.0700 -0.5800 -0.1800 0.2900 1 0.0500

Small Hydro 0.0500 -0.3900 0.3500 -0.0400 0.2500 0.3000 0.0500 1

The means and standard deviations for the technology costs in Table 4 are based on the data presented

in section 4 of [1] for the zero emission CO2 cost case (the values are in cents of USD/KWh). We will refer

to these values as the nominal case. The following restrictions on the expansion of the generation capacity,

due to technical or energy planning reasons, were considered: for the “new” nuclear energy it was set to 1%

(total of 2%), wind to 11.54% (total of 14%), hydro to 33.05% (total of 80%), and small hydro to 3% (total

of 5.2%). Solar energy was not included because it still represents less than 1% of the Brazilian electric

energy mix.

6.2. Scenarios for the Convex Polytopic Uncertainty

In this subsection we present the scenarios that will be used for the convex polytopic uncertainty for

r and Ψ discussed in subsection 4.2, using the approach for old and new energy introduced in section 5.

Besides the nominal case described above, we considered two other scenarios regarding the expected costs
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Table 4: Weights for the “Old” Energy, Expected Costs and Standard Deviation

.

Fuel weight mean value (ro
i
and rn

i
) standard deviation (σo

i
and σi)

Gas Old 5.87% 9.9010 0.1500

Gas New - 9.2770 0.1500

Coal Old 1.53% 11.5560 0.1125

Coal New - 11.1180 0.1187

Nuclear Old 1.00% 10.1260 0.0625

Nuclear New - 10.0110 0.1500

Fuel Oil Old 2.42% 19.0980 0.2250

Fuel Oil New - 16.4680 0.2188

Biomass Old 5.56% 14.0390 0.0813

Biomass New - 13.4560 0.0875

Hydro Old 44.95% 4.1200 0.0313

Hydro New - 5.0240 0.2062

Wind Old 2.46% 10.9860 0.0250

Wind New - 10.4440 0.1187

Small Hydro Old 2.73% 6.8850 0.0187

Small Hydro New - 6.9090 0.1187

and variance of the costs (thus κ = 3). They reflect some of the possible paths of the Brazilian energy sector

according to the authors view. For the numerical values we follow a qualitative rather than quantitative

approach, classifying the percentual changes with respect to the nominal values of the expected costs and

volatilities into the categories “moderate” (variation of 5% or 10%), “intermediate” (variation of 20% or

25%) and “substantial” (variation of 30% or 40%). We would like to stress that the scenario generations

choice was adopted by the authors bearing in mind the opinion of specialists in the field. It will be up to

each analyst who will replicate the model to propose his own methodology for the scenario generation and

thus obtain his own conclusions. The first scenario is related to a reduction on the costs and volatility for

the natural gas and an increase on the costs and volatility for the large hydro, and the second one is related

to an increase on the costs and volatility for the natural gas and coal, and moderate reduction on the costs

and volatility of eolic and biomass energies.

Scenario 1:

1.1) A review of the Brazilian regulatory market for natural gas, with neither the obligation of the participa-

tion of the Brazilian petrol company (Petrobras) in new pre-salt projects nor local content obligation,

would yield to a “substantial” reduction on the price and volatility of the natural gas, and an in-

crease of supply. This regulatory review would be justified by the fact that the gas exploration blocks

held by Petrobras would be of high risk and low profitability, in an environment of low petrol barrel

prices. Since Petrobras would not have resources to increase investments, the review of the Brazilian
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regulatory market for natural gas would allow the participation of international companies, which

would increase competition, burst investments, and so decrease production costs. Besides, through

the import of goods and services, the competition would grow, and the costs would reduce as well. It

is the authors view that this scenario would yield to a “substantial” fall in the Brazilian natural gas

price, being approximately similar to the percentual difference between Petrobras 2016 natural gas

average price to Brazilian market ([32]) and the U.S. Natural Gas Electric Power Price ([33]). In our

simulations, under this scenario, we considered a 30% reduction of the LCOE for the natural gas (rn1 ).

The volatility of natural gas prices in Brazil is high because there are cross subsidies, for example, the

difference in values between beneficiary sectors (such as thermoelectric plants in the Thermoelectric

Priority Program - PPT) and without subsidies (such as new thermoelectric plants) is up to 3 times.

By opening of the market, the authors would expect that in the long term the subsidies would be

eliminated, and the natural gas market for electricity would work with just one market price, and

thus, with a similar market price volatility as the one in USA. Bearing this in mind, we considered for

the numerical simulations a “‘substantial” 40% reduction for the volatility (σn1 ).

1.2) The Brazilian government continues the expansion of new hydro power plants in the Amazon region,

which may lead to delays on constructions (and capital expenditure overruns) caused by environmental,

social and indigenous issues as capex overrun. Besides, the increasing environmental restrictions of

hydraulic energy projects demand that their reservoirs hold small volumes in relation to the river flow,

hence these power plants are of the run-of-the-river types, which increase the risk of non-attendances

of supply contracts during the operational period. According to studies of the Brazilian government

court of accounts ([34]), among the generation and transmission projects granted between 2005 and

2012, on average, 76% did not meet the schedule and the average delay in the construction of the

hydroelectric plants is 8 months. The most critical cases of delay were hydroelectric projects located

in the Amazon region, especially the Belo Monte Hydroelectric Power Plant, whose full energization

had a delay of more than 2 years of the original schedule. Specialists from the electricity sector suggest

that for each month of construction delay, the LCOE would need to be around 1% higher. According

to our methodology this would correspond to a “moderate” increase of the costs, so that for our

simulations we assumed an increase of 5% for the LCOE of large hydro (rn6 ). On the other hand the

delay in the Belo Monte Hydroelectric Power Plant indicates that delays may cause a “substantial”

increase on the volatility of the costs, so that in our simulations we adopted under this scenario a 30%

increase of the volatility for the LCOE of large hydro (σn6 ).

Scenario 2:

2.1) Petrobras continues as the sole operator of the blocks of the pre-salt, and main investor due to regula-

tory barriers, so, without credit conditions to finance the necessary investments to achieve the growth
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demand, it is not possible to use all natural gas from the pre-salt plants. As a consequence, the

expansion of gas-fired thermoeletric power plants would depend on the importation of LNG. Due to

that the fuel cost will rely on international prices in foreign currency, which yields to an increase of

the LCOE for the natural gas. To supply the growing demand, it will be also necessary to construct

new coal-fired power plants but, however, as domestic coal is of poor quality, it will be necessary to

import this fuel. Again, the fuel cost will depend on international prices in foreign currency, which

means higher costs and greater volatility. From the authors point of view, this dependence on the

fuel importation would yield to a “intermediate” increase on the LCOE for the natural gas and coal

expected costs and volatility, reflecting the Brazilian exchange rate variation. For our numerical simu-

lations and according to our methodology we adopted an increase of 20% for the LCOE expected cost

for gas (rn1 ), 25% for coal (rn2 ), and of 25% for the gas and coal volatilities (σn1 and σn2 ).

2.2) According to the 2014 IRENA report [35], the global weighted average LCOE of wind has fallen by

7% between 2010 and 2014. Bearing this data in mind, we considered a scenario that technological

advances, fiscal incentives and government regulation for the renewable energies would yield to a

“moderate” reduction on the LCOE expected costs and volatility for the eolic and biomass energies.

For our numerical simulations and according to our methodology we adopted a reduction of 5% for the

expected costs of the eolic (rn7 ) and biomass energies (rn5 ) and a reduction of 10% for their volatilities

(σn7 and σn5 ).

6.3. Convex Polytopic Uncertainty

In Figure 1 we present the efficient frontier corresponding to the problem of minimizing the variance

of the cost for the nominal data (problem (3) with just 1 scenario for the expected costs and variances

as in Table 4)) in dashed line and the robust problems (14) and (16) with κ = 3, that is, 3 scenarios for

the expected costs and 3 for the variances, one of them being the nominal case, the others as indicated

in Scenarios 1 and 2 above, in solid line for problem (14) and star line for problem (16). Notice that for

problem (14) it was considered the independent convex polytopic uncertainty set case for r and Ψ, while for

problem (16) it was considered the joint dependence for r and Ψ. In Figure 1 and problem (16) we varied

the risk trade-off parameter λ from 200 up to 1500.

As expected the robust efficient frontiers will be more conservative since it takes into account possible

future scenarios for the parameters that are not considered for the nominal case. For lower volatilities we

can see from Figure 1 that the expected costs are very close for all the cases, while for higher volatilities the

robust cases are around 6% higher than the nominal case. For problem (16) we plot in Figure 1 the worst

case standard deviation versus the worst case expected cost (maximum value among the 3 scenarios) and

thus, as expected, the robust efficient frontier for problem (16) will be more conservative than the one for

problem (14), but very close to each other.
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Figure 1: Efficient frontier for the nominal data (dashed line), the robust data for problem (14) (solid line), and robust data

for problem (16) (star line)

6.4. Box and Ellipsoidal Uncertainty for r

In this subsection we consider the box and ellipsoidal uncertainty for r as presented in subsection 4.1,

using again the approach for old and new energy introduced in section 5, and keeping the covariance matrix

for the costs in their nominal values as in subsection 6.3.

For the box uncertainty we consider in our example the vectors r̄o and r̄n as the costs related to the

high CO2 emission (5060 USD/TM) cost case presented in [1] and reproduced in Table 5. As pointed out in

subsection 4.1, maxr∈X ω′r = ω′r̄ and in this case the robust portfolio problem (7) is equivalent to solving

problem (27) considering r̄o and r̄n instead of ro and rn. In Figure 2 we show the efficient frontiers for the

nominal and high CO2 emission cost cases.

For the ellipsoidal uncertainty case we consider, for simplicity, that the expected costs for the old energy

ro is kept unchanged and the goal is to consider values of rn such that the norm for the relative errors is less

than a given upper bound ǫ. In other words,
∑8

i=1(
rni −r̄ni
r̄ni

)2 ≤ ǫ2 for some pre-specified value ǫ > 0, where r̄ni

are the nominal values for the cost of the new energy as in Table 4 (that is, the sum of the square variations

of the cost with respect to the nominal value is less than ǫ2). It is easy to see that this problem is equivalent

to considering the ellipsoidal uncertainty X = {r ∈ R
m; (r − r̄)′S−1(r − r̄) ≤ 1} with S1/2 = diag(ǫ r̄i). In

Figure 3 we present again the efficient frontier corresponding to the problem of minimizing the variance of

the cost for the nominal data (problem (3)) in dashed line and the robust problem (13) with ǫ = 0.2 in solid

line. Again, as expected, the robust efficient frontier will be more conservative as it is easy to see from the

definition of the problem in (13).

21



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 5: Expected Costs for the High CO2 Emission Cost Case

.

Fuel mean value (r̄o
i
and r̄n

i
)

Gas Old 12.587

Gas New 11.973

Coal Old 17.525

Coal New 16.985

Nuclear Old 10.123

Nuclear New 10.025

Fuel Oil Old 22.854

Fuel Oil New 20.214

Biomass Old 14.063

Biomass New 13.463

Hydro Old 4.132

Hydro New 5.006

Wind Old 11.003

Wind New 10.469

Small Hydro Old 6.902

Small Hydro New 6.909
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Figure 2: Efficient frontier for the nominal data (dashed line) and the high CO2 emission cost data (solid line)

6.5. Comparison with the DPEE2024 reference portfolio

As an example for the comparison among the portfolios, consider an expected cost of 7 .155 (that is,

τ = 7.155), which would correspond to the expected cost for the DPEE2024 reference portfolio, excluding

the solar energy from the mix (see [31]). In Table 6 we present the total weights (including the “old” and
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Figure 3: Efficient frontier for the nominal data (dashed line) and the robust problem (13) with ellipsoidal uncertainty set for

r (solid line)

“new” energies) for the reference portfolio, the optimal one obtained from the nominal model (problem (3)),

the optimal ones for the robust problems (14) and (16) considering the polytopic uncertainties, the optimal

one for the problem (27) considering the box uncertainty set, and for the robust problem (13) considering

the ellipsoidal uncertainty set.

Table 6: Weights, Exp. Costs (cents USD/KWh), STD, CO2 emission (TM/KWh) for Ref. 2024, Optimal and Robust Mixes

.

Fuel Ref. 2024 Optimal Poly. (14) Poly. (16) Box (27) Ellip. (13)

Gas 10.96% 11.69% 12.25% 12.15% 5.87% 11.94%

Coal 1.7% 2.88% 1.54% 1.82% 1.53% 3.13%

Nuclear 1.7% 2.00% 2.00% 2.00% 2.00% 2.00%

Fuel Oil 2.16% 2.42% 2.41% 2.41% 2.42% 2.41%

Biomass 9% 5.56% 5.57% 5.59% 5.56% 5.57%

Hydro 58.56% 55.72% 56.51% 56.78% 63.21% 60.17%

Wind 12% 14.00% 14.00% 13.53% 13.68% 9.05%

Small Hydro 3.92% 5.73% 5.72% 5.72% 5.73% 5.73%

exp. cost 7.155 7.155 7.155 7.153 7.155 7.155

stand. dev 0.0420 0.0393 0.0451 0.0456 0.0495 0.0455

CO2 emis. 0.0728 0.0879 0.0780 0.0802 0.0518 0.0912

As pointed out in [28] the box and ellipsoidal uncertainty sets are related to regression techniques to

estimate the uncertainty parameters. On the other hand the polytopic approach appears to be more appro-

priate when the modeler is more interested in creating economical scenarios ad-hoc. Thus it is important to
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notice that the box and ellipsoidal models cannot be directly compared with the polytopic model since, as

aforementioned, they have different goals. We present below a comparison of the obtained results for each

approach with the DPEE2024 reference portfolio (see Table 6).

a) For the box uncertainty model it was considered for the upper limit the costs related to the high CO2

cost case presented in [1] and, as consequence, the results were similar to the ones obtained in this

reference. As pointed out in [1], the effect of considering a higher CO2 price yields to a substitution

of the fossil fuels by renewable energies, even for the natural gas, which reduces its participation to

around 5.9%, when compared to its share in the DPEE2024 reference portfolio, as shown in Table 6.

b) For the ellipsoidal uncertainty model the upper bound for the norm of the relative errors was arbitrarily

chosen to be ǫ = 0.2. Differently from the box uncertainty case, the ellipsoidal uncertainty model

doesn’t present a straight economical interpretation when compared with the DPEE2024 reference

portfolio. As we can see from Table 6 the optimal portfolios for the nominal and robust case tend to

be similar. We notice in Table 6 that the CO2 emission for the portfolio obtained from the ellipsoidal

uncertainty model is higher than the others, probably due to the fact that the choice of the ellipsoidal

uncertainty for rn is not selective among the renewable and non-renewable energies. Again we notice

the increase on the weight on the gas energy when compared with the DPEE2024 reference mix,

indicating a good risk mitigation contribution. In comparison with the DPEE2024 reference portfolio,

and using the nominal values for the expected costs as shown in Table 4, we get that expected cost

for the box uncertainty model is 6.8078, which corresponds to a reduction of 3.38% while, from Table

6, we see that the risk increased in 8.3%. This increase can be somehow seen as the price to be paid

for considering the uncertainties on the expected cost parameters.

c) For the polytopic uncertainty model we notice that the robust cases (which consider 3 scenarios for

the expected costs and 3 for the variances) has a higher worst case standard deviation (the maximum

standard deviation among the 3 scenarios) than the standard deviation for the DPEE2024 reference

and optimal portfolios, which is reasonable since the latter consider just 1 scenario for the expected

values and variances. The worst case standard deviation for the robust portfolio from problem (14)

is 7.38% higher than the reference mix, and 14.76% higher than the optimal mix. For the robust

portfolio from problem (16) it is 8.57% higher than the reference mix, and 16.03% higher than the

optimal mix. This increase of risk seems acceptable bearing in mind that we are considering the worst

case volatility when we take into account the possible uncertainties for the parameters, not considered

in the usual case. If we consider only the nominal values as in Table 4 the expected cost and standard

deviation for the robust portfolio from problem (14) would be respectively 7.1 and 0.0406, a reduction

of 0.8% and 3.4% with respect to the DPEE2024 reference portfolio. Similarly, considering only the
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nominal values, the expected cost and standard deviation for the robust portfolio from problem (16)

would be respectively 7.08 and 0.041, a reduction of 1% and 2.6% with respect to the DPEE2024

reference portfolio. Thus, even considering the robust cases, the results suggest that there is room for

improvement on the DPEE2024 portfolio expected costs and risk through diversification. Regarding

the CO2 emission we have that the robust mix from problems (14) and (16) have less emission than

the optimal nominal one, which suggests that the robust approach can better conciliate the emission

costs and price risk. We also notice the increase on the weight on the wind energy for both the optimal

and robust cases in comparison with the reference mix, and the high participation of the gas, specially

for the robust portfolios, indicating that these technologies have a good risk mitigation contribution.

7. Conclusions

In this paper we have considered the problem of optimal portfolio selection for electricity planning and

policy-making when the vector of expected costs r as well as the covariance matrix Ψ for the different energy

technologies belong to uncertainty sets. Tracing a parallel with the robust financial portfolio literature (see

for instance, [10]) it was considered box and ellipsoidal uncertainty sets for r and componentwise bound

and convex polytopic uncertainty sets for r and Ψ. It was shown that the problems of finding a portfolio of

minimum worst case variance with guaranteed fixed maximum expected cost, minimum worst case expected

cost with guaranteed fixed maximum variance, and minimum worst case combination of the expected and

variance of the cost can be written as quadratic, SCOP and SDP problems. For the case that the model

distinguishes the “old” energy from the “new” energy (as for instance in [16, 1]) it was show that the

optimization problems can be simplified.

A numerical example based on the data considered in [1] for the Brazilian generation mix expansion with

8 energy technologies, classified as “old” and “new” energies, was presented, considering the box, ellipsoidal

and polytopic uncertainty sets. The efficient frontier for the problem of minimum worst case variance with

guaranteed fixed maximum expected cost and the problem of minimizing the worst case combination of

the expected and variance of the cost (for the polytopic case), weighted by a risk aversion parameter, were

obtained and compared with the problem of minimum variance with fixed maximum expected cost for the

case with just one scenario. As expected the robust efficient frontiers are more conservative but, on the other

hand, it presented the advantage of taking into account possible future scenarios or uncertainty regions for

the parameters that were not considered for the usual case. The results suggest that the robust approach,

being by nature more conservative, can be useful in providing a reasonable electricity energy mix conciliating

CO2 emission, risk and costs under uncertainties on the parameters of the model.

We believe that the technique presented in this paper offers a useful computational tool in the direction

of overcoming one of the main limitations of standard mean-variance optimization on energy planning, which
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is the uncertainty on the estimation of the expected and covariance matrix of the costs of the different energy

technologies.
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Highlights

• Robust portfolio optimization models are proposed for the electricity planning

• The expected and covariance matrix of the technology costs belong to uncertainty sets

• The technique is applied for the efficient Brazilian electricity energy mix

• Results indicate a mix with good balance for cost, risk and CO2 emission
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